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MINIMAL LINEAR CODES ARISING FROM BLOCKING SETS

MATTEO BONINI AND MARTINO BORELLO

Abstract. Minimal linear codes are algebraic objects which gained interest in the last twenty years,
due to their link with Massey’s secret sharing schemes. In this context, Ashikhmin and Barg provided
a useful and a quite easy to handle sufficient condition for a linear code to be minimal, which has been
applied in the construction of many minimal linear codes.

In this paper, we generalize some recent constructions of minimal linear codes which are not based
on Ashikhmin–Barg’s condition. More combinatorial and geometric methods are involved in our proofs.
In particular, we present a family of codes arising from particular blocking sets, which are well-studied
combinatorial objects. In this context, we will need to define cutting blocking sets and to prove some
of their relations with other notions in blocking sets’ theory. At the end of the paper, we provide one
explicit family of cutting blocking sets and related minimal linear codes, showing that infinitely many of
its members do not satisfy the Ashikhmin–Barg’s condition.

Keywords: Minimal linear codes; secret sharing schemes; blocking sets.
MSC 2010 Codes: 94B05, 94C10, 94A62, 51E21

1. Introduction

A codeword of a linear code is called minimal if its support (the set of nonzero coordinates) does not
contain the support of any other linearly independent codeword. For a linear code C, the supports of
minimal codewords of the dual code C⊥ give the access structure of a secret sharing scheme, introduced
by Massey in [14], [15]. So, it is particularly interesting to determine all minimal codewords of a code.
The problem of describing the set of minimal codewords of a linear code is quite difficult in general,
even in the binary case: actually, the knowledge of the minimal codewords is related with the complete
decoding problem which is known to be NP-hard [2], even if preprocessing is allowed [4]. To simplify
this task, one can try to find linear codes for which all codewords are minimal, called minimal linear
codes. The problem of finding minimal linear codes has been first investigated in [10]. Besides their
use in secret sharing schemes, minimal linear codes have shown to be suitable to other applications:
for example, in [5], minimal linear codes are used to ensure privacy in a secure two-party computation.
One of the central results in this context is due to Ashikhmin and Barg [1]: a linear code C over a finite
field Fq of order q is minimal if

(AB)
wmax

wmin

<
q

q − 1
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where wmin and wmax respectively denote the minimum and maximum nonzero weights in C. This
sufficient condition (which we will call AB condition) provides an easy criterion to construct minimal
linear codes, especially in the case of codes with few nonzero weights (see for example [8], [16]). The
AB condition is not necessary. As remarked in [11], a linear code C over Fq is minimal if and only if for
any linearly independent codewords c, c′ ∈ C

∑

a∈F∗

q

wt(c′ − ac) 6= (q − 1) · wt(c′)− wt(c).

Minimal linear codes not satisfying the Ashkhmin-Barg condition (AB condition) are presented in [6],
[9], [18] for the binary case, in [11] for the ternary case, and in [3] for a general odd prime power. One
of the main tools used in these papers is the investigation of the Walsh spectrum of generalized Boolean
functions, which is used to characterize when linear codes from a general construction are minimal.
The aim of the present paper is to describe in full generality the construction given in [11], [3], to have
more precise conditions and other families of examples. More combinatorial and geometric methods are
involved in our proofs. In particular, we present a family of codes arising from particular blocking sets,
which are well-studied combinatorial objects. We believe that the up to now unexplored link between
minimal linear codes and blocking sets may give rise to many families of new minimal linear codes
and maybe to new perspectives in blocking sets’ theory. In the paper we present, as an example, one
particular family of blocking sets and related minimal linear codes and we prove that infinitely many
members of this family do not satisfy the AB condition.
The paper is structured as follows: in Section 2 we recall the main notions necessary to understand the
paper; in Section 3 we recall some results about blocking sets and we introduce new definitions and
prove new results in this context; Section 4 is devoted to the general construction of minimal linear
codes related to blocking sets, both in affine and in projective case; in Section 5 we present an explicit
family of minimal linear codes and we show that infinitely many of its members do not satisfy AB
condition; finally in Section 6 we resume our results and we present some open problems.

2. Background

In the whole paper, Fq will be a finite field with q elements and e1, . . . , en will denote the canonical
basis of Fn

q .

2.1. Linear codes. We recall here some basic definition in coding theory (for a complete exposition of
the concepts the reader is referred to [12]).

Definition 2.1. Let k, n be two positive integers such that k ≤ n. Let C be a k-dimensional vector
subspace of Fn

q : we say that C is a q-ary linear code of dimension k and length n or an [n, k] code over
Fq. The elements of C are usually called codewords. A generator matrix of C is a matrix whose rows
form a basis of C as a vector space over Fq.

Classically, a linear code is endowed with the Hamming metric.

Definition 2.2. For x ∈ F
n
q , the Hamming weight of x is the number of nonzero coordinates of x (i.e.

the cardinality of its support supp(x)). We denote it by wt(x).
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For v = (v1, . . . , vn), w = (w1, . . . , wn) ∈ F
n
q , we denote

v · w =
n∑

i=1

viwi

the Euclidean inner product between v and w. For a code C, the dual code is defined as C⊥ := {v ∈
F
n
q | v · c = 0, ∀c ∈ C}.
The following is a central definition for this paper.

Definition 2.3. A codeword c ∈ C is minimal if it covers only linearly dependent codewords, i.e. if for
all c′ ∈ C,

supp(c) ⊂ supp(c′) =⇒ ∃λ ∈ F
∗
q : c′ = λc.

A linear code C is minimal if every nonzero codeword c ∈ C is minimal.

The symmetric group of degree n acts naturally on F
n
q permuting the coordinates of vectors. This

action induce an action on linear codes, which preserves length, dimension and weights. Codes in the
same orbits are called equivalent. There are more general concepts of equivalence, but they are not
necessary for this paper.

2.2. Affine and projective hypersurfaces. We recall here some basic definitions of affine and pro-
jective geometry over finite fields. For a more detailed introduction, we refer to [13].
Let A(Fn

q ) be the affine space of dimension n over the field Fq and P(Fn
q ) the projective space of

dimension n− 1 over Fq.
Let f : Fn

q → Fq be a function. It is well-known that all the functions from F
n
q to Fq are polynomial

functions (see for example [7]). Let us call

V (f) = {x ∈ F
n
q | f(x) = 0} ⊂ A(Fn

q )

the affine hypersurface defined by f . We denote V (f)∗ = V (f) \ {0}. If f is homogeneous, V (f) can
be seen also as an hypersurface in P(Fn

q ) by identifying linearly dependent vectors. To avoid any risk of
confusion, we will denote Vp(f) the hypersurface in P(Fn

q ). When f is linear, then V (f) is called affine
hyperplane. In this paper, we will mainly consider hyperplanes through the origin, that is hyperplanes
for which f is linear and homogeneous. These can be described in terms of a orthogonal vector, as
follows (we use the same notation as in [3]).

Definition 2.4. Let v ∈ F
n
q , we define the hyperplane H(v) as the set

H(v) :=
{
x ∈ F

n
q | v · x = 0

}
= 〈v〉⊥,

i.e. H(v) is the set of all the vectors of Fn
q that are orthogonal to the vector v. As done for V (f), we

call H(v)∗ := H(v) \ {0}. Note that H(v) can be seen as a hyperplane in P(Fn
q ) by identifying linearly

dependent vectors. Moreover, in the projective case, these are all hyperplanes.
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3. Cutting blocking sets

We recall some definitions about blocking sets (for a more detailed introduction see [17, Chapter 3]).
We will need to introduce some new definitions (Definition 3.2 and Definition 3.4) and prove a new
result which adapt well to our context.

Definition 3.1. An affine (respectively projective) k-blocking set is a subset of an n-dimensional affine
(respectively projective) space intersecting all (n− k)-dimensional affine (respectively projective) sub-
spaces. An affine (respectively projective) 1-blocking set is also called affine (respectively projective)
blocking set.

As we mentioned, it is well-known that every function from F
n
q to Fq is polynomial. Every set in the

affine space A(Fn
q ) can be then seen as a hypersurface V (f) for some polynomial function. In particular,

every k-blocking set can be seen as an hypersurface. With the above definitions, which are the classical
ones, there is a substantial asymmetry in the case of f being homogeneous, because if V (f)∗ is a k-
blocking set in the affine space A(Fn

q ), then Vp(f) is a k-blocking set in the projective space P(Fn
q ), but

the vice versa is not true. We think that a natural definition to avoid this asymmetry is the following,
which is a weakened version of the affine definition.

Definition 3.2. A vectorial k-blocking set is a subset of an n-dimensional affine space not containing
the origin intersecting all (n−k)-dimensional affine subspaces through the origin. A vectorial 1-blocking
set is also called vectorial blocking set.

A k-blocking set B is d-dimensional if the subspace generated by B has dimension d. A k-dimensional
affine (respectively projective, respectively vectorial) subspace is a k-blocking set, a k-blocking set
containing one is called trivial.

Definition 3.3. An affine (respectively projective, respectively vectorial) (k, s)-blocking set, where
n > k, is an affine (respectively projective, respectively vectorial) k-blocking set that does not contain
an affine (respectively projective, respectively affine through the origin) subspace of dimension s.

As far as we know, the following property is not equivalent (or at least implied) by any known notion
in blocking sets’ theory, but it will play a crucial role in our results.

Definition 3.4. An affine (respectively projective, respectively vectorial) k-blocking set is cutting if its
intersection with every (n − k)-dimensional affine (respectively projective, respectively affine through
the origin) subspace is not contained in any other (n − k)-dimensional affine (respectively projective,
respectively affine through the origin) subspace.

The property of being cutting is quite strong, as one can see from the following result.

Theorem 3.5. A set B is a t-dimensional (with t > n− k) affine (respectively projective, respectively
vectorial) cutting k-blocking set if and only if the intersection between B and every (n− k)-dimensional
affine (respectively projective, respectively affine through the origin) subspace is not contained in any
other (n−k)-dimensional affine (respectively projective, respectively affine through the origin) subspace.

Proof. (⇒) by definition.
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(⇐) We will prove it only in the affine case to simplify the notations (but in the other cases the
proof is exactly the same). If the intersection between B and every (n − k)-dimensional affine
subspace is not contained in any other (n − k)-dimensional affine subspace, then in particular
the intersection is non-empty, so that B is an affine k-blocking set.

If it exists an (n− k)-dimensional affine subspace S ′ such that B ⊂ S ′, then B ∩ S ⊂ B ⊂ S ′,
for any (n−k)-dimensional affine subspace S, a contradiction. So B is an t-dimensional blocking
set, with t > n− k.

The cutting property is by definition again.
�

In Section 4 we will relate the cutting property to minimal linear codes and in Section 5 we will
provide an example of both vectorial and projective cutting blocking sets.

4. A family of codes arising from cutting blocking sets

In this section we take up the notion of the code investigated in [3], [11] and prove some new connec-
tions with blocking sets.
For every function f : Fn

q → Fq, let Cf be the linear code defined as

(1) Cf := {(uf(x) + v · x)x∈Fn
q \{0} | u ∈ Fq, v ∈ F

n
q },

where v · x is the Euclidean inner product between v and x, as in §2. Here we are supposing, as usual
in coding theory, to have a fixed ordering of Fn

q \ {0}. What follows will not depend on this ordering:
if we change the ordering, we just obtain an equivalent code.
For any pair (u, v) ∈ Fq × F

n
q , let us denote c(u, v) := (uf(x) + v · x)x∈Fn

q \{0}. For an x ∈ F
n
q \ {0},

we denote by c(u, v)x the entry in c(u, v) corresponding to x. The support supp(c(u, v)) of a codeword
c(u, v) is defined as the set of {x ∈ F

n
q \ {0} : c(u, v)x 6= 0}. The complement of the support

supp(c(u, v)) is then the set of {x ∈ F
n
q \ {0} : c(u, v)x = 0}.

4.1. Parameters of Cf .

Proposition 4.1. If f is not linear and V (f)∗ 6= F
n
q \ {0}, the code Cf defined as in (1) has length

qn − 1 and dimension n+ 1 over Fq.

Proof. Clearly, the length of Cf is #(Fn
q \ {0}) = qn − 1.

Each codeword in Cf can be written as linear combination of c(1, 0), c(0, e1), . . . , c(0, en), where
e1, . . . , en is the standard basis of Fn

q over Fq. Showing that these vectors are linearly independent is
equivalent to prove that c(u, v) = 0 if and only if u = 0 and v = 0.

• If u = 0, then c(u, v)ei = vi = 0 for i ∈ {1, . . . , n}, so that v = 0.
• If u 6= 0, uf(x) + v · x = 0 for all x ∈ F

n
q \ {0} implies that V (f) = H(v), if v 6= 0, which is a

contradiction.

This proves that c(1, 0), c(0, e1), . . . , c(0, en) is a basis of C of size n+ 1. �
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If f is not linear and V (f)∗ 6= F
n
q \ {0}, we have then that a generator matrix of Cf is

G =

[
f(x0) f(x1) . . . f(xqn−1)
(x0)

T (x1)
T . . . (xqn−1)

T

]
,

where (xi)
T , for i ∈ {0, . . . , qn−1}, are the column vectors of Fn

q \{0} with respect to the fixed ordering.

Remark 4.2. The matrix G is formed by two blocks, one of them is the line obtained from the eval-
uations of the function f , the other one is the matrix formed by all the ordered vectors of Fn

q \ {0}.
The second block is the generator matrix of the simplex code for q = 2 and, up to a reordering of the
coordinates, the concatenation of q − 1 copies of the simplex code for q > 2 (see [12, §1.8]). Therefore,
wt(c(0, v)) = qn − qn−1 (see [12, Theorem 2.7.5]) and wt(c(u, 0)) = qn − 1−#V (f)∗.

It seems to be quite difficult to prove general results on the weight distribution of Cf . On the other
hand, we can easily observe a condition on #V (f)∗ for Cf to not satisfy the AB condition.

Lemma 4.3. If #V (f)∗ ≥ 2qn−1 − qn−2 − 1, then

wmax

wmin

≥ q

q − 1
.

Proof. It is enough to use the trivial fact that if

wmin ≤ w1 ≤ w2 ≤ wmax

then
wmax

wmin

≥ w2

w1
,

with the known weights given in Remark 4.2. �

4.2. Minimality of Cf . Let f : Fn
q → Fq a function. For reader’s convenience, we recall that, by

Theorem 3.5, V (f)∗ is an n-dimension cutting vectorial blocking set if and only if the intersection
between V (f)∗ and any hyperplane through the origin H(v) is not contained in any other hyperplane
through the origin H(v′).
Moreover, the blocking set is a (1, n − 1)-blocking set if and only if V (f)∗ does not contain any

hyperplane without the origin H(v)∗.

Remark 4.4. If V (f)∗ does not contain any hyperplane without the origin H(v)∗, then clearly f is not
linear and V (f)∗ 6= F

n
q \ {0}.

Lemma 4.5. The intersection between V (f)∗ and any hyperplane through the origin H(v) is not con-
tained in any other hyperplane through the origin H(v′) if and only if for any v, v′ ∈ F

n
q \ {0}, with

H(v) 6= H(v′), it exists x ∈ F
n
q \ {0} such that

(2) uf(x) + v · x = 0 and u′f(x) + v′ · x 6= 0,

for every u, u′ ∈ Fq.
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Proof. If the intersection between V (f)∗ and any hyperplane is not contained in any other hyperplane,
then for any v, v′ ∈ F

n
q \ {0}, with H(v) 6= H(v′), it exists x ∈ V (f)∗ ∩H(v) but not in H(v′), which

satisfies (2). Conversely, if x 6∈ H(v), then uf(x)+v ·x cannot be equal to 0 for all u ∈ Fq. So x ∈ H(v),
which implies f(x) = 0, so that x ∈ V (f)∗ ∩H(v), and, finally, x 6∈ H(v′). �

Theorem 4.6. : Let f : Fn
q → Fq be a function. If

(a) V (f)∗ is an n-dimensional cutting vectorial (1, n− 1)-blocking set in A(Fn
q );

(b) for every non-zero vector v, it exists x such that f(x) + v · x = 0 and f(x) is different from 0

then Cf defined as in (1) is a [qn − 1, n+ 1] minimal code over Fq.

Proof. The parameters of the code are clear by Proposition 4.1 and Remark 4.4.
Let c(u, v) and c(u′, v′) be two nonzero codewords, with c(u, v) 6= λc(u′, v′) for any λ ∈ F

∗
q. Suppose

that supp(c(u′, v′)) ⊂ supp(c(u, v)), that is supp(c(u, v)) ⊂ supp(c(u′, v′)).

• Suppose v = 0. Then supp(c(u, v)) consists of all nonzero x such that f(x) = 0, i.e. supp(c(u, v)) =
V (f)∗. Since supp(c(u, v)) ⊂ supp(c(u′, v′)),

u′f(x) + v′ · x = 0

for all x ∈ V (f)∗, that is v′ · x = 0 for all x ∈ V (f)∗. Therefore, if v′ 6= 0, then V (f)∗ ⊂ H(v′),
which gives a contradiction to the fact that V (f)∗ is n-dimensional. Hence v′ = 0 (and u′ = λu).

• Suppose v′ = 0. Then supp(c(u′, v′)) consists of all nonzero x such that f(x) = 0, i.e.
supp(c(u′, v′)) = V (f)∗. If v 6= 0, then supp(c(u, v)) ⊂ supp(c(u′, v′)) and (b) implies that
H(v)∗ ⊂ V (f)∗, which is in contradiction with (a). So v = 0 and u = λu.

• Suppose v, v′ 6= 0. In this case supp(c(u, v)) ⊂ supp(c(u′, v′)) reads as

uf(x) + v · x = 0 ⇒ u′f(x) + v′ · x = 0

for each x ∈ F
n
q \ {0}. If H(v) 6= H(v′), we have a contradiction by Lemma 4.5. So v′ = λv.

Taking x such that f(x) 6= 0 (it exists by Remark 4.4), we get easily that u′ = λu.

Then supp(c(u′, v′)) 6⊂ supp(c(u, v)) and Cf is minimal. �

Remark 4.7. A necessary condition for (b) to be true is the following:

(c) for every non-zero vector v, H(v) ∪ V (f) is different from the whole space.

If q = 2, clearly condition (c) implies (b). Otherwise, one possible easy-to-handle condition to have (b)
(assuming (c)) consists in asking f to be constant on the lines with homogeneous equation. In this case,
since there exists x such that v · x and f(x) are different from zero, then there exists a non-zero scalar
λ such that f(λx) + λv · x = f(x) + λv · x = 0 (it is enough to take λ = −(v · x)−1f(x))). For example,
one can choose an homogeneous polynomial P , consider the set of its zeros V (P ) and then take f to be
the characteristic function of V (P ).

Remark 4.8. For q odd, let f : Fn
q → Fq be the function introduced in [3], that is

f(x) =

{
αi, wt(x) = i ≤ k,

0, wt(x) > k,
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where n and k are integers such that n > 3 and k ∈ {2, . . . , n−2}, and {αi}i∈{1,...,k} are (not necessarily
distinct) elements of F∗

q.
The set V (f)∗ is an n-dimensional cutting vectorial (1, n− 1)-blocking set in A(Fn

q ) :

• Firstly, V (f)∗∩H(v) cannot be contained in any other H(v′) (without loss of generality suppose

that vn 6= 0): since vn 6= 0, then x ∈ H(v) if and only if xn = −v−1
n ·

∑n−1
i=1 xivi. If xi 6= 0 for all

i ∈ {1, . . . , n− 1} and xn = −v−1
n ·∑n−1

i=1 xivi, then x ∈ H(v) ∩ V (f)∗. If x ∈ H(v′), then

0 =

n∑

i=1

xiv
′
i = v′nxn +

n−1∑

i=1

xiv
′
i = −v′nv

−1
n ·

n−1∑

i=1

xivi +

n−1∑

i=1

xiv
′
i

that is
n−1∑

i=1

(v′nvi − vnv
′
i)xi = 0.

Since the last equality should hold for any x such that xi 6= 0 for all i ∈ {1, . . . , n − 1}, in

particular it holds for x with x1 = . . . = xn−1 = 1 and for x(j) with x
(j)
1 = . . . = x

(j)
j−1 = x

(j)
j+1 =

. . . = x
(j)
n−1 = 1 and x

(j)
j = −1, for any j ∈ {1, . . . , n− 1}. We get, for every j ∈ {1, . . . , n− 1},

2(v′nvj − vnv
′
j) = 0

and, since q is odd, v′j = v−1
n v′nvj for every j ∈ {1, . . . , n}, so that H(v) = H(v′).

• Secondly, we show that V (f)∗ does not contain any hyperplane without the origin H(v)∗ (without
loss of generality suppose again that vn 6= 0): H(v) always contains a vector u such that wt(u) ≤
2 (in this case f(u) 6= 0, so u 6∈ V (f)∗), in particular if wt(v) = 1 then e1 ∈ H(v) and if there
exists j ∈ {1, . . . , n− 1} such that vj 6= 0, then u = vnej − vjen ∈ H(v). In both cases we found
a vector in H(v) \ V (f)∗.

In this case, condition (b) of Theorem 4.6 is clearly verified.

4.3. Projective case. We may extend the general construction of the code done above to the projective
space, since it can be easily adapted to the projective case without notable differences.
In this case, in the definition of the code, instead of considering all vectors in F

n
q \ {0}, we will take

a nonzero vector from each 1-dimensional subspace of Fn
q (that is one representative of each projective

point in P(Fn
q )). This is a quite standard choice in coding theory (the same that one usually does to

define simplex and Hamming codes in the non-binary case [12]).

For every homogeneous (polynomial) function f : Fn
q → Fq, let C̃F be the linear code defined as

(3) C̃f := {(uf(x) + v · x)x∈P(Fn
q ) | u ∈ Fq , v ∈ F

n
q }.

Here we are supposing, as explained above, to have a fixed ordering of the points in P(Fn
q ) and to chose

one representative for each projective point. What follows will not depend on these choices: different
choices yield equivalent codes. We keep the notations as in the affine case.

If f is non-linear, then C̃f is a [(qn − 1)/(q − 1), n + 1] code (the proof is exactly the same as for

Proposition 4.1). Moreover, analogously to the affine case, a generator matrix of C̃f can be obtained
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by extending the generator matrix of a simplex code by a line from the evaluation of the homogeneous
function f . Therefore, wt(c(0, v)) = (qn − qn−1)/(q − 1) and wt(c(u, 0)) = (qn − 1)/(q − 1)−#Vp(f).
An analogue of Lemma 4.3 holds.

Lemma 4.9. If #Vp(f) ≥
2qn−1 − qn−2 − 1

q − 1
, then

wmax

wmin

≥ q

q − 1
.

Clearly, for a homogeneous function f , V (f)∗ satisfies the condition of Lemma 4.3 if and only if Vp(f)
satisfies the condition of Lemma 4.9.

Remark 4.10. The projective context seems to be a more natural scenario: there are no restricitions
on hyperplanes and, as we mentioned already, in the projective case the simplex code is a subcode of

codimension 1 in C̃f . On the other hand, we have less freedom in the choice of the function.

Finally, we state, without proving it, the projective analogue (note that the dimensions drop by 1)
of Theorem 4.6. The proof works exactly in the same way as in the affine case.

Theorem 4.11. : Let f : Fn
q → Fq be a homogeneous function. If

(a) Vp(f) is an (n− 1)-dimensional cutting projective (1, n− 2)-blocking set in P(Fn
q );

(b) for every non-zero vector v, it exists x such that f(x) + v · x = 0 and f(x) is different from 0,

then C̃f defined as in (3) is a [(qn − 1)/(q − 1), n+ 1] minimal code over Fq.

5. An example: a family of good functions

Let n = rk be a positive integer and consider the hypersurface V (fr,k) of A(Fn
q ) defined by the

(polynomial) function fr,k : F
n
q → Fq

fr,k(x1, . . . , xn) :=

k−1∑

j=0

xjr+1xjr+2 · · ·xjr+r.

Theorem 5.1. If k ≥ 2 and r ≥ 2, then V (fr,k)
∗ is an n-dimensional cutting vectorial (1, n−1)-blocking

set and for every non-zero vector v, it exists x such that f(x) + v · x = 0 and f(x) is different from 0.

Proof. Let H(v) be a hyperplane. It exists i such that vi 6= 0. To simplify the notation, suppose,
without loss of generality, that i = n, so that xn = −(vn)

−1(v1x1 + . . .+ vn−1xn−1).
For all i ∈ {1, . . . , n− 1}, let

pi := ei − (vn)
−1vien = (0, . . . , 0, 1, 0, . . . , 0,−(vn)

−1vi)

and let
p := p1 + . . .+ pr = (1, . . . , 1︸ ︷︷ ︸

r times

, 0, . . . , 0,−(vn)
−1(v1 + . . .+ vr)).
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We observe that p ∈ H(v)∗ but not in V (fr,k)
∗. So H(v)∗ 6⊂ V (fr,k)

∗ (property (b)).

Let us prove that property (a) holds too.
Let r > 2. In this case, {p1, . . . , pn−1} ⊂ H(v) ∩ V (fr,k). Suppose that H(v) ∩ V (fr,k) ⊂ H(v′).

Then v′ · pi = v′i − ((vn)
−1v′n)vi = 0 for all i ∈ {1, . . . , n − 1}. Clearly v′n − ((vn)

−1v′n)vn = 0. So
v′ = ((vn)

−1v′n)v, which implies H(v′) = H(v).

Let r = 2. In this case, {p1, . . . , pn−2} ⊂ H(v)∩V (f2,k). Suppose that H(v)∩V (f2,k) ⊂ H(v′). Then,
as above, v′i = ((vn)

−1v′n)vi for i ∈ {1, . . . , n− 2, n}. If H(v) 6= H(v′), this means that v′ = v + ken−1,
with k 6= 0. There are three cases to be considered: if vn−1 = 0, then en−1 ∈ H(v) ∩ V (f2,k) but not in
H(v′); if vn−1 6= 0 and it exists j ∈ {1, . . . , n−2} such that vj 6= 0, then vn−1ej−vjen−1 in H(v)∩V (f2,k)
but not in H(v′); if vn−1 6= 0 and vj = 0 for all j ∈ {1, . . . , n−2}, then vne1+vn−1e2−vnen−1+vn−1en ∈
H(v) ∩ V (f2,k) but not in H(v′). In all three cases we get then a contradiction.
In order to prove that for every non-zero vector v, it exists x such that f(x) + v · x = 0 and f(x) is

different from 0, let {i1, .., ir} be the support of the vector v. We will have that v ·x = vi1xi1+ ...+virxir .
Without loss of generality we can consider i1 = 1, v1 = 1 and x to be such that the following relation
holds (since x does not annihilate v · x)

x1 + vi2xi2 + ...+ virxir = 1

and so
x1 = 1− (vi2xi2 + ...+ virxir).

If we take x̂ having its components as follows

x̂i =





1− (vi2xi2 + ...+ virxir) for i = 1

0 for i ∈ {2, . . . , r(k − 1)}
1 for i ∈ {r(k − 1) + 1, . . . , rk − 1}
−1 for i = rk

then x̂ is such that f(x̂) = −1 6= 0, v · x̂ = 1 6= 0 and f(x̂) + v · x̂ = 0.
�

Corollary 5.2. If r ≥ 2 and k ≥ 2, the code Cfr,k is minimal.

Proof. It follows directly by Theorem 5.1 and Theorem 4.6. �

Lemma 5.3. The cardinality of V (fr,k) is

(4) #V (fr,k) = (q − 1) · qk−1 · (qr−1 − (q − 1)r−1)k + qrk−1.

Proof. Let us start considering the monomial x1x2 . . . xr. It is clearly non-zero for (q − 1)r choices of
(x1, x2, . . . , xr), and then it is zero for qr−(q−1)r choices. Moreover, it takes all non-zero values equally
often, so for a t ∈ Fq we have that it assumes the value t exactly (q − 1)r−1 times. Let us fix r and
define Z(k) := #V (fr,k). Note that

V (fr,k) = V (fr,k−1)× V (fr,1)+

+(F(k−1)r
q \ V (fr,k−1))× {(x1, . . . , xr) | fr,1(x1, . . . , xr) = t 6= 0}
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So we get the following recursive formula to compute Z(k):

Z(k) =Z(k − 1) · (qr − (q − 1)r) + (q(k−1)r − Z(k − 1)) · (q − 1)r−1

=Z(k − 1) · q · (qr−1 − (q − 1)r−1) + q(k−1)r · (q − 1)r−1

Let us prove (4) by induction on k.
For k = 1, we have

Z(1) = (q − 1) · (qr−1 − (q − 1)r−1) + qr−1 = qr − (q − 1)r,

which is the correct number, as observe above. So we focus on the inductive step:

Z(k) = Z(k − 1) · q · (qr−1 − (q − 1)r−1) + q(k−1)r · (q − 1)r−1

= ((q − 1) · qk−2 · (qr−1 − (q − 1)r−1)k−1+
+qr(k−1)−1) · q · (qr−1 − (q − 1)r−1) + q(k−1)r · (q − 1)r−1

= (q − 1) · qk−1 · (qr−1 − (q − 1)r−1)k+
+qr(k−1) · (qr−1 − (q − 1)r−1) + qr(k−1) · (q − 1)r−1

= (q − 1) · qk−1 · (qr−1 − (q − 1)r−1)k + qrk−1

�

Lemma 5.4. If r ≥ 2 + log(1− 1

q )

(
q−√

q

q−1

)
, then

#V (fr,2)
∗ ≥ 2q2r−1 − q2r−2 − 1.

Proof. By Lemma 5.3,

#V (fr,2)
∗ = (q − 1) · q · (qr−1 − (q − 1)r−1)2 + q2r−1 − 1.

We want to determine when

#V (fr,2)
∗ ≥ 2q2r−1 − q2r−2 − 1.

This is equivalent to solve

q2r−2(q − 1)2 + q(q − 1)2r−1 − 2qr(q − 1)r ≥ 0

and with some manipulations we obtain

q2r ·
(
1− 1

q

)2

·




(
1− 1

q

)
·
((

1− 1

q

)r−2
)2

− 2 ·
(
1− 1

q

)r−2

+ 1



 ≥ 0

The first two factors are positive. To study the third one, we can call t =
(
1− 1

q

)r−2

, and solve

(
1− 1

q

)
· t2 − 2 · t + 1 ≥ 0

which gives

t ≤ q −√
q

q − 1
or t ≥ q +

√
q

q − 1
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that is,

r ≥ 2 + log(1− 1

q )

(
q −√

q

q − 1

)

�

Theorem 5.5. There are infinitely many values of r such that Cfr,2 is minimal and does not satisfy the
AB condition.

Proof. If r ≥ 2+ log(1− 1

q )

(
q−√

q

q−1

)
, then Cfr,2 is minimal, by Lemma 5.1 and Theorem 4.6, and does not

satisfy the AB condition, by Lemma 5.4 and Lemma 4.3. �

Remark 5.6. Note that the function defined above is homogeneous, so that we can consider it in the
projective case. Completely analogously to the affine case, we have that C̃fr,k is minimal for r ≥ 2 and

k ≥ 2, and there are infinitely many values of r such that C̃fr,2 does not satisfy the AB condition.

6. Conclusion and open problems

In this paper we have linked a well-known construction of minimal linear codes to the geometry of
its defining function, which was a quite unexplored topic and which may lead to new and interesting
constructions in coding theory. A new notion in blocking sets’ theory is introduced and related exam-
ples are provided. Moreover, we present an infinite family of minimal linear codes not satisfying the
Ashikhmin-Barg’s condition.
To conclude, we list here some of the possible developments of our results.

Problem 1. Give a necessary and sufficient conditions for Cf to be minimal, which relies only on the
geometry of V (f).

Problem 2. Investigate the weight distribution of Cf for some cutting blocking sets.

Problem 3. In §5 we introduced the family of functions fr,k and we proved that infinitely many codes
are minimal when k = 2. From computations, it seems that the same holds for k > 2 but the inequalities
become much harder to be solved.

We think that our geometrical approach gives a deeper insight into the problem and may lead to
other future developments and constructions.
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