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Abstract

We develop three approaches of combinatorial flavour to study the structure of minimal
codes and cutting blocking sets in finite geometry, each of which has a particular application.
The first approach uses techniques from algebraic combinatorics, describing the supports in
a linear code via the Alon-Füredi Theorem and the Combinatorial Nullstellensatz. The
second approach combines methods from coding theory and statistics to compare the mean
and variance of the nonzero weights in a minimal code. Finally, the third approach regards
minimal codes as cutting blocking sets and studies these using the theory of spreads in finite
geometry. Applying and combining these approaches with each other, we derive several new
bounds and constraints on the parameters of minimal codes. Moreover, we obtain two new
constructions of cutting blocking sets of small cardinality in finite projective spaces. In turn,
these allow us to give explicit constructions of minimal codes having short length for the
given field and dimension.

Introduction

In a linear code, a codeword is minimal if its support does not contain the support of any
codeword other than its scalar multiples. A code is minimal if its codewords are all minimal.

Minimal codewords in linear codes were originally studied in connection with decoding algo-
rithms [27] and have been used by Massey [31] to determine the access structure in his code-based
secret sharing scheme. However, describing the minimal codewords of a linear code is in general
a difficult problem, even for highly structured families of codes.

General properties of the minimal codewords of a code are studied in [4], where a sufficient
condition for a code to be minimal is presented (often called the Ashikhmin-Barg condition).

The latter shows that a linear code in which the minimum and maximum weight are close
enough to each other is necessarily minimal. Recently, estimates for the number of minimal
codewords in a given code have been also found; see [20].

In the last decade, minimal codes have been the subject of intense mathematical research,
yet their structural properties are far from being understood. First results on minimal codes
were presented in [17], where the main motivation arises from secure two-party computation.

∗Gianira N. Alfarano was supported by the Swiss National Science Foundation through grant no. 188430.
†Alessandro Neri was supported by the Swiss National Science Foundation through grant no. 187711.
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Moreover, in the same paper an upper bound on the rate of a minimal code is established, which
was recently improved in [1]. Other bounds on the minimum and maximum weight of minimal
codes can be found in [18].

Various explicit constructions of minimal codes relying on the aforementioned Ashikhmin-
Barg condition are known; see [16,22] among many others. Constructions that exploit in other
ways the minimal structure of the code are based, for example, on functions over finite fields [8,14,
32,33]. A geometric approach was proposed in [1,30,35], where minimal codes are characterized
as cutting blocking sets.

A remarkable property of minimal codes is that they form an asymptotically good family [1,
18]. Since the proofs of [1,18] are nonconstructive, this naturally poses the problem of explicitly
constructing families of minimal codes of short length for a given dimension, which is equivalent
to constructing small cutting blocking set in a given projective space. Problems of this type are
very natural and yet wide open challenges in the realm of extremal combinatorial structures; see
e.g. [5, 7, 13]. An important contribution in this direction is [23], where the authors construct
small cutting blocking sets in PG(k − 1, q), under the assumption that the characteristic of
the field is strictly greater than k − 1 and the field size is at least 2k − 3. Because of the
constraints imposed on the field size, the construction of [23] is of limited applicability in coding
theory and does not address the problem of constructing asymptotically good families of minimal
codes (where q is fixed and k tends to infinity together with the code length). More recently,
a construction of cutting blocking sets in PG(3, q) and PG(5, q), which are smaller that the
previously known ones, has been given in [10]. This construction produces minimal codes of
dimension respectively 4 and 6 over a finite field of arbitrary size.

Our contribution. In this paper, we propose three different approaches of strong combina-
torial flavour to the study of minimal codes, each of which has a particular application. Most
methods apply more generally to arbitrary linear codes, but give the best and most explicit
results when combined with the minimality property of the underlying code.

The idea behind the first approach is to associate to a code a multivariate polynomial, which
we call the support polynomial. This allows us to capture the combinatorics of the nonzero code-
words of a code in an algebraic fashion, characterizing the inclusion relations among supports
as the nonvanishing of a polynomial of bounded degree. We then study the support polynomial
using tools from algebraic combinatorics, most notably the Alon-Füredi Theorem. As an ap-
plication of this method, we obtain new lower bounds for both the minimum distance and the
length of a minimal code. This improves on known results and excludes the existence of minimal
codes for several new parameter sets.

The second approach uses instead ideas from statistics. More precisely, we regard the weight
of a nonzero codeword as a discrete random variable and use Pless’ equations, along with classical
inequalities, to compare its mean and variance. All of this establishes inequalities between the
maximum and minimum weight in a linear code, which are sharp for certain code families. In
turn, these yield a new upper bound for the minimum distance of a minimal code and exclude
the existence of such codes for yet other parameter sets.

Finally, the third approach is based on the correspondence between minimal codes and
cutting blocking sets in finite geometry. We first reduce the problem of constructing short
minimal codes to that of constructing cutting blocking sets of small cardinality. Then we show
how to use the theory of spreads in projective spaces to obtain cutting blocking sets whose
parameters can be computed explicitly. The applications of this geometric approach are twofold:
On the one hand, we obtain new explicit constructions of short minimal codes; on the other
hand, we establish a recursive upper bound for the least length of a minimal code over Fq

having prescribed dimension.
For convenience of the reader we conclude the Introduction by listing the main contributions

made by this paper, pointing to the corresponding statements.

2



— As an application of methods from algebraic combinatorics, in particular the Alon-Füredi
Theorem and the Combinatorial Nullstellensatz:

1. a lower bound on the minimum distance of a minimal code (Theorem 2.8);

2. a structural result on the maximal codewords in a linear code (Theorem 2.13);

3. a lower bound on the block length of a minimal code (Theorem 2.14).

— Combining ideas from coding theory and statistics with the algebraic combinatorial ap-
proach outlined above:

4. an upper bound on the minimum distance of a minimal code and a constraint on
its parameters (Corollary 3.7);

5. a result connecting the relative difference between maximum and minimum weights
in a linear code with its block length (Corollary 3.10).

— Using methods from projective geometry, most notably the theory of spreads:

6. a construction of cutting blocking sets from spreads in finite geometry and of the
corresponding minimal codes (Theorems 4.1 and 4.2);

7. an inductive construction of cutting blocking sets of small cardinality and of the
corresponding minimal codes (Proposition 4.5 and Theorem 4.6);

8. two new general constructions of short minimal codes (Constructions A and B).

Outline. The paper is overall organized into four sections. Section 1 contains the prelimi-
naries on minimal codes and illustrates their connection with cutting blocking sets. Each of the
remaining three sections is devoted to a different approach to minimal codes, using algebraic
combinatorics (Section 2), statistics (Section 3), and finite geometry (Section 4).

1 Preliminaries

In this section we establish the terminology for the remainder of the paper and state some
preliminary results on the parameters of minimal codes. These will be applied in several instances
in the sequel. All codes considered in this work are linear.

Notation 1.1. Throughout this paper, q is a prime power, Fq is the finite field with q elements,
and n, k are integers with n ≥ k ≥ 1. For i ∈ N = {0, 1, 2, . . .} we let [i] := {j ∈ N : 1 ≤ j ≤ i}.
We only consider row-vectors and for any matrix M ∈ F

a×b we denote by rowsp(M) the rowspace
of M over F, that is the F-subspace of Fb generated by the rows of M . Finally, for i ∈ N≥1 we
denote by ei the i-th standard basis vector.

1.1 Minimal Codes

In this short subsection we define minimal codes and briefly survey some of their main properties.
We will use them repeatedly throughout the paper.

Definition 1.2. The (Hamming) support of a vector v ∈ F
n
q is σ(v) = {i | vi 6= 0} ⊆ [n] and

its (Hamming) weight is ω(v) = |σ(v)|.
An [n, k]q code is a nonzero Fq-linear subspace C ⊆ F

n
q of dimension k. Its elements are

called codewords. The minimum distance of C is the integer d(C) = min{ω(c) | c ∈ C, c 6= 0}
and its maximum weight is max{ω(c) | c ∈ C}. If d = d(C) is known, we say that C is an
[n, k, d]q code. A generator matrix G ∈ F

k×n
q of C is a matrix such that rowsp(G) = C.

3



Finally, codes C and C′ are called (monomially) equivalent if there exists an Fq-linear
isometry f : Fn

q → F
n
q with f(C) = C′; see [26, page 24].

Recall that an [n, k]q code C is nondegenerate if there is no i ∈ [n] with ci = 0 for all
c ∈ C. Furthermore, C is called projective if in one (and thus in all) generator matrix G of C
no two columns are proportional. Note that a projective code is necessarily nondegenerate.

In this paper we mostly concentrate on codes whose codewords are all minimal.

Definition 1.3. Let C be an [n, k]q code. A nonzero codeword c ∈ C is called minimal if
every codeword c′ ∈ C with σ(c′) ⊆ σ(c) is a multiple of c. We say that C is minimal if all its
codewords are minimal.

Remark 1.4. Following the notation of Definition 1.3, in a minimal code C any nonzero code-
word c is minimal, but also maximal (i.e., every other codeword c′ ∈ C with σ(c′) ⊇ σ(c) is a
multiple of c).

The following simple result states that every minimal codeword c in a [n, k]q code C has
weight upper bounded by n − k + 1. To see this, it suffices to puncture C on the nonzero
positions of c, obtaining a new code whose length is n− ω(c) and whose dimension is k − 1.

Proposition 1.5. Let C be an [n, k]q code. Every minimal codeword c ∈ C has ω(c) ≤ n−k+1.

The following result shows that minimal codes have relatively large length with respect to
their dimension and field size; see also Remark 3.4.

Theorem 1.6 (see [1,30]). Let C be an [n, k]q minimal code with k ≥ 2. We have n ≥ (k−1)q+1.

The previous bound is not tight in general. More precisely, in [1] it was conjectured (and
then proved in [35]) that the length n of an [n, k]q minimal code satisfies the following lower
bound.

Theorem 1.7 (see [1, 35]). Let C be an [n, k]q minimal code with k ≥ 2. We have

n ≥ (k − 1)(q − 1) + 1 +

k−1
∑

i=1

⌈

(k − 1)(q − 1) + 1

qi

⌉

.

In Section 2 we will further improve the bound in Theorem 1.7 using methods from algebraic
combinatorics; see Theorem 2.14.

1.2 Minimal Codes and Cutting Blocking Sets

The concept of a cutting blocking set was introduced in [14] with the goal of constructing a family
of minimal codes. The same objects were know earlier under various names and in different
contexts. In [19] these are called N -fold strong blocking set and are used for constructing
small saturating sets in projective spaces over finite fields. In [23], cutting blocking sets are
referred to as generator sets and are constructed as union of disjoint lines. In [1] and [35] it was
independently shown that cutting blocking sets are in one to one correspondence with minimal
linear codes. In this subsection, we recall some properties of (cutting) blocking sets and known
results about their size.

Consider the finite projective geometry of dimension N and order q, denoted by PG(N, q).
Recall that

PG(N, q) :=
(

F
N+1
q \ {0}

)

/∼,

where ∼ denotes the proportionality relation, i.e., u ∼ v if and only if u = λv for some nonzero
λ ∈ Fq. A d-flat in PG(N, q) is a subspace Π isomorphic to PG(d, q). A 1-flat is a line, while
a 2-flat is a plane. If d = N − 1, then Π is called a hyperplane.

In our approach, projective systems are crucial geometric objects for the study of linear
codes and their properties.
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Definition 1.8. A projective [n, k, d]q system P is a finite set of n points (counted with
multiplicity) of PG(k − 1, q) that do not all lie on a hyperplane and such that

d = n−max{|H ∩ P| : H ⊆ PG(k − 1, q), dim(H) = k − 2}.

Projective [n, k, d]q systems P and P ′ are equivalent if there exists a projective isomorphism φ
of PG(k − 1, q) mapping P to P ′ which preserves the multiplicities of the points.

There is a well-known correspondence between the (monomial) equivalence classes of non-
degenerate [n, k, d]q linear codes and the equivalence classes of projective [n, k, d]q systems;
see [36, Theorem 1.1.6]. More precisely, let G be a k × n generator matrix of an [n, k]q linear
code. Consider the set P of one-dimensional subspaces of Fn

q spanned by the columns of G,
which gives a set of points in PG(k − 1, q). Conversely, let P be a projective [n, k, d]q system.
Choose a representative for any point of P and consider the code generated by the matrix having
these representatives as columns. Now observe that for any nonzero vector u = (u1, u2, . . . , uk)
in F

k
q the hyperplane

u1x1 + u2x2 + · · ·+ ukxk = 0

contains |P| −w points of P if and only if the codeword uG has weight w.

Definition 1.9. Let t, r,N be positive integers with r < N . A t-fold r-blocking set in PG(N, q)
is a set M ⊆ PG(N, q) such that for every (N − r)-flat Λ of PG(N, q) we have |Λ ∩ M| ≥ t.
When r = 1, we will refer to M as a t-fold blocking set. When t = 1, we will refer to it as an
r-blocking set. When r = t = 1, M is simply a blocking set.

Cutting blocking sets are defined as follows.

Definition 1.10. Let r,N be positive integers with r < N . An r-blocking set M in PG(N, q)
is cutting if for every pair of (N − r)-flats Λ,Λ′ of PG(N, q) we have

M∩ Λ ⊆ M∩ Λ′ ⇐⇒ Λ = Λ′.

Equivalently, an r-blocking set M ⊆ PG(N, q) is cutting if and only if for every (N − r)-
dimensional subspace Λ of PG(N, q) we have 〈M ∩ Λ〉 = Λ; see [1].

It is shown in [1, 35] that the correspondence described above between projective [n, k, d]q
systems and nondegenerate [n, k, d]q linear codes extends to a correspondence between equiv-
alence classes of [n, k, d]q minimal codes and equivalence classes of projective [n, k, d]q systems
that are cutting blocking sets. This geometric interpretation of minimal codes will be crucial in
Section 4.

Remark 1.11. As already mentioned in the Introduction, we are particularly interested in
finding lower bounds on the length of minimal codes or, equivalently, lower bounds on the size
of cutting blocking sets in projective spaces. From this point of view, it is not restrictive to only
consider projective codes, which correspond to projective systems in which all the points have
multiplicity one.

It immediately follows from the definitions that a cutting blocking set M in PG(N, q) is
necessarily an N -fold blocking set. The following theorem is obtained by combining a well-known
result of Beutelspacher (which gives a lower bound on the cardinality of an N -fold blocking set
in PG(N, q) when N ≤ q) and the correspondence between minimal codes and cutting blocking
sets.

Theorem 1.12 (see [11, Theorem 2]). Let C be an [n, k]q minimal code. If k − 1 ≤ q, then
n ≥ (q + 1)(k − 1).

5



The above results uses the fact that cutting blocking sets in PG(k − 1, q) are in particular
(k− 1)-fold blocking sets. Beutelspacher also characterized (k− 1)-fold blocking sets in PG(k−
1, q) with cardinality (q+1)(k− 1), under the further assumption that k ≤ √

q+2. Recall that,
when q is a square, a Baer subspace of PG(N, q) is a subgeometry isomorphic to PG(N,

√
q).

Theorem 1.13 (see [11, Theorem 3]). Let 4 ≤ k ≤ √
q+2 and let M be a (k−1)-fold blocking

set in PG(k − 1, q). Then |M| ≥ (q + 1)(k − 1). Moreover, equality holds if and only if one of
the following scenarios occurs:

1. M is the set of points on k − 1 mutually skew lines.

2. k =
√
q + 2 and M is the point set of a 3-dimensional Baer subspace of PG(k − 1, q).

3. q = 4, k = 4, and M is the complement of a hyperoval in a plane of PG(k − 1, q), where
an hyperoval is a set of q + 2 points in a plane, no three of which are collinear.

In [1, Lemma 4.9] and in [35] it was observed that cutting blocking sets in PG(2, q) and 2-fold
blocking sets are actually the same object. Moreover, in PG(2, q) one can always construct a
2-fold blocking set of size 3q, or equivalently a [3q, 3]q minimal code, by considering the union
of three lines that do not intersect in the same point. When q is a square, one can construct
a cutting blocking set as union of two disjoint Baer subplanes, producing a minimal code of
length 2q+2

√
q+2. We thus survey the known results on the cardinality of 2-fold blocking sets

in PG(2, q), which turn out to be an accurate estimates also for the length of minimal codes of
dimension 3.

Theorem 1.14 (see [6, Theorem 3.1]). Let M be a 2-fold blocking set in PG(2, q). The follow-
ing hold.

1. If q < 9, then |M| ≥ 3q.

2. If q > 4 is a square, then |M| ≥ 2q + 2
√
q + 2.

3. If q > 19, q = p2d+1, then |M| ≥ 2q + pd
⌈

(pd+1+1)
(pd+1)

⌉

+ 2.

4. If q = 11, 13, 17, 19 is not a square, then |M| ≥ (5q+7)
2 .

The bounds in Theorem 1.14, parts (3) and (4), are believed not to be sharp; see [6, page
133]. In particular, we are not aware of any construction of 2-fold blocking sets achieving these
sizes.

Remark 1.15. In the literature, there are two general constructions of small cutting blocking
sets we are aware of, which we briefly sketch in this remark.

The first one was proposed by Fancsali and Sziklai in [23] and it works as follows. One
chooses any 2k − 3 distinct points on the rational normal curve in PG(k − 1, q) and takes the
union of the tangent lines at these points. The resulting set is a cutting blocking set, under
the assumption that the characteristic of the field is at least k. We call this set the rational

normal tangent set. The corresponding codes are minimal [(2k − 3)(q + 1), k]q codes whose
minimum distance was proved to be at least kq in [10]. The drawback of this construction is
the constraint on both the size (q) and the characteristic (p) of the underlying field, reading
q ≥ 2k − 3 and p ≥ k. For a fixed value of q, the approach of [23] constructs cutting blocking
sets in PG(k − 1, q) for only a finite number of values of k.

A second construction that instead works for every choice of the parameters k and q can
be found in [1, 9, 30]. Consider k points P1, . . . , Pk in general position in PG(k − 1, q) and let
ℓi,j := 〈Pi, Pj〉. Then the union of these lines gives a cutting blocking set. From this construction,

called tetrahedron, one obtains a family of [(q−1)
(k
2

)

+k, k, (q−1)(k−1)+1]q minimal codes.
As a consequence of Theorem 1.14, when k = 3 this construction provides a minimal 2-fold
blocking set in PG(2, q) for any q < 9.
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2 Algebraic Combinatorial Approach

This section develops an algebraic combinatorial approach to study minimal codes. The method
uses a generator matrix of a linear code to build a multivariate polynomial “machinery”. This
allows us to study the maximal codewords of a code by applying classical results on the number
of roots of multivariate polynomials over finite grids. As an application of our method, with the
aid of Alon’s Combinatorial Nullstellensatz [2] and the Alon-Füredi Theorem [3], we improve
known lower bounds on the minimum distance and the length of minimal codes.

It is interesting to observe that the results contained in this section are mainly exploiting the
fact that in a minimal code all the codewords are maximal, as already observed in Remark 1.4.
Although in a minimal code this code property is equivalent to all codewords being minimal,
the focus on maximal codewords is crucial for deriving both the lower bound on the minimum
distance (Theorem 2.8) and the lower bound on the length (Theorem 2.14) of minimal codes.

2.1 Combinatorial Nullstellensatz and Alon-Füredi Theorem

We start by surveying tools from algebraic combinatorics that will be applied repeatedly. Among
these are Alon’s Combinatorial Nullstellensatz and the Alon-Füredi Theorem.

Notation 2.1. We state the results of this subsection and of the next one for an arbitrary
field F. In Subsection 2.3 we will resume focusing on the case F = Fq and on linear codes.

For a multivariate polynomial p ∈ F[x1, . . . , xk] and a subset A ⊆ F
k, denote by VA(p) the

set of zeros of p in A, and by UA(p) the nonzeros of p in A, i.e.,

VA(p) = {v ∈ A | p(v) = 0} ,
UA(p) = {u ∈ A | p(u) 6= 0} .

The Alon–Füredi Theorem [3, Theorem 5] gives a lower bound on the cardinality of UA(p)
when A is a finite grid and p is not identically zero on A. Equivalently, it provides an upper
bound on the number of zeros of p. We recall it for convenience of the reader.

Theorem 2.2 (Alon–Füredi Theorem [3]). Let A = A1 × . . . × Ak ⊆ F
k be a finite grid with

Ai ⊆ F and |Ai| = ni, where n1 ≥ n2 ≥ . . . ≥ nk ≥ 2. Let p ∈ F[x1, . . . , xk] be a polynomial that
is not identically 0 on A, and let p̄ be the polynomial p modulo the ideal (f1(x1), . . . , fk(xk)),
where fi(xi) =

∏

a∈Ai
(xi − a). Then

|UA(p)| ≥ (ns − ℓ)

s−1
∏

i=1

ni,

where ℓ and s are the unique integers satisfying deg p̄ =
∑k

i=s+1(ni− 1) + ℓ, with 1 ≤ s ≤ k and
1 ≤ ℓ ≤ ns − 1.

The above theorem relies on the fact that the polynomial p is not identically zero on the finite
grid we are interested in. However, when dealing with polynomials that are not explicitly given,
this property is not always easy to verify. In this direction, the celebrated Alon’s Combinatorial
Nullstellensatz helps determining a sufficient condition for a polynomial to be nonzero on a finite
grid. We state it here for completeness.

Theorem 2.3 (Combinatorial Nullstellensatz [2]). Let p ∈ F[x1, . . . , xk] and let deg p =
∑k

i=1 ri,
for some r1, . . . , rk ∈ N. Suppose that the coefficient of the monomial xr11 xr22 · · · xrkk in p is
nonzero. Let A := A1 × . . . × Ak ⊆ F

k be a grid with |Ai| ≥ ri + 1 for all i ∈ [k]. Then
UA(p) 6= ∅.
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2.2 The Support Polynomials

We denote by g(i) the i-th column vector of a matrix G ∈ F
k×n. Moreover, we consider the

vector x = (x1, . . . , xk) whose entries are algebraically independent variables over F.

Definition 2.4. The support polynomial associated with a matrix G ∈ F
k×n and a subset

I ⊆ [n] is

pG,I(x) :=
∏

i∈I

x · g(i) ∈ F[x1, . . . , xk].

In our approach, support polynomials are crucial for the study of minimal codes (taking as G
a generator matrix of an [n, k, d]q code and as I a subset of a codeword’s support). However,
for the moment we focus on general properties of support polynomials that do not necessarily
arise from codes. The following result is straightforward and its proof is omitted.

Proposition 2.5. Let G ∈ F
k×n and I ⊆ [n].

1. For every A ∈ GL(k,F)

pAG,I(x) = pG,I(xA) = (pG,I ◦ LA)(x),

where LA denotes the linear map associated to the matrix A, that is v 7−→ vA.

2. For every τ ∈ Sn

pG,τ(I)(x) = pGPτ ,I(x),

where Pτ is the permutation matrix associated to τ , such that

(v1, . . . , vn)Pτ =
(

vτ(1), . . . , vτ(n)
)

.

3. For every v ∈ F
n

pGDv,I(x) =
(

∏

i∈I

vi

)

pG,I(x),

where Dv denotes the diagonal matrix whose diagonal is v.

We now study a support polynomial in connection with the rowspace of the matrix G ∈ F
k×n

that defines it. We first show how the zeros and nonzeros of support polynomials are related
when we choose matrices with the same rowspace.

Let G1, G2 ∈ F
k×n be two matrices such that rowsp(G1) = rowsp(G2). It is easy to see that

there exists A ∈ GL(k,F) such that

UFk
q
(pG1,I) = UFk

q
(pG2,I) ·A :=

{

uA | u ∈ UFk
q
(pG1,I)

}

,

VFk
q
(pG1,I) = VFk

q
(pG2,I) ·A :=

{

vA | v ∈ VFk
q
(pG1,I)

}

.

Indeed, any matrix A with G2 = AG1 satisfies the desired properties. Moreover, the nonzeros
of a support polynomial are closely related to the support of vectors belonging to the rowspace
of the defining matrix. This is shown by the following simple result, whose proof is omitted.

Lemma 2.6. Let G ∈ F
k×n be a matrix. For all I ⊆ [n] we have

UFk(pG,I) =
{

u ∈ F
k | σ(uG) ⊇ I

}

.

In particular, UFk(pG,I) 6= ∅ if and only if there exists c ∈ rowsp(G) such that σ(c) ⊇ I.
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2.3 Minimum Distance of Minimal Codes

In this subsection we investigate the support polynomials of generator matrices of linear codes
and their set of zeros. As a corollary of our results, we establish1 a conjecture from [1].

We start with the following lemma, whose proof directly follows from Lemma 2.6 and Re-
mark 1.4.

Lemma 2.7. Let G ∈ F
k×n
q be a generator matrix of an [n, k]q code C. Let c = uG be a maximal

codeword of C and I := σ(c). Then

UFk
q
(pG,I) = {λu | λ ∈ F

∗
q}.

In particular, if C is a minimal code then the above statement holds for every nonzero codeword.

Theorem 2.8. Let C be an [n, k, d]q code, and let c be a maximal codeword. Then ω(c) ≥
(q − 1)(k − 1) + 1. In particular, if C is minimal then d ≥ (q − 1)(k − 1) + 1.

Proof. Let c = (c1, . . . , cn) ∈ C be a maximal codeword of weight w and let I := σ(c), i.e.,
ci ∈ F

∗
q if and only if i ∈ I. Take a generator matrix G ∈ F

k×n
q for C and consider the polynomial

pG,I(x) ∈ Fq[x1, . . . , xk]. Observe that pG,I does not vanish identically on F
k
q . Indeed, let

u ∈ F
k
q be the vector such that uG = c. Then pG,I(u) =

∏

i∈I ci 6= 0. This also ensures that
deg pG,I = w. Since c is a maximal codeword, by Lemma 2.7 we have UFk

q
(pG,I) = {αλ | α ∈ F

∗
q},

which has cardinality q − 1.
On the other hand, let p̄G,I denote the reduction of the polynomial pG,I modulo the ideal

({xqi − xi | i ∈ [k]}). By Theorem 2.2 we have

|UFk
q
(pG,I)| ≥ (q − ℓ)qs−1,

where ℓ and s are the unique integers satisfying deg p̄G,I = (q − 1)(k − s) + ℓ, with 1 ≤ s ≤ k
and 1 ≤ ℓ ≤ q − 1.

Thus, combining this with the exact value of |UFk
q
(pG,I)|, we obtain q − 1 = |UFk

q
(pG,I)| ≥

(q − ℓ)qs−1, from which we deduce s = 1. Therefore,

w = deg pG,I ≥ deg p̄G,I = (q − 1)(k − 1) + ℓ ≥ (q − 1)(k − 1) + 1.

Remark 2.9. The Alon-Füredi Theorem (Theorem 2.2) gives a lower bound on the number of
nonzeros of a multivariate polynomial in a finite grid in terms of the degree of the polynomial
and the size of the grid. This result has been used in coding theory for deriving the minimum
distance of generalized Reed-Muller codes; see e.g. [24, 29]. It is interesting to observe that in
our Theorem 2.8 the Alon-Füredi Theorem is applied in the “opposite” direction, i.e., we use
it to derive a lower bound on the degree of the support polynomial associated to a maximal
codeword, knowing the number of its nonzeros.

2.4 Maximal Codewords in Linear Codes

In this subsection we use support polynomials to study the structure of maximal codewords in
a linear code C. In particular, we show that for any maximal codeword c ∈ C there exist several
codewords whose support contains a large subset of the support of c. This property will be
crucial for deriving a lower bound on the length of minimal codes in Subsection 2.5.

1While preparing the final version of this manuscript, we realized that the same conjecture has been also
established in a recent preprint [35], using different methods. The approach developed in this paper also serves
to describe the structure of codes that are not necessarily minimal, proving general properties of their maximal
codewords.
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For v = (v1, . . . , vk) ∈ F
k
q , define

fv(x) :=

k
∏

i=1

(

∏

s∈Fq\{vi}

(xi − s)
)

.

Next, consider the ideal Iq := (xq1−x1, . . . , x
q
k−xk) and denote by f̄ the reduction of a polynomial

f ∈ Fq[x1, . . . , xk] modulo Iq. It is easy to check that for every v ∈ F
k
q we have f̄v = fv. One

can also easily prove that the set {fv | v ∈ F
k
q} is an Fq-basis for the space Fq[x1, . . . , xk]/Iq.

Moreover, regarding the polynomials fv’s as maps from F
k
q to Fq, the set {fv | v ∈ F

k
q} is an

Fq-basis of {ϕ : Fk
q −→ Fq}. This is due to the following well-known result.

Proposition 2.10. The evaluation map on Fq[x1, . . . , xk] induces the isomorphism of Fq-vector
spaces

Fq[x1, . . . , xk]/Iq ∼= {ϕ : Fk
q −→ Fq}. (2.1)

In particular, for every p ∈ Fq[x1, . . . , xk] there exist unique µv ∈ Fq for v ∈ UFk
q
(p), such that

p̄ =
∑

v∈U
F
k
q
(p)

µvfv.

Proposition 2.11. Let C be an [n, k]q code and let c = (c1, . . . , cn) ∈ C be a maximal codeword
of C with weight w and support I := σ(c). Let w1 be the unique integer in [q − 1] such that
w1 ≡ w mod (q− 1). Then, for any A ∈ GL(k, q) such that the first row of A−1G is equal to c,
we have p̄G,I(x) = pc(xA), where

pc(x) =
(

w
∏

i=1

ci

)

xw1
1

k
∏

i=2

(1− xq−1
i ).

Proof. We first prove the statement in the case where the first row of G is equal to c. Observe
that p̄c = pc, that is, the polynomial pc is already reduced modulo Iq. Therefore, by the
isomorphism given in (2.1), we only need to show that pG,I(v) = pc(v) for every v ∈ F

k
q . By

definition of pc we have

pc(v) =







λw1

w
∏

i=1
ci if v = λe1,

0 otherwise.

On the other hand, by the choice of G and Lemma 2.7 we have

pG,I(λe1) =
w
∏

i=1

(λci) = λw1

w
∏

i=1

ci,

where the last inequality follows using the identity λq = λ. Moreover, pG,I(v) = 0 for every
v /∈ {λe1 | λ ∈ F

∗
q}.

The general case follows from the previous one. We first transform G into A−1G, where the
first row of A−1G is equal to c. This implies that pA−1G,I(x) = pc(x). Then, using Proposi-
tion 2.5, we find pG,I(x) = pA−1G,I(xA) = pc(xA).

Notation 2.12. In the remainder of the section we write x = (x1, . . . , xk) and for α =
(α1, . . . , αk) ∈ N

k we denote by xα the monomial xα1
1 · · · xαk

k . Moreover, we let ‖α‖ := α1+ . . .+
αk. Finally, for a polynomial p(x) ∈ Fq[x1, . . . , xk] and a monomial xα, we denote by [xα]p(x)
the coefficient of the monomial xα = xa11 · · · xakk in p(x).

The following result on maximal codewords will be crucial in the next subsection for deriving
a lower bound on the length of a minimal code.
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Theorem 2.13. Let C be an [n, k]q code and let c = (c1, . . . , cn) ∈ C be a maximal codeword.
For every j ∈ σ(c) there exist Ij ⊆ σ(c) \ {j} of cardinality (q− 1)(k− 1) and a codeword z ∈ C
such that σ(z) ∩ σ(c) ⊇ Ij .

Proof. Let c ∈ C be a nonzero codeword with support I := σ(c) and weight w = (q−1)(k−1)+w1.
By Theorem 2.8 we have w1 ≥ 1.

Assume first that w ≤ (q − 1)k, which implies 1 ≤ w1 ≤ q − 1. We choose a generator
matrix G for C whose first row is equal to c, and assume that ci = 1 for every i ∈ I. This
can be done without loss of generality, up to replacing the code with an equivalent one. By
Proposition 2.11 we have

p̄G,I(x) = pc(x) = xw1
1

k
∏

i=2

(1− xq−1
i ).

Let j ∈ I and assume that the j-th column of G is (1, 0, . . . , 0)⊤. Define LI,j := {L ⊆ I :
j /∈ L, |L| = (q − 1)(k − 1)} and β := (w1, q − 1, q − 1, . . . , q − 1). We have

(−1)k−1 = [xβ]p̄G,I(x)

= [xβ]pG,I(x)

=
∑

L∈LI,j

[xq−1
2 · · · xq−1

k ]pG,L(x).

The first equality follows from direct inspection of pc(x). The second equality is due to the
fact that the degree pG,I is equal to (q − 1)(k − 1) + w1, which is also the degree of p̄G,I . The
third equality follows from the fact that the coefficients of x1 in the matrix G are all equal to 1.
Therefore, there exists Ij ∈ LI,j such that [xq−1

2 · · · xq−1
k ]pG,Ij(x) 6= 0. Let x′ := (x2, . . . , xk)

and consider the polynomial f(x′) := pG,Ij(0, x2, . . . , xk). This polynomial has degree |Ij | =
(q − 1)(k − 1) and [xq−1

2 · · · xq−1
k ]f(x′) = [xq−1

2 · · · xq−1
k ]pG,Ij(x) 6= 0. Hence, by Theorem 2.3,

there exists v ∈ F
k−1
q such that f(v) = pG,Ij(0, v) 6= 0. By Lemma 2.6, this implies that the

codeword z := (0, v)G ∈ C satisfies σ(z) ⊇ Ij.
Now assume that w > (q − 1)k, from which w1 ≥ q. Let us write w1 = a(q − 1) + b with

1 ≤ b ≤ q−1. Since w > (q−1)k, we have a ≥ 1. Denote the vector β := (b, q−1, q−1, . . . , q−1).
Consider the set T := {α ∈ N

k : ‖α‖ = a(q − 1), αi ≡ 0 mod (q − 1) for every i ∈ [k]}. Then

(−1)k−1 = [xβ ]p̄G,I(x)

=
∑

α∈T

[xβ+α]pG,I(x).

This means that there exists γ ∈ T such that [xβ+γ ]pG,I(x) 6= 0. Define L(γ)
I,j := {L ⊆ I : |L| =

w − b− γ1, j /∈ L}, γ′ := (0, γ2, . . . , γk), and β′ := (0, q − 1, . . . , q − 1). We have

[xβ+γ ]pG,I(x) =
∑

L∈L
(γ)
I,j

[xβ
′+γ′

]pG,L(x)

and there exists K ∈ L(γ)
I,j such that [xβ

′+γ′

]pG,K(x) 6= 0. At this point we can consider the set
XK := {M ⊆ K : |M | = (q − 1)(k − 1)} and write

[xβ
′+γ′

]pG,K(x) =
∑

M∈XK

λM

(

[xβ
′

]pG,M (x)
)

for some λM ∈ Fq. Since this sum is nonzero, there exists M such that [xβ
′

]pG,M(x) 6= 0. As in
the previous case, we use Theorem 2.3 and Lemma 2.6 to deduce that there exists a codeword
z ∈ C such that σ(z) ⊇ M .
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2.5 The Length of Minimal Codes

As an application of Theorem 2.13, we derive the following lower bound on the length of a
minimal code.

Theorem 2.14. Let C be an [n, k, d]q minimal code. We have n ≥ (q + 1)(k − 1).

Proof. Let c ∈ C be a codeword of minimum weight d with support I := σ(c). Up to considering
an equivalent code, we can assume ci = 1 for every i ∈ I. Since c is in particular a maximal
codeword of C, by Theorem 2.13 there exists a codeword z ∈ C such that |I∩σ(z)| ≥ (q−1)(k−1).
Let J := I ∩σ(z) and for every λ ∈ F

∗
q define Jλ := {j ∈ J | zj = λ}. Clearly, J =

⋃

λ∈F∗
q
Jλ and

the union is disjoint. Thus by generalized pigeonhole principle there exists λ′ ∈ F
∗
q such that

|Jλ′ | ≥
⌈ |J |
q − 1

⌉

≥ k − 1.

Now consider the codeword z − λ′c. Its support is σ(z − λ′c) = (σ(c) ∪ σ(z)) \ Jλ′ and

ω(z − λ′c) = |σ(c)| + |σ(z)| − |J | − |Jλ′ |
≤ d+ ω(z)− q(k − 1).

Combining this with ω(z−λ′c) ≥ d we obtain ω(z) ≥ q(k− 1). Furthermore, by Proposition 1.5
we have ω(z) ≤ n− k + 1, from which we finally obtain n ≥ (q + 1)(k − 1).

Remark 2.15. The lower bound of Theorem 2.14 is an improvement on the bound in Theo-
rem 1.7. Indeed, we have

(q + 1)(k − 1) ≥
k−1
∑

i=0

⌈

(q − 1)(k − 1) + 1

qi

⌉

. (2.2)

We do not go into the details of the proof.

Remark 2.16. Observe that Theorem 2.14 is an improvement on the bound of Theorem 1.12,
since it does not require the extra assumption that k ≤ q + 1.

We conclude this section with a detailed example building on [1, Example 5.11].

Example 2.17. We fix q = 3, k = 4 and take the minimal [14, 4, 7]3 code C whose generator
matrix is

G :=









0 0 0 0 0 0 0 1 2 1 1 1 2 1
1 1 1 0 0 0 0 0 0 0 1 2 1 1
0 1 2 1 1 1 0 0 0 0 0 0 2 2
0 0 0 0 1 2 1 1 1 0 0 0 1 2









.

Let I := {8, 9, . . . , 14} be the support of the codeword c given by the first row of G and let
x = (x1, x2, x3, x4). We compute the associated support polynomial

pG,I(x) = x1(x
2
3 − x21)(x

2
1 − x24)((x4 − x2)

2 − (x3 − x1)
2).

An easy calculation shows that the reduction of pG,I(x) modulo I3 = (x31 − x1, x
3
2 − x2, x

3
3 −

x3, x
3
4 − x4) is

p̄G,I(x) = x1(1− x22)(1− x23)(1 − x24) = pc(x),

as we can also deduce from Proposition 2.11.
Moreover, since C is a minimal code, we can actually see that for every j ∈ I there exists a

codeword z(j) ∈ C such that σ(z(j)) ⊇ I \ {j}, as stated in Theorem 2.13. These 7 codewords
(up to their nonzero scalar multiples) are

z(8) = (0, 0, 0, 0, 2, 1, 2, 0, 1, 1, 1, 1, 1, 2),
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z(9) = (0, 1, 2, 1, 2, 0, 1, 2, 0, 1, 1, 1, 2, 2),

z(10) = (1, 2, 0, 1, 2, 0, 1, 1, 1, 0, 1, 2, 1, 2),

z(11) = (2, 1, 0, 2, 2, 2, 0, 1, 2, 1, 0, 2, 2, 2),

z(12) = (1, 2, 0, 1, 1, 1, 0, 1, 2, 1, 2, 0, 2, 1),

z(13) = (0, 2, 1, 2, 2, 2, 0, 1, 2, 1, 1, 1, 0, 2),

z(14) = (0, 1, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 0).

Finally, note that, in order to derive the lower bound on the length of minimal codes given in
Theorem 2.14, we use in its proof that each of the codewords z(j) has weight at least q(k−1) = 9.
However, in this case only z(8) has weight 9, while all the other codewords have weight 11.

Remark 2.18. It is natural to ask whether the bound of Theorem 2.14 is sharp or not. As
stated in Subsection 1.2, minimal codes of dimension k over Fq correspond to cutting blocking
sets in PG(k− 1, q) and a cutting blocking set is in particular a (k− 1)-fold blocking set. When
we restrict to the case 4 ≤ k ≤ √

q+2, Theorem 1.13 characterizes a (k−1)-fold blocking set M
in PG(k − 1, q) of cardinality (q + 1)(k − 1). This only happens in three cases.
Case I: M is the union of k − 1 disjoint lines. In this case M cannot be a cutting blocking
set. To see this, write M = ℓ1 ∪ . . . ∪ ℓk−1. Pick P1 ∈ ℓ1, . . . , Pk−1 ∈ ℓk−1 and let Λ :=
〈P1, . . . , Pk−1〉. If dim(Λ) ≤ k − 3, then Λ is contained in a (k − 3)-flat Λ′. Consider the sheaf
of hyperplanes containing Λ′. They are q+1 and only k− 1 of them contain other points of M
in addition to P1, . . . , Pk−1. Since k − 1 < q + 1 there is at least one hyperplane H such that
H ∩M = {P1, . . . , Pk−1} and 〈H ∩M〉 ⊆ Λ′ 6= H. This implies that, in this case, M is not a
cutting blocking set. Suppose then that dim(Λ) = k− 2. Fix P1, . . . , Pk−3 and consider the flat
Γ := 〈P1, . . . , Pk−3, ℓk−2〉. If dim(Γ) < k − 2, then there exists Qk−2 ∈ ℓk−2 ∩ 〈P1, . . . , Pk−3〉.
Thus, if we replace Pk−2 byQk−2, we get that dim(Λ) < k−2, and we can conclude as done before
that M is not cutting. Hence, assume dim(Γ) = k − 2. In this case Γ ∩ ℓk−1 6= ∅. Take Qk−1 ∈
Γ∩ ℓk−1. If Qk−1 ∈ 〈P1, . . . , Pk−3〉, we substitute Pk−1 with Qk−1 and get again dim(Λ) < k−2,
which implies M not being cutting. Therefore, assume that the space 〈P1, . . . , Pk−3, Qk−1〉 is
a hyperplane in Γ. Since Γ also contains ℓk−2, there exists Rk−2 ∈ ℓk−2 ∩ 〈P1, . . . , Pk−3, Qk−1〉.
Thus, replacing Pk−1 with Qk−1 and Pk−2 with Rk−2, we again obtain that dim(Λ) < k − 2
and M is not cutting.
Case II: k =

√
q+2 and M is a 3-dimensional Baer subspace. If k ≥ 5, then 〈M〉 6= PG(k−1, q),

soM cannot be a cutting blocking set. For the remaining case, where k = q = 4, one can observe
that for a (hyper)plane H in PG(3, q), H intersects M in a Baer subplane or in a Baer subline.
In the latter case, one has 〈M∩H〉 6= H, and so M is not a cutting blocking set. The fact that
for k = q = 4 a 3-dimensional Baer subspace M cannot be cutting could be also deduced from
Example 3.8, since the cardinality of M is 15.
Case III: q = k = 4 and M is the complement of a hyperoval in a plane of PG(3, q). In this case
〈M〉 6= PG(3, q) and M cannot be a cutting blocking set.

Therefore, when 4 ≤ k ≤ √
q + 2, the bound in Theorem 2.14 is never sharp.

Corollary 2.19. Let C be a minimal [n, k]q code with 3 ≤ k ≤ √
q+2. Then n ≥ (q+1)(k−1)+1,

unless q = 2 and k = 3.

Proof. The case k ≥ 4 has been discussed in Remark 2.18. When k = 3, cutting blocking sets
are equivalent to 2-fold blocking set. Using Theorem 1.14, one can easily verify that the only
case in which a 2-fold blocking set has cardinality 2q + 2 is when q = 2.
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3 Statistical Approach

Most bounds for minimal codes we are aware of involve either (q, n, k), or (q, k, d). Bounds
involving all the four parameters (q, n, k, d) can in turn be obtained combining these with classical
bounds for Hamming-metric codes, such as the Singleton or the Griesmer bound.

In this section, we develop a method to establish new inequalities that directly involve all the
four parameters of a minimal code, namely (q, n, k, d). As an application, we obtain an upper
bound for the minimum distance d of a minimal code in terms of (q, n, k). As we will see in the
examples, this bound excludes the existence of minimal codes with parameter sets that do not
violate any of the known bounds.

Our approach combines Theorem 2.8 with ideas from statistics, interpreting the weight of
the codewords of a linear code as a discrete random variable and computing/estimating its mean
and variance. As simple corollaries of our bounds, we recover classical results on constant-weight
codes.

Throughout this section, C denotes a nondegenerate code. Our results can be made more
precise when C is projective; see Section 1 for the definition.

3.1 Mean and Variance of the Nonzero Weights in a Linear Code

We start with an upper bound for the sum of the squares of the weights in a nondegenerate
linear code. The proof uses one of the Pless’ identities.

Lemma 3.1. Let C be a nondegenerate [n, k]q code. We have

∑

c∈C

ω(c)2 ≥ qk−2 n (q − 1) [n(q − 1) + 1].

Moreover, equality holds if and only if C is projective.

Proof. For i ∈ {0, . . . , n} we denote by Wi(C⊥) the number of codewords of weight i in the dual
code C⊥. Since C is nondegenerate, we have W1(C⊥) = 0. Moreover, C is projective if and only
if W2(C⊥) = 0. Using Pless’ identities [26, Theorem 7.2.3(P1)] we can write

∑

c∈C

ω(c)2 =
2

∑

ν=0

(

ν!S(2, ν) qk−ν(q − 1)ν
(

n

n− ν

))

+ 4W2(C⊥)S(2, 2)qk−2, (3.1)

where S(a, b) ≥ 0 is the Stirling number of the second kind indexed by (a, b). Therefore

∑

c∈C

ω(c)2 ≥
2

∑

ν=0

(

ν!S(2, ν) qk−ν(q − 1)ν
(

n

n− ν

))

,

with equality if and only if C is projective. The lemma now follows from the fact that S(2, 0) = 0
and S(2, 1) = S(2, 2) = 1.

The next step consists in defining the mean and variance of the nonzero weights in a linear
code and to study the latter via Lemma 3.1.

Notation 3.2. For a code C, let

E(C) := (qk − 1)−1
∑

c∈C

ω(c),

Var(C) := (qk − 1)−1
∑

c∈C

ω(c)2 − E(C)2.

We now compute/estimate these two quantities.
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Theorem 3.3. Let C be a nondegenerate [n, k]q code. Let ℓ = n(q − 1)/(qk − 1). We have
E(C) = qk−1ℓ and Var(C) ≥ qk−2 ℓ(1− ℓ). Moreover, equality holds if and only if C is projective.

Proof. Since C is nondegenerate, we have

E(C) = (qk − 1)−1
n
∑

i=1

(qk − qk−1) = n(qk − qk−1)/(qk − 1) = qk−1ℓ.

Combining this with Lemma 3.1 we obtain

Var(C) ≥ qk−2n(q − 1)[n(q − 1) + 1]

qk − 1
− q2k−2 n

2(q − 1)2

(qk − 1)2

= qk−2ℓ[n(q − 1) + 1]− ℓ2q2k−2

= qk−2ℓ(1− ℓ),

as desired.

Remark 3.4. The quantity E(C) in Notation 3.2 expresses the average weight of C and can
be used to extend Theorem 1.6 as follows. Suppose that C is a nondegenerate [n, k]q code with
maximum weight w. Using E(C) ≤ w one obtains

n ≥
⌈

(n− w)
qk − 1

qk−1 − 1

⌉

≥ (n− w)q + 1.

In particular, if C is minimal then w ≤ n − k + 1 by Proposition 1.5, from which Theorem 1.6
follows.

As an immediate consequence of Theorem 3.3 we obtain the well-known fact that constant-
weight codes have large length; see e.g. [15].

Corollary 3.5. Let C be a constant-weight [n, k, d]q code. Then n ≥ (qk−1)/(q−1). Moreover,
if C is projective then n = (qk − 1)/(q − 1) and d = qk−1.

Proof. Without loss of generality, C is nondegenerate. By Theorem 3.3 we have 0 ≥ qk−2ℓ(1−ℓ),
from which ℓ ≥ 1. If C is projective then ℓ = 1 and so d = E(C) = qk−1, as claimed.

3.2 Bounds

By applying the result of the previous subsection, we can finally derive an upper bound for the
minimum distance of a code C as a function of q, n, k and the maximum weight in C.
Theorem 3.6. Let C be a nondegenerate [n, k, d]q code of maximum weight w > d. Let
ℓ = n(q − 1)/(qk − 1). We have w > n(qk − qk−1)/(qk − 1) and

d ≤
⌊

qk−1ℓ− qk−2ℓ(1− ℓ)

w − qk−1ℓ

⌋

. (3.2)

Moreover, equality holds in (3.2) if and only if C is a projective two-weight code.

Proof. The first inequality follows from the fact that w > E(C), since C is not constant-weight.
Using the inequality of Bhatia–Davis [12] we obtain

Var(C) ≤ (w − E(C))(E(C) − d).

Since C is nondegenerate and not constant-weight we have E(C) = qk−1ℓ < w. Therefore we
conclude by Theorem 3.3.

The second part of the statement follows from the fact that the bound of Theorem 3.3 is
sharp if and only if C is projective, and that the Bhatia–Davis inequality is met with equality if
and only if the underlying distribution takes only two values; see [12, Proposition 1].
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As an application of Theorem 3.6 we obtain the following bound for the minimum distance
of a minimal code.

Corollary 3.7. Let C be a minimal nondegenerate [n, k, d]q code. If C is not constant-weight,
then n− k + 1 > n(qk − qk−1)/(qk − 1) and

d ≤
⌊

n(q − 1)qk−2[n− 1− q(k − 1)]

n(qk−1 − 1)− (k − 1)(qk − 1)

⌋

. (3.3)

In particular, we have
qk−2n2 −Bn+ C ≥ 0, (3.4)

where














B = qk−2 + (k − 1)(2qk−1 − 1) +
qk−1 − 1

q − 1
,

C = (k − 1)2(qk − 1) +
(k − 1)(qk − 1)

q − 1
.

Proof. The maximum weight of C satisfies w ≤ n − k + 1 by Proposition 1.5. Combining this
with Theorem 3.6 one gets n− k + 1 > n(qk − qk−1)/(qk − 1) and

d ≤
⌊

qk−1ℓ− qk−2ℓ(1− ℓ)

n− k + 1− qk−1ℓ

⌋

, (3.5)

where ℓ = n(q − 1)/(qk − 1). Lengthy computations show that the RHS of (3.5) is equal to the
RHS of (3.3). The second part of the statement follows by combining (3.3) with Theorem 2.8,
after lengthy computations.

Example 3.8. There is no minimal [16, 4]4 code. To see this, observe that if such a code existed,
then (3.4) would give −42 ≥ 0, a contradiction. So the minimum length of a minimal code of
dimension 4 over F4 is at least 17.

Consider the parameters (q, n, k) = (4, 17, 4) and suppose that there exists an [17, 4]4 nonde-
generate minimal code C. Since n < (qk−1)/(q−1), C cannot be constant weight by Corollary 3.5.
Therefore by Corollary 3.7 we conclude that d ≤ 10. The existence of a minimal nondegener-
ate [17, 4, 11]4 code is therefore excluded by Corollary 3.7, but it is not excluded by any of the
other known bounds for the parameters of minimal codes. Note moreover that, by Theorem 2.8,
we have d ≥ 10. Therefore the minimum distance of a putative [17, 4]4 nondegenerate minimal
code is exactly 10 (when the largest minimum distance of an “unrestricted” [17, 4]4 linear code
is instead known to be 12).

Remark 3.9. The constraints imposed by Corollary 3.7 and Theorem 2.14 are in general in-
comparable. More precisely, each of the two results excludes the existence of some minimal
codes that are not excluded by the other.

One can see that Corollary 3.7 improves on Theorem 2.14 if and only if (3.4) is violated
when specialized to n = (q + 1)(k − 1). After lengthy computations, one sees that this happens
if and only if

k <
qk−1 + 2qk−2 − 2qk−3 + q − 2

(qk−3 + 1)(q − 1)
.

Manipulating this inequality it can be checked that Corollary 3.7 improves on Theorem 2.14 for
the parameter set {(k, q) | 3 ≤ k ≤ q + 3, q ≥ 3}. When q is at least 3, this is an improvement
also on Corollary 2.19. On the other hand, Theorem 2.14 provides a strictly sharper estimate
than Corollary 3.7 if and only if (3.4) is satisfied for n = (q + 1)(k − 1) − 1. For instance, this
happens for the parameter set {(k, q) : k ≥ 2q}.
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We include in Table 1 three collections of parameter sets that are excluded by Theorem 2.14
and Corollary 3.7. The first column contains parameters that are excluded by both results, while
the other two contain parameters that are excluded by either Theorem 2.14 or Corollary 3.7 (and
not by both).

Some parameters of
minimal codes excluded

by both Theorem 2.14 and
Corollary 3.7

Some parameters of
minimal codes excluded
by Theorem 2.14 and not

by Corollary 3.7

Some parameters of
minimal codes excluded
by Corollary 3.7 and not

by Theorem 2.14

[8, 4]2 [17, 7]2 [16, 5]3
[15, 5]3 [31, 9]3 [16, 4]4
[24, 6]4 [44, 10]4 [25, 6]4
[35, 7]5 [99, 21]4 [36, 7]5
[63, 9]7 [65, 12]5 [26, 4]7

Table 1: Code parameters for which the existence of minimal codes is excluded by Theorem 2.14
and/or Corollary 3.7.

3.3 Other Applications

In this short subsection we illustrate how Theorem 3.6 can be applied to study codes that are not
necessarily minimal. We start with a generalization of Corollary 3.5. More precisely, we show
that the relative difference between the maximum and minimum weight of a code, (w − d)/n,
gives a lower bound on the code’s length. In other words, if the maximum and minimum weight
of a code are relatively close to each other, then the code length is necessarily large.

Proposition 3.10. Let C be a nondegenerate [n, k, d]q code of maximum weight w. We have

1

n
≤ q − 1

qk − 1
+

1

4

(

w − d

n

)2 qk − 1

qk−2(q − 1)
.

Note that in the extreme case where w = d we recover Corollary 3.5.

Proof of Proposition 3.10. Using Popoviciu’s inequality for the variance, along with Theorem 3.3,
we find

qk−2ℓ(1− ℓ) ≤ Var(C) ≤ 1

4
(w − d)2,

where ℓ = n(q − 1)/(qk − 1). Re-arranging the terms, after tedious computations one obtains
the desired inequality.

A second application of Theorem 3.6 consists in obtaining constraints on the parameters of
a code having few weights. A classical result about these codes is the following theorem by
Delsarte.

Theorem 3.11 (see [21]). Let C be an [n, k]q code and let s = |{ω(c) | c ∈ C, c 6= 0}|. We have

qk ≤
s

∑

i=0

(

n

i

)

(q − 1)i.

Specializing to s = 2, the previous theorem shows that, for example, any two-weight [n, k]q
code satisfies

qk ≤ 1 + n(q − 1) +
n(n− 1)

2
(q − 1)2. (3.6)

This result however does not take into account which values the weight distribution can take.
Exploiting this information, Theorem 3.6 provides in general different constraints on n than
those in (3.6). We illustrate this with an example.
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Example 3.12. Following the notation of Theorem 3.6 and Theorem 3.11, let (q, k, s, d, w) =
(2, 8, 2, 16, 24). We look for a nondegenerate binary two-weight code C of dimension 8 having
weights 16 and 24. The constraints imposed on n by Theorem 3.6 imply 34 ≤ n ≤ 45, where
the upper bound is met with equality if C is projective. The constraint imposed by (3.6) is
instead n ≥ 23. It is known that there exists a projective binary two-weight code of parameters
(n, k, d, w) = (45, 8, 16, 24).

4 Geometric Approach

As already illustrated in Subsection 1.2, minimal codes are in one-to-one correspondence with
cutting blocking sets. In this section we focus on this point of view on minimal codes, exploiting
their geometric characterization to construct new, general and infinite families of minimal codes.
In particular, we provide a construction of cutting blocking sets derived from Desarguesian
(r − 1)-spreads of PG(rt − 1, q). In turn, this leads to a an inductive construction of small
cutting blocking sets or, equivalently, of minimal codes with short length. In contrast to previous
approaches, our construction works over any (possibly very small) finite field.

4.1 Minimal Codes from Spreads

We start by recalling the definition of t-spread in PG(k − 1, q), which we will use to obtain a
new construction of minimal codes. A t-spread S of PG(k− 1, q) is a partition of PG(k − 1, q)
in t-flats. It is well known that such a t-spread exists if and only if t+ 1 divides k; see [34]. In
particular, a 1-spread of PG(k − 1, q) is a partition of its points into disjoint lines and it is also
called a linespread. It exists if and only if k is even.

An algebraic representation of an (r− 1)-spread of PG(2r− 1, q) can be obtained as follows.
Let γ ∈ Fqr be a primitive element and let M ∈ F

r×r
q be the companion matrix of the minimal

polynomial of γ over Fq. It is well known that Fqr
∼= Fq[γ] ∼= Fq[M ] = {0}∪{M i : 1 ≤ i ≤ qr−1}

as Fq-algebras. For i ∈ [qr − 1] define Vi := {[x : xM i] | x ∈ PG(r − 1, q)}, V0 := {[x : 0] |
x ∈ PG(r − 1, q)} and Vqr := {[0 : y] | y ∈ PG(r − 1, q)}. Then the set {V0, . . . , Vqr} is an
(r − 1)-spread of PG(2r − 1, q).

Theorem 4.1. Let S be the (r− 1)-spread of PG(2r− 1, q) defined above and let B = V0 ∪Vi∪
Vj ∪ Vqr ⊆ PG(2r − 1, q), with 0 < i < j < qr. Suppose that for every s > 1 dividing r we have
j − i 6≡ 0 mod

( qs−1
q−1

)

. Then B is a cutting blocking set.

Proof. For ease of exposition we switch to vector notation, in which we represent V0, Vi, Vj , Vq2

as elements of the Grassmannian Grq(r, 2r). In this representation we have V0 = rowsp(Ir | 0),
Vqr = rowsp(0 | Ir), Vi = rowsp(Ir | M i) and Vj = rowsp(Ir | M j). Let H be a hyperplane
in F

2r
q . We want to show that 〈H ∩ B〉 = H, or, equivalently, that 〈H ∩ B〉 = 〈H ∩ V0〉+ 〈H ∩

Vqr〉 + 〈H ∩ Vi〉 + 〈H ∩ Vj〉 has dimension at least 2r − 1. Observe first that if H contains one
among the Vℓ’s, say V0, then there is nothing to prove, since 〈H ∩ V0〉 + 〈H ∩ Vi〉 has already
dimension (at least) 2r − 1. Hence we can assume that H intersect both V0 and Vqr in an
(r − 1)-dimensional subspace. Then the space 〈H ∩ V0〉+ 〈H ∩ Vqr〉 has dimension 2r − 2. We
can write the intersection spaces as

H ∩ V0 = rowsp( X1 | 0 ), H ∩ Vi = rowsp(X2 | X2M
i),

H ∩ Vqr = rowsp( 0 | X3 ), H ∩ Vj = rowsp(X4 | X4M
j),

for some X1,X2,X3,X4 ∈ F
(r−1)×r
q of rank r − 1.

Suppose by contradiction that 〈H ∩ B〉 has dimension exactly 2r − 2. This implies

rowsp

(

X2 X2M
i

X4 X4M
j

)

⊆ rowsp

(

X1 0
0 X3

)

,
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which in turn implies rowsp(X2) = rowsp(X4) = rowsp(X1) and rowsp(X3) = rowsp(X2M
i) =

rowsp(X4M
j). Without loss of generality, we can assume that X1 = X2 = X4 =: X, which

reduces the above condition to

rowsp(X3) = rowsp(XM i) = rowsp(XM j).

Thus, there exists a matrix A ∈ GL(r − 1, q) such that

AX −XM j−i = 0. (4.1)

The matrix equation in (4.1), where the matrix X is the unknown, is a Sylvester equation. This
is known to have a unique solution if the minimal polynomials of A and M j−i are coprime;
see e.g. [25, Theroem 2.4.4.1]. Observe that the minimal polynomial of M j−i is irreducible of
degree r, since M j−i corresponds to the element γj−i and by the assumption on j − i in the
statement we have Fq[γ

j−i] = Fqr . Moreover, the minimal polynomial of A has degree at most
r − 1, and hence it is coprime with the one of M j−i’s. Therefore (4.1) has a unique solution,
which is clearly X = 0. This leads to a contradiction and concludes the proof.

We now concentrate on the more general case of (r − 1)-spreads in PG(rt − 1, q). These
can be constructed using the so-called field reduction; see [28, 34]. This technique identifies
points in PG(t − 1, qr) with (r − 1)-flats in PG(rt − 1, q). The idea is exactly the same as for
the algebraic (r − 1)-spread of PG(2r − 1, q) described above. Let γ be a primitive element
in Fqr and let M be the companion matrix of the minimal polynomial of γ over Fq. As already
explained, there is an isomorphism Fqr

∼= Fq[M ] = {0} ∪ {M i : 1 ≤ i ≤ qr − 1}, which we call φ.
We can then extend it to vectors in F

t
qr componentwise, obtaining an injective map

ϕ : Ft
qr −→ F

r×rt
q

(v1, . . . , vt) 7−→ (φ(v1) | . . . | φ(vt)).

This map can in turn be extended to a map ϕ̄ : PG(t− 1, qr) −→ Grq(r, tr), the Grassmannian,
defined by P = [v] 7−→ rowsp(ϕ(v)). Note that ϕ̄ is well-defined since it does not depend on
the choice of the representative v for the point P . Indeed, for a nonzero scalar multiple of v,
say γiv, we have ϕ(γiv) = M iϕ(v) and since M i is invertible, rowsp(M iϕ(v)) = rowsp(ϕ(v)).
It is then well-known that Im(ϕ̄) is a (vectorial) r-spread of Frt

q , which naturally gives rise to a
projective (r − 1)-spread of PG(rt− 1, q). Such a spread is known as Desarguesian spread;
see [34].

In the sequel we will need the following special points in PG(t− 1, qr): Pℓ := [eℓ] for ℓ ∈ [t]
and Qℓ,m,i := [uℓ,m,i], where uℓ,m,i := eℓ + γiem for 1 ≤ ℓ < m ≤ t and i ∈ [qr − 1]. These will
be used in the next result to extend the construction of Theorem 4.1 from two to t blocks.

Theorem 4.2. For each pair of integers (ℓ,m) such that 1 ≤ ℓ < m ≤ t, let jℓ,m, iℓ,m ∈ [qr − 1]

be integers with the following property: for all s > 1 dividing r, jℓ,m − iℓ,m 6≡ 0 mod
( qs−1

q−1

)

.
Define the set

T :=

(

⋃

1≤ℓ≤t

ϕ̄(Pℓ)

)

∪
(

⋃

1≤ℓ<m≤t

(ϕ̄(Qℓ,m,iℓ,m) ∪ ϕ̄(Qℓ,m,jℓ,m))

)

.

Then the projectivization of T is a cutting blocking set in PG(rt− 1, q).

Proof. Once again we work in vector notation. Let H be a hyperplane in F
rt
q . Let a := |{ℓ :

ϕ̄(Pℓ) ⊆ H}|. Then 0 ≤ a ≤ t − 1 and dim(〈H ∩ T 〉) ≥ ra + (r − 1)(t − a). Without loss of
generality assume that {ℓ : ϕ̄(Pℓ) ⊆ H} = [a]. Hence 〈H ∩T 〉 contains the span of the first a · r
standard basis vectors. By taking the quotient on this span, we reduce ourselves to proving the
same statement for a = 0, replacing t by t− a. Therefore we can also assume a = 0 without loss
of generality.
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We have that Λ := 〈H ∩
(
⋃

ℓ ϕ̄(Pℓ)
)

〉 has dimension (r− 1)t. For all integers 1 ≤ ℓ < m ≤ t,
define

Sℓ,m := ϕ̄(Pℓ) ∪ ϕ̄(Pm) ∪ ϕ̄(Qℓ,m,iℓ,m) ∪ ϕ̄(Qℓ,m,jℓ,m),

Πℓ,m := 〈ϕ̄(Pℓ) ∪ ϕ̄(Pm)〉 = 〈ei : (ℓ− 1)r + 1 ≤ i ≤ ℓr, or (m− 1)r ≤ i ≤ mr〉.

Then H ∩ Πℓ,m is a hyperplane in Πℓ,m
∼= F

2r
q . Moreover, using the same argument as in the

proof of Theorem 4.1, there exists a vector vℓ,m ∈ (H ∩ Πℓ,m) ∩ Sℓ,m ⊆ H ∩ Sℓ,m such that
vℓ,m /∈ 〈H ∩ (ϕ̄(Pℓ) ∪ ϕ̄(Pm))〉. Observe that the support of vℓ,m is contained only in the ℓ-th

and the m-th blocks and that we can write vℓ,m = w
(ℓ)
ℓ,m + w

(m)
ℓ,m , where w

(j)
ℓ,m ∈ 〈ϕ̄(Pj)〉, i.e., it

has support contained only in the j-th block, for j ∈ {ℓ,m}. Now consider the t − 1 vectors
v1,2, . . . , v1,t. Since a = 0, none of the v1,i’s belongs to Λ. It is left to show that for each i ≥ 3
we have v1,i /∈ Γi−1 := Λ + 〈v1,2, . . . , v1,i−1〉. By contradiction, suppose that v1,i ∈ Γi−1. Let
ρi : F

rt
q → F

r
q denote the projection on the i-th block. We have

w
(i)
1,i = ρi(v1,i) ∈ ρi(Γi) = 〈H ∩ ϕ̄(Pi)〉,

since, by construction, the i-th block of any vector in Γi−1 is equal to the i-th block of some

element in ϕ̄(Pi) ∩H. Therefore, also the vector w
(1)
1,i = v1,i − w

(i)
1,i belongs to H. This means

that v1,i ∈ H ∩ (ϕ̄(P1) ∪ ϕ̄(Pi)) ⊆ Λ, which leads to a contradiction.

Remark 4.3. The construction of Theorem 4.2 for r = t = 2 (or, equivalently, the one of
Theorem 4.1 for r = 2) coincides with the construction of cutting blocking sets of [19, Theo-
rem 3.7], which consists of 4 disjoint lines in PG(3, q). Therefore, Theorem 4.2 can be viewed
as a generalization of that result.

Example 4.4. We explicitly construct a cutting blocking set in PG(5, q) as explained in Theo-
rem 4.2, with r = 2 and t = 3. We take as γ a primitive element of Fq2 whose minimal polynomial
over Fq is x2 − p1x − p0. We have P1 = [1 : 0 : 0], P2 = [0 : 1 : 0], P3 = [0 : 0 : 1] and choose
the following points in PG(2, q2): Q1,2,q2−1 = [1 : 1 : 0], Q1,2,1 = [1 : γ : 0], Q1,3,q2−1 = [1 : 0 : 1],
Q1,3,1 = [1 : 0 : γ], Q2,3,q2−1 = [0 : 1 : 1], Q2,3,1 = [0 : 1 : γ]. Therefore the set T is

T = {(x, y, 0, 0, 0, 0) : x, y ∈ Fq} ∪ {(0, 0, x, y, 0, 0) : x, y ∈ Fq} ∪ {(0, 0, 0, 0, x, y) : x, y ∈ Fq}
∪ {(x, y, x, y, 0, 0) : x, y ∈ Fq} ∪ {(x, y, y, p0x+ p1y, 0, 0) : x, y ∈ Fq}
∪ {(x, y, 0, 0, x, y) : x, y ∈ Fq} ∪ {(x, y, 0, 0, y, p0x+ p1y) : x, y ∈ Fq}
∪ {(0, 0, x, y, x, y) : x, y ∈ Fq} ∪ {(0, 0, x, y, y, p0x+ p1y) : x, y ∈ Fq}.

The projectivization of T gives the desired cutting blocking set in PG(5, q).

4.2 Inductive Constructions of Cutting Blocking Sets

As already observed in the Introduction, of particular interest is the study minimal codes of
small length for a given dimension. Formally, for a fixed positive integer k and a prime power q,
we are interested in determining the value of

m(k, q) := min {n ∈ N≥1 | there exists a minimal [n, k]q code} .

This function has been explicitly studied in [30], where it was observed that m(2, q) = q+1 and
that

q(k − 1) + 1 ≤ m(k, q) ≤ (q − 1)

(

k

2

)

+ k, (4.2)
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where the upper bound is constructive (the tetrahedron from page 6). The same results were
independently obtained in [1], where shorter minimal codes are constructed for k ∈ {3, 4, 5}. In
this notation, Theorem 2.14 improves on the lower bound in (4.2), reading

m(k, q) ≥ (q + 1)(k − 1).

We already obtained improvements on this bound in Corollary 2.19 and Corollary 3.7, as shown
in Table 1.

In [17] it has been shown that the upper bound on m(k, q) in (4.2) is far from being tight.
More precisely, one has

m(k, q) ≤ 2k

logq

(

q2

q2−q+1

) , (4.3)

indicating that, in principle, for a fixed q and k large enough one might construct much shorter
minimal codes. In particular, a natural problem is that of finding, for a fixed q, an infinite family
of minimal codes over Fq whose length is linear in k. This problem is naturally motivated by the
goal of explicitly constructing asymptotically good minimal codes. Indeed, while these codes are
known to be asymptotically good, the proofs in [1,18] are not constructive, as well as the bound
in (4.3). We are currently unaware of any explicit general construction of minimal codes whose
length is unbounded for a fixed q, and that are asymptotically shorter than the tetrahedron; see
also the discussion in Remark 1.15.

In the sequel, we introduce two new families of minimal codes whose lengths are shorter than
the one of the tetrahedron by a factor 2 and by a factor 9

4 , respectively. We start with a result
that represents a first step towards inductive constructions of cutting blocking sets.

Proposition 4.5. Let B = B1∪ . . .∪Br be a cutting blocking set in PG(N, q). For each i ∈ [r],
let Γi := 〈Bi〉 ∼= PG(ni, q) for some ni ≤ N and let B′

i ⊆ Γi be the isomorphic image of a cutting
blocking set in PG(ni, q). Then B′ := B′

1 ∪ . . . ∪ B′
r is a cutting blocking set.

Proof. Let H be a hyperplane in PG(N, q). We want to show that 〈H ∩B′〉 = H. By hypothesis
we have that

H = 〈H ∩ B〉 = 〈H ∩ B1〉+ . . .+ 〈H ∩ Br〉.
Consider the spaces Λi := H ∩ 〈Bi〉, i ∈ [r]. Clearly, Λi ⊇ 〈H ∩ Bi〉 for all i. We now examine
two cases separately.
Case I: Λi = 〈Bi〉, that is, H contains 〈Bi〉. In this case H also contains B′

i and 〈H ∩ B′
i〉 =

〈B′
i〉 = 〈Bi〉 = Λi.

Case II: Λi is a hyperplane in 〈Bi〉. By hypothesis, B′
i is a cutting blocking set in 〈Bi〉, and hence

〈H ∩ B′
i〉 ⊇ 〈Λi ∩ B′

i〉 = Λi.
Therefore in both cases we have

〈H ∩ B′〉 = 〈H ∩ B′
1〉+ . . . + 〈H ∩ B′

r〉 ⊇ Λ1 + . . .+ Λr

⊇ 〈H ∩ B1〉+ . . . + 〈H ∩ Br〉 = H,

concluding the proof.

We are now ready to combine the above result with Theorem 4.2 and derive a recursive
upper bound on m(k, q).

Theorem 4.6. For all positive a, b ∈ N,

m(ab, q) ≤ a2m(b, q).
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Proof. By Theorem 4.2 we know that we can construct a cutting blocking set in PG(ab − 1, q)
with the aid of a (b − 1)-spread. More precisely, we only need to take a2 disjoint (b − 1)-flats
Γ1, . . . ,Γa2

∼= PG(b − 1, q) from the spread. By Proposition 4.5, for each of them we can take
the isomorphic image of a cutting blocking set in PG(b−1, q) with minimum cardinality m(b, q).
Therefore, we finally obtain a cutting blocking set in PG(ab− 1, q) of cardinality a2m(b, q).

Observe that the proof of Theorem 4.6 gives an explicit way of constructing a minimal
[a2m(b, q), ab]q code, provided that there exists already a construction for an [m(b, q), b]q minimal
code. We illustrate how this construction works with the following example.

Example 4.7. We fix k = 6 = 3 · 2 and assume q to be a square. Observe that under these
assumptions we know the exact values of m(2, q) and m(3, q); see Section 1.2. Namely, we have
m(2, q) = q + 1 and

m(3, q) =

{

3q if q = 4,

2(q +
√
q + 1) if q ≥ 9.

Now we can use Theorem 4.6 in two ways. On the one hand, we deduce that

m(6, q) ≤ 9 ·m(2, q) = 9(q + 1).

Such a construction is obtained by taking 9 lines from a linespread in PG(5, q) as explained also
in Example 4.4. On the other hand, by interchanging the roles of 2 and 3 we obtain

m(6, q) ≤ 4 ·m(3, q) =

{

12(q + 1) if q = 4,

8(q +
√
q + 1) if q ≥ 9.

The corresponding cutting blocking set is constructed by first selecting 4 planes in PG(5, q) via
Theorem 4.1, and then by choosing, in each of these planes, a minimal 2-fold blocking set: when
q = 4, we take 3 lines not intersecting all in the same point; when q ≥ 9, we choose 2 disjoint
Baer subplanes. It is easy to check that for q < 64 the cutting blocking set consisting of 9
lines is smaller, while for q ≥ 64 the 8 Baer subplanes give rise to a cutting blocking set with
smaller cardinality. Notice that both constructions produce a smaller cutting blocking set than
the tetrahedron, which contains 15q−9 points. For instance, let us consider the case q = 4. The
9 lines give rise to a minimal [45, 6]4 code, the 8 Baer subplanes lead to a minimal [56, 6]4 code,
while the tetrahedron provides a [66, 4]4 code. If we take q = 64, then the three constructions
produce minimal codes whose parameters are [585, 6]64 , [584, 6]64 and [966, 6]64, respectively.

Remark 4.8. Very recently, a construction of cutting blocking sets in PG(5, q) as union of
seven disjoint lines has been given in [10]. This gives an improvement on the known upper
bound for m(6, q). In the same work, a construction of a cutting blocking set in PG(3, q3) of size
3(q3 + q2 + q + 1) has been obtained as union of three suitable disjoint q-order subgeometries.
These results together yield the following bounds:

m(4, q3) ≤ 3(q3 + q2 + q + 1),

m(6, q) ≤ 7(q + 1).

The proof of Theorem 4.6, which constructs minimal codes of dimension k = ab, heavily relies
on the existence of a smaller minimal code, whose dimension divides k. Clearly, this recursive
construction does not cover all dimensions, as for instance it does not provide any nontrivial
minimal code of prime dimension. While for k = 5 one can rely on the construction provided
in [1, Construction 2], which gives a [8q − 3, 5]q minimal code, for primes greater than 5 we
are not (yet) able to construct any short minimal code different from the tetrahedron. Also,
we are not (yet) able to construct short minimal codes of odd dimension, unless the latter is
divisible by 3 and q is a square. When k is odd one can construct minimal codes taking several
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(r − 1)-flats in PG(k − 1, q), where r is the smallest prime dividing k. However, when such a
prime is big, the resulting code turns out to be quite long.

The discussion in the previous paragraph motivates us to look for alternative constructions
of minimal codes, with the ultimate goal of covering a larger dimension range. Our next move
in this direction is an inductive result that allows us to construct a cutting blocking set in
PG(k, q) starting from a smaller one in PG(k − 1, q). The following result has already been
shown in [19, Construction A]. We include a proof for completeness.

Proposition 4.9 (see [19, Theorem 3.10]). Let B′ be a cutting blocking set in PG(k − 1, q).
Fix a hyperplane Λ ⊆ PG(k, q) and take an isomorphic image T of B′ in Λ. Moreover, select
k points P1, . . . , Pk ∈ 〈T 〉 not lying all in the same (k − 2)-flat and a point P ∈ PG(k, q) \ Λ.
Define the lines ℓi := 〈Pi, P 〉. Then the set

B := T ∪
( k
⋃

i=1

ℓi \ {Pi}
)

is a cutting blocking set in PG(k, q). In particular, for every k ∈ N≥1 we have

m(k + 1, q) ≤ m(k, q) + (q − 1)k + 1.

Proof. Let H be a hyperplane in PG(k, q). If H = Λ, then clearly 〈H ∩ B〉 = H. If H 6= Λ,
then we have that Λ0 := H ∩ Λ is a hyperplane in Λ. Hence 〈H ∩ T 〉 = 〈Λ0 ∩ T 〉 = Λ0.
Moreover, H meets each of the lines ℓi’s in a point Qi. Observe that not all of them can lie in
Λ, because otherwise we would have Qi = Pi for every i and H = Λ. Therefore, there exists
a point Qi ∈ (ℓi ∩ H) \ 〈T 〉. This implies that Qi ∈ 〈H ∩ B〉 \ Λ0 and we can conclude that
〈H ∩ B〉 = H.

Proposition 4.9 shows how to construct a cutting blocking set in PG(k, q) which contains a
copy of a cutting blocking set T in PG(k− 1, q). This is achieved by adding (q − 1)k+1 points
to T . Moreover, among cutting blocking sets containing a copy of a smaller cutting blocking
set (of codimension 1), the construction of Proposition 4.9 is optimal, as shown by the following
result.

Proposition 4.10. Let B ⊆ PG(k, q) be a cutting blocking set such that it contains (an iso-
morphic image of) a cutting blocking set B′ of PG(k − 1, q). Then

|B| ≥ |B′|+ (q − 1)k + 1.

Proof. Let B be a cutting blocking set in PG(k, q) and suppose it contains a copy B′ of a cutting
blocking set in PG(k − 1, q). Then B′ is contained in a hyperplane H. By the correspondence
between linear codes and projective systems (see page 5) we have

d ≤ |B| − |B ∩H| ≤ |B| − |B′|.

Combining this with Theorem 2.8 we obtain the desired inequality.

Remark 4.11. Proposition 4.10 shows that the inductive construction from Proposition 4.9
gives rise to a cutting blocking set that is minimal among all the cutting blocking sets containing
a given cutting blocking set of codimension 1. It is interesting to observe that starting from
PG(1, q) and iterating this construction k times, one obtains the tetrahedron, which is, therefore,
minimal among the cutting blocking sets in PG(k − 1, q) containing an isomorphic copy of a
cutting blocking set of PG(i, q) for each i ≤ k − 2. Note that its cardinality is ∼ 1

2qk
2 for k

large.
All of this seems to suggest that in order to obtain cutting blocking sets in PG(k − 1, q) of

size m(k, q) (or at least linear in k) one should look at sets that do not contain (isomorphic
copies of) smaller cutting blocking sets.
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4.3 Explicit Constructions of Short Minimal Codes

In this final subsection we combine the results obtained so far to construct minimal codes of
short length. To our best knowledge, this constructions produce the shortest known minimal
codes, for infinitely many dimensions and field sizes. In particular, the construction applies to
all those pairs (k, q) for which the rational normal tangent set of [23] cannot be constructed in
PG(k − 1, q).

Construction A. Assume that k = 2t, for some t ∈ N≥1. We use the construction from

Theorem 4.2, selecting t2 = k2

4 disjoint lines from a linespread. The union of these t2 lines a
cutting blocking set in PG(k − 1, q), and we denote the corresponding code by Ck,q.

Proposition 4.12. The code Ck,q of Construction A is a minimal [(q + 1)k
2

2 , k, q(k − 1)]q code.

Proof. The minimality of Ck,q trivially follows from the fact that the associated projective system
is a cutting blocking set; see Theorem 4.2. The length of the code Ck,q coincides with the

cardinality of the cutting blocking set, which is (q+1)k
2

4 . Therefore it remains to show that d =
q(k−1). By the correspondence between projective systems and linear codes and Definition 1.8,
we have that d = n− s = (q + 1)t2 − s, where k = 2t and

s := max{|H̄ ∩ T̄ | : H̄ ⊆ PG(k − 1, q), dim(H̄) = k − 2},

where T̄ is the projectivization of the set T defined in Theorem 4.2. We switch to vector notation
and let Aℓ,m = {ϕ̄(Pℓ), ϕ̄(Pm), ϕ̄(Qℓ,m,iℓ,m), ϕ̄(Qℓ,m,jℓ,m)} for all 1 ≤ ℓ < m ≤ t. Let H be a

hyperplane of Fk
q = F

2t
q . Define the set HT := {i : ϕ̄(Pi) ⊆ H} and the integers a := |HT |

and aℓ,m := |{A ∈ Aℓ,m : A ⊆ H}| for 1 ≤ ℓ < m ≤ t. Moreover, let b denote the number of
lines forming T̄ that are fully contained in the projectivization H̄ of H. Since each of the lines
forming T̄ either intersects H̄ in a point, or it is contained in H̄, we have

s = (q + 1)b+ t2 − b = qb+ t2. (4.4)

Therefore, finding the maximum of s is the same as finding the maximum value of b. Now
observe that a cannot be equal to t, as otherwise H would contain a basis of F2t

q . Moreover, we
have that aℓ,m ∈ {0, 1, 4}. Indeed, by construction, any two subspaces in Aℓ,m span the same
4-dimensional subspace, and if H contains two of them, then it contains all of them. It is readily
seen that we have

b = a+
∑

ℓ,m∈HT ,
ℓ<m

(aℓ,m − 2) +
∑

ℓ∈HT ,m/∈HT ,
ℓ<m

(aℓ,m − 1) +
∑

ℓ/∈HT ,m∈HT ,
ℓ<m

(aℓ,m − 1) +
∑

ℓ,m/∈HT ,
ℓ<m

(aℓ,m)

= a+
∑

ℓ,m∈HT ,
ℓ<m

2 +
∑

ℓ,m/∈HT ,
ℓ<m

(aℓ,m) ≤ a+

(

a

2

)

+

(

t− a

2

)

= a2 +

(

t− a

2

)

=: ft(a),

where the second equality and the inequality both follow from the fact that aℓ,m can only be
equal to 0, 1 or 4. The function ft is a quadratic polynomial in a with second derivative equal
to 3 > 0. Hence, the maximum in the interval [0, t − 1] is attained in one of the two interval
extremes. One can see that this happens when a = t − 1, from which b ≤ (t − 1)2. Finally,
combining this with (4.4) we have s = qb + t2 ≤ q(t − 1)2 + t2 = (q + 1)t2 − q(2t − 1) and
d ≥ (q + 1)t2 − s = q(2t− 1) = q(k − 1).

On the other hand, we can take any hyperplane H ′ containing ϕ̄(Pi), for each i ∈ [t − 1].
The projectivization of such a hyperplane contains exactly b = (t − 1)2 lines forming T̄ , and
therefore n− |H̄ ′ ∩ T̄ | = q(k − 1).
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Example 4.13. Let k = 6 and take the cutting blocking set obtained in Example 4.4. This
is a cutting blocking set arising from Construction A. When q = 2, we take γ to be a root of
x2 + x+ 1 and obtain a minimal [27, 6]2 code C6,2 whose generator matrix is

















1 1 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0 1 1 0 1 0 0 0
0 1 1 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0
0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 1
0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1
0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0

















.

Our second construction combines Theorem 4.2 with the concept of a Baer subplane.

Construction B. Assume that k = 3t for some t ∈ N and that q is a square. We first use
the construction from Theorem 4.2 by selecting t2 = k2

9 disjoint planes from a 2-spread. Then
we choose two disjoint Baer subplanes in each of these planes. The union of the selected 2t2

Baer subplanes is a cutting blocking set in PG(k − 1, q), and we denote the corresponding code
by Dk,q.

Proposition 4.14. The code Dk,q of Construction B is a minimal [(q+
√
q+1)2k

2

9 , k, d]q code,
where d ≥ q

(

4
3k − 2

)

.

Proof. The minimality of Dk,q trivially follows from the fact that the associated projective
system B is a cutting blocking set (Theorem 4.2 and Proposition 4.5). The length of the code Dk,q

coincides with the cardinality of the cutting blocking set, which is (q +
√
q + 1)2k

2

9 . We only
need to prove that d ≥ q

(

4
3k− 2

)

. We let k = 3t and proceed as before, finding an upper bound
on

s := max{|H̄ ∩ B| : H̄ ⊆ PG(k − 1, q), dim(H̄) = k − 2}.
Observe that B is obtained by first forming the cutting blocking set T̄ as in Theorem 4.2, which
is the union of t2 planes Λ1, . . . ,Λt2 , and then selecting two disjoint Baer subplanes Bi,1,Bi,2 in
each Λi. Let H̄ be a hyperplane in PG(k − 1, q) and let b denote the number of planes Λi that
are fully contained in H̄. With this notation, we have

|B ∩ H̄| = 2b(q +
√
q + 1) +

∑

i : Λi 6⊆H̄

|Bi,1 ∩ H̄|+ |Bi,2 ∩ H̄|

≤ 2(q +
√
q + 1)b+ 2(

√
q + 1)(t2 − b), (4.5)

where the last inequality follows from the fact that a hyperplane H̄ meets a Baer subplane in
either 1,

√
q+1 or q+

√
q+1 points. Moreover, arguing as in the proof of Proposition 4.12, one

proves that b ≤ (t−1)2. Combining this with (4.5) we obtain that s ≤ 2(q+
√
q+1)t2−2q(2t−1)

and finally d = n− s ≥ q
(

4
3k − 2

)

.

We conclude with a remark that summarizes the code lengths obtained from the constructions
and results of this section.

Remark 4.15. For every positive integer k and every prime power q, we have provided explicit
constructions of minimal [nk,q, k]q codes with

nk,q =























1
4(q + 1)k2 if k ≡ 0 mod 2,
2
9(q +

√
q + 1)k2 if k ≡ 0 mod 3 and q is a square,

2
9(q +

√
q + 1)(k − 1)2 + (q − 1)(k − 1) + 1 if k ≡ 1 mod 3 and q is a square,

1
4(q + 1)(k + 1)2 − (2k + q − 2) otherwise.
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The first length is given by Construction A, the second length is given by Construction B, and
the last two lengths are obtained by combining Proposition 4.9 with these two constructions. It
is easy to see that the minimum distance d of any code obtained using Proposition 4.9 meets
the bound of Theorem 2.8 with equality, i.e., d = (q − 1)(k − 1) + 1.
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