Martino Borello 
  
Some new results on the self-dual [120,60,24] code

Keywords: Self-dual code, extremal code, automorphism group

The existence of an extremal self-dual binary linear code of length 120 is a long-standing open problem. We continue the investigation of its automorphism group, proving that automorphisms of order 30 and 57 cannot occur. Supposing the involutions acting fixed point freely, we show that also automorphisms of order 8 cannot occur and the automorphism group is of order at most 120, with further restrictions. Finally, we present some necessary conditions for the existence of the code, based on shadow and design theory.

Introduction

In coding theory, binary self-dual codes play a central role: they are linear codes with a rich algebraic structure, good decoding properties and relations with other areas of mathematics, such as group theory, lattice theory and design theory. For example, this class includes the binary extended Golay code, whose automorphism group is the sporadic simple group M 24 and which is related to the Leech lattice. Gleason, Pierce and Turyn showed (see [START_REF] Assmus | Research to develop the algebraic theory of codes[END_REF]) that if a natural number r > 1 divides the weight of all codewords of a binary self-dual code, then r = 2 (even code) or r = 4 (doubly-even code). Every binary self-dual code is even. If a binary self-dual code is even but not doubly-even (singly-even code), then it is called a Type I code, while if a binary self-dual code is doubly-even, then it is called a Type II code. Type II codes exist only for lengths which are multiples of 8 [START_REF] Gleason | Weight polynomials of codes and the MacWilliams identities[END_REF] and Mallows and Sloane showed in [START_REF] Mallows | An upper bound for self-dual codes[END_REF] that they have minimum distance bounded by 4⌊n/24⌋ + 4, where n is the length. A type II code attaining this bound is called extremal code. Among extremal codes, those of length a multiple of 24 are particularly interesting: Assmus-Mattson's theorem [START_REF] Assmus | New 5-designs[END_REF] guarantees that the supports of their codewords of a fixed nonzero weight form a 5-design. Moreover, they have relations, as mentioned above, with simple groups and extremal lattices. Zhang proved in [START_REF] Zhang | On the nonexistence of extremal self-dual codes[END_REF] that their length is at most 3672.

Despite their theoretical importance, only two extremal codes of length a multiple of 24 are known, namely the famous binary extended Golay code, the unique up to equivalence of length 24, and the extended quadratic residue code of length 48, which is the unique up to equivalence of this length. In 1973 Sloane [30] posed explicitly the question: is there a self-dual [72,36,[START_REF] Chouinard | Projectivity and relative projectivity over group rings[END_REF] code? Since then, multiple attempts to establish the non existence of such a code or to present a construction have been done, till now unsuccessfully. The problem is still open for all lengths from 72 to 3672 and many investigations have been also done for the cases of length 96 and 120.

This paper focuses on the last one, i.e. on the study of a self-dual [120, 60, 24] code. In particular, in Section 2 we will collect, for the reader's convenience, all the definitions and the known results which will be used in the following. In Section 3 we prove new properties about the automorphism group of a self-dual [120,60,[START_REF] Gleason | Weight polynomials of codes and the MacWilliams identities[END_REF] code. In particular we exclude the existence of automorphisms of order 30 and 57 and we investigate the structure of the automorphism group, in the case that involutions act fixed point freely (see the introduction of Subsection 3.3 for a motivation of this choice), proving that it is either trivial or isomorphic to a group of order at most 120, with further restrictions. Finally, in Section 4 we give necessary conditions for the existence of the code, based on shadow and design theory.

Background

In this section we collect some classical results of coding theory which are useful in the rest of the paper.

Gleason's theorem and the shadow of a code

For the whole subsection, let C be a binary code of length n, i.e. a subspace of F n 2 . We recall that a [n, k, d] code is a code of length n, dimension k and minimum distance d. Definition 1. The weight distribution of C is the sequence (A 0 (C), . . . , A n (C)), where A i (C) is the number of codewords of C of weight i, for every i ∈ {1, . . . , n}.

The polynomial W C (y) := n i=0 A i y i = c∈C y wt(c) ∈ Z[x] is called the weight enumerator of C and the polynomial W C (x, y) := x n W ( y x ) ∈ Z[x, y], is the homogeneous weight enumerator of C. Definition 2. The dual of C is C ⊥ := {v ∈ F n 2 | v, c = 0, ∀c ∈ C}. If C = C ⊥ , we say that C is self-dual.
If C and C ⊥ have the same weight enumerator, C is called a formally self-dual code.

Theorem 3 ([24]

). Let g 1 (x, y) := y 2 + x 2 , g 2 (x, y) := x 2 y 2 (x 2 -y 2 ) 2 , and g 3 (x, y) := y 24 + 759x 8 y 16 + 2576x 12 y 12 + 759x 16 y 8 + x 24 .

(a) If C is formally self-dual and even,

W C (x, y) = ⌊n/8⌋ i=0 a i g 1 (x, y) n 2 -4i g 2 (x, y) i . (b) If C is formally self-dual and doubly-even, W C (x, y) = ⌊n/24⌋ i=0 a i g 2 (x, y) n 8 -3i g 3 (x, y) i .
In all cases, every a i ∈ Q and i a i = 1.

Let C be a self-dual code and let C 0 be the subset consisting of all codewords in C whose weights are multiples of 4. If C is of type II then

C 0 = C, while C 0 is a subcode of index 2 of C if C is of type I. Definition 4. The shadow of C is the set S := C ⊥ 0 \C, if C is of type I C, if C is of type II. Let C be a type I code. Since C 0 is of index 2, then #(C ⊥ 0 /C 0 ) = 4. Hence there are three cosets C 1 , C 2 , C 3 of C 0 in C ⊥ 0 such that C ⊥ 0 = C 0 ∪C 1 ∪C 2 ∪C 3 , where C = C 0 ∪ C 2 and S = C 1 ∪ C 3 = C ⊥ 0 \C is the shadow of C (see [17, Theorem 5]).
Theorem 5 ([17]). Let S be the shadow of C, code of type I.

(a) If we write

W C (x, y) = ⌊n/8⌋ j=0 a j (x 2 + y 2 ) n 2 -4j (x 2 y 2 (x 2 -y 2 ) 2 ) j ,
for suitable rationals a j , then

W S (x, y) = ⌊n/8⌋ j=0 (-1) j a j 2 n 2 -6j (xy) n 2 -4j (x 4 -y 4 ) 2j . (b) Writing W S (x, y) = n i=0 B i x n-i y i , we have (i) B i = B n-i for all i. (ii) B i = 0, unless i ≡ n/2 mod 4. (iii) B 0 = 0. (iv) B i ≤ 1, for i < d/2. (v) at most one B i is nonzero for i < (d + 4)/2. Definition 6. If C is a self-dual [n, n/2,
d] code with d > 2, pick two positions and consider the (n/2 -1)-dimensional subcode C ′ of C with either two 0s or two 1s in these positions. If we puncture C ′ on these positions, we obtain a self-dual code C ′ * of length n -2;

C ′ * is called a child of C and C is called a parent of C ′ * . Theorem 7 ([26]). Let m ≥ 1 be an integer. If C is a [24m -2, 12m - 1, 4m + 2] type I code whose shadow has minimum distance 4m + 3, then C is a child of a [24m, 12m, 4m + 4] type II code. Lemma 8 ([26]). If C is a child of an extremal type II code with shadow S = C 1 ∪ C 3 , then W C 1 (y) = W C 3 (y).

Lemma 9 ([4]

). Let C be a type I code of length n with the shadow S = C 1 ∪ C 3 . Suppose that n ≡ 2 mod 4. Let C * be the code of length n + 2 obtained by extending C ⊥ 0 as follows: (0, 0, C 0 ), (1, 0, C 2 ), (0, 1, C 1 ), (1, 1, C 3 ).

If W C 1 (y) = W C 3 (y), then C * is a formally self-dual code with weight enu- merator W C 0 (y) + y(W C 1 (y) + W C 2 (y)) + y 2 W C 3 (y).
Definition 10. Two self-dual codes of length n are neighbors if their intersection is a code of dimension n/2 -1.

Automorphism group of binary codes

The symmetric group S n acts on F n 2 by the group action vσ : 

= (v σ -1 (1) , . . . , v σ -1 (n) ), where v = (v 1 , . . . , v n ) ∈ F n
F σ (C) := {v ∈ C | vσ = v}.
Let Ω 1 , . . . , Ω c be the cycle sets and let Ω c+1 , . . . , Ω c+f be the fixed points of σ.

Clearly v ∈ F σ (C) if and only if v ∈ C and v is constant on each cycle. Let π σ : F σ (C) → F c+f
A useful result, which is a reformulation of a very classical result about group actions, is the following.

Lemma 16. If σ ∈ Aut(C), W C (y) = A i y i and W Fσ(C) (y) = A F i y i , then A i ≡ A F i mod p.
Finally, let us introduce a classical decomposition of a code with an automorphism of prime order, which comes from Maschke's theorem. Let p be an odd prime and σ is an automorphism of type p-(c, f ). Let

E σ (C) := {v ∈ C | wt(v| Ω i ) ≡ 0 mod 2, i = 1, . . . , c + f }, where v| Ω i is the restriction of v on Ω i . Lemma 17 ([25]). If p is odd, then C = F σ (C) ⊕ E σ (C). Moreover, if C is self-dual, then (a) the code π σ (F σ (C)) ≤ F c+f 2 is self-dual and, if C is doubly even and p ≡ 1 mod p, then π σ (F σ (C)) is doubly even. (b) dim E σ (C) = (p-1)c 2 .

Designs and codes

In this section we briefly recall the main definitions of design theory and its relationship with coding theory. Definition 18. A t-(v, k, λ) design, or briefly a t-design, is a pair D = (P, B) where P is a set of v elements, called points, and B is a collection of distinct subsets of P of size k, called blocks, such that every subset of points of size t is contained in precisely λ blocks.

If D is a t-(v, k, λ) design, it is also an i-(v, k, λ i ) design for all i ∈ {0, . . . , t}, where λ i is given by λ i = λ ( v-i t-i ) ( k-i t-i )
. 

a ij = 1, if p j ∈ B i 0, if p j ∈ B i .
(b) The code C(D) over F 2 which is generated by the rows of A is called code of the design D = (P, B).

Although there are several incidence matrices, depending on the choice of the order of the points and of the blocks, for a given design the codes generated by these matrices are equivalent: changing the order of the points is equivalent to permute the coordinates, while a reordering of the blocks does not change the code (see [1, p.41]).

The following theorem, due to Assmus and Mattson, establishes a relationship between coding theory and design theory.

Theorem 20 ([2]). Let C be a binary [n, k, d] code. Suppose C ⊥ has min- imum weight d ⊥ .
Suppose that A 0 , . . . , A n and A ⊥ 0 , . . . , A ⊥ n are the weight distributions of C and C ⊥ , respectively. Fix a positive integer t with t < d, and let s be the number of i with

A ⊥ i = 0 for i ∈ {0 . . . n -t}. Suppose s ≤ d -t. (a) The vectors of weight i in C form a t-design provided A i = 0 and d ≤ i ≤ n. (b) The vectors of weight i in C ⊥ form a t-design provided A ⊥ i and d ⊥ ≤ i ≤ n -t.

The automorphism group of an extremal [120, 60, 24] code

For the whole section, let C be an extremal [120, 60, 24] code. By Theorem 3 (b), we can easily deduce (see [START_REF] Mallows | An upper bound for self-dual codes[END_REF]) that

W C (1, y) = 1 + 39703755y 24 + 6101289120y 28 + 475644139425y 32 + . . . (1)
Knowledge of the existence of a non-trivial automorphism group G is very useful in constructing the code, since in this case the code has the structure of a F 2 G-module. For this reason, there is an intensive research on the automorphism group of extremal codes.

Remark 21. Concerning the code of length 120, the following results on the automorphism group G of C are known (see [START_REF] Borello | Automorphisms of Order 2p in Binary Self-Dual Extremal Codes of Length a Multiple of 24[END_REF][START_REF] Bouyuklieva | On the automorphisms of order 2 with fixed points for the extremal self-dual codes of length 24m[END_REF][START_REF] Bouyuklieva | On the automorphism group of a binary self-dual[END_REF][START_REF] De La | On extremal self-dual codes of length 120[END_REF][START_REF] De La Cruz | The automorphism group of an extremal [120, 60, 24[END_REF]):

(a) The order of G divides 2 Remark 22. Condition (d) is not stated explicitly in any of the above references, but it is an easy consequence of the results in [START_REF] Borello | Automorphisms of Order 2p in Binary Self-Dual Extremal Codes of Length a Multiple of 24[END_REF]. Furthermore, we give only the structure of the automorphisms of even order not divisible by 8 because we prove in the following that an automorphism of order 8 cannot exist under the hypothesis that involutions act fixed point freely.

Remark 23. Condition (e) corrects a mistake in Proposition 15 b) of [START_REF] Bouyuklieva | On the automorphism group of a binary self-dual[END_REF],

where

"|G| = 2 3 • 5 c • 23" should have been "|G| = 2 3 • 3 • 5 c • 23".
Moreover, it gives a preciser statement about {2, 3, 5}-groups, based on Lemma 14.

Fixed code of automorphism of prime order

In this subsection we present some preliminary results about the automorphisms of prime order. It is a hard problem to prove that the primes 3, 5, 7, 19 and 23 cannot occur as orders of an automorphism σ of C: even if we can completely determine the fixed code F σ (C), there are too many possibilities to check for the complement E σ (C) defined in Section 2. Also the case of the prime 2 is computationally hard and we do not even know the fixed code.

Automorphism of order 2: Let σ ∈ Aut(C) be of order 2. Then σ is either of type 2-(48; 24) or of type 2-(60; 0). In the second case, by Theorem 1.2 of [START_REF] Borello | On involutions in extremal self-dual codes and the dual distance of semi self-dual codes[END_REF], 30,[START_REF] Bosma | The Magma algebra system I: The user language[END_REF] code. Although some selfdual codes with these parameters are known, a complete classification is still unknown.

π σ (F σ (C)) is a self-dual [60,
Automorphism of order 3: Let σ ∈ Aut(C) be of order 3. Then σ is of type 3-(40; 0) and π σ (F σ (C)) is a self-dual doubly-even [40, 20, 8] code. By [START_REF] Betsumiya | A complete classification of doubly even self-dual codes of length 40[END_REF], there are 16470 such codes up to equivalence.

Automorphism of order 5: Let σ ∈ Aut(C) be of order 5. Then σ is of type 5-(24; 0) and π σ (F σ (C)) is a self-dual [START_REF] Gleason | Weight polynomials of codes and the MacWilliams identities[END_REF][START_REF] Bosma | The Magma algebra system I: The user language[END_REF][START_REF] Borello | The automorphism group of a self-dual [72, 36, 16] code does[END_REF] code. This implies that π σ (F σ (C)) is equivalent to the binary extended Golay code G 24 .

Automorphism of order 7: Let σ ∈ Aut(C) be of order 7. Then σ is of type 7-(17; 1) and π σ (F σ (C)) is a self-dual [START_REF] De La | On extremal self-dual codes of length 120[END_REF][START_REF] Borello | The automorphism group of a self-dual [72, 36, 16] code is not an elementary Abelian group of order 8[END_REF][START_REF] Betsumiya | Formally Self-Dual Codes Related to Type II Codes[END_REF] code. By [START_REF] Pless | A classification of self-orthogonal codes over GF (2)[END_REF], π σ (F σ (C)) is a equivalent to H 18 or I 18 .

A vector of weight 4 in π σ (F σ (C)) has to be a vector of weight 28 in F σ (C), i.e. all nonzero coordinates of vectors of weight 4 correspond to cycles. By the study of clusters (see [START_REF] Huffman | Automorphisms of Codes with Applications to Extremal Doubly Even Codes of Length 48[END_REF]) we can easily prove that H 18 cannot occur. Moreover, with the same technique, we can prove that, up to equivalence,

gen(F σ (C)) =              
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1              
where 1 is the all-one vector and 0 the zero-vector of length 7.

Automorphism of order 19: Let σ ∈ Aut(C) be of order 19. Then σ is of type 19-(6; 6) and π σ (F σ (C)) is a self-dual [START_REF] Bosma | The Magma algebra system I: The user language[END_REF][START_REF] Borello | The automorphism group of a self-dual [72, 36, 16] binary code does[END_REF][START_REF] Betsumiya | Formally Self-Dual Codes Related to Type II Codes[END_REF] code. By [START_REF] Pless | A classification of self-orthogonal codes over GF (2)[END_REF],

π σ (F σ (C)) is equivalent to B 12 .
By Lemma 16 and by (1), A F 24 ≡ 6 mod 19. Therefore there are 6 mod 19 vectors of F σ (C) of weight 24. If v ∈ F σ (C) has weight 24, then wt(π σ (v)) = 6. Suppose that v 1 , v 2 ∈ F σ (C) of weight 24 coincide in the coordinate corresponding to a cycle of length 19. Then wt(v 1 + v 2 ) ≤ 2. Therefore v 1 = v 2 and there are exactly 6 vectors in F σ (C) of weight wt(v) = 24. These vectors are linearly independent and so, up to a permutation of the last six columns,

gen(F σ (C)) =         1 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 1 0 1 1 1 1 0 0 1 0 0 0 1 1 0 1 1 1 0 0 0 1 0 0 1 1 1 0 1 1 0 0 0 0 1 0 1 1 1 1 0 1 0 0 0 0 0 1 1 1 1 1 1 0        
, where 1 is the all-one vector and 0 the zero-vector of length 19.

Automorphism of order 23: Let σ ∈ Aut(C) be of order 23. Then σ is of type 23-(5; 5) and π σ (F σ (C)) is a self-dual [START_REF] Borello | On involutions in extremal self-dual codes and the dual distance of semi self-dual codes[END_REF][START_REF] Betsumiya | A complete classification of doubly even self-dual codes of length 40[END_REF][START_REF] Assmus | New 5-designs[END_REF] code. So (see [START_REF] Yorgova | Binary self-dual codes with automorphisms of order 23[END_REF]), up to equivance,

gen(F σ (C)) =      
1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1

      .

Automorphisms of composite order

In this subsection we present some new results about automorphisms of composite order. The result for the automorphism of order 8 is a corollary of Theorem 1.2. in [START_REF] Borello | On involutions in extremal self-dual codes and the dual distance of semi self-dual codes[END_REF] while the main idea for the other orders is the following: if σ ∈ Aut(C) is an automorphism of order p • q, then, in some cases, we can classify the possible sums F σ q (C) + F σ p (C). If no sum has minimum distance greater than or equal to 24, then an automorphism of this order cannot occur. Note that these methods are a simplified version of those in Section V of [START_REF] Borello | The automorphism group of a self-dual [72, 36, 16] binary code does[END_REF].

Automorphism of order 8: Let σ ∈ Aut(C) be a fixed point free automorphism of order 8. Then σ is of type 8-(15; 0). By Theorem 1.2. in [START_REF] Borello | On involutions in extremal self-dual codes and the dual distance of semi self-dual codes[END_REF], C is a free F 2 σ 4 -module, so, by Chouinard's Theorem [START_REF] Chouinard | Projectivity and relative projectivity over group rings[END_REF], C is a free F 2 σ -module. This is impossible, since 8 does not divide 60.

Theorem 24. The automorphism group of a self-dual [120, 60, 24] code does not contain fixed point free elements of order 8.

Automorphism of order 30: Let σ ∈ Aut(C) be of order 30. Then σ is of type 30-(4; 0). We can suppose,up to equivalence, that σ = (1, . . . , 30)(31, . . . , 60)(61, . . . , 90)(91, . . . , 120).

Let σ 3 := σ 10 and σ 5 := σ 6 . Then σ 3 is of type 3-(40; 0) and σ 5 is of type 5-(24; 0). Since σ is in the centralizer of both σ 3 and σ 5 in S 120 , it acts on π σ 3 (F σ 3 (C)) as an automorphism, say π σ 3 (σ), of type 10-(4; 0) and on π σ 5 (F σ 5 (C)) as an automorphism, say π σ 5 (σ), of type 6-(4; 0). Among the 16470 self-dual [40, [START_REF] De La Cruz | On Extremal Self-Dual Codes of Length 96[END_REF][START_REF] Borello | The automorphism group of a self-dual [72, 36, 16] code does[END_REF] codes, only 28, say D 1 , . . . , D 28 , have an automorphism of this type, for a total of 69 conjugacy classes. So, up to a permutation in C S 40 (π σ 3 (σ)), π σ 3 (C) belong to a set, say D, of 69 elements. On the other hand, the extended binary Golay code has only one conjugacy class of elements of type 6-(4; 0). If E 0 is an extended binary Golay code with automorphism π σ 5 (σ), then the orbit, say E, of E 0 under the action of C S 24 (π σ 5 (σ)) has 1296 elements. The code π σ 5 (F σ 5 (C)) belongs to E. With Magma [START_REF] Bosma | The Magma algebra system I: The user language[END_REF] we check that all the codes in C := {π This theorem implies that also automorphism of order 60 cannot occur in Aut(C).

Automorphism of order 57: Let σ ∈ Aut(C) be of order 57. Then σ is of type 3 • 19-(2, 0, 2; 0). We can suppose,up to equivalence, that Other orders: in the case of automorphisms of order 12 (fixed point free), 15, 20 (fixed point free) and 115 we do not get a contradiction on the minimum distance, while in the case of the automorphism of order 2•p, with p prime, we cannot use the method above, since we do not have a classification of the fixed code by the automorphism of order 2.

Structure of the automorphism group in the fixed point free case

In this subsection we present a theorem on the structure of the automorphism group of a self-dual [120, 60, 24] code as in Section 6 of [START_REF] Borello | On automorphism groups of binary linear codes[END_REF] for the self-dual [72,36,[START_REF] Chouinard | Projectivity and relative projectivity over group rings[END_REF]. Note that in [START_REF] Bouyuklieva | On the automorphisms of order 2 with fixed points for the extremal self-dual codes of length 24m[END_REF] it is proved that involutions acting on extremal codes of length 24m with m > 1 are always fixed point free, except for m = 5, i.e. our case. It seems to be very difficult, although very interesting, to exclude this exceptional case. Allowing fixed points increases enormously the number of possible automorphism groups and we cannot get nice results. Therefore we decided, as in [START_REF] Bouyuklieva | On the automorphism group of a binary self-dual[END_REF], to restrict our attention to the fixed point free case in order to get, at least under this hypothesis, a stronger result.

Theorem 27. If all the involutions act fixed point freely, the automorphism group G of a self-dual [120,60,[START_REF] Gleason | Weight polynomials of codes and the MacWilliams identities[END_REF] code is trivial or isomorphic to one of the following 64 groups: If |G| = 2760, the there exists either one 23-Sylow or 24 23-Sylow subgroups. In the first case, the 23-Sylow is normal and its product with a 2-Sylow subgroup is a subgroup of order 184. All groups of order 184 contain an element of order 46. In the second case, G acts on the 24 23-Sylow subgroups and G H is of order 115 for every 23-Sylow subgroup H. Therefore G H is cyclic. Let K be the only subgroup of G H of order 23. This acts on 23 groups (all except H) and so it has 23 fixed points. Then K is contained in G H for every H and it should be the unique group of order 23 which is contained in G H for all H. This is not possible, since every H is contained in G H , so we have a contradiction.

Order Groups Order Groups 2 C 2 23 C 23 3 C 3 24 
Dic 24 , S 3 ×C 4 , D 12 , Dic 12 ×C 2 , C 3 ⋊ D 4 , C 6 × C 4 , D 4 × C 3 , S 4 , A 4 × C 2 , D 6 × C 2 , C 2 × C 2 × C 2 × C 3 4 C 4 , C 2 × C 2 30 D 15 , C 5 × S 3 C 3 × D 5 5 C 5 38 D 19 6 C 6 , S 3 40 
C 20 × C 2 , D 5 × C 4 , C 5 ⋊ (C 4 × C 2 ), D 20 , C 5 ⋊D 4 , D 4 ×C 5 , GA(1, 5)×C 2 , D 5 × C 2 × C 2 , C 2 × C 2 × C 2 × C 5 7 C 7 56 (C 2 × C 2 × C 2 ) ⋊ C 7 8 C 4 ×C 2 , C 2 ×C 2 ×C 2 , D 4 57 C 19 ⋊ C 3 10 C 10 , D 5 60 A 5 , D 5 ⋊ C 6 , C 15 ⋊ C 4 , D 15 ⋊ C 2 , A 4 × C 5 12 C 12 , C 6 × C 2 ,
The quaternion group Q 8 cannot occur, again by Chouinard's Theorem (see the proof above for the element of order 8).

The group C 5 ⋊ (S 3 × C 4 ), of order 120, is not possible, since if σ is the element of order 5, then in the automorphism group of π σ (F σ (C)) (which is an extended binary Golay code) there should be a subgroup isomorphic to S 3 × C 4 acting fixed point freely, and this is not the case.

Finally, all the other groups are excluded by verifying that they have elements of order which is not in O, or a subgroup isomorphic to Q 8 or to C 5 ⋊ (S 3 × C 4 ).

Remark 28. It would be interesting to exclude other non-abelian groups, using methods similar to those in [START_REF] Borello | The automorphism group of a self-dual [72, 36, 16] code does[END_REF], or elementary abelian groups, using methods similar to those in [START_REF] Borello | The automorphism group of a self-dual [72, 36, 16] code is not an elementary Abelian group of order 8[END_REF]. However, for a lack of classification of smaller codes, this seems to be still computationally impossible. It would be also interesting to get similar results without the hypothesis of the fixed point free action, but this seems to make the number of possibilities grow enormously. Finally, another direction of further research can be to get a similar result for the extremal code of length 96, which is studied in [START_REF] Bouyuklieva | On the automorphisms of order 15 for a binary self-dual [96, 48, 20] code[END_REF][START_REF] De La Cruz | On Extremal Self-Dual Codes of Length 96[END_REF][START_REF] Dontcheva | On the Doubly-Even Self-Dual Codes of Length 96[END_REF], but this is beyond the aim of this paper.

Some necessary conditions for the existence of a self-dual extremal [120, 60, 24] code

In this section we establish some necessary conditions for the existence of an extremal [120, 60, 24] code. Similar conditions are given in [START_REF] Dougherty | The Search for the [24k, 12k, 4k + 4] Extremal Type II Code[END_REF] and [START_REF] Betsumiya | Formally Self-Dual Codes Related to Type II Codes[END_REF] for an extremal [72,36,[START_REF] Chouinard | Projectivity and relative projectivity over group rings[END_REF] and [96,48,[START_REF] De La Cruz | On Extremal Self-Dual Codes of Length 96[END_REF] code.

Let C be a [118, 59, 22] type I code. By Theorem 3 (a) we have In conclusion the shadow has minimal distance 23 and we can calculate the weight enumerators W C (y) and W S (y) (see Table 1 andTable 2). Lemma 29. Let C 0 be the subcode of C containing all codewords whose weights are multiples of 4. Then the supports of all vectors of a given weight in C 0 and in C ⊥ 0 form a 3-design. Proof. Since C 0 is a [118,58,[START_REF] Gleason | Weight polynomials of codes and the MacWilliams identities[END_REF] code and

W C (y) = 14 j=0 a j (1 + y 2 ) 59-4j (y 2 (1 -y 2 ) 2 ) j = =a 0 + (59a 0 + a 1 )y 2 + (1711a 0 + 53a 1 + a 2 )y 4 + (32509a 0 + 1376a 1 + 47a 2 + a 3 )y 6 + (455126a 0 + 23320a 1 + 1077a 2 + 41a 3 + a 4 )y 8 + . . .
• If B 3 = 1, B 7 =
C ⊥ 0 = C ∪ S, then C ⊥ 0 is a [118, 60, 22] code. If W C 0 (x, y) = 118 i=0 A i x 118-i y i , then we have |{i | A i = 0, 0 < i ≤ 115}| = 19 ≤ d(C ⊥ 0 ) -3.
Therefore by Theorem 20 the supports of the vectors of weight i in C ⊥ 0 and in C 0 form a 3-design. 

(k-i)! k! 118! (118-i)! | B k , since the terms λ i = B k k! (k-i)! (118-i)! 118! ∈ N 0 .
Actually, all the coefficients B k satisfy this condition (see Table 3). Now we have the following necessary condition on the existence of an extremal type II code of length 120. Proof. Let C be a self-dual [120, 60, 24] code, u ∈ F 120 A i y i is the weight enumerator of N, then A 0 = 1, A 4 = 1, A 8 = 0, A 12 = 0, A 16 = 0 and A 20 = 51359. Therefore by Theorem 3 we obtain the weight enumerator of the code N, which is given in Table 5. This concludes the proof. 

Definition 19 .

 19 Let D = (P, B) be a design with |P| = v and |B| = b.(a) If we list the points {p 1 , p 2 , . . . , p v } and the blocks {B 1 , B 2 , . . . , B b }, then we define the incidence matrix of D as a b × v matrix A = (a ij ), where

-1 σ 3 (

 3 D) + π -1 σ 5 (E) | D ∈ D, E ∈ E} have minimum distance less then 24. Since F σ 3 (C) + F σ 5 (C) ⊆ C would have to belong to C, this implies the following result. Theorem 25. The automorphism group of a self-dual [120, 60, 24] code does not contain elements of order 30.

σ = ( 1 ,

 1 . . . , 57)(58, . . . , 114)(115, 116, 117)(118, 119, 120). Let σ 3 := σ 19 and σ 19 := σ 3 . Then σ 3 is of type 3-(40; 0) and σ 19 is of type 19-(6; 6). Since σ is in the centralizer of both σ 3 and σ 19 in S 120 , it acts on π σ 3 (F σ 3 (C)) as an automorphism, say π σ 3 (σ), of type 19-(2; 2) and on π σ 19 (F σ 19 (C)) as an automorphism, say π σ 19 (σ), of type 3-(4; 0). Among the 16470 self-dual [40, 20, 8] codes, only 3, say D 1 , D 2 and D 3 , have an automorphism of this type, for a total of 396 conjugacy classes. So, up to a permutation in C S 40 (π σ 3 (σ)), π σ 3 (C) belong to a set, say D, of 396 elements. On the other hand, the code B 12 has only one conjugacy class of elements of type 3-(4; 0). If E 0 is a B 12 code with automorphism π σ 19 (σ), then the orbit, say E, of E 0 under the action of C S 12 (π σ 19 (σ)) has 27 elements. The code π σ 19 (F σ 19 (C)) belongs to E. With Magma [12] we check that all the codes in C := {π -1 σ 3 (D) + π -1 σ 19 (E) | D ∈ D, E ∈ E} have minimum distance less then 24. Since F σ 3 (C) + F σ 19 (C) ⊆ C would have to belong to C, this implies the following result. Theorem 26. The automorphism group of a self-dual [120, 60, 24] code does not contain elements of order 57.

  with a j ∈ Q for j = 0, . . . , 14. Since the minimum distance of C is 22, we get a 0 = 1, a 1 = -59, a 2 = 1416, a 3 = -17877, a 4 = 128679, a 5 = -538375, a 6 = 1291628, a 7 = -1713124, a 8 = 1187434, a 9 = -400374 and a 10 = 0. Let S be the shadow of C. Then by Theorem 5 (a) we have

  0, B 11 = 0, then a 14 = 33554432, a 13 = -14680064, a 12 = 2867200. Since B 15 = -2576 -1 128 a 11 ≥ 0, we have B 19 = 44275 + 11 164 a 11 < 0, a contradiction. • If B 3 = 0, B 7 = 1, B 11 = 0, then a 14 = 0, a 13 = -524288, a 12 = 212992. Since B 15 = -299 -1 128 a 11 ≥ 0, we have B 19 = 4576 + 11 164 a 11 < 0. It is again a contradiction. • If B 3 = 0, B 7 = 0, B 11 = 0, then a 14 = a 13 = 0 and a 12 > 0. Therefore the system of inequalities B 15 = 1 -128 a 11 -3 1024 a 12 ≥ 0 and B 19 = 69 2048 a 12 + 11 64 a 11 ≥ 0 has no solutions, a contradiction. Hence B 3 = 0, B 7 = 0, B 11 = 0 and we obtain a 14 = a 13 = a 12 = a 11 = 0.

Question 30 .

 30 By Assmus-Mattson theorem the supports of the codewords of minimal weight 22 in a self-dual [118, 59, 22] code build a 3-(118, 22, 8885) design D. Similarly the supports of the codewords of minimal weight 24 in a self-dual [120, 60, 24] code build a 5-(120, 24, 8855) design. In [21] the authors showed that if D is a self-orthogonal 5-(120, 24, 8855) design, then C(D) is a self-dual [120, 60, d] code with d = 20 or d = 24. Unfortunately it was not possible to exclude the case d = 20 and show that the code is extremal. A natural question, although very difficult, is: if D is a self-orthogonal 3-(118, 22, 8885) design, then is C(D) a self-dual extremal [118, 59, 22] code?Remark 31. Since the shadow of a self-dual[118, 59,[START_REF] Dontcheva | On the Doubly-Even Self-Dual Codes of Length 96[END_REF] code has minimal distance 23, the existence of a self-dual[120, 60,[START_REF] Gleason | Weight polynomials of codes and the MacWilliams identities[END_REF] code is equivalent to the existence of a self-dual[118, 59,[START_REF] Dontcheva | On the Doubly-Even Self-Dual Codes of Length 96[END_REF] code C (In general by[START_REF] Rains | Shadow Bounds for Self-Dual Codes[END_REF] the existence of an extremal code of length 24m is equivalent to the existence of a self-dual

2 of

 2 weight wt(u) = 4 and D := C ∩ u ⊥ . Since D ⊥ = C ⊥ + ( u ⊥ ) ⊥ = C ⊕ u , then D ≤ D ⊥ and dim D ⊥ = dim(C + u ) = 61 i.e. D is a self-orthogonal [120, 59] code. If N := D, u , then N = D ⊕ u and dim N = 60. Since (d 1 + u) • (d 2 + u) = 0, for all d 1 , d 2 ∈ D, we have that N is self-orthogonal and therefore it is selfdual. On the other hand, wt(d + u) ≡ 0 mod 4, because d • u = 0 for all d ∈ D. Therefore N is a self-dual doubly-even [120, 60, 4] code. Since dim(N ∩ C) = 59, we have N is neighbor of C. The code N has only a vector of weight 4. To determine the number of vectors of weight 20 it is sufficient to calculate the number of vectors w ∈ C of weight 24 with |supp(w) ∩ supp(u)| = 4. Since the vectors of weight 24 in C form a 5-design, then this number is equal to λ 4 = 51359 where λ 4 is the number of blocks incident with 4 different points. If

  2 and σ ∈ S n . Definition 11. Let C and C ′ be two codes of the same length n. We say that C and C ′ are equivalent and denote C ∼ C ′ if only if Cσ = C ′ where σ ∈ S n . If vσ ∈ C for all v ∈ C, then σ is an automorphism of C. The set of all automorphisms of C is a group, denoted Aut(C). Let C be a binary code of length n and σ ∈ Aut(C).(a) If σ is of prime order p, we say that σ is of type p-(c; f ) if it has c cycles of length p and f fixed points. (b) If σ is of order p • r, where p, r are distinct primes, then we say that σ is of type p • r-(s 1 , s 2 , s 3 ; f ) if σ has s 1 p-cycles, s 2 r-cycles, s 3 pr-cycles and f fixed points.Proof. Suppose a > max{ r ∈ Z : p r | n }. By Sylow's theorem, there exists a subgroup H ≤ Aut(C) with |H| = p a . The group H acts on the set {1, . . . , n}. Since all automorphisms of order p act fixed point freely, then each orbit has p a elements. Therefore p a | n, a contradiction.

	Definition 12. Remark 13. In order to simplify the notation, if σ is an automorphism of
	composite order r and has c r-cycles and f fixed points with n = c • r + f ,
	then we say that the cycle structure of σ is r-(c; f ).
	Let us first prove a result which is useful in the following sections.
	Lemma 14. Let C be a code of length n, such that all automorphisms of
	prime order p act fixed point freely. If |Aut(C)| = p a m, with (p, m) = 1,
	then a ≤ max{ r ∈ Z : p r | n }.
	Definition 15. Let σ ∈ Aut(C). The fixed code of σ is

  a • 3 • 5 • 7 • 19 • 23 for a non-negative integer a (which is at most 116, since G ⊆ S 120 ). (b) If σ is an automorphism of C of prime order p then its cycle structure is

	p number of	number of
		p-cycles	fixed points
	2	48, 60	24, 0
	3	40	0
	5	24	0
	7	17	1
	19	6	6
	23	5	5

(c) If σ is an automorphism of C of odd composite order r, then the cycle structure of σ is either 15-(8; 0), 3 • 19-(2, 0, 2; 0) or 5 • 23-(1, 0, 1; 0). Moreover, if all involutions act fixed point freely, the following conditions hold: (d) If σ is an automorphism of C of even composite order not divisible by 8, then the cycle structure of σ is either 4-(30; 0), 6-(20; 0), 10-(12; 0), 12-(10; 0), 20-(6; 0), 30-(4; 0), 60-(2; 0). (e) The order of G is in {7, 19, 23, 38, 56, 57, 114, 115, 552, 2760} or G is a {2, 3, 5}-group of order dividing 120.

  D 6 , A 4 ,

		Dic 12	114	C 19 ⋊ C 6
	15	C 15	115	C 115
	19	C 19	120 S 3, 4, 5, 6, 7, 8, 10, 12, 15, 19, 20, 23, 24, 30,
	38, 40, 56, 57, 60, 114, 115, 120, 552, 2760}.	
	Moreover, by Remark 21 and by the previous results, the order of every
	element in G is in O := {1, 2, 3, 4, 5, 6, 7, 10, 12, 15, 19, 20, 23, 115}.

5 , A 5 ×C 2 , S 4 ×C 5 , A 4 ⋊D 5 , A 4 ×D 5 20 C 20 , C 10 × C 2 , D 10 , Dic 20 , GA(1, 5)

Proof. All assertions about groups of order less than or equal to 552 make use of the library SmallGroups of Magma

[START_REF] Bosma | The Magma algebra system I: The user language[END_REF]

. Condition (e) of Remark 21 implies that the order of G is in {1, 2,

  Let W S (y) = 118 i=0 B i y i . By Theorem 5 (b) we have B i ∈ {0, 1} for i = 3, 7 and at most one B i is nonzero for i ≤ 11. Therefore there are four possibilities:

	W S (y) =	1 33554432	a 14 y 3 + (-	1 524288	a 13 -	7 8388608	a 14 )y 7 + (	189 16777216	a 14 +
		1 8192	a 12 +	13 262144	a 13 )y 11 + -	819 8388608	a 14 -	1 128	a 11 -	325 524288	a 13
		-	3 1024	a 12 y 15 +		325 65536	a 13 +	69 2048	a 12 +	11 64	a 11 +	20475 33554432	a 14 y 19 +
		-	231 128	a 11 -	7475 262144	a 13 -	12285 4194304	a 14 -	253 1024	a 12 + 12811968 y 23 + . . .

Table 1 :

 1 The weight enumerator of a self-dual[118, 59,[START_REF] Dontcheva | On the Doubly-Even Self-Dual Codes of Length 96[END_REF] code

	i	A i
	22 96	1534767
	24 94	25357020
	26 92	323009424
	28 90	3577030288
	30 88	33041945820
	32 86	255009210885
	34 84	1660986238080
	36 82	9190790517376
	38 80	43420813336368
	40 78	175902467952336
	42 76	613510461769920
	44 74 1848313759032000
	46 72 4823479510074576
	48 70 10929799315381752
	50 68 21547310072116608
	52 66 37017173713636224
	54 64 55486969304739115
	56 62 72637487089840296
	58 60 83095867738716768

Table 2 :

 2 The weight enumerator of the shadow of a self-dual[118, 59,[START_REF] Dontcheva | On the Doubly-Even Self-Dual Codes of Length 96[END_REF] code

	i	B i
	23 95	12811968
	27 91	2201249408
	31 87	187592982720
	35 83	7972733942784
	39 79	178129081470720
	43 75	2168688143930880
	47 71 14778320201079552
	51 67 57459493525644288
	55 63 129133310381938304
	59	169008544553322240

[24m -2, 12m -1, 4m + 2] code). By Lemma 29 the supports of the vectors of weight k in the shadow S of C form a 3-(118, k, λ) design. Therefore if there exists a [118, 59, 22] code and its shadow has enumerator weight W S (y) = 118 k=0 B k y k , then the coefficients of the shadow must satisfy the following condition of divisibility

  Theorem 32. If no linear [120, 60, 23] code with weight enumerator given in Table 4 exists, then there exists no self-dual [120, 60, 24] code. Proof. A self-dual [120, 60, 24] code has a child C, which is a self-dual [112, 59, 22] code. By Lemma 8, W C 1 (y) = W C 3 (y). Therefore the code C * defined as in Lemma 9 is formally self-dual, and the theorem follows (the weight enumerator of the code C * is given in Table 4. It is calculated thanks to Lemma 9, knowing the weight enumerator of the [118, 59, 22] type I code and of its shadow, which are given in Table 1 and Table 2 respectively).

	Theorem 33. If no self-dual doubly-even [120, 60, 4] code with weight enu-
	merator given in Table 5 exists, then there exists no self-dual [120, 60, 24]
	code.

Table 3 :

 3 Parameters of the 3-designs

	k	λ 0 = B k	λ 1	λ 2	λ 3 = λ
	23	12811968	2497248	469568	85008
	27	2201249408	503675712	9327328	24122400
	31	187592982720	49282902240	12636641600	3159160400
	35	7972733942784	2364793966080	687205084160	195497998080
	39	178129081470720	58873170994560	19121200835840	6099003714880
	43	2168688143930880	790284662618880	283691930170880	100270423594880
	47	14778320201079552	5886280080091008	2314263963112704	897774813276480
	51	57459493525644288	24834187879727616	10612900803302400	4483035684153600
	55	129133310381938304	60189254839039040	27779656079556480	12692429070831840
	59	169008544553322240	84504272276661120	41891006769626880	20584374016109760
	63	129133310381938304	68944055542899264	36534456783416704	19212085032658784
	67	57459493525644288	32625305645916672	18404018569491456	10312596612215040
	71	14778320201079552	8892040120988544	5320024004010240	3164497036868160
	75	2168688143930880	1378403481312000	871810748864000	548639522992000
	79	178129081470720	119255910476160	79503940317440	52774167279680
	83	7972733942784	5607939976704	3930351094784	2744469298944
	87	187592982720	138310080480	101663819840	74495040400
	91	2201249408	1697573696	1305825920	1001883680
	95	12811968	10314720	8287040	6643920

Table 4 :

 4 The weight enumerator of a formally self-dual [120, 60, 23] code

	Weight Weight distribution Weight Weight distribution
	0	1	61 84504272276661120
	23	1534767	63 72637487089840296
	24	31763004	64 120053624495708267
	25	6405984	65 64566655190969152
	27	323009424	67 37017173713636224
	28	4677654992	68 50277056834938752
	29	1100624704	69 28729746762822144
	31	33041945820	71 10929799315381752
	32	348805702245	72 12212639610614352
	33	93796491360	73	7389160100539776
	35	1660986238080	75	1848313759032000
	36	13177157488768	76	1697854533735360
	37	3986366971392	77	1084344071965440
	39	43420813336368	79	175902467952336
	40	264967008687696	80	132485354071728
	41	89064540735360	81	89064540735360
	43	613510461769920	83	9190790517376
	44	2932657830997440	84	5647353209472
	45	1084344071965440	85	3986366971392
	47	4823479510074576	87	255009210885
	48 18318959415921528	88	126838437180
	49	7389160100539776	89	93796491360
	51 21547310072116608	91	3577030288
	52 65746920476458368	92	1423634128
	53 28729746762822144	93	1100624704
	55 55486969304739115	95	25357020
	56 137204142280809448	96	7940751
	57 64566655190969152	97	6405984
	59 83095867738716768		
	60 167600140015377888		

denotes the projection map defined by π σ (v| Ω i ) = v j for some j ∈ Ω i and i{1, . . . , c + f }.
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