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We establish an explicit upper bound for the Euclidean minimum of a number field which depends, in a precise manner, only on its discriminant and the number of real and complex embeddings. Such bounds were shown to exist by Davenport and Swinnerton-Dyer ([9, 10, 11]). In the case of totally real fields, an optimal bound was conjectured by Minkowski and it is proved for fields of small degree. In this note we develop methods of McMullen ([20]) in the case of mixed signature in order to get explicit bounds for the Euclidean minimum.

Introduction

Let K be a number field of degree n, let O K be its ring of integers and d K be the absolute value of its discriminant. Let N ∶ K → Q be the absolute value of the norm map. The number field K is said to be Euclidean with respect to the norm if for every a, b ∈ O K with b = 0 there exist c, d ∈ O K such that a = bc + d and N(d) < N(b). Equivalently, the number field K is Euclidean with respect to the norm if for every x ∈ K there exists c ∈ O K such that N(xc) < 1. This suggests to look at the real number

M(K) ∶= sup x∈K inf c∈O K N(x -c), (1) 
called the Euclidean minimum of K. If K is totally real, then Minkowski's conjecture states that the inequality

M(K) ≤ 2 -n ⋅ d K (2) 
holds. This conjecture is known for n ≤ 9 (see §2.3 for details). It is natural to look for bounds similar to [START_REF] Bayer-Fluckiger | Upper bounds for Euclidean minima of algebraic number fields[END_REF] for number fields of mixed signature. Such bounds were obtained by Clarke [START_REF] Clarke | Non-homogeneous linear forms associated with algebraic fields[END_REF] and Davenport [START_REF] Davenport | Linear forms associated with an algebriac number-field[END_REF]. The latter proved that for every pair of nonnegative integers (r, s) there exists a constant C r,s such that

M(K) ≤ 2 -sn r+s ⋅ C r,s ⋅ d K n 2(r+s) (3) 
holds for every number field K of signature (r, s). Although an explicit constant C r,s can be deduced from Davenport's proof, it is too large to be useful. The aim of this paper is to develop methods of McMullen (cf. [START_REF] Mcmullen | Minkowski's conjecture, well-rounded lattices and topological dimension[END_REF]) to obtain a better constant. A weakened but easy to read form of our main result (Theorem 5.3) is the following:

Theorem. Let K be a number field of signature (r, s) and degree n = r + 2s ≥ 4, and let d K be the absolute value of the discriminant of K. The following inequality holds.

M(K) ≤ 2 -sn r+s ⋅ 1 2 √ n n ⋅ d K n 2(r+s) .
In other words, the inequality (3) holds with the constant C r,s = 2 -n ⋅ n n 2 , which is still very large. In §2 we compare our result to known estimates for totally real and totally imaginary fields, and formulate some questions as to which bounds one might hope for.

Convention: Throughout the paper, all vector spaces are understood to be finite dimensional real vector spaces. A scalar product on a vector space V is a symmetric positive definite bilinear form V × V → R, and by a lattice in V we understand a cocompact discrete subgroup of V .

Inhomogeneous minima of lattices of mixed signature

We explain in this section what we mean by lattices of mixed signature, recall the definition and some properties of inhomogeneous minima, and give some motivation for studying these objects.

-2.1. Let r and s be nonnegative integers and set n = r+2s. Let V ∶= R r ⊕C s , which is an n-dimensional vector space over R. We equip V with the scalar product ⟨-, -⟩ given by

⟨(v 1 , . . . , v r+s ), (v ′ 1 , . . . , v ′ r+s )⟩ = r i=1 v i v ′ i + r+s i=r+1 Re(v i v ′ i ) (4) 
and we call the function N ∶ V → R given by

N(v 1 , . . . , v r+s ) = v 1 ⋅ . . . ⋅ v r ⋅ v 2 r+1 ⋅ . . . ⋅ v 2 r+s ( 5 
)
the norm, although it is not a norm in the usual sense. By a lattice of signature (r, s) we mean a lattice in this particular vector space V . We denote by det(Λ) the volume of V Λ with respect to the volume form obtained from the scalar product (4). We call the real numbers

m(Λ) ∶= inf λ∈Λ∖{0} N(λ) and M(Λ) ∶= sup v∈V inf λ∈Λ N(v -λ)
the homogeneous minimum, respectively the inhomogeneous minimum, of Λ.

-2.2. Our motivation for studying inhomogeneous minima of lattices of mixed signature is the classical geometry of numbers. Let K be a number field of degree n and signature (r, s), so that n = r+2s. Let d K be the absolute value of the discriminant of K. Choosing an ordering of the r real and of s non-conjugated complex embeddings of K we obtain a Q-linear embedding K → V with dense image. The image of the ring of integers 5) continuously extends the absolute value of the usual norm map N ∶ K → Q, hence the name. In this context, m(K) and M(K) denote the homogeneous and the inhomogeneous minimum of O K as a lattice in V . These quantities are independent of the ordering of the real and complex embeddings of K. Cerri proves in [START_REF] Cerri | Inhomogeneous and Euclidean spectra of number fields with unit rank strictly greater than 1[END_REF] that M(K) is equal to the Euclidean minimum of the number field K as given in (1).

O K of K in V is a lattice of volume 2 -s ⋅ √ d K and the norm map N ∶ V → R given in (
-2.3. Minkowski's conjecture on inhomogeneous minima of products of real linear forms (see for instance [START_REF] Gruber | Geometry of numbers[END_REF]) states that if s = 0, the inequality

M(Λ) ≤ 2 -n ⋅ det(Λ)
holds for every lattice Λ in V . The conjecture is proved for n up to 9 ( [START_REF] Minkowski | Ueber die Annäherung an eine reelle Grösse durch rationale Zahlen[END_REF][START_REF] Remak | Verallgemeinerung eines Minkowskischen Satzes[END_REF][START_REF] Dyson | On the product of four non-homogeneous linear forms[END_REF][START_REF] Skubenko | On Minkowski's conjecture for n = 5[END_REF][START_REF] Mcmullen | Minkowski's conjecture, well-rounded lattices and topological dimension[END_REF][START_REF] Hans-Gill | On conjectures of Minkowski and Woods for n = 7[END_REF][START_REF] Hans-Gill | On conjectures of Minkowski and Woods for n = 8[END_REF][START_REF] Kathuria | On conjectures of Minkowski and Woods for n = 9[END_REF]). In terms of number fields, Minkowski's conjecture implies that

M(K) ≤ 2 -n ⋅ d K
holds for every totally real number field K. This is proved also for particular totally real fields of degree n > 9, see for example [START_REF] Bayer-Fluckiger | On the Euclidean minimum of some real number fields[END_REF][START_REF] Bayer-Fluckiger | Upper bounds for Euclidean minima of algebraic number fields[END_REF][START_REF] Bayer-Fluckiger | Ideal lattices over totally real number fields and euclidean minima[END_REF][START_REF] Bayer-Fluckiger | Upper bounds for the Euclidean minima of abelian fields of odd prime power conductor[END_REF]. For totally real number fields of any degree n, the inequality

M(K) ≤ ( √ 2) -n ⋅ d K (6)
holds by a theorem of Chebotarev, see for instance [START_REF] Davenport | On a theorem of Tschebotareff[END_REF]. There are improvements of this estimate, yet, to our best knowledge, it is at present not known whether M(K) ≤ c -n ⋅ √ d K holds for some real number c > √ 2.

-2.4. Improving earlier results of Clarke ([7]), Davenport shows in [START_REF] Davenport | Linear forms associated with an algebriac number-field[END_REF] that for every pair (r, s) there exists a real number C r,s ≥ 0 such that the inequality (with the convention 0 0 = 1)

m(Λ) s r+s ⋅ M(Λ) ≤ C r,s ⋅ det(Λ)
n r+s [START_REF] Clarke | Non-homogeneous linear forms associated with algebraic fields[END_REF] holds for all lattices of signature (r, s). Notice that if we scale Λ by a real number t > 0, both sides of the inequality change by the factor t n 2 (r+s) . Also notice that the inequality is trivial if m(Λ) = 0, unless s = 0. In terms of number fields, where we have m(Λ) = 1, Davenport's result states that

M(K) ≤ 2 -sn r+s ⋅ C r,s ⋅ d K n 2(r+s) . (8) 
holds for every number field K of signature (r, s). In the case s = 0 one hopes that the inequality [START_REF] Clarke | Non-homogeneous linear forms associated with algebraic fields[END_REF] holds with the constant C r,0 = 2 -r , according to Minkowski's conjecture, and one knows [START_REF] Clarke | Non-homogeneous linear forms associated with algebraic fields[END_REF] to hold for C r,0 = ( √ 2) -r , according to Chebotarev's theorem. In [START_REF] Bayer-Fluckiger | Upper bounds for Euclidean minima of algebraic number fields[END_REF] it is proved that

M(K) ≤ 2 -n ⋅ d K (9) 
holds for any number field K of degree n. In other words, for r = 0 the inequality (8) holds with the constant C 0,s = 1.

-2.5. We wonder what an analogue of Minkowski's conjecture for number fields or lattices of mixed signature should look like. In an updated version of [START_REF] Lemmermeyer | The Euclidean algorithm in algebraic number fields[END_REF] of 2004, Lemmermeyer states that "similar results [to Minkowksi's conjecture] (not even a conjecture) for fields with mixed signature are not known except for a theorem of Swinnerton-Dyer ( [START_REF] Swinnterton-Dyer | The inhomogeneous minima of complex cubic norm forms[END_REF]) concerning cubic fields". The result in question states that the inequality

M(K) ≤ 1 16 3 √ 2 ⋅ d K 2 3 (10) 
holds when K is a complex cubic field. Also, the Euclidean minimum of any complex quadratic field K is known, and we have that

M(K) ≤ 1 8 ⋅ d K .
-2.6. If we agree that a mixed signature analogue of Minkowski's conjecture is an estimate of the form [START_REF] Clarke | Non-homogeneous linear forms associated with algebraic fields[END_REF], then the quantity we search to determine is the real number c r,s ∶= sup m(Λ)

s r+s ⋅ M(Λ) ⋅ det(Λ) -n r+s
Λ is a lattice of signature (r, s)

which exists by Davenport's result. Minkowski's conjecture states c r,0 = 2 -r , but moreover it is part of the conjecture that the supremum is attained precisely for those lattices Λ ⊆ R r which are sums of r lattices Λ i = a i Z ⊆ R.

For instance, the standard lattice Z r ⊆ R r satisfies M(Z r ) = 2 -r . In the case of mixed signature (r, s), lattices which are sums of r lattices a i Z ⊆ R and s lattices x i Z + y i Z ⊆ C are not helpful in guessing c r,s , because their homogeneous minima are zero. Indeed, the equality

c r,s = sup M(Λ) ⋅ det(Λ) -n r+s
Λ is a lattice of signature (r, s) and m(Λ) = 1 holds for s > 0. It is not clear whether this is true as well when s = 0, except in the case (r, s) = (2, 0) because there are real quadratic number fields whose euclidean minimum is arbitrarily close to Minkowski's bound. Also, inhomogeneous minima of complex quadratic fields are known, and one can show that c 0,1 = 1 2 .

Question 2.7. Are there positive real numbers a, b such that c r,s ≤ a r b s holds for all (r, s), that is, such that the inequality

M(Λ) ≤ a r b s ⋅ det(Λ) n r+s
holds for every lattice Λ of signature (r, s) and inhomogeneous minimum m(Λ) = 1? Can one choose a = ( √ 2) -1 and b = 1 as suggested by Chebotarev's and estimates ( 6) and ( 9)? Could one even choose a = b = 1 2 ?

-2.8. The inequality [START_REF] Davenport | On the product of n linear forms[END_REF] does not fit in the discussion of §2.6, because the exponent of the discriminant is not what we were asking for. This is not an accident that just happens in the case of cubic fields, indeed, Davenport and Swinnerton-Dyer have shown (cf. Theorem 1 in [START_REF] Davenport | Products of inhomogeneous linear forms[END_REF], together with [START_REF] Davenport | On the product of n linear forms[END_REF][START_REF] Swinnterton-Dyer | The inhomogeneous minima of complex cubic norm forms[END_REF]) that there exists a real number B r,s > 0 such that

M(Λ) ≤ B r,s ⋅ det(Λ) max( n-1 r+s , n-s (r+s)-s 2 )
holds for every lattice Λ ⊆ R r ⊕ C s satisfying m(Λ) = 1.

Question 2.9. Let A r,s ⊆ R be the set of those real numbers α ∈ R with the property that there exists C ∈ R such that M(Λ) ≤ C det(Λ) α holds for every lattice Λ of signature (r, s) and m(Λ) = 1. This set is a either a closed or an open half line

A r,s = (α r,s , ∞) or A r,s = [α r,s , ∞)
and we can define constants c r,s (α) analogous to those in 2.6 and ask questions like those in 2.7 for any exponent α ∈ A r,s . As proven by Davenport and Swinnerton-Dyer in [START_REF] Davenport | Products of inhomogeneous linear forms[END_REF][START_REF] Davenport | On the product of n linear forms[END_REF][START_REF] Swinnterton-Dyer | The inhomogeneous minima of complex cubic norm forms[END_REF] we have

α r,s ≤ max n -1 r + s , n -s (r + s) -s 2
and this inequality is an equality if r = 0 (so α 0,s = 2) and if r = s = 1 (so α 1,1 = 4

3 ). Davenport and Swinnerton-Dyer suggest also that we might have equality whenever s = 1, and also that the inequality is strict in other cases. What is the number α r,s ? Do we have α r,s ∈ A r,s ?

Results on successive minima

We fix for this section a pair of nonnegative integers (r, s), and denote by V = R r ⊕ C s the vector space of dimension n = r + 2s introduced in 2.1, equipped with its scalar product (4) and norm map [START_REF] Benedetti | Real algebraic and semi-algebraic sets[END_REF]. We set v ∶= ⟨v, v⟩. We will recall the definition and some results concerning the successive minima of a lattice. Definition 3.1. The successive minima of a lattice Λ in V are the real numbers µ 1 (Λ), . . . , µ n (Λ) defined in the following way: for m ∈ {1, . . . , n}, µ m (Λ) is the infimum of the real numbers r such that there exist m independent vectors λ 1 , . . . , λ m in Λ ∖ {0} with λ i ≤ r for i ∈ {1, . . . , m}. Vectors λ ∈ Λ with λ = µ 1 (Λ) are called shortest (nonzero) vectors.

Definition 3.2. The Hermite constant for dimension n is γ n ∶= sup Λ µ 1 (Λ) 2 ⋅ det(Λ) -2 n
, where Λ runs over all lattices in V . Lemma 3.3 (Minkowski). For every lattice Λ in V and 1 ≤ t ≤ n we have

µ 1 (Λ) ⋅ ⋯ ⋅ µ t (Λ) ≤ γ t 2 n ⋅ det(Λ) t n ,
where γ n is the Hermite constant.

Proof. This is Theorem 2.6.8 of [START_REF] Martinet | Perfect lattices in Euclidean spaces[END_REF]. Lemma 3.4. For every lattice Λ in V the following inequality holds:

m(Λ) ≤ √ 2 √ n ⋅ µ 1 (Λ) n . Proof. For every element v = (v 1 , . . . , v r+s ) of V we have r i=1 v 2 i + r+s i=r+1 v i 2 ≤ 2 v 2 = 2 r i=1 v 2 i + r+s i=r+1 v i 2 hence N(v) 1 n ≤ √ 2 √ n ⋅ v (11) 
by the inequality between arithmetic and geometric means. The desired inequality follows from m(Λ)

1 n = inf λ≠0 N(λ) 1 n ≤ √ 2 √ n ⋅ inf λ≠0 λ = √ 2 √ n ⋅ µ 1 (Λ)
where the infima are taken over all non-zero elements λ of Λ.

Lemma 3.5. The following inequality holds for every lattice Λ in V :

M(Λ) ≤ 1 √ 2 ⋅ µ n (Λ) n .
Proof. Let v ∈ V . By definition of the successive minima, there exist linearly independent elements λ 1 , . . . , λ n of Λ satisfying λ i ≤ µ n (Λ) for all i ∈ {1, . . . , n}. Choose an orthonormal basis e 1 , . . . , e n of V such that each λ i is written as 

λ i = i j=1 a ij e j ,
′ j in v -(k 1 λ 1 + ⋯ + k n λ n ) = n j=1 b ′ j e j satisfy b ′ j ≤ 1 2 a jj . Because of λ i ≤ µ n (Λ) we have a ij ≤ µ n (Λ) and hence b ′ j ≤ 1 2 µ n (Λ). Setting λ = k 1 λ 1 + ⋯ + k n λ n , we obtain the inequality v -λ 2 = n j=1 b ′ j 2 ≤ n 4 ⋅ µ 2 n (Λ) or equivalently v -λ ≤ √ n 2 ⋅ µ n (Λ).
From the inequality between arithmetic and geometric means, as in [START_REF] Davenport | Products of inhomogeneous linear forms[END_REF], we obtain

N(v -λ) ≤ √ 2 √ n ⋅ v -λ n ≤ 1 √ 2 ⋅ µ n (Λ) n ,
and since v was arbitrary, the desired inequality follows.

McMullen's topological methods

A lattice Λ ⊆ R n is said to be well rounded if all of its successive minima are equal. A conjecture of Woods ( [START_REF]Woods Covering six space with spheres[END_REF]) predicts that the covering radius ρ(Λ) of a well rounded lattice Λ satisfies the inequality

ρ(Λ) ∶= sup v∈R n inf λ∈Λ v -λ ≤ √ n 2 ⋅ det(Λ) 1 n .
Covering radii and inhomogeneous minima are linked by the inequality between arithmetic and geometric means

N(v) 1 n ≤ v √ n ,
so that, to prove Minkowski's conjecture for Λ ⊆ R n it is sufficient to show that there exists a well rounded lattice Λ ′ with the same inhomogeneous minimum as Λ, and to prove that Woods' conjecture holds for Λ ′ . The set of lattices in R n can be identified with the quotient GL n (R) GL n (Z) and in particular it has the structure of a differentiable real manifold of dimension n 2 with a differentiable transitive left action by GL n (R). McMullen proved in [START_REF] Mcmullen | Minkowski's conjecture, well-rounded lattices and topological dimension[END_REF] that if the closure of the orbit of a lattice Λ ⊆ R n under the group of diagonal matrices with positive entries and determinant 1 is compact, then some lattice in that closure is well rounded.

In the case where the orbit of Λ ⊆ R n is already compact, McMullen's result follows with some effort from the following theorem (Theorem 1.6 of [START_REF] Mcmullen | Minkowski's conjecture, well-rounded lattices and topological dimension[END_REF]). Theorem 4.1. Let T be a real torus and let U 1 , . . . , U m be open subsets of T which cover T . Suppose that the inequality rank(H 1 (W, Z) → H 1 (T, Z)) < p holds for every p ∈ {1, . . . , m} and every connected component W of U p . Then m is strictly larger than the dimension of T .

-4.2. Let V = R r ⊕C s be the vector space introduced in 2.1, equipped with its scalar product and the norm map. We write G for the subgroup of SL r+s (R) consisting of the diagonal matrices with positive entries. The group G is a real Lie group, isomorphic to R r+s-1 . It acts by R-linear transformations on V and preserves the norm. Hence, G acts on the space of lattices in V and preserves homogeneous and inhomogeneous minima.

Theorem 4.3. Let Λ ⊆ V be a lattice such that GΛ is compact. Then there exists g ∈ G such that the equalities µ s+1 (gΛ) = ⋯ = µ n (gΛ) hold. [START_REF] Mcmullen | Minkowski's conjecture, well-rounded lattices and topological dimension[END_REF]. With a few adaptations, McMullen's method works also in our superficially more general setup. For the convenience of the reader, we check this in detail. Notice that we cannot expect to obtain more equalities between successive minima than stated. This is clear from the case r = 0. We could alternatively demand for any 0 ≤ k ≤ s the equalites µ 1+k (gΛ) = ⋯ = µ r+s+k (gΛ) to hold.

-4.5. We fix for the rest of this section a lattice Λ ⊆ V ∶= R r ⊕ C s such that GΛ is compact. To say that GΛ is compact is to say that the stabiliser

G Λ ∶= {g ∈ G gΛ = Λ} of Λ ⊆ V is cocompact in G. Yet in other words, since G Λ is discrete in G ≃ R r+s-1 , the quotient T ∶= G G Λ
has to be a real torus of dimension r + s -1. For every g ∈ G, we define:

D(g) ∶= {λ ∈ Λ gΛ < µ n (gΛ)} M(g) ∶= the real subspace of V generated by D(g)
The set D(g) is a finite and nonempty subset of Λ, and M(g) ⊆ V is a proper rational subspace, by which we mean that M(g) is not equal to V , and that M(g) is generated by lattice vectors. Notice that dim M(g) is the smallest integer p ≥ 0 for which µ p+1 (gΛ) = ⋯ = µ n (gΛ) holds. Thus, in order to prove Theorem 4.3, we have to show that there exists a g ∈ G with dim M(g) ≤ s.

-4.6. For every integer 1 ≤ p ≤ n, let us define G(p) as the set of those g ∈ G with dim M(g) = np. The subsets G(p) of G form a partition of G, and these sets are stable under the translation action of G Λ . Indeed, for every g ∈ G and h ∈ G Λ we have

D(gh) = {λ ghλ < µ n (gΛ)} = {h -1 λ gλ < µ n (gΛ)} = h -1 D(g)
hence M(gh) = h -1 M(g) and dim M(gh) = dim M(g). Therefore, as p ranges over 1, 2, . . . n, the sets

T (p) ∶= G(p) G Λ = {gG Λ dim M(g) = n -p}
form a partition of the torus T ∶= G G Λ . We will need to know that the subsets T (p) of T are not too pathological, in particular we want to know that each T (p) admits an open neighbourhood of which T (p) is a deformation retract.

-4.7. Let us recall some definitions and a theorem from real algebraic geometry. Let U be a nonepty open subset of some finite dimensional real vector space. A subset of U is said to be semialgebraic if it belongs to the smallest family of subsets of U which is closed under finite unions, finite intersections and complements, and which contains the sets

{x ∈ U f (x) ≥ 0}
for polynomial functions f ∶ U → R. A central result in real algebraic geometry is that compact semialgebraic sets admit a finite triangulation. The following is a light version of Theorem 2.6.12 of [START_REF] Benedetti | Real algebraic and semi-algebraic sets[END_REF]: Theorem 4.8. Let X ⊆ R n be a compact semialgebraic set, and let X 1 , . . . , X m be a partition of X by semialgebraic subsets. There exists a finite simplicial complex (a polyhedron) K and a homeomorphism h ∶ X → K, such that each X p is a union of sets h -1 (F ) for some relatively open faces F of K.

The group G is itself a semialgebraic subset of R r+s , so we know what semialgebraic subsets of G are. But we wish to speak about semialgebraic sets on a real torus, say T = G G Λ . The real torus T can be given a structure of a compact locally semialgebraic space (which is: a locally ringed space, locally isomorphic to a semialgebraic set, see [START_REF] Delfs | Locally semialgebraic spaces[END_REF], §I.1, Definition 3). Theorem 4.8 persists in this generality ([12] §II.4, Theorem 4.4). In elementary terms however, this means the following: A subset X of T is called semialgebraic if there exist open subsets U i ⊆ R n which form an atlas of T via the projection maps

ϕ i ∶ U i → T , such that each ϕ -1 i (X) is a semialgebraic subset of U i .
Corollary 4.9. Let T 1 , . . . , T m be a partition of T by semialgebraic subsets. There exists a finite simplicial complex K and a homeomorphism h ∶ T → K, such that each T p is a union of sets h -1 (F ) for some relatively open faces F of K.

We can deduce this corollary either from the triangulation theorem of [START_REF] Delfs | Locally semialgebraic spaces[END_REF], but also from the quoted Theorem 4.8. Indeed, choose for X ⊆ G any compact semialgebraic set which contains a fundamental domain for T , and for X p ⊆ X the preimages in X of the subsets T p . Possibly after subdividing some simplicies, any triangulation X → K descends to a triangulation of T . Proof. We start by showing that G(1)∪G(2)∪⋯∪G(p) is an open and locally semialgebraic subset of G. For every g ∈ G, let us denote by E(g) ⊆ V the ellipsoid given by the equation

E(g) ∶= {v ∈ V gv = µ n (gΛ)}
and notice that µ n (gΛ) is the largest real number r with the property that the lattice points which lie inside of {v ∈ V gv = r} do not generate V as a real vector space. The set of lattice points inside of E(g) is indeed the set D(g). Observe that µ n (gΛ) is a continuous function of g, and that E(g) varies continuously with g, say for the Hausdorff distance.

Pick an element g 0 ∈ G(p). The set of those g ∈ G with the property that every lattice point which is on the inside of E(g 0 ) is also on the inside of E(g), and every lattice point which is on the outside of E(g 0 ) is also on the outside of E(g), form an open neighbourhood of g 0 in G. This neighbourhood, call it U, is contained in

G(1) ∪ G(2) ∪ ⋯ ∪ G(p) = {g ∈ G dim M(g) ≥ n -p}
indeed, we have by definition D(g 0 ) ⊆ D(g) and hence M(g 0 ) ⊆ M(g) for all g ∈ U, and thus

U ⊆ G(1) ∪ ⋯ ∪ G(p). This shows that G(1) ∪ G(2) ∪ ⋯ ∪ G(p) is open.
Next, let us show that G(q)∪G(q +1)∪⋯∪G(p) is defined by polynomial inequalities on U for every 1 ≤ q ≤ p. Let S 0 be the set of those lattice points which lie on E(g 0 ). An element g ∈ U belongs to G(q) ∪ ⋯ ∪ G(p) if and only if the following conditions hold:

1. The set of points D ⊆ S 0 which lie inside of E(g) satisfy dim ⟨D, M(g 0 )⟩ ≤ nq.

2. The set of points S ⊆ S 0 which are on or inside E(g) satisfy ⟨S, M(g 0 )⟩ = V .

The set of those g ∈ U satisfying (1) and ( 2) for given sets D ⊆ S is described by the quadratic polynomial inequalities gλ 0 2 ≥ gλ 2 for λ 0 ∈ S 0 ∖ D and λ ∈ S ∖ D, which in particular imply gλ = µ n (gΛ) for λ ∈ S ∖ D. This shows that (G(q) ∪ ⋯ ∪ G(p)) ∩ U is a finite union of closed subsets of U, each of which is defined by finitely many polynomial inequalities, namely

(G(q)∪⋯∪G(p))∩U = ⋃ D⊆S g ∈ U gλ 0 2 ≥ gλ 2 for all λ 0 ∈ S 0 ∖D, λ ∈ S ∖D
where the union runs through all pairs of subsets D ⊆ S of S 0 satisfying dim ⟨D, M(g 0 )⟩ ≤ nq and ⟨S, M(g 0 )⟩ = V . The quotient map G → T is locally a polynomial diffeomorphism, that is a tautology. Hence T (1) ∪ T (2) ∪ ⋯ ∪ T (p) is open. Moreover, since T is compact, there exists a finite covering of T by open sets U with the property that T (p + 1) ∪ ⋯ ∪ T (n) is given on U as a finite union of closed subsets, each defined by finitely many polynomial inequalities. Proof. By Corollary 4.9, there exists a finite simplicial complex K and a homeomorphism h ∶ T → K, such that each T (p) is a union of sets h -1 (F ) for some relatively open faces F of K. But any union of relatively open faces on a simplicial complex, finite or not, admits an open neighbourhood which is a deformation retract, and we can transport these neighbourhoods to T via h. Lemma 4.12. Let γ ∶ [0, 1] → T (p) be a path. Then M(γ(0)) = M(γ(1)).

Proof. Pick t 0 ∈ [0, 1] and set g 0 ∶= γ(t 0 ). We have seen in the proof of Lemma 4.10 that the inclusion M(g 0 ) ⊆ M(g) holds for all g in some neighbourhood of g 0 , hence M(γ(t 0 )) ⊆ M(γ(t)) holds for all t in some neighbourhood of t 0 . But we assume dim M(γ(t)) = np for all t, so the equality M(γ(t 0 )) = M(γ(t)) must hold for all t close to t 0 . The map t ↦ M(γ(t)) is therefore locally constant on [0, 1], hence constant. holds for every connected component W of U p . It follows from ( 12) and theorem 4.1 that the sets U 1 , . . . , U r+s-1 do not cover T , hence U p and hence T (p) must be nonempty for some p ≥ r + s. This implies that there exists g ∈ G with dim M(g) ≤ s, which was to be shown.

Proof of the Main Theorem

Equip the vector space V = R r ⊕ C s with the scalar product and the norm map introduced in 2.1, and let G ⊆ SL r+s (R) be the group of diagonal matrices with positive diagonal coefficients. Theorem 5.1 below gives an upper bound on the inhomogeneous minimum of every lattice Λ ⊆ V whose G-orbit is compact. Our main Theorem stated in the introduction is a consequence of it. Theorem 5.1. Let Λ be a lattice in V such that GΛ is compact. The following inequality holds for every 1 ≤ a ≤ r + s.

m(Λ) s ⋅ M(Λ) a ≤ 2 s-a ⋅ γ s+a n ⋅ n -s n 2 ⋅ det(Λ) s+a
Proof. By Theorem 4.3 there exists g ∈ G such that µ s+1 (gΛ) = ⋯ = µ n (gΛ) holds. We have then

µ 1 (gΛ) s ⋅ µ n (gΛ) a ≤ µ 1 (gΛ) ⋅ ⋯ ⋅ µ s (gΛ) ⋅ µ n (gΛ) a ≤ γ s+a 2 n ⋅ det(gΛ) s+a n (13) 
by Lemma 3.3 with t = s + a. Furthermore, we have

µ n (gΛ) ≥ √ 2 ⋅ M(gΛ) 1 n = √ 2 ⋅ M(Λ) 1 n (14) 
by Lemma 3.5, and

µ 1 (gΛ) ≥ √ n √ 2 ⋅ m(gΛ) 1 n = √ n √ 2 ⋅ m(Λ) 1 n (15) 
by Lemma 3.4. The statement of the theorem follows by combining ( 13), ( 14) and ( 15).

-5.2. Let K be a number field of degree n = r + 2s over Q, with r real embeddings σ 1 , . . . , σ r and s non-conjugated complex embeddings σ r+1 , . . . , σ r+s . Let d K be the absolute value of the discriminant of K. From the chosen ordering of the embeddings of K we obtain a Q-linear map σ ∶ K → V sending x ∈ K to (σ 1 (x), . . . , σ r+s (x)). The image of O K under this map is a lattice Λ ∶= σ(O K ) ⊆ V of volume 2 -s ⋅ √ d K (see for example [START_REF] Samuel | Algebraic theory of numbers[END_REF], page 57). Let ǫ ∶ O * K → G be the group homomorphism sending x ∈ K to the diagonal matrix with diagonal coefficients σ 1 (x) , . . . , σ r+s (x) . holds for every 1 ≤ a ≤ r + s.

Proof. As we have explained in 5.2, the lattice Λ ∶= σ(O K ) ⊆ V associated with K has a compact G-orbit. Since we have m(Λ) = 1, the inequality follows directly from Theorem 5.1.

-5.4. For number fields with a large discriminant, the choice a = r + s will give the best upper bound in Theorem 5.3, whereas for number fields with a small discriminant also other choices for a can be interesting. For a = r + s and using the estimate γ n ≤ n 2 for n ≥ 4 (Theorem 2.7.4. of [START_REF] Martinet | Perfect lattices in Euclidean spaces[END_REF] and page 17 of [START_REF] Milnor | Symmetric bilinear forms[END_REF]) we obtain the theorem stated in the introduction.

  in other words, the matrix (a ij ) is upper triangular. Write v = b 1 e 1 + ⋯ + b n e n and successively choose integers k 1 , . . . , k n such that the coefficients b
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 413 Let M ⊆ V be a real linear subspace of dimension p which is generated by elements of Λ, and let G M,Λ ⊆ G Λ be the subgroup consisting of those g ∈ G Λ satisfying gM = M. We have rank(G M,Λ ) < g.c.d.(n, p).

  Indeed we have det(ǫ(x)) = N(x) = 1. The kernel of ǫ is the finite group of roots of unity in O * K . The maps σ and ǫ are compatible, in the sense that σ(xy) = ǫ(x)σ(y) holds for all x ∈ O * K and y ∈ K. In particular we have ǫ(O* K ) ⊆ G Λ , hence G Λ ⊆ G has rank r + s -1 by Dirichlet's Unit Theorem. It follows that GΛ ≅ G G Λ is compact.
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 53 Main Theorem). Let K be a number field of signature (r, s) and degree n = r + 2s, and let d K be the absolute value of the discriminant ofK. Then M(K) ≤ 2 -s(s+a) a ⋅ 2 s-a ⋅ γ s+a n ⋅ n -s n 2a ⋅ d K s+a 2a
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Proof. Consider the number field k ∶= Q[G M,Λ ] and set e ∶= [k ∶ Q]. We can regard Λ ⊗ Q and (M ∩ Λ) ⊗ Q as k 0 -vector spaces, and thus have

where the last equality holds since M is rational. 

Proof. Choose g ∈ G(p) in the class of t. We show that the image of ρ is contained in G M (g),Λ . Since M(g) is generated by lattice elements and dim M(z) = np the desired conclusion follows then from Lemma 4.13. 1) by definition of the canonical isomorphism π 1 (T, t) ≅ G Λ . By Lemma 4.12 the equality M(γ(0)) = M(γ(1)) holds, hence

and hence h ∈ G M (g),Λ as claimed.

Proof of Theorem 4. 

Remark 5.5. For small degrees n, the exact value of the Hermite constant γ n is known. The following table presents the explicit bounds that we obtain from Theorem 5.3 for n ≤ 5. To the authors knowledge, these bounds are the best known for n = 4, 5 and s ≠ 0.

n s Upper bound for M(K) K