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Abstract. Dihedral codes, particular cases of quasi-cyclic codes, have
a nice algebraic structure which allows to store them efficiently. In this
paper, we investigate it and prove some lower bounds on their dimension
and minimum distance, in analogy with the theory of BCH codes. This
allows us to construct dihedral codes with prescribed minimum distance.
In the binary case, we present some examples of optimal dihedral codes
obtained by this construction.
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1 Introduction

Block codes were invented in the forties to correct errors in the communication
through noisy channels (see [18] for more details), and they are used nowadays in
different areas of information security. Originally, they were thought just as sub-
sets of (code)words of n letters chosen in an alphabet K, which are far enough
apart from each other with respect to the Hamming distance. However, they
usually need to have more algebraic structure to be stored efficiently. By con-
sidering linear codes of length n over a finite field K, that is subspaces of the
vector spaceKn, we have a compact description given, for example, by the parity
check matrix, which is a matrix H such that c ∈ C if and only if cH = 0. Such a
description reduces exponentially the size of the data to be stored with respect
to general block codes. However, this reduction reveals to be insufficient in the
context of code-based cryptography ([20,24] and many others), where the public
key is related to the parity check matrix of a code of large length and dimension.
The size of the public key constitutes one of the main practical disadvantages in
the use of code-based cryptography and many efforts have been done to reduce
it by preserving the security of the system. One option may be to use codes
with symmetries, like cyclic or quasi-cyclic codes (see for example [3]). However,
since decoding of general quasi-cyclic codes is difficult, the algebraic structure
that one needs to add may also reveal to be a weakness of the system (see for
example [14]).

A natural generalisation of cyclic codes is given by the family of group codes:
a linear code C is called a G-code (or a group code) if C is a right (or left) ideal

http://arxiv.org/abs/2003.11125v1


2 Martino Borello and Abdelillah Jamous.

in the group algebra KG = {a =
∑

g∈G agg | ag ∈ G} where G is a finite group.
Reed Muller codes over prime fields Fp are group codes for an elementary abelian
p-group G [4,10], and there are many other remarkable optimal codes which have
been detected as group codes [5,12,15,21]. If G is cyclic, then all right (or left)
ideals of KG afford only one check equation (and then only a few data have to
be stored). In the case G is a general finite group there are only particular right
(or left) ideals which satisfy this property, called checkable codes [19]. In [6] it
is proved that such codes are the duals of principal ideals and group algebras
KG for which all right (or left) ideals are checkable (or equivalently principal),
called code-checkable group algebras, are characterised: KG is a code-checkable
group algebra if and only if G is p-nilpotent with a cyclic Sylow p-subgroup,
where p is the characteristic of K. This is a consequence of an early result by
Passman ([25, Theorem 4.1]). Checkable codes are asymptotically good [2,7] and
many optimal codes are checkable [6, Remark 2.9]. This seems to suggest that
the family of checkable codes is worth further investigation. In particular, it is
desirable to prove some bounds on the dimension and minimum distance for
checkable codes and to introduce families of checkable or principal codes with
prescribed minimum distance (in analogy with BCH codes).

To our knowledge, there are very few results concerning the parameters of
group codes, both for general and particular groups. In [13], an algorithm for
computing the dimension of general group codes is given. In a very recent pa-
per [11], several relations and bounds for the dimension of principal ideals in
group algebras are determined by analysing minimal polynomials of regular rep-
resentations. The concatenated structure of dihedral codes is investigated in [9].
However, we are not aware of results which allow to construct group codes with
a prescribed minimum distance or explicit lower bounds on both dimension and
minimum distance, even in the easiest case of dihedral codes. This paper wants
to be a first contribution in this direction. In §2 we will recall some results of the
theory of quasi-cyclic codes. In §3 we will recall the definition of dihedral codes,
present some results about their algebraic structure, make some remarks about
the dual codes, prove a BCH bound for principal dihedral codes, propose a def-
inition of principal BCH-dihedral codes, consider the particular case of binary
dihedral codes and give some construction of optimal codes. Finally, in §4 we
will present some open problems. In particular, an efficient decoding algorithm
would be a necessary prerequisite for applications in cryptography.

2 Quasi-cyclic codes

We recall in this section some definitions and known results about quasi-cyclic
codes. As we will see in the next section, dihedral codes, as all group codes, form
a subfamily of quasi-cyclic codes.

Let q be a power of a prime and Fq the finite field with q elements. Let n ∈ N.
The symmetric group Sn acts on the vector space F

n
q as follows:

vσ := (vσ−1(1), vσ−1(2), . . . , vσ−1(n))
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for v := (v1, v2, . . . , vn) ∈ F
n
q and σ ∈ Sn. For a linear code C ⊆ F

n
q , the set of

permutations such that Cσ := {cσ | c ∈ C} is equal to C is a group which is called
the permutation automorphism group of C and which is denoted by PAut(C).

In this context, a remarkable transformation is the so-called shift map, that
is

Tn : Fn
q → F

n
q c 7→ c(1 ... n) = (cn, c1, . . . , cn−1).

Linear codes which are invariant under the shift or its power are the so-called
quasi-cyclic codes.

Definition 1. Let C ⊆ F
n
q be a linear code. Suppose that n = ℓm, for some

positive integers ℓ and m. The code C is quasi-cyclic of index ℓ if T ℓ
n(C) = C,

that is if

(1 . . . n)ℓ =

ℓ∏

j=1

(j ℓ+ j 2ℓ+ j . . . (m− 1)ℓ+ j) ∈ PAut(C).

If ℓ = 1, the code C is called cyclic.

Let R := Fq[x]/(x
m − 1). We may relabel the coordinates and consider the

bijective Fq-linear map
ϕ : Fn

q = (Fℓ
q)

m → Rℓ (1)

(c11, . . . , c1ℓ, . . . , cm1, . . . , cmℓ) 7→ (c11+ · · ·+ cm1x
m−1, . . . , c1ℓ+ · · ·+ cmℓx

m−1).

The image of a quasi-cyclic code in Rℓ is an R-submodule. Actually, the multi-
plication by x corresponds to the ℓ-th power of the shift.

Remark 1. There is a one-to-one correspondence between the R-submodules of
Rℓ and left ideals of Matℓ(R) (which is isomorphic, as a ring, to Matℓ(Fq)[x]/(x

m−
1)). This is a particular case of the Morita equivalence for modules [23]. The
explicit one-to-one map is given as follows: to any R-submodule N of Rℓ we
associate the left ideal IN of Matℓ(R) composed by matrices whose rows are
elements in N . As already observed in [1], since R is a commutative principal
ideal ring, every R-submodule N of Rℓ has at most ℓ generators, so that the
left ideal IN is principal (it suffices to consider the matrix whose rows are the
generators and eventually some zeros). So there exists a generator of IN which
can be seen a polynomial in Matℓ(Fq)[x]/(x

m − 1).

Let ℓ be a positive integer, and α ∈ Fqℓ be a primitive element of Fqℓ/Fq.
Recall that {1, α, . . . , αℓ−1} is an Fq-base of the vector space Fqℓ . The folding is
the Fq-linear map

φ : Fℓ
q → Fqℓ = Fq[α]

(a1, . . . , aℓ) 7→ a1 + a2α+ · · ·+ aℓα
ℓ−1.

Definition 2. Let C ⊆ F
n
q = (Fℓ

q)
m be a linear code. The folded code of C is

C′ = φm(C) ⊆ (Fqℓ)
m. In this case, C is the unfolded code of C′.
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Remark 2. Note that the folded code C′ of a linear code C is an Fq-linear code.
Moreover, C is quasi-cyclic if and only if C′ is invariant under the shift Tm.

In the next section we will use the above equivalence and the following defi-
nition many times.

Definition 3. An Fq-linear code C ⊆ (Fqℓ)
m which is invariant under the shift

Tm is called Fq-linear cyclic code.

Barbier et al. define in [1] the analogue of BCH codes in the quasi-cyclic case.
They call them quasi-BCH codes. In [16], the algebraic structure of Fq-linear
cyclic codes over Fqℓ is studied. In next section we will explore the same concepts
in the context of dihedral codes.

3 Dihedral codes

Let m ≥ 3 be an integer and

D2m := 〈α, β | αm = 1, β2 = 1, βα = αm−1β〉,

be the dihedral group of order 2m. The group algebra FqD2m is the set

FqD2m :=







∑

γ∈D2m

aγγ

∣
∣
∣
∣
∣
∣

aγ ∈ Fq






,

which is vector space over Fq with canonical basis {γ}γ∈D2m
. The operations of

sum and multiplication by scalars are defined in the following natural way: for
any aγ , bγ ∈ Fq and c ∈ Fq

∑

γ∈D2m

aγγ +
∑

γ∈D2m

bγγ =
∑

γ∈D2m

(aγ + bγ)γ,

c ·




∑

γ∈D2m

aγγ



 =
∑

γ∈D2m

caγγ.

Moreover, FqD2m is an algebra with the product




∑

γ∈D2m

aγγ



 •




∑

γ∈D2m

bγγ



 =
∑

γ∈D2m

(
∑

µν=γ

aµbν

)

γ.

Definition 4. A dihedral code, or a D2m-code, is a left ideal of FqD2m.

As observed in [8], a linear code of length 2m can be seen as a D2m-code if
and only if its automorphism group contains a subgroup isomorphic to D2m all



Dihedral codes with prescribed minimum distance 5

of whose nontrivial elements act fixed point free on the coordinates {1, . . . , 2m}.
In particular, if we consider the ordering

D2m = { 1
︸︷︷︸

b1

, β
︸︷︷︸

b2

, α
︸︷︷︸

b3

, αβ
︸︷︷︸

b4

, α2
︸︷︷︸

b5

, α2β
︸︷︷︸

b6

, . . . , αm−1
︸ ︷︷ ︸

b2m−1

, αm−1β
︸ ︷︷ ︸

b2m

}, (2)

and the Fq-linear isomorphism between F
2m
q and FqD2m given by ei 7→ bi (where

{ei} is the canonical basis of F2m
q ), a linear code C ⊆ F

2m
q is a D2m-code if and

only if
α′ := (1 3 5 . . . 2m− 1)(2 4 6 . . . 2m)

and
β′ := (1 2)(3 2m)(4 2m− 1)(5 2m− 2) · · · (m+ 1 m+ 2)

are in PAut(C). These elements correspond to the permutation representation of
the left multiplication by α and by β respectively in FqD2m. In particular, since
α′ = (1 . . . 2m)2, a dihedral code is a quasi-cyclic code of index 2.

From now on, we will always consider the ordering (2) fixed and we will
identify F

2m
q and FqD2m.

3.1 Algebraic structure

Let C be a D2m-code over Fq. As we observed above, since C is a quasi-cyclic
codes of index 2, C is a free left module of rank 2 over R := Fq[x]/(x

m − 1),
which is a commutative principal ideal ring. As we have already seen in Remark
1, this means that C has at most two generators as a module over R. These are
also two generators of C viewed as an ideal in FqD2m. We have one generator of
C as an ideal in Mat2(Fq)[x]/(x

m − 1), given by the polynomial with coefficients
in the ring of matrices with first row given by the first generator and second row
given by the second one. However, it may happen that C is not principal as an
ideal in FqD2m.

Remark 3. As observed in [6], an early result by Passman ([25, Theorem 4.1])
gives us that all D2m-codes over a field Fq of characteristic p if and only if D2m

is p-nilpotent with a cyclic Sylow p-subgroup (we recall that a group G is p-
nilpotent if it admits a normal subgroup N of order coprime with p and such
that G/N is a p-group). This is the case if and only if p does not divide m. So

– if (m, q) = 1, all D2m-codes over Fq are principal;
– otherwise, a D2m-code over Fq is either principal or the sum of two principal

ideals.

We will study then the algebraic structure of principal left ideals in FqD2m,
that is principal dihedral codes. Via the map ϕ defined as in (1), we can consider
ϕ(C) inside R2. The automorphism α′ corresponds to the multiplication by x in
R2, whereas the automorphism β′ acts on R2 as follows: for (a(x), b(x)) ∈ R2,

(a(x), b(x))β
′

= (b(xm−1), a(xm−1)).
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So, C is a D2m-code if and only if ϕ(C) is an R-submodule of R2 invariant
under the action of β′, that is such that (b(xm−1), a(xm−1)) ∈ ϕ(C) for all
(a(x), b(x)) ∈ ϕ(C).

If C is principal, then ϕ(C) is an R-submodule of R2 generated, as a module,
by

(a(x), b(x)) and (b(xm−1), a(xm−1)).

Remark 4. We have already mentioned the Morita correspondence between R-
submodules and left ideals in Mat2(R) ∼= Mat2(Fq)[x]/(x

m−1). In this case, the
left ideal IC ⊆ Mat2(Fq)[x]/(x

m − 1) associated to C is the principal ideal

IC =

〈(
a0 b0
b0 a0

)

+

(
a1 b1

bm−1 am−1

)

x+ · · ·+

(
am−1 bm−1

b1 a1

)

xm−1

〉

,

where a(x) := a0+a1x+ . . .+am−1x
m−1 and b(x) := b0+b1x+ . . .+bm−1x

m−1.

Considering the folding (Fq)
2 → Fq2 = Fq[α], we can see the two polynomials

a(x), b(x) as a unique polynomial over Fq2 as

p(x) := (a0 + b0α) + (a1 + b1α)x + . . .+ (am−1 + bm−1α)x
m−1

so that a principal dihedral code can be seen as the sum of the two Fq-linear
cyclic codes over Fq2 , that is the one generated by p(x) and the one generated
by p(xm−1), where

p(x) := (b0 + a0α) + (b1 + a1α)x+ . . .+ (bm−1 + am−1α)x
m−1.

The Fq-linear map τ := a + bα 7→ τ := b + aα can be expressed by the
following linearised polynomial:

τ 7→ L(τ) :=

(
1− α2

αq − α

)

τq +

(
αq+1 − 1

αq − α

)

τ.

so that, if

p(x) := τ0 + τ1x+ . . .+ τm−1x
m−1,

we have

p(x) = τ0 + τ1x+ . . .+ τm−1x
m−1 =

(
1− α2

αq − α

)

p(x1/q)q +

(
αq+1 − 1

αq − α

)

p(x).

Definition 5. For a polynomial r(x) ∈ Fq2 [x]/(x
m − 1), we denote by 〈r(x)〉Fq

the unfolded Fq-linear cyclic code generated by r(x), i.e. the unfolded of

{t(x)r(x) ∈ Fq2 [x]/(x
m − 1) | t(x) ∈ Fq[x]}.

We can resume all the discussion in the following.
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Theorem 1. Let Fq2 = Fq[α] and C be a principal D2m-code over Fq. It exists

p(x) ∈ Fq2 [x]/(x
m − 1) such that

C = 〈p(x)〉Fq
+ 〈p(xm−1)〉Fq

,

where

p(xm−1) =

(
1− α2

αq − α

)

p(x(m−1)/q)q +

(
αq+1 − 1

αq − α

)

p(xm−1) ∈ Fq2 [x]/(x
m − 1).

In particular, as we have already observed in Remark 3, all D2m-codes over
Fq are principal if (m, q) = 1 and they are a sum of at most two principal
D2m-codes otherwise.

Definition 6. We call the polynomial p(x) a generator of the principal dihedral

code.

Corollary 1. Let C be a principal D2m-code over Fq generated by p(x). Then

dimFq
C ≥ max{m− deg p(x),m− deg p(xm−1)}.

Proof. This follows from the fact that the vectors in F
2m
q corresponding to the

polynomials
{p(x), xp(x), . . . , xm−deg p(x)−1p(x)}

are linearly independent, and the same holds for the ones corresponding to

{p(xm−1), xp(xm−1), . . . , xm−deg p(xm−1)−1p(xm−1)}.

Remark 5. For calculations, it may be interesting to have integer exponents. In
case (m, q) = 1, we can take m′ to be the inverse of m modulo q, so that m′m−1
is divisible by q. Let r := (m′m− 1)/q. Then

p(xm−1) =

(
1− α2

αq − α

)

p(xr)q +

(
αq+1 − 1

αq − α

)

p(xm−1).

3.2 Dual code

In analogy with the theory of cyclic and quasi-cyclic codes, it it interesting to
investigate the dual codes of dihedral codes, which are still dihedral.

Proposition 1. The dual code C⊥ of a dihedral code C is a dihedral code.

Proof. This follows trivially from the fact that PAut(C⊥) = PAut(C).

The dual of a principal dihedral code is not necessarily principal. But if
(m, q) = 1, as we mentioned already, all dihedral codes are principal. So it
makes sense to investigate the relation between the generator of a code and a
generator of its dual.

Let p(x) and q(x) be two polynomial in Fq2 [x]/(x
m − 1) and let v and w the

two vectors in F
2m
q corresponding to p(x) and q(x) respectively. We may define

∗ : Fq2 [x]/(x
m − 1)× Fq2 [x]/(x

m − 1) → Fq

(p(x), q(x)) 7→ p(x) ∗ q(x) := 〈v, w〉



8 Martino Borello and Abdelillah Jamous.

Proposition 2. Let (m, q) = 1. If C is a principal D2m-code generated by p(x)
and C⊥ is a principal D2m-code generated by q(x), then

p(x) ∗ q(x) = 0, p(x) ∗ q(xm−1) = 0,

p(xm−1) ∗ q(x) = 0, p(xm−1) ∗ q(xm−1) = 0.

The same holds with all the shift of p(x) and p(xm−1).

Proof. This is clear from the definition of ∗.

Remark 6. At least two questions stand open in this context: the conditions in
Proposition 2 are only necessary. It would be very interesting to find sufficient
conditions for a polynomial q(x) to be a generator of the dual. We may add
the orthogonality with all the shift of p(x) and p(xm−1), but this would still be
not enough. A polynomial q(x) satisfying all these relations would generate a
subcode of C⊥, but not necessarily the whole dual. In fact, there is an argument
on the dimension missing. Secondly, it would be nice to give some relations with
the usual product of polynomials (as in the cyclic codes case) and not with the
∗ product.

For dihedral codes over fields of characteristic 2, a nice relation holds.

Proposition 3. If q is a power of 2, then 〈p(xm−1)〉Fq
⊆ 〈p(x)〉⊥

Fq
. In particular,

the code generated by p(x) is contained in 〈p(x)〉Fq
+ 〈p(x)〉⊥

Fq
.

Proof. Recall that if p(x) corresponds to the vector

v = (a0, b0, a1, b1, . . . , am−1, bm−1),

then p(xm−1) corresponds to the vector

w = (b0, a0, bm−1, am−1, . . . , b1, a1),

so that

〈v, w〉 = 2(a0b0 + a1bm−1 + am−1b1 + . . .) = 0

in any field of characteristic 2. Clearly, the same argument applies to xip(x).

Remark 7. In many examples, we get the equality 〈p(xm−1)〉Fq
= 〈p(x)〉⊥

Fq
. How-

ever, we could not find a general property of p(x) which guarantees it. Again,
there is an argument on the dimension missing.

3.3 Minimum distance bounds

Let t be the order of q2 modulo m, and let ω be a primitive m-th root of unity
in Fq2t . If δ − 1 consecutive powers of ω are roots of both p(x) and p(xm−1),
then a BCH bound can be proved for the code generated by p(x) and p(xm−1).
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Theorem 2 (BCH bound for principal dihedral codes). If δ − 1 con-

secutive powers of ω are roots of both p(x) and p(xm−1), then the dihedral code

C generated by p(x) has minimum distance at least δ.

Proof. A codeword c(x) of the folded C ⊆ F
m
q2 is of the form

c(x) = t1(x)p(x) + t2(x)p(x
m−1),

for t1(x), t2(x) ∈ Fq[x]. As δ − 1 consecutive powers of ω are roots of both p(x)
and p(xm−1), we have c(x) = c′(x)g(x) where c′(x) ∈ Fq2 [x] and

g(x) = lcm{Mωb(x),Mωb+1(x), . . . ,Mωb+δ−2(x)},

where Mωi(x) is the minimal polynomial of ωi over Fq2 . It follows that the folded
C is a subcode of the BCH code genereted by g(x), which has minimum distance
at least δ by the classical BCH bound. Since a nonzero coordinate in a codeword
of the folded C corresponds to at least a nonzero coordinate of the unfolded
codeword in C, the minimum distance of C is at least δ.

Let us consider the case (m, q) = 1 and let r be defined as in Remark 5. For
many applications, it is suitable to consider codes with a prescribed minimum
distance. This can be achieved by imposing that δ − 1 consecutive powers of ω,
say ωb, ωb+1, . . . , ωb+δ−2, together with their inverse and their r-th powers, are
roots of p(x), which guarantees that the code generated has minimum distance
at least δ.

Definition 7. Let (m, q) = 1. A dihedral code C ⊆ F
2m
q is a BCH-dihedral code

of prescribed minimum distance δ if it exists an integer b such that its generator

is

p(x) = lcm







Mωb(x),Mωb+1(x), . . . ,Mωb+δ−2(x)
Mω−b(x),Mω−b−1(x), . . . ,Mω−b−δ+2(x)
Mωbr(x),Mωbr+r (x), . . . ,Mωbr+δr−2r (x)







where r = (m′m − 1)/q, with m′ being the inverse of m modulo q, and Mωi(x)
is the minimal polynomial of ωi over Fq2 .

Remark 8. The definition above guarantees to have minimum distance at least
δ. Anyway, it may probably be improved by analysing the relations between the
cyclotomic cosets of the different roots. This reveals to be simpler in the binary
case, that we will consider in the next subsection.

3.4 Binary case

Let us consider now D2m-codes over F2, with m ≥ 3 odd. The binary case is
particularly interesting, since α2+1 − 1 = 0. In this case

p(xm−1) = αp(x(m−1)/2)2,
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so that if Z(p) is the set of zeros of p(x), then Z(p)2/(m−1) is the set of zeros of
p(xm−1). In this case, we are considering p(x) and p(xm−1) as polynomials in
F4[x] and not in the quotient ring.

We consider an m-th root of unity ω in F4t , where t the order of 4 modulo
m. The irreducible divisors of xm − 1 are associated to the cyclotomic cosets
Ci = {i, 4i mod m, 42i mod m, . . .} (this is classical in the theory of cyclic codes
- see for example [18]): actually, if Mωi(x) is the polynomial associated to Ci

(which is the minimal polynomial of ωi), its zeros are Z(Mωi(x)) = {ωj | j ∈ Ci}.

Proposition 4. The following conditions are equivalent:

a) Z(Mωi)(m−1)/2 = Z(Mωi) for all i ∈ {0, . . . ,m− 1};
b) m−1

2 Ci = Ci for all i ∈ {0, . . . ,m− 1};
c) it exists an integer s such that 22s+1 = −1 mod m.

If m is prime, then a), b) and c) are equivalent to

d) s2(m) ≡ 2 mod 4, where s2(m) is the order of 2 modulo m.

Proof. a)⇔b): if Z(Mωi)(m−1)/2 = Z(Mωi), then it exists j ∈ Ci such that
ωi(m−1)/2 = ωj, which means that the class Ci is sent to Ci by multiplying by
m−1
2 . The vice versa is trivial.

b)⇒c): since m−1
2 C1 = C1, it exists s such that m−1

2 = 4s mod m. Then 22s+1 =
−1 mod m.
c)⇒b): 22s+1 = −1 mod m implies ((m, 2) = 1 so that 2 is invertible) that
4s = m−1

2 mod m. This means that for all i ∈ {0, . . . ,m− 1}, we have m−1
2 i =

4si ∈ Ci, which implies m−1
2 Ci = Ci.

c)⇒d): Since 24s+2 = 1 mod m and 22s+1 = −1 mod m, then s2(m) divides
2(2s + 1) and s2(m) does not divide 2s + 1. So 2 divides s2(m). If 4 divides
s2(m), then 4 divides 4s+ 2, which is not true. So s2(m) ≡ 2 mod 4.
d)⇒c): If s2(x) = 4s+ 2, then 22s+1 is a root of x2 − 1 ∈ Fm[x], which has only
two solutions. The only possible solution in this case is −1 (otherwise the order
of 2 would be smaller than 4s+ 2).

Remark 9. The set of primes P := {m | s2(m) ≡ 2 mod 4} = {3, 11, 19, 43, . . .}
is infinite (its density in the set of primes is 7/24 [22]).

Theorem 3. If it exists an integer s such that 22s+1 = −1 mod m (in particular

if m is prime and s2(m) ≡ 2 mod 4), then, for all integers δ ≥ 2 and b ≥ 0, the
binary D2m-code generated by

p(x) = lcm{Mωb(x),Mωb+1(x), . . . ,Mωb+δ−2(x)}

is a principal BCH-dihedral code with minimum distance d ≥ δ and dimension

k ≥ m− deg p(x).

Proof. It follows from the fact that, in this case, p(x) divides p(xm−1): actually,
all roots of p(x) are roots of p(xm−1) (as polynomial in F4[x]) and p(x) divides
xm − 1.
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Remark 10. Theorem 3 allows to construct binary dihedral codes with prescribed
minimum distance and with a lower bound on their dimensions. WithMagma we
did some calculations and we found some codes with the best-known minimum
distance for their dimension (see [17]). For example:

– the D22-code generated by

p(x) = x5 + αx4 + x3 + x2 + α2x+ 1,

which is a [22, 12, 6] code;
– the D66-code generated by

p(x) = x15 + αx14 + x13 + x11 + x10 + α2x9 + α2x8+

+αx7 + αx6 + x5 + x4 + x2 + α2x+ 1,

which is a [66, 33, 12] code;
– the D86-code generated by

p(x) = x21 + αx20 + αx18 + αx17 + αx16 + x15 + α2x11 + αx10+

+x6 + α2x5 + α2x4 + α2x3 + α2x+ 1,

which is a [86, 44, 15] code;
– the D86-code generated by

p(x) = x7 + x6 + αx5 + α2x2 + x+ 1.

which is a [86, 72, 5] code.

Note that the dimension is always 2(m− deg p(x)).

4 Open problems

In the paper we defined dihedral codes with prescribed minimum distance and
dimension. However, it would be interesting to prove better bounds on the di-
mension and to give a construction allowing to control it. In particular, an open
problem is the following.

Problem 1. When does equality hold in Corollary 1? Can the bound be im-
proved by adding some conditions on p(x)?

Related to that, there is also the problem of a canonical generator. Actu-
ally, in the theory of BCH codes we can read the dimension from the degree of
the generator polynomial (the one of lowest degree). It does not seem to exist
an analogue for dihedral codes. About dual codes, many questions stand open.
The main one is about the relation between the generators of code. Another
important problem, related to the use of dihedral codes in cryptography is the
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following.

Problem 2. Is there any efficient decoding algorithm for dihedral codes, based
on the algebraic structure proved in the paper?

Finally, it would be interesting to extend the results to other group codes, at
least in the checkable case.
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