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Abstract

We classify, in terms of the structure of the finite group G, all group algebras KG
for which all right ideals are right annihilators of principal left ideals. This means
in the language of coding theory that we classify code-checkable group algebras KG

which have been considered so far only for abelian groups G. Optimality of checkable
codes and asymptotic results are discussed.

1 Introduction

Block codes were invented in the forties to correct errors in the communication through
noisy channels (see [20] for more details). In their most general sense, they are just subsets
of (code)words of a fixed length n over an alphabet K, such that the Hamming distance
between the words (i.e. the number of distinct letters) is large enough. One of the main
practical problems of coding theory is how to store a given code, which can be, without an
additional structure, quite expensive (we may have to store the whole list of codewords).
This is one of the main reasons why, since the beginning, linear codes were introduced: a
linear code of length n over a finite field K is a subspace of the vector space Kn. Such
algebraic structure allows to describe a linear code in a more compact way: a linear code C
of length n and dimension k can be defined by its parity check matrix, which is a n×(n−k)
matrix H such that c ∈ C if and only if cH = 0, i.e., it is a matrix which gives n − k
check equations which determine the code. Such a description reduces exponentially the
size of the data to be stored and it has made linear codes so much used. However, in the
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context of McEliece cryptosystem [21] and its dual version by Niederreiter [24], in which
the public key is given by the parity check matrix, a code of large length and dimension,
the size of the matrix constitutes one of the main disadvantages. McEliece cryptosystem
and its variants, which are part of the so-called code-based cryptography, are now subjects
of intense research, due to their probable resistance to quantum computer’s attacks. One
of the central problems is to reduce the size of the public key (see for example [3]). In order
to do it, one usually adds more algebraic structure. A classical family of more structured
linear codes is that of cyclic codes, which are linear codes invariant under a cyclic shift.
It is well-known that they can be seen as (principal) ideals inside the polynomial ring
A = K[x]/(xn − 1). If a linear code C is cyclic, we have C = gA with g ∈ A and
C is determined by only one check equation, given by the so-called check polynomial
f = (xn − 1)/g. In this note we focus on more general examples in K-algebras in which
codes are determined by just one check equation.

A natural generalization of cyclic codes is given by the family of group codes: a linear
code C is called a G-code (or a group code) if C is a right ideal in the group algebra
KG = {a =

∑
g∈G agg | ag ∈ G} for G a finite group. Here the vector space KG with basis

{g ∈ G} serves as the ambient space with the weight function wt(a) = |{g ∈ G | ag 6= 0}|
and the non-degenerate symmetric bilinear form 〈· , ·〉 which is defined by

〈g, h〉 = δg,h for g, h ∈ G.

Note that KG carries a K-algebra structure via the multiplication in G. More precisely,
if a =

∑
g∈G agg and b =

∑
g∈G bgg are given, then

ab =
∑

g∈G

(
∑

h∈G

ahbh−1g)g.

In this sense cyclic codes are group codes for a cyclic group G. Reed Muller codes
over prime fields Fp are group codes for an elementary abelian p-group G [4, 9], and
there are many other remarkable optimal codes which have been detected as group codes
[5, 10, 14, 22].

We would like to mention here that choosing right ideals as group codes is just done
by convention. Everything what we will prove holds equally true for group codes which
are left ideals.

If G is cyclic, then all right ideals of KG afford only one check equation as we have
seen above. In case G is a general finite group there are only particular right ideals which
satisfy this property. Such codes are called checkable and these are the subject of this
paper. To our knowledge, such codes were first defined in [17] and investigated for abelian
group algebras (most of the results of [17] are now published in [18]).

In §2, we characterize checkable codes in terms of their duals, proving that a right
ideal C ≤ KG is checkable if and only if its dual is a principal right ideal (Theorem 2.6).
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This result provides an easy way to construct random checkable codes and we use it to
find optimal codes (see Remark 2.9). Moreover, two of the consequences are the following:
maximal ideals in group algebras are checkable and two-sided ideals C such that KG/C
is a Frobenius algebra are checkable. In particular, the Jacobson radical of every group
algebra is checkable.

In §3 we classify, in terms of the structure of the finite group G, all group algebras KG
for which all right ideals are checkable, that is code-checkable group algebras. This is done
in terms of the p-blocks of KG, with p the characteristic of the field K (see Theorem 3.1).
As a consequence we get the following (see Corollary 3.2): KG is a code-checkable group
algebra if and only if G is p-nilpotent with a cyclic Sylow p-subgroup, which happens if
and only if all right ideals in the principal p-block of KG are checkable.

In §4 we shortly present the asymptotic performance of checkable codes. Together with
the explicit construction of optimal codes in Remark 2.9, they seem to suggest that the
family of checkable codes is worth further investigation. In particular, it is desirable to
prove some bounds on the minimum distance for checkable codes and to introduce families
of checkable codes with prescribed minimum distance (in analogy to BCH codes). Some
results in this direction for dihedral codes have been given recently in [6]. Moreover, it
would be extremely interesting to develop some fast decoding algorithms. These would
be the minimum requirements for an effective use of these codes in cryptography and this
will be the subject of further investigation.

2 Checkable ideals

Let A be a finite dimensional algebra over a field K. For any subset C ⊆ A, the right

annihilator Annr(C) is defined by

Annr(C) = {a | a ∈ A, ca = 0 for all c ∈ C}.

Analogously, the left annihilator of C is given by

Annl(C) = {a | a ∈ A, ac = 0 for all c ∈ C}.

Note that the right (left) annihilators are right (left) ideals in A.

Definition 2.1 A right ideal I ≤ A is called checkable if there exists an element v ∈ A
such that

I = {a | a ∈ A, va = 0} = Annr(v) = Annr(Av).

Note that checkable left ideals are defined analogously via the left annihilator of a principal
right ideal. A group algebra KG is called code-checkable if all right ideals of KG are
checkable.
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Recall that a finite dimensional K-algebra A is called a Frobenius algebra if there exists
a K-linear function λ ∈ HomK(A,K) whose kernel contains no left or right ideal other
than zero. In case λ(ab) = λ(ba) for all a, b ∈ A, we say that A is a symmetric algebra.
Note that group algebras are Frobenius algebras; even more, they are symmetric algebras.
In such algebras the annihilators of ideals satisfy the double annihilator property (see [16,
Chap. VII]).

Proposition 2.2 (Double Annihilator Property) Let A be a Frobenius algebra. If

I ≤ A is a right ideal in A, then

I = Annr(Annl(I)).

A similar equation holds for left ideals.

Corollary 2.3 In a Frobenius algebra A a right (left) ideal I is checkable if and only if

Annl(I) (Annr(I)) is a principal left (right) ideal.

Examples 2.4 a) Let e = e2 be an idempotent in A. Then the ideal eA is checkable. This
can be seen as follows. Obviously, eA ≤ Annr(A(1−e)). Since any 0 6= (1−e)b ∈ (1−e)A
is not in Annr(A(1 − e)) we have eA = Annr(A(1 − e)).
b) If A is a semisimple algebra, then all right and left ideals are generated by idempotents.
Thus all right and left ideals are checkable.
c) All cyclic codes are checkable, since the check equation is given by the check polynomial.
d) LCD group codes C (that is, codes for which C ∩ C⊥ = {0}) are checkable since
C = eKG with a self-adjoint idempotent e, by [11].

As mentioned in the introduction, the group algebra KG carries a non-degenerate
symmetric bilinear form 〈· , ·〉. Thus, for any subset C ⊆ KG the orthogonal space C⊥ ≤
KG is well defined. Observe that C⊥ is always a K-linear vector space.

In order to state an early result of Jessie MacWilliams recall that the K-linear map
ˆ: KG −→ KG defined by g 7→ ĝ = g−1 (g ∈ G) is an antialgebra automorphism of KG.

Lemma 2.5 ([19]) If C is a right ideal in KG, then C⊥ = ̂Annl(C). Similarly, for a left

ideal C we have C⊥ = ̂Annr(C).

Proof: We have a =
∑

g∈G agg ∈ ̂Annl(C) if and only if âch = 0, for all c ∈ C and all
h ∈ G. Since the coefficient at h in âch equals

∑

g∈G

agcg = 〈a, c〉,

the assertion follows. ✷
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Theorem 2.6 For any right ideal C ≤ KG the following are equivalent.

a) C is checkable.

b) C⊥ is a principal right ideal.

Proof: According to Corollary 2.3, C is checkable if and only if Annl(C) = KGv, for

some v ∈ KG. Now Lemma 2.5 implies C⊥ = Annl(C)
∧

= KGv
∧

= v̂KG and the proof is
complete. ✷

Examples 2.7 a) The binary extended Golay G24 is a group code in F2S4, with S4 the
symmetric group on 4 letters (see [5]) and a group code in F2D24, with D24 a dihedral
group of order 24 (see [22]). Note that the binary extended Golay code is checkable in
both algebras, by Theorem 2.6, since G24 = G⊥

24 is constructed as a principal ideal in both
cases. We would like to mention here that the extended ternary Golay code is not a group
code according to ([28, Theorem 1.1]).
b) In [4] and [9] it is shown that the Reed-Muller code RMp(r,m) of order r and length
pm over the prime field Fp can be constructed as RMp(r,m) = JN−r, with J the Jacobson
radical of a group algebra FpG, for G an elementary abelian p-group of rank m and
N = m(p − 1). For more details in what follows the reader may inquire [27]. Note that
(JN−r)⊥ = RMp(r,m)⊥ = RMp(N − r − 1,m) = Jr+1. Thus in order to check which
Reed-Muller codes are checkable, we have to check which powers J i are principal ideals.
Clearly, if m = 1, then G is cyclic and therefore all ideals in FpG are principal. In case
m > 1, apart from the full space FpG, only RMp(N − 1,m) = J is checkable. This can
be seen as follows. Clearly, J⊥ = JN = RMp(0,m) = Fp

∑
g∈G g is principal. Suppose

that Jr is principal, for some 0 < r < N . Thus Jr/Jr+1 is principal as well, hence
Jr/Jr+1 = (a + Jr+1)FpG. Moreover, Jr/Jr+1 is a direct sum of trivial FpG-modules.
Thus (a+ Jr+1)g = a+ Jr+1, for all g ∈ G, which implies dim Jr/Jr+1 = 1. On the other
hand, according to ([27, Proposition 7.2.3]) we have dim Jr/Jr+1 > 1. Thus only JN is
principal, which means, by Theorem 2.6, that J = RMp(N − 1,m) is the only checkable
Reed-Muller code apart from FpG.

Remark 2.8 In [17] the authors point out that in numerous cases the parameters of
checkable group codes for an abelian group G are as good as the best known linear codes
mentioned in [15]. Even more, there is a checkable [36, 28, 6] group code in F5(C6 × C6)
and a checkable [72, 62, 6] group code in F5(C6×C12). In both cases the minimum distance
is improved by 1 from an earlier lower bound in [15].

Remark 2.9 Theorem 2.6 provides an easy way to construct random checkable codes: it
is enough to choose a random element in KG and then take the dual of the principal ideal
generated by this element. Such a construction allows to do extensive searches for codes
with the best known minimum distance (let us call them optimal codes, for simplicity).
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Using Magma [8], we observed that there exists an optimal checkable code over F2, for
every group of order ≤ 100, and an optimal checkable code over F3 and F4, for every
group of order ≤ 50. For some groups we could find only trivial checkable codes, that
is, of dimension 1. But in many cases the optimal checkable codes that we found have a
higher dimension.
Let us give two examples: a binary and a ternary optimal code.
If

G = 〈a, b, c, d |
a8 = b2 = c2 = d8 = 1, ab = ba, ac = ca, bc = cb, da = a7cd, db = bd5, dc = cd〉

(this is the 22nd group of order 64 in the library SmallGroups of Magma) and

u = 1 + a6c+ ad4 + a3 + a7bd4 + a7cd4 + a7bc+ a7bcd4 + d+ a6d+ acbd+ a7d5 ∈ F2G,

the dual of uKG is a [64, 32, 12] code over F2.
If

G = 〈a, b, c | a4 = b4 = c3 = 1, ab = ba, ca = a3b3c, cb = ac〉 ≃ (C4 × C4)⋊ C3

and
v = 1 + 2b+ a3b2 + 2a3 + 2a3b3 + 2c2b3 + c2ab3 ∈ F3G,

the dual of vKG is a [48, 15, 18] code over F3.
Note that we can describe these codes very easily in terms of a check element, which is a
generator of the dual. Here we chose a check element of minimum weight.

Recall that for a right KG-module M the dual KG-module M∗ is defined by the
K-vector space M∗ = HomK(M,K) on which G acts from the right by

(ϕg)(m) = ϕ(mg−1), for ϕ ∈ M∗, g ∈ G,m ∈ M.

Remark 2.10 If C is checkable, then C∗ ∼= KG/uKG, for some u ∈ KG. This imme-
diately follows from Theorem 2.6 applying KG/C⊥ ∼= C∗ which has been proved in ([28,
Proposition 2.3]).

Corollary 2.11 Maximal ideals in KG are checkable.

Proof: For a KG-module M , let l(M) denote the composition length of M , i.e., the
number of irreducible composition factors in a Jordan-Hölder series of M . Let l(KG) = l.
Thus, if C is a maximal ideal in KG, then l(C) = l(C∗) = l − 1. Since KG/C⊥ ∼= C∗

we get l(C⊥) = 1. Hence C⊥ is a minimal ideal in KG. But minimal ideals in KG are
principal. Hence the assertion follows by Theorem 2.6. ✷

Minimal ideals are in general not checkable as the following result shows.
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Proposition 2.12 Let G be a finite p-group and char K = p. Then the minimal ideal

C = K
∑

g∈G g in KG is checkable if and only if G is cyclic.

Proof: Let g1, . . . , gs be a minimal set of generators of G. Then C⊥ = J(KG), where
J(KG) is the Jacobson radical of KG. One easily sees that J(KG) =

∑s
i=1

(gi − 1)K is
principal if and only if s = 1, i.e., G is cyclic. Now the assertion follows, by Theorem 2.6. ✷

Proposition 2.13 Let C be a two-sided ideal in KG such that KG/C is a Frobenius

algebra. Then C is checkable. In particular, in this case J(KG) is checkable.

Proof: Since KG/C is a Frobenius algebra, a result of Nakayama ([26, Theorem A])
directly implies Annl(C) = KGa, for some a ∈ A. Applying the double annihilator prop-
erty, we get C = Annr(KGa). Finally note that according to Wedderburn’s Theorem
KG/J(KG) is a direct sum of full matrix algebras over extension fields of K, hence a
Frobenius algebra. ✷

3 Code-checkable group algebras

Let KG = B0 ⊕ . . . ⊕ Bs be a decomposition of KG into p-blocks Bi, with char K = p
and Bi = fiKG with block idempotents fi. Recall that the Bi are 2-sided ideals and as
such, indecomposable. They are uniquely determined by KG. Furthermore, the fi are
primitive idempotents in the center of KG. For more details the reader is referred to ([16,
Chap. VII, Section 12]).

If C ≤ KG is a group code, then C = Cf0 ⊕ . . . ⊕ Cfs. One easily sees that C is
checkable, i.e. C = Annr(KGa), if and only if

Cfi = AnnBi

r (KGfia) = AnnBi

r (Bifia) = {b ∈ Bi | (fia)b = 0}.

This shows that C is checkable if and only if the block components Cfi are checkable in
Bi, for all i.

For an algebra A a right (left) A-module M is called uniserial if it has only one
Jordan-Hölder series, or in other words M has only one composition series. Furthermore,
the projective cover P (M) of an irreducible A-module M is an indecomposable projective
A-module which has a factor module isomorphic to M (see ([16, Chap.VII])).

Theorem 3.1 Let char K = p and let B be a p-block of KG. Then the following are

equivalent.

a) All right ideals in B are checkable.
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b) All left ideals in B are principal.

c) B contains only one irreducible left module M whose projective cover P (M) is uni-

serial.

d) The defect group of B is cyclic and B contains only one irreducible left module.

Proof: First note that B is a symmetric algebra ([16, Chap.VII, Section 11]).
a) ⇐⇒ b) Let I be a right ideal of B. Then I = AnnBr (Bv), for some v ∈ B, if and only
if AnnBl (I) = Bv. Since AnnBr yields a bijection from the set of left ideals in B onto the
set of right ideals in B we are done.
b) =⇒ c) Clearly, all left ideals are principal if and only if all right ideals are principal, just
by applying the antiautomorphism ̂ . Thus B is an artinian principal ideal ring and ([12,
Theorem 2.1]) implies that all left B-modules are homogeneous uniserial. In particular all
projective indecomposable left B-modules are uniserial.

Next we have to show that B contains only one irreducible left module. Let J = J(B)
denote the Jacobson radical of B and M be an irreducible left B-module with projective
cover P = P (M). Let X be the largest submodule of Socl(P/J

kP ) whose irreducible com-
ponents are all isomorphic to M . Since the full preimage of this completely irreducible
module is a left ideal in B, it is principal, hence a factor module of B. This implies that X
is a factor module of B/JB, for all k. Doing this argument for a decomposition of B into a
direct sum of projective indecomposable left modules and counting all composition factors
in the regular left module B, we see that all composition factors of P (M) are isomorphic
to M .
Since the principal indecomposable modules in a block are connected, we get that B con-
tains only one irreducible left module.
c) =⇒ b) Let I be a left ideal of B. If there exists a ∈ B such that I = Ba+ JI, then by
Nakayama’s Lemma I = Ba and we are done. Thus it is sufficient to show that I/JI is
generated by one element as a B-left module.
First note that the condition in c) obviously implies that there is also exactly one irre-
ducible right module in B whose projective cover is uniserial. The corresponding irre-
ducible right module is M̂ = HomK(M,K) with the right structure

(ϕg)(m) = ϕ(gm) for ϕ ∈ M̂, g ∈ G,m ∈ M.

Thus a result of Nakayama ([23, Theorem 17]) says that all left (and right) B-modules are
uniserial. Clearly, I/JI is a B/J-submodule of Soc(B/JI). Since B/JI is uniserial, we
see that I/JI is a submodule of B/J . But all ideals in B/J are principal. Hence I/JI is
generated by one element.
c) =⇒ d). Note that b) is exactly the statement in (1) of ([12, Theorem 2.1]) which is
equivalent to (3). Thus all indecomposable left B-modules are submodules of B which
means that B is of finite representation type. Now d) follows by ([29], Proposition 2.12.9).
d) =⇒ c) Again by ([29], Proposition 2.12.9), we know that B is of finite representation
type. Following the proof of ([1], Section 18, Proposition 3), we see that the projective
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cover P (M) of the unique irreducible left module M in B is uniserial. ✷

As usual the principal p-block B0(G) of G is the block which contains the trivial
KG-module. Furthermore, remember from finite group theory that a group G is called
p-nilpotent if G has a normal p′-subgroup N = Op′(G) such that the factor group G/N is
a p-group, i.e., G/N is isomorphic to a Sylow p-subgroup of G.

Corollary 3.2 Let char K = p and let B0(G) be the principal p-block of KG. The fol-

lowing are equivalent.

a) G is p-nilpotent with a cyclic Sylow p-subgroup.

b) KG is a code-checkable group algebra.

c) All right ideals in B0(G) are checkable.

Proof: a) =⇒ b) By ([16, Chap. VII, Theorem 14.9]), each block has exactly one irre-
ducible left module. Since the principal block B0(G), which contains the trivial module
1G, is isomorphic to KG/Op′(G) ∼= KT , with T a Sylow p-subgroup of G, we get that
B0(G) = P (1G) ∼= KT is uniserial. If M is any irreducible KG-module, then P (M) is
a factor module of P (1G) ⊗M , which is uniserial. Thus P (M) is uniserial as well. This
shows that all blocks of KG satisfy condition c) of Theorem 3.1, hence condition a), which
means that KG is code-checkable.
b) =⇒ c) This is obvious.
c) =⇒ a). Note that according to Theorem 3.1 the condition in c) implies that B0(G) con-
tains only one irreducible left module, namely the trivial module 1G, and P (1G) is uniserial.
Thus again by ([16, Chap. VII, Theorem 14.9]), the group G must be p-nilpotent. In par-
ticular, if T is a Sylow p-subgroup of G, then B0(G) ∼= KG/Op′(G) ∼= KT ∼= P (1G) forces
T to be cyclic. ✷

Observe that the equivalence of a) and b) is already contained in an early paper of
Passman ([25, Theorem 4.1]).

Remark 3.3 In [18] the authors study group codes in code-checkable group algebras
KG, for G abelian, i.e., G = A× T , with A an abelian p′-group and T a cyclic p-group, if
p = char K. In particular, a characterization and enumeration of Euclidean self-dual and
self-orthogonal group codes is given.

4 Asymptotically good classes

In the literature there are many papers which prove that particular classes of codes are
asymptotically good. In [2] the authors investigated binary group codes over dihedral
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groups of order 2m, for m odd. Their results in Section 4 show that the class of group
codes over these groups is asymptotically good. Applying field extensions as in ([13],
Proposition 12) this result can be extended to any field of characteristic 2. These methods
have been generalized to any finite field in odd characteristic [7]. Thus we have the
following result.

Theorem 4.1 ([2], [7]) For any finite field K the class of group codes in code-checkable

group algebras is asymptotically good.
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