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Abstract

The existence of an extremal self-dual binary linear code of length 120 is a
long-standing open problem. We continue the investigation of its automor-
phism group, proving that automorphisms of order 30 and 57 cannot occur.
Supposing the involutions acting fixed point freely, we show that also auto-
morphisms of order 8 cannot occur and the automorphism group is of order
at most 120, with further restrictions. Finally, we present some necessary
conditions for the existence of the code, based on shadow and design theory.
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1. Introduction

In coding theory, binary self-dual codes play a central role: they are linear
codes with a rich algebraic structure, good decoding properties and relations
with other areas of mathematics, such as group theory, lattice theory and
design theory. For example, this class includes the binary extended Golay
code, whose automorphism group is the sporadic simple group M24 and which
is related to the Leech lattice.
Gleason, Pierce and Turyn showed (see [3]) that if a natural number r > 1
divides the weight of all codewords of a binary self-dual code, then r = 2 (even
code) or r = 4 (doubly-even code). Every binary self-dual code is even. If
a binary self-dual code is even but not doubly-even (singly-even code), then
it is called a Type I code, while if a binary self-dual code is doubly-even,
then it is called a Type II code. Type II codes exist only for lengths which
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are multiples of 8 [24] and Mallows and Sloane showed in [27] that they
have minimum distance bounded by 4⌊n/24⌋ + 4, where n is the length. A
type II code attaining this bound is called extremal code. Among extremal
codes, those of length a multiple of 24 are particularly interesting: Assmus-
Mattson’s theorem [2] guarantees that the supports of their codewords of
a fixed nonzero weight form a 5-design. Moreover, they have relations, as
mentioned above, with simple groups and extremal lattices. Zhang proved
in [32] that their length is at most 3672.

Despite their theoretical importance, only two extremal codes of length
a multiple of 24 are known, namely the famous binary extended Golay code,
the unique up to equivalence of length 24, and the extended quadratic residue
code of length 48, which is the unique up to equivalence of this length. In
1973 Sloane [30] posed explicitly the question: is there a self-dual [72, 36, 16]
code? Since then, multiple attempts to establish the non existence of such a
code or to present a construction have been done, till now unsuccessfully. The
problem is still open for all lengths from 72 to 3672 and many investigations
have been also done for the cases of length 96 and 120.

This paper focuses on the last one, i.e. on the study of a self-dual
[120, 60, 24] code. In particular, in Section 2 we will collect, for the reader’s
convenience, all the definitions and the known results which will be used in
the following. In Section 3 we prove new properties about the automorphism
group of a self-dual [120, 60, 24] code. In particular we exclude the existence
of automorphisms of order 30 and 57 and we investigate the structure of the
automorphism group, in the case that involutions act fixed point freely (see
the introduction of Subsection 3.3 for a motivation of this choice), proving
that it is either trivial or isomorphic to a group of order at most 120, with
further restrictions. Finally, in Section 4 we give necessary conditions for the
existence of the code, based on shadow and design theory.

2. Background

In this section we collect some classical results of coding theory which are
useful in the rest of the paper.

2.1. Gleason’s theorem and the shadow of a code

For the whole subsection, let C be a binary code of length n, i.e. a
subspace of Fn

2 . We recall that a [n, k, d] code is a code of length n, dimension
k and minimum distance d.
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Definition 1. The weight distribution of C is the sequence (A0(C), . . . ,
An(C)), where Ai(C) is the number of codewords of C of weight i, for every
i ∈ {1, . . . , n}.
The polynomial WC(y) :=

∑n
i=0Aiy

i =
∑

c∈C ywt(c) ∈ Z[x] is called the
weight enumerator of C and the polynomial WC(x, y) := xnW ( y

x
) ∈ Z[x, y],

is the homogeneous weight enumerator of C.

Definition 2. The dual of C is C⊥ := {v ∈ Fn
2 | 〈v, c〉 = 0, ∀c ∈ C}.

If C = C⊥, we say that C is self-dual.
If C and C⊥ have the same weight enumerator, C is called a formally self-dual

code.

Theorem 3 ([24]). Let g1(x, y) := y2 + x2, g2(x, y) := x2y2(x2 − y2)2, and
g3(x, y) := y24 + 759x8y16 + 2576x12y12 + 759x16y8 + x24.

(a) If C is formally self-dual and even,

WC(x, y) =

⌊n/8⌋
∑

i=0

aig1(x, y)
n
2
−4ig2(x, y)

i.

(b) If C is formally self-dual and doubly-even,

WC(x, y) =

⌊n/24⌋
∑

i=0

aig2(x, y)
n
8
−3ig3(x, y)

i.

In all cases, every ai ∈ Q and
∑

i ai = 1.

Let C be a self-dual code and let C0 be the subset consisting of all code-
words in C whose weights are multiples of 4. If C is of type II then C0 = C,
while C0 is a subcode of index 2 of C if C is of type I.

Definition 4. The shadow of C is the set

S :=

{

C⊥
0 \C, if C is of type I

C, if C is of type II.

Let C be a type I code. Since C0 is of index 2, then #(C⊥
0 /C0) = 4. Hence

there are three cosets C1, C2, C3 of C0 in C⊥
0 such that C⊥

0 = C0∪C1∪C2∪C3,
where C = C0 ∪ C2 and S = C1 ∪ C3 = C⊥

0 \C is the shadow of C (see [17,
Theorem 5]).
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Theorem 5 ([17]). Let S be the shadow of C, code of type I.

(a) If we write

WC(x, y) =

⌊n/8⌋
∑

j=0

aj(x
2 + y2)

n
2
−4j(x2y2(x2 − y2)2)j,

for suitable rationals aj, then

WS(x, y) =

⌊n/8⌋
∑

j=0

(−1)jaj2
n
2
−6j(xy)

n
2
−4j(x4 − y4)2j.

(b) Writing WS(x, y) =
∑n

i=0Bix
n−iyi, we have

(i) Bi = Bn−i for all i.

(ii) Bi = 0, unless i ≡ n/2 mod 4.

(iii) B0 = 0.

(iv) Bi ≤ 1, for i < d/2.

(v) at most one Bi is nonzero for i < (d+ 4)/2.

Definition 6. If C is a self-dual [n, n/2, d] code with d > 2, pick two positions
and consider the (n/2 − 1)-dimensional subcode C ′ of C with either two 0s
or two 1s in these positions. If we puncture C ′ on these positions, we obtain
a self-dual code C ′∗ of length n− 2; C ′∗ is called a child of C and C is called
a parent of C ′∗.

Theorem 7 ([26]). Let m ≥ 1 be an integer. If C is a [24m − 2, 12m −
1, 4m+ 2] type I code whose shadow has minimum distance 4m+ 3, then C
is a child of a [24m, 12m, 4m+ 4] type II code.

Lemma 8 ([26]). If C is a child of an extremal type II code with shadow

S = C1 ∪ C3, then WC1
(y) = WC3

(y).

Lemma 9 ([4]). Let C be a type I code of length n with the shadow S =
C1 ∪ C3. Suppose that n ≡ 2 mod 4. Let C∗ be the code of length n + 2
obtained by extending C⊥

0 as follows:

(0, 0, C0), (1, 0, C2), (0, 1, C1), (1, 1, C3).

If WC1
(y) = WC3

(y), then C∗ is a formally self-dual code with weight enu-

merator

WC0
(y) + y(WC1

(y) +WC2
(y)) + y2WC3

(y).
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Definition 10. Two self-dual codes of length n are neighbors if their inter-
section is a code of dimension n/2− 1.

2.2. Automorphism group of binary codes

The symmetric group Sn acts on Fn
2 by the group action vσ := (vσ−1(1), . . . ,

vσ−1(n)), where v = (v1, . . . , vn) ∈ Fn
2 and σ ∈ Sn.

Definition 11. Let C and C ′ be two codes of the same length n. We say
that C and C ′ are equivalent and denote C ∼ C ′ if only if Cσ = C ′ where
σ ∈ Sn. If vσ ∈ C for all v ∈ C, then σ is an automorphism of C. The set of
all automorphisms of C is a group, denoted Aut(C).

Definition 12. Let C be a binary code of length n and σ ∈ Aut(C).

(a) If σ is of prime order p, we say that σ is of type p-(c; f) if it has c cycles
of length p and f fixed points.

(b) If σ is of order p · r, where p, r are distinct primes, then we say that σ
is of type p · r-(s1, s2, s3; f) if σ has s1 p-cycles, s2 r-cycles, s3 pr-cycles
and f fixed points.

Remark 13. In order to simplify the notation, if σ is an automorphism of
composite order r and has c r-cycles and f fixed points with n = c · r + f ,
then we say that the cycle structure of σ is r-(c; f).

Let us first prove a result which is useful in the following sections.

Lemma 14. Let C be a code of length n, such that all automorphisms of

prime order p act fixed point freely. If |Aut(C)| = pam, with (p,m) = 1,
then a ≤ max{ r ∈ Z : pr | n }.

Proof. Suppose a > max{ r ∈ Z : pr | n }. By Sylow’s theorem, there
exists a subgroup H ≤ Aut(C) with |H| = pa. The group H acts on the set
{1, . . . , n}. Since all automorphisms of order p act fixed point freely, then
each orbit has pa elements. Therefore pa | n, a contradiction.

Definition 15. Let σ ∈ Aut(C). The fixed code of σ is

Fσ(C) := {v ∈ C | vσ = v}.

Let Ω1, . . . ,Ωc be the cycle sets and let Ωc+1, . . . ,Ωc+f be the fixed points of
σ. Clearly v ∈ Fσ(C) if and only if v ∈ C and v is constant on each cycle.
Let πσ : Fσ(C) → F

c+f
2 denotes the projection map defined by πσ(v|Ωi

) = vj
for some j ∈ Ωi and i{1, . . . , c+ f}.
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A useful result, which is a reformulation of a very classical result about
group actions, is the following.

Lemma 16. If σ ∈ Aut(C), WC(y) =
∑

Aiy
i and WFσ(C)(y) =

∑

AF
i y

i,

then Ai ≡ AF
i mod p.

Finally, let us introduce a classical decomposition of a code with an au-
tomorphism of prime order, which comes from Maschke’s theorem. Let p be
an odd prime and σ is an automorphism of type p-(c, f). Let

Eσ(C) := {v ∈ C | wt(v|Ωi
) ≡ 0 mod 2, i = 1, . . . , c+ f},

where v|Ωi
is the restriction of v on Ωi.

Lemma 17 ([25]). If p is odd, then C = Fσ(C)⊕Eσ(C). Moreover, if C is

self-dual, then

(a) the code πσ(Fσ(C)) ≤ F
c+f
2 is self-dual and, if C is doubly even and

p ≡ 1 mod p, then πσ(Fσ(C)) is doubly even.

(b) dim Eσ(C) = (p−1)c
2

.

2.3. Designs and codes

In this section we briefly recall the main definitions of design theory and
its relationship with coding theory.

Definition 18. A t-(v, k, λ) design, or briefly a t-design, is a pair D = (P,B)
where P is a set of v elements, called points, and B is a collection of distinct
subsets of P of size k, called blocks, such that every subset of points of size
t is contained in precisely λ blocks.

If D is a t-(v, k, λ) design, it is also an i-(v, k, λi) design for all i ∈

{0, . . . , t}, where λi is given by λi = λ
(v−i

t−i)
(k−i

t−i)
.

Definition 19. Let D = (P,B) be a design with |P| = v and |B| = b.

(a) If we list the points {p1, p2, . . . , pv} and the blocks {B1, B2, . . . , Bb},
then we define the incidence matrix of D as a b × v matrix A = (aij),
where

aij =

{

1, if pj ∈ Bi

0, if pj 6∈ Bi.
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(b) The code C(D) over F2 which is generated by the rows of A is called
code of the design D = (P,B).

Although there are several incidence matrices, depending on the choice
of the order of the points and of the blocks, for a given design the codes
generated by these matrices are equivalent: changing the order of the points
is equivalent to permute the coordinates, while a reordering of the blocks
does not change the code (see [1, p.41]).

The following theorem, due to Assmus and Mattson, establishes a rela-
tionship between coding theory and design theory.

Theorem 20 ([2]). Let C be a binary [n, k, d] code. Suppose C⊥ has min-

imum weight d⊥. Suppose that A0, . . . , An and A⊥
0 , . . . , A

⊥
n are the weight

distributions of C and C⊥, respectively. Fix a positive integer t with t < d,
and let s be the number of i with A⊥

i 6= 0 for i ∈ {0 . . . n − t}. Suppose

s ≤ d− t.

(a) The vectors of weight i in C form a t-design provided Ai 6= 0 and

d ≤ i ≤ n.

(b) The vectors of weight i in C⊥ form a t-design provided A⊥
i and d⊥ ≤

i ≤ n− t.

3. The automorphism group of an extremal [120, 60, 24] code

For the whole section, let C be an extremal [120, 60, 24] code. By Theorem
3 (b), we can easily deduce (see [27]) that

WC(1, y) = 1 + 39703755y24 + 6101289120y28 + 475644139425y32 + . . . (1)

Knowledge of the existence of a non-trivial automorphism group G is very
useful in constructing the code, since in this case the code has the structure
of a F2G-module. For this reason, there is an intensive research on the
automorphism group of extremal codes.

Remark 21. Concerning the code of length 120, the following results on the
automorphism group G of C are known (see [7, 13, 14, 18, 19]):

(a) The order of G divides 2a · 3 · 5 · 7 · 19 · 23 for a non-negative integer a
(which is at most 116, since G ⊆ S120).
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(b) If σ is an automorphism of C of prime order p then its cycle structure
is

p number of number of
p-cycles fixed points

2 48, 60 24, 0
3 40 0
5 24 0
7 17 1
19 6 6
23 5 5

(c) If σ is an automorphism of C of odd composite order r, then the cycle
structure of σ is either 15-(8; 0), 3 · 19-(2, 0, 2; 0) or 5 · 23-(1, 0, 1; 0).

Moreover, if all involutions act fixed point freely, the following conditions
hold:

(d) If σ is an automorphism of C of even composite order not divisible by
8, then the cycle structure of σ is either 4-(30; 0), 6-(20; 0), 10-(12; 0),
12-(10; 0), 20-(6; 0), 30-(4; 0), 60-(2; 0).

(e) The order of G is in {7, 19, 23, 38, 56, 57, 114, 115, 552, 2760} or G is a
{2, 3, 5}-group of order dividing 120.

Remark 22. Condition (d) is not stated explicitly in any of the above ref-
erences, but it is an easy consequence of the results in [7]. Furthermore, we
give only the structure of the automorphisms of even order not divisible by
8 because we prove in the following that an automorphism of order 8 cannot
exist under the hypothesis that involutions act fixed point freely.

Remark 23. Condition (e) corrects a mistake in Proposition 15 b) of [14],
where “|G| = 23 · 5c · 23” should have been “|G| = 23 · 3 · 5c · 23”. Moreover,
it gives a preciser statement about {2, 3, 5}-groups, based on Lemma 14.

3.1. Fixed code of automorphism of prime order

In this subsection we present some preliminary results about the auto-
morphisms of prime order. It is a hard problem to prove that the primes
3, 5, 7, 19 and 23 cannot occur as orders of an automorphism σ of C: even
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if we can completely determine the fixed code Fσ(C), there are too many
possibilities to check for the complement Eσ(C) defined in Section 2. Also
the case of the prime 2 is computationally hard and we do not even know
the fixed code.

Automorphism of order 2: Let σ ∈ Aut(C) be of order 2. Then σ is
either of type 2-(48; 24) or of type 2-(60; 0). In the second case, by Theorem
1.2 of [10], πσ(Fσ(C)) is a self-dual [60, 30, 12] code. Although some self-
dual codes with these parameters are known, a complete classification is still
unknown.

Automorphism of order 3: Let σ ∈ Aut(C) be of order 3. Then σ is
of type 3-(40; 0) and πσ(Fσ(C)) is a self-dual doubly-even [40, 20, 8] code. By
[5], there are 16470 such codes up to equivalence.

Automorphism of order 5: Let σ ∈ Aut(C) be of order 5. Then σ
is of type 5-(24; 0) and πσ(Fσ(C)) is a self-dual [24, 12, 8] code. This implies
that πσ(Fσ(C)) is equivalent to the binary extended Golay code G24.

Automorphism of order 7: Let σ ∈ Aut(C) be of order 7. Then σ is of
type 7-(17; 1) and πσ(Fσ(C)) is a self-dual [18, 9, 4] code. By [28], πσ(Fσ(C))
is a equivalent to H18 or I18.

A vector of weight 4 in πσ(Fσ(C)) has to be a vector of weight 28 in Fσ(C),
i.e. all nonzero coordinates of vectors of weight 4 correspond to cycles. By
the study of clusters (see [25]) we can easily prove that H18 cannot occur.
Moreover, with the same technique, we can prove that, up to equivalence,

gen(Fσ(C)) =





























1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1





























where 1 is the all-one vector and 0 the zero-vector of length 7.

Automorphism of order 19: Let σ ∈ Aut(C) be of order 19. Then
σ is of type 19-(6; 6) and πσ(Fσ(C)) is a self-dual [12, 6, 4] code. By [28],
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πσ(Fσ(C)) is equivalent to B12.
By Lemma 16 and by (1), AF

24 ≡ 6 mod 19. Therefore there are 6
mod 19 vectors of Fσ(C) of weight 24. If v ∈ Fσ(C) has weight 24, then
wt(πσ(v)) = 6. Suppose that v1, v2 ∈ Fσ(C) of weight 24 coincide in the co-
ordinate corresponding to a cycle of length 19. Then wt(v1+v2) ≤ 2. There-
fore v1 = v2 and there are exactly 6 vectors in Fσ(C) of weight wt(v) = 24.
These vectors are linearly independent and so, up to a permutation of the
last six columns,

gen(Fσ(C)) =

















1 0 0 0 0 0 0 1 1 1 1 1
0 1 0 0 0 0 1 0 1 1 1 1
0 0 1 0 0 0 1 1 0 1 1 1
0 0 0 1 0 0 1 1 1 0 1 1
0 0 0 0 1 0 1 1 1 1 0 1
0 0 0 0 0 1 1 1 1 1 1 0

















,

where 1 is the all-one vector and 0 the zero-vector of length 19.

Automorphism of order 23: Let σ ∈ Aut(C) be of order 23. Then σ
is of type 23-(5; 5) and πσ(Fσ(C)) is a self-dual [10, 5, 2] code. So (see [31]),
up to equivance,

gen(Fσ(C)) =













1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1













.

3.2. Automorphisms of composite order

In this subsection we present some new results about automorphisms of
composite order. The result for the automorphism of order 8 is a corollary of
Theorem 1.2. in [10] while the main idea for the other orders is the following:
if σ ∈ Aut(C) is an automorphism of order p · q, then, in some cases, we can
classify the possible sums Fσq(C)+Fσp(C). If no sum has minimum distance
greater than or equal to 24, then an automorphism of this order cannot occur.
Note that these methods are a simplified version of those in Section V of [6].

Automorphism of order 8: Let σ ∈ Aut(C) be a fixed point free
automorphism of order 8. Then σ is of type 8-(15; 0). By Theorem 1.2. in
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[10], C is a free F2〈σ
4〉-module, so, by Chouinard’s Theorem [16], C is a free

F2〈σ〉-module. This is impossible, since 8 does not divide 60.

Theorem 24. The automorphism group of a self-dual [120, 60, 24] code does

not contain fixed point free elements of order 8.

Automorphism of order 30: Let σ ∈ Aut(C) be of order 30. Then σ
is of type 30-(4; 0). We can suppose,up to equivalence, that

σ = (1, . . . , 30)(31, . . . , 60)(61, . . . , 90)(91, . . . , 120).

Let σ3 := σ10 and σ5 := σ6. Then σ3 is of type 3-(40; 0) and σ5 is of type
5-(24; 0). Since σ is in the centralizer of both σ3 and σ5 in S120, it acts
on πσ3

(Fσ3
(C)) as an automorphism, say πσ3

(σ), of type 10-(4; 0) and on
πσ5

(Fσ5
(C)) as an automorphism, say πσ5

(σ), of type 6-(4; 0). Among the
16470 self-dual [40, 20, 8] codes, only 28, say D1, . . . , D28, have an automor-
phism of this type, for a total of 69 conjugacy classes. So, up to a permutation
in CS40

(πσ3
(σ)), πσ3

(C) belong to a set, say D, of 69 elements. On the other
hand, the extended binary Golay code has only one conjugacy class of ele-
ments of type 6-(4; 0). If E0 is an extended binary Golay code with automor-
phism πσ5

(σ), then the orbit, say E , of E0 under the action of CS24
(πσ5

(σ))
has 1296 elements. The code πσ5

(Fσ5
(C)) belongs to E . With Magma [12]

we check that all the codes in C := {π−1
σ3
(D) + π−1

σ5
(E) | D ∈ D, E ∈ E} have

minimum distance less then 24. Since Fσ3
(C) + Fσ5

(C) ⊆ C would have to
belong to C, this implies the following result.

Theorem 25. The automorphism group of a self-dual [120, 60, 24] code does

not contain elements of order 30.

This theorem implies that also automorphism of order 60 cannot occur
in Aut(C).

Automorphism of order 57: Let σ ∈ Aut(C) be of order 57. Then σ
is of type 3 · 19-(2, 0, 2; 0). We can suppose,up to equivalence, that

σ = (1, . . . , 57)(58, . . . , 114)(115, 116, 117)(118, 119, 120).

Let σ3 := σ19 and σ19 := σ3. Then σ3 is of type 3-(40; 0) and σ19 is of
type 19-(6; 6). Since σ is in the centralizer of both σ3 and σ19 in S120, it
acts on πσ3

(Fσ3
(C)) as an automorphism, say πσ3

(σ), of type 19-(2; 2) and
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on πσ19
(Fσ19

(C)) as an automorphism, say πσ19
(σ), of type 3-(4; 0). Among

the 16470 self-dual [40, 20, 8] codes, only 3, say D1, D2 and D3, have an
automorphism of this type, for a total of 396 conjugacy classes. So, up to a
permutation in CS40

(πσ3
(σ)), πσ3

(C) belong to a set, say D, of 396 elements.
On the other hand, the code B12 has only one conjugacy class of elements of
type 3-(4; 0). If E0 is a B12 code with automorphism πσ19

(σ), then the orbit,
say E , of E0 under the action of CS12

(πσ19
(σ)) has 27 elements. The code

πσ19
(Fσ19

(C)) belongs to E . With Magma [12] we check that all the codes in
C := {π−1

σ3
(D) + π−1

σ19
(E) | D ∈ D, E ∈ E} have minimum distance less then

24. Since Fσ3
(C) + Fσ19

(C) ⊆ C would have to belong to C, this implies the
following result.

Theorem 26. The automorphism group of a self-dual [120, 60, 24] code does

not contain elements of order 57.

Other orders: in the case of automorphisms of order 12 (fixed point
free), 15, 20 (fixed point free) and 115 we do not get a contradiction on the
minimum distance, while in the case of the automorphism of order 2·p, with p
prime, we cannot use the method above, since we do not have a classification
of the fixed code by the automorphism of order 2.

3.3. Structure of the automorphism group in the fixed point free case

In this subsection we present a theorem on the structure of the automor-
phism group of a self-dual [120, 60, 24] code as in Section 6 of [11] for the
self-dual [72, 36, 16]. Note that in [13] it is proved that involutions acting
on extremal codes of length 24m with m > 1 are always fixed point free,
except for m = 5, i.e. our case. It seems to be very difficult, although very
interesting, to exclude this exceptional case. Allowing fixed points increases
enormously the number of possible automorphism groups and we cannot get
nice results. Therefore we decided, as in [14], to restrict our attention to the
fixed point free case in order to get, at least under this hypothesis, a stronger
result.

Theorem 27. If all the involutions act fixed point freely, the automorphism

group G of a self-dual [120, 60, 24] code is trivial or isomorphic to one of the

following 64 groups:
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Order Groups Order Groups

2 C2 23 C23

3 C3 24
Dic24, S3×C4, D12, Dic12×C2, C3⋊

D4, C6 ×C4, D4 × C3, S4, A4 ×C2,

D6 × C2, C2 × C2 × C2 × C3

4 C4, C2 × C2 30 D15, C5 × S3 C3 ×D5

5 C5 38 D19

6 C6, S3 40
C20 × C2, D5 × C4, C5 ⋊ (C4 × C2),
D20, C5⋊D4, D4×C5, GA(1, 5)×C2,

D5 × C2 × C2, C2 × C2 × C2 × C5

7 C7 56 (C2 × C2 × C2)⋊ C7

8 C4×C2, C2×C2×C2, D4 57 C19 ⋊ C3

10 C10, D5 60
A5, D5 ⋊ C6, C15 ⋊ C4, D15 ⋊ C2,

A4 × C5

12
C12, C6 × C2, D6, A4,

Dic12
114 C19 ⋊ C6

15 C15 115 C115

19 C19 120 S5, A5×C2, S4×C5, A4⋊D5, A4×D5

20
C20, C10 × C2, D10,

Dic20, GA(1, 5)

Proof. All assertions about groups of order less than or equal to 552 make
use of the library SmallGroups of Magma [12]. Condition (e) of Remark 21
implies that the order of G is in {1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 15, 19, 20, 23, 24, 30,
38, 40, 56, 57, 60, 114, 115, 120, 552, 2760}.
Moreover, by Remark 21 and by the previous results, the order of every
element in G is in O := {1, 2, 3, 4, 5, 6, 7, 10, 12, 15, 19, 20, 23, 115}.

If |G| = 2760, the there exists either one 23-Sylow or 24 23-Sylow sub-
groups. In the first case, the 23-Sylow is normal and its product with a
2-Sylow subgroup is a subgroup of order 184. All groups of order 184 con-
tain an element of order 46. In the second case, G acts on the 24 23-Sylow
subgroups and GH is of order 115 for every 23-Sylow subgroup H . Therefore
GH is cyclic. Let K be the only subgroup of GH of order 23. This acts on
23 groups (all except H) and so it has 23 fixed points. Then K is contained
in GH for every H and it should be the unique group of order 23 which is

13



contained in GH for all H . This is not possible, since every H is contained
in GH , so we have a contradiction.

The quaternion group Q8 cannot occur, again by Chouinard’s Theorem
(see the proof above for the element of order 8).

The group C5 ⋊ (S3 × C4), of order 120, is not possible, since if σ is the
element of order 5, then in the automorphism group of πσ(Fσ(C)) (which is
an extended binary Golay code) there should be a subgroup isomorphic to
S3 × C4 acting fixed point freely, and this is not the case.

Finally, all the other groups are excluded by verifying that they have
elements of order which is not in O, or a subgroup isomorphic to Q8 or to
C5 ⋊ (S3 × C4).

Remark 28. It would be interesting to exclude other non-abelian groups,
using methods similar to those in [8], or elementary abelian groups, using
methods similar to those in [9]. However, for a lack of classification of smaller
codes, this seems to be still computationally impossible. It would be also
interesting to get similar results without the hypothesis of the fixed point free
action, but this seems to make the number of possibilities grow enormously.
Finally, another direction of further research can be to get a similar result
for the extremal code of length 96, which is studied in [15, 20, 22], but this
is beyond the aim of this paper.

4. Some necessary conditions for the existence of a self-dual ex-
tremal [120, 60, 24] code

In this section we establish some necessary conditions for the existence
of an extremal [120, 60, 24] code. Similar conditions are given in [23] and [4]
for an extremal [72, 36, 16] and [96, 48, 20] code.

Let C be a [118, 59, 22] type I code. By Theorem 3 (a) we have

WC(y) =

14
∑

j=0

aj(1 + y2)59−4j(y2(1− y2)2)j =

=a0 + (59a0 + a1)y
2 + (1711a0 + 53a1 + a2)y

4 + (32509a0 + 1376a1+

47a2 + a3)y
6 + (455126a0 + 23320a1 + 1077a2 + 41a3 + a4)y

8 + . . .

with aj ∈ Q for j = 0, . . . , 14. Since the minimum distance of C is 22, we
get a0 = 1, a1 = −59, a2 = 1416, a3 = −17877, a4 = 128679, a5 = −538375,
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a6 = 1291628, a7 = −1713124, a8 = 1187434, a9 = −400374 and a10 = 0.
Let S be the shadow of C. Then by Theorem 5 (a) we have

WS(y) =
1

33554432
a14y

3 + (−
1

524288
a13 −

7

8388608
a14)y

7 + (
189

16777216
a14+

1

8192
a12 +

13

262144
a13)y

11 +

(

−
819

8388608
a14 −

1

128
a11 −

325

524288
a13

−
3

1024
a12

)

y15 +

(

325

65536
a13 +

69

2048
a12 +

11

64
a11 +

20475

33554432
a14

)

y19+

(

−
231

128
a11 −

7475

262144
a13 −

12285

4194304
a14 −

253

1024
a12 + 12811968

)

y23 + . . .

Let WS(y) =
∑118

i=0Biy
i. By Theorem 5 (b) we have Bi ∈ {0, 1} for i =

3, 7 and at most one Bi is nonzero for i ≤ 11. Therefore there are four
possibilities:

• If B3 = 1, B7 = 0, B11 = 0, then a14 = 33554432, a13 = −14680064,
a12 = 2867200. Since B15 = −2576 − 1

128
a11 ≥ 0, we have B19 =

44275 + 11
164

a11 < 0, a contradiction.

• If B3 = 0, B7 = 1, B11 = 0, then a14 = 0, a13 = −524288, a12 = 212992.
Since B15 = −299− 1

128
a11 ≥ 0, we have B19 = 4576 + 11

164
a11 < 0. It is

again a contradiction.

• If B3 = 0, B7 = 0, B11 6= 0, then a14 = a13 = 0 and a12 > 0. Therefore
the system of inequalities B15 = 1

−128
a11 − 3

1024
a12 ≥ 0 and B19 =

69
2048

a12 +
11
64
a11 ≥ 0 has no solutions, a contradiction.

Hence B3 = 0, B7 = 0, B11 = 0 and we obtain a14 = a13 = a12 = a11 = 0.
In conclusion the shadow has minimal distance 23 and we can calculate the
weight enumerators WC(y) and WS(y) (see Table 1 and Table 2).

Lemma 29. Let C0 be the subcode of C containing all codewords whose

weights are multiples of 4. Then the supports of all vectors of a given weight

in C0 and in C⊥
0 form a 3-design.

Proof. Since C0 is a [118, 58, 24] code and C⊥
0 = C ∪ S, then C⊥

0 is a
[118, 60, 22] code. If WC0

(x, y) =
∑118

i=0Aix
118−iyi, then we have |{i | Ai 6=

0, 0 < i ≤ 115}| = 19 ≤ d(C⊥
0 )− 3. Therefore by Theorem 20 the supports

of the vectors of weight i in C⊥
0 and in C0 form a 3-design.
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Table 1: The weight enumerator of a self-dual [118, 59, 22] code

i Ai

22 96 1534767
24 94 25357020
26 92 323009424
28 90 3577030288
30 88 33041945820
32 86 255009210885
34 84 1660986238080
36 82 9190790517376
38 80 43420813336368
40 78 175902467952336
42 76 613510461769920
44 74 1848313759032000
46 72 4823479510074576
48 70 10929799315381752
50 68 21547310072116608
52 66 37017173713636224
54 64 55486969304739115
56 62 72637487089840296
58 60 83095867738716768

Question 30. By Assmus-Mattson theorem the supports of the codewords
of minimal weight 22 in a self-dual [118, 59, 22] code build a 3-(118, 22, 8885)
design D. Similarly the supports of the codewords of minimal weight 24 in a
self-dual [120, 60, 24] code build a 5-(120, 24, 8855) design. In [21] the authors
showed that if D is a self-orthogonal 5-(120, 24, 8855) design, then C(D) is
a self-dual [120, 60, d] code with d = 20 or d = 24. Unfortunately it was
not possible to exclude the case d = 20 and show that the code is extremal.
A natural question, although very difficult, is: if D is a self-orthogonal 3-
(118, 22, 8885) design, then is C(D) a self-dual extremal [118, 59, 22] code?

Remark 31. Since the shadow of a self-dual [118, 59, 22] code has minimal
distance 23, the existence of a self-dual [120, 60, 24] code is equivalent to the
existence of a self-dual [118, 59, 22] code C (In general by [29] the existence
of an extremal code of length 24m is equivalent to the existence of a self-dual
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Table 2: The weight enumerator of the shadow of a self-dual [118, 59, 22] code

i Bi

23 95 12811968
27 91 2201249408
31 87 187592982720
35 83 7972733942784
39 79 178129081470720
43 75 2168688143930880
47 71 14778320201079552
51 67 57459493525644288
55 63 129133310381938304
59 169008544553322240

[24m− 2, 12m− 1, 4m+ 2] code). By Lemma 29 the supports of the vectors
of weight k in the shadow S of C form a 3-(118, k, λ) design. Therefore
if there exists a [118, 59, 22] code and its shadow has enumerator weight
WS(y) =

∑118
k=0Bky

k, then the coefficients of the shadow must satisfy the

following condition of divisibility (k−i)!
k!

118!
(118−i)!

| Bk, since the terms λi =

Bk
k!

(k−i)!
(118−i)!

118!
∈ N0. Actually, all the coefficients Bk satisfy this condition

(see Table 3).

Now we have the following necessary condition on the existence of an
extremal type II code of length 120.

Theorem 32. If no linear [120, 60, 23] code with weight enumerator given in

Table 4 exists, then there exists no self-dual [120, 60, 24] code.

Proof. A self-dual [120, 60, 24] code has a child C, which is a self-dual
[112, 59, 22] code. By Lemma 8, WC1

(y) = WC3
(y). Therefore the code C∗

defined as in Lemma 9 is formally self-dual, and the theorem follows (the
weight enumerator of the code C∗ is given in Table 4. It is calculated thanks
to Lemma 9, knowing the weight enumerator of the [118, 59, 22] type I code
and of its shadow, which are given in Table 1 and Table 2 respectively).

Theorem 33. If no self-dual doubly-even [120, 60, 4] code with weight enu-

merator given in Table 5 exists, then there exists no self-dual [120, 60, 24]
code.
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Table 3: Parameters of the 3-designs

k λ0 = Bk λ1 λ2 λ3 = λ
23 12811968 2497248 469568 85008
27 2201249408 503675712 9327328 24122400
31 187592982720 49282902240 12636641600 3159160400
35 7972733942784 2364793966080 687205084160 195497998080
39 178129081470720 58873170994560 19121200835840 6099003714880
43 2168688143930880 790284662618880 283691930170880 100270423594880
47 14778320201079552 5886280080091008 2314263963112704 897774813276480
51 57459493525644288 24834187879727616 10612900803302400 4483035684153600
55 129133310381938304 60189254839039040 27779656079556480 12692429070831840
59 169008544553322240 84504272276661120 41891006769626880 20584374016109760
63 129133310381938304 68944055542899264 36534456783416704 19212085032658784
67 57459493525644288 32625305645916672 18404018569491456 10312596612215040
71 14778320201079552 8892040120988544 5320024004010240 3164497036868160
75 2168688143930880 1378403481312000 871810748864000 548639522992000
79 178129081470720 119255910476160 79503940317440 52774167279680
83 7972733942784 5607939976704 3930351094784 2744469298944
87 187592982720 138310080480 101663819840 74495040400
91 2201249408 1697573696 1305825920 1001883680
95 12811968 10314720 8287040 6643920

Proof. Let C be a self-dual [120, 60, 24] code, u ∈ F120
2 of weight wt(u) = 4

and D := C ∩〈u〉⊥. Since D⊥ = C⊥+(〈u〉⊥)⊥ = C ⊕〈u〉, then D ≤ D⊥ and
dimD⊥ = dim(C + 〈u〉) = 61 i.e. D is a self-orthogonal [120, 59] code. If
N := 〈D, u〉, then N = D⊕〈u〉 and dimN = 60. Since (d1+u) · (d2+u) = 0,
for all d1, d2 ∈ D, we have that N is self-orthogonal and therefore it is self-
dual. On the other hand, wt(d + u) ≡ 0 mod 4, because d · u = 0 for
all d ∈ D. Therefore N is a self-dual doubly-even [120, 60, 4] code. Since
dim(N ∩ C) = 59, we have N is neighbor of C. The code N has only
a vector of weight 4. To determine the number of vectors of weight 20 it
is sufficient to calculate the number of vectors w ∈ C of weight 24 with
|supp(w)∩ supp(u)| = 4. Since the vectors of weight 24 in C form a 5-design,
then this number is equal to λ4 = 51359 where λ4 is the number of blocks
incident with 4 different points. If

∑

Aiy
i is the weight enumerator of N ,

then A0 = 1, A4 = 1, A8 = 0, A12 = 0, A16 = 0 and A20 = 51359. Therefore
by Theorem 3 we obtain the weight enumerator of the code N , which is given
in Table 5. This concludes the proof.

18



5. Acknowledgements

The first author was partially supported by PEPS - Jeunes Chercheur-e-s
- 2017. The second author was financially supported by the Fundación para
la Promoción de la Investigación y la Tecnoloǵıa, in the frame of the project
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Table 4: The weight enumerator of a formally self-dual [120, 60, 23] code

Weight Weight distribution Weight Weight distribution
0 1 61 84504272276661120
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27 323009424 67 37017173713636224
28 4677654992 68 50277056834938752
29 1100624704 69 28729746762822144
31 33041945820 71 10929799315381752
32 348805702245 72 12212639610614352
33 93796491360 73 7389160100539776
35 1660986238080 75 1848313759032000
36 13177157488768 76 1697854533735360
37 3986366971392 77 1084344071965440
39 43420813336368 79 175902467952336
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60 167600140015377888
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Table 5: The weight enumerator of a [120, 60, 4] neighbor of an extremal [120, 60, 24] code

i Ai

0 120 1
4 116 1
20 100 51359
24 96 43481179
28 92 6539254776
32 88 494044041905
36 84 19178964940125
40 80 400399951557816
44 76 4639015235035296
48 72 30526043817770504
52 68 115980280893408771
56 64 257259077150523955
60 335272511326715600
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