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SYMMETRIES OF WEIGHT ENUMERATORS AND APPLICATIONS TO

REED-MULLER CODES

MARTINO BORELLO AND OLIVIER MILA

Abstract. Gleason’s 1970 theorem on weight enumerators of self-dual codes has played a crucial
role for research in coding theory during the last four decades. Plenty of generalizations have been
proved but, to our knowledge, they are all based on the symmetries given by MacWilliams’ identities.
This paper is intended to be a first step towards a more general investigation of symmetries of weight
enumerators. We list the possible groups of symmetries, dealing both with the finite and infinite
case, we develop a new algorithm to compute the group of symmetries of a given weight enumerator
and apply these methods to the family of Reed-Muller codes, giving, in the binary case, an analogue
of Gleason’s theorem for all parameters.
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1. Introduction

Gleason’s 1970 theorem about the weight enumerators of self-dual codes is, as Sloane puts it,
“one of the most remarkable theorems in coding theory” [Slo06]. Weight enumerators of self-dual
doubly-even codes have a group of symmetry containing a subgroup of order 192, that is generated
by the symmetry coming from MacWilliams’ identities related to the self-duality condition and by
the symmetry coming from the divisibility condition. This simple observation led Gleason to prove,
by classical arguments from invariant theory, that the weight enumerator of a self-dual doubly-even
code belongs to the polynomial ring C[wĤ3

(x, y), wG24
(x, y)], where wĤ3

(x, y) and wG24
(x, y) are

the weight enumerators of the extended Hamming code of length 8 and of the extended binary
Golay code of length 24 respectively [G70]. The importance of Gleason’s Theorem is surely due
to its fecundity and to the numerous new research problems it generated. For example, it implies
that self-dual doubly-even codes exist only for lengths multiple of 8. Moreover, Mallows and
Sloane derived upper bounds on the minimum distance of such codes using Gleason’s Theorem,
leading to the notion of extremal codes (those which attain the bound) [MS73]. Finally, and
most remarkably, weight enumerators of extremal self-dual doubly-even codes can be determined
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2 M. BORELLO AND O. MILA

starting from Gleason’s theorem: for some lengths the corresponding codes are known, and it is
useful to have their weight enumerators on record, in the other cases it is hoped that knowledge of
the weight enumerator will assist in deciding the existence of the codes. The long-standing open
problem on the existence of an extremal self-dual doubly-even code of length 72 [S73] is probably
one of the main examples of the active research that has arisen from Gleason’s theorem (see [B15]
for a summary of the some of the most recent results about it).

Many generalizations of Gleason’s theorem to other family of self-dual codes have been proved, as
documented in [NRS06]. All of them make use of MacWilliams’ identities and their generalizations,
which give a symmetry of the weight enumerator only if the code is self-dual or eventually formally
self-dual. To our knowledge, there is no systematic research on other cases, that is codes for which
MacWilliams’ identities do not give a symmetry. However, many interesting families of codes (e.g.
Reed-Muller codes) do not have this property, and it would be useful to have a similar result about
their weight enumerators. This paper is intended to be a first step in this direction.

The following questions guided our work:

(1) Which are the possible groups of symmetries of a weight enumerator?
(2) If we know a weight enumerator of a code, how can we compute efficiently its symmetries?
(3) Once that we have computed some symmetries of the weight enumerator of a code, can we

prove that they are symmetries of other weight enumerators of codes belonging to the same
family (as in the case of self-dual doubly-even codes)?

(4) Can we determine, with these methods, new properties or unknown weight enumerators?

Note that answering these questions is in general quite difficult, since the nature of weight
enumerator is essentially combinatorial while the codes are geometric objects. It is hence not
evident how and if properties of codes will give rise to symmetries of their weight enumerators.

About the first two questions, a partial answer is given in [BO00] for general polynomials. In
that paper the authors address the problem of finding symmetries of homogeneous two-variables
polynomials and they develop an algorithm based on moving frames to compute their group of
symmetries. In the paper this algorithm is implemented in Maple, but as the authors say, this
computer algebra system has the weakness of a poor handling with both algebraic numbers and
rational algebraic functions. We use some of their ideas to develop a new method which can be
easily implemented in Magma [BCP97] and we concentrate on the case of weight enumerators.

A homogeneous polynomial p(x, y) ∈ C[x, y] defines a variety V (p(x, y)) in the projective line
P1(C) (the set of “roots” of p(x, y)). The classical action of PGL2(C) on the projective line P1(C)
(which is sharply 3-transitive) induces an action of the projection of the group of symmetries of
p(x, y) in PGL2(C) on V (p(x, y)). We will use this simple observation later on to prove the following
result.

Theorem A. The group of symmetries of the weight enumerator p(x, y) of a code is finite if and
only #V (p(x, y)) ≥ 3.

If #V (p(x, y)) ≥ 3, the projection of the group of symmetries of the weight enumerator is a
finite subgroup of PGL2(C), and these subgroups are classified by Blichfeldt in [B17] (see Theorem
3.2). Consequently, the group of symmetries is a central extension of one of these subgroups, and
it is well-known that isomorphism classes of central extensions are counted by second cohomology
groups. On the other hand, we provide an almost complete classification of linear codes for which
#V (p(x, y)) < 3 (see Theorem 3.5). This answers completely the question about the possible
groups of symmetry. Moreover, the sharply 3-transitive action of PGL2(C) on P1(C) provides a
tool to develop an efficient algorithm to compute symmetries of a given weight enumerator.

In order to give an answer to question (3), one has to choose a family to study. In this paper
we deal with the family of Reed Muller codes (affine or projective), for their importance in coding
theory and their relation with algebraic geometry. Determining their weight enumerator is a difficult
task that is related to the counting of Fq-rational points on hypersurfaces. This connection between
two difficult problems may lead to partial solutions, as shown in [E06] and [K13]. Along those lines,
we contribute to the investigation of weight enumerators of Reed-Muller codes by studying their
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group of symmetries and the related invariant ring. In the case of binary Reed-Muller codes we
have the complete picture, while in the other cases we present only partial results.

Theorem B. Let C := RM(r,m), i := ⌊m−1
r ⌋ if r 6= 0 and i := m otherwise, and j := ⌊ m−1

m−r−1⌋ if

r 6= m− 1 and j := m otherwise. Denote ζ ′n a primitive n-th root of unity and S̄ the projection of
the group of symmetries of the weight enumerator wC(x, y) of C in PGL2(C). Then

(1) if m ≤ r, then wC(x, y) = (x+ y)2
m
;

(2) if r < m < 2r + 1 and j 6= 2, then S̄ =

〈

[

1 0
0 −1

]

,

[

1+ζ′
2j

1−ζ′
2j

1−ζ′
2j

1+ζ′
2j

]〉

∼= D2j and

wC(x, y) ∈ C[wRM(j−1,j)(x, y), wRM(j−1,j+1)(x, y)];

(3) if r < m < 2r + 1 and j = 2, then S̄ ⊇
〈

[

1 0
0 −1

]

,
[

1+ζ′
4
1−ζ′

4

1−ζ′
4
1+ζ′

4

]〉

∼= D4,

wC(x, y) ∈ C[wRM(1,2)(x, y), wRM(1,3)(x, y)]

and, if S̄ 6= D4, then

wC

(−x+ ((ζ ′8)
3 + (ζ ′8)

2 − ζ ′8)y
2

,
((ζ ′8)

3 − (ζ ′8)
2 − ζ ′8)x+ y

2

)

= ±wC(x, y);

(4) if m = 2r + 1, then S̄ =
〈[

1 0
0 ζ′4

]

, 1√
2

[

1 1
1 −1

]

〉

∼= S4 and

wC(x, y) ∈ C[wĤ3
(x, y), wG24

(x, y)];

(5) if m > 2r + 1 and i 6= 2, then S̄ =
〈[

1 0
0 ζ′

2i

]

, [ 0 1
1 0 ]

〉

∼= D2i and

wC(x, y) ∈ C[wRM(0,i)(x, y), wRM(1,i+1)(x, y)];

(6) if m > 2r + 1 and i = 2, then S̄ ⊇
〈[

1 0
0 ζ′4

]

, [ 0 1
1 0 ]

〉

∼= D4,

wC(x, y) ∈ C[wRM(0,2)(x, y), wRM(1,3)(x, y)]

and, if S̄ 6= D4, then wC
(

x+ζ′
8
y√

2
,
(ζ′

8
)−1x−y√

2

)

= ±wC(x, y).

Remark 1. The polynomials that are generators of the polynomial rings in Theorem B are known
(see the end of Section 2).

A crucial role is played by a divisibility condition proved by Ax in 1964 [A64] for the affine
version of Reed-Muller codes. The counterpart for the projective version can be easily deduced.

Finally, the fourth question is very interesting from a coding theoretical point of view but is left
unanswered in this paper whose aim is mainly to study symmetries of weight enumerators. The
authors hope to answer it in future work.

In Section 2 we present the necessary background about coding theory, invariant theory and
we recall some properties of Reed-Muller codes. Section 3 is devoted to the proof of Theorem A,
the discussion of the possible finite groups of symmetries and a classification of codes with weight
enumerators having an infinite group of symmetries. In Section 4 we present our algorithm for
finding the group of symmetries of weight enumerators. Finally, Section 5 is concerned with the
proof of Theorem B and some further results about Reed-Muller codes over larger fields.

2. Background

For the convenience of the reader we recall here some definitions and results of coding theory and
invariant theory which will be useful in the sequel. Three standard references are [MS77], [HP10]
and [RS02].
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2.1. Codes and weight enumerators. A linear code C is a subspace of Fn
q , where n is a positive

integer called the length of the code. A generator matrix of a linear code C is a matrix whose rows
generate C. Elements of C are called codewords. The support of a codeword c ∈ C, denoted supp(c),
is defined as

supp(c) := {i ∈ {1, . . . , n} | ci 6= 0}.
The weight wt(c) of a codeword c is the cardinality its support. The weight enumerator wC(x, y)
is the polynomial

wC(x, y) =
∑

c∈C
xn−wt(c)ywt(c) =

n
∑

i=0

Aix
n−iyi, Ai := #{c ∈ C | wt(c) = i}.

If C ≤ Fm
q and D ≤ Fn

q are linear codes with generator matrices C and D respectively, their

direct sum is the vector space C ⊕ D naturally embedded in Fm+n
q , i.e. the code with generator

matrix
[

C 0
0 D

]

. Observe that w(C⊕D)(x, y) = wC(x, y) · wD(x, y).
A monomial transformation is a linear transformation of the form Fn

q → Fn
q , v 7→ DPv, where

D is an n × n diagonal matrix with non-zero diagonal entries, and P is an n × n permutation
matrix. Two codes are said to be equivalent if one is the image of the other under a monomial
transformation. Observe that in the case q = 2, a monomial transformation is just a permutation.
It is easy to see that two equivalent codes have the same weight enumerator.

Convention: Since we are interested in weight enumerators, we will usually identify codes up
to equivalence. In particular, a generator matrix of a code C will mean a generator matrix of some
code equivalent to C.

Let m > 1 be an integer. A linear code C is divisible by m if the weight of every codeword of C
is divisible by m. A code is divisible if it is divisible by some m > 1.

The dual of a linear code C ≤ Fn
q (denoted C⊥) is the orthogonal space with respect to the

standard inner product of Fn
q , 〈x, y〉 =

∑n
i=1 xiyi for x, y ∈ Fn

q , i.e.

C⊥ := {v ∈ Fn
q | 〈v, c〉 = 0 for all c ∈ C}.

A linear code is self-dual if C⊥ = C.
An important relation between the weight enumerator of a code C and its dual C⊥ is given by

MacWilliams’ Theorem.

Theorem (MacWilliams, [MS77]). Let C ≤ Fn
q be a linear code, and C⊥ its dual. Then

WC⊥(x, y) =
1

#CWC(x+ (q − 1)y, x− y).

2.2. Symmetries and invariant ring. The group GL2(C) acts naturally on the space C[x, y] on
the right: for g =

[

a b
c d

]

∈ GL2(C), and p(x, y) ∈ C[x, y], we have

pg(x, y) := (p ◦ g)(x, y) = p(ax+ by, cx+ dy).

We set S(p(x, y)) := StabGL2(C)(p(x, y)), the group of symmetries of p(x, y).

Notation: We denote by ζn any n-th root of unity and by ζ ′n any primitive n-th root of unity.
We call Cn the cyclic group of order n, Dn the dihedral group of order 2n, V4 the Klein four-group
and Sn and An the symmetric group and the alternating group on n symbols, respectively.

Example 1. A code C is divisible by m if and only if

dm :=
[

1 0
0 ζ′m

]

∈ S(wC(x, y)).

Example 2. If C is self-dual, then #C = #C⊥ = qn/2 and so MacWilliams’ Theorem implies that

sq := q−1/2
[

1 q−1
1 −1

]

∈ S(wC(x, y)) (⋆).
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A linear code satisfying (⋆) is called formally self dual.
If G ≤ GL2(C) is a group of matrices, the ring

C[x, y]G := {p(x, y) ∈ C[x, y] | pg(x, y) = p(x, y) for all g ∈ G}.

is called the invariant ring of G.

Theorem (Gleason, [G70]). The weight enumerator of a self-dual binary linear code which is
doubly-even, i.e. is divisible by 4, lies in the ring

C[wĤ3
(x, y), wG24

(x, y)],

where wĤ3
(x, y) and wG24

(x, y) are the weight enumerators of the extended Hamming code of length
8 and of the extended binary Golay code of length 24 respectively. This polynomial ring is the
invariant ring of G := 〈d4, s2〉.

2.3. Reed-Muller codes. The Reed-Muller code RMq(r,m) on m variables, of degree r and
defined over Fq is the code

RMq(r,m) :=
{

(p(v))v∈Fm
q

| p ∈ Fq[x1, . . . , xm]r

}

,

where Fq[x1, . . . , xm]r is the set of polynomials in m variables with coefficients in Fq and of degree
at most r. The code RMq(r,m) encodes all hypersurfaces in Am(Fq) of degree at most r, so
determining the weight enumerator of such a code is equivalent to counting Fq-rational points of
hypersurfaces in the affine space.

Similarly we can define the projective Reed-Muller code PRMq(r,m) on m variables, of degree
r and defined over Fq in the following way:

PRMq(r,m) := {(p(v))v∈R | p ∈ Fq[x0, . . . , xm]hr} ∪ {0},

where Fq[x1, . . . , xm]hr is the set of degree r homogeneous polynomials in m + 1 variables with
coefficients in Fq, and R is a set of representatives in Fm+1

q of all the points of Pm(Fq). Observe
that changing the set of representatives R gives rise to an equivalent code.

If q = 2 we will usually omit the subscript and write RM(r,m) for RM2(r,m) and PRM(r,m)
for PRM2(r,m).

Both Reed-Muller codes and projective Reed-Muller codes are divisible codes for certain param-
eters, as a consequence of a theorem by Ax.

Theorem (Ax, [A64]). For any integers r, m and prime power q = pv, the Reed-Muller code

RMq(r,m) is divisible by q⌊
m−1

r
⌋ and this is the largest power of the prime p with this property.

It follows from an easy argument relating the projective and affine zeroes of a homogeneous
polynomial that the projective Reed-Muller code PRMq(r,m) is divisible by q⌊

m
r
⌋.

Note that in general Reed-Muller codes are not self-dual, but if q is a prime power and r, m are
integers such that r < m(q − 1), then

RMq(r,m)⊥ = RMq(m(q − 1)− r − 1,m).

Finally, for some parameters the weight enumerators of Reed-Muller codes are known:

C wC(x, y)
RMq(0,m) xq

m

+ (q − 1)yq
m

RMq(1,m) xq
m

+ q(qm − 1)xq
m−1

y(q−1)qm−1

+ (q − 1)yq
m

The weight enumerators of RMq(m(q − 1)− 1,m) = RMq(0,m)⊥ and RMq(m(q − 1) − 2,m) =

RMq(1,m)⊥ can then be derived using MacWilliams’ transformations.
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3. Group of Symmetries

This section is devoted to studying the possible groups of symmetries that a weight enumerator
can have. In the first subsection, we prove Theorem A which allows us to decide if a polynomial
has a finite or infinite group of symmetries.

If the group is finite, the classification of finite subgroups of PGL2(C) by Blichfeldt and the
study of the second cohomology of these subgroups allow us to classify all possible finite groups of
symmetries. This is treated in the second subsection.

The third subsection handles the case of infinite group of symmetries of weight enumerators and
gives an almost complete classification of linear codes with this property.

3.1. Proof of Theorem A. For a homogeneous polynomial p(x, y) ∈ C[x, y] let V (p(x, y)) ⊆
P1(C) denote the projective variety defined by the vanishing of p(x, y), i.e.

V (p(x, y)) = {(x : y) ∈ P1(C) | p(x, y) = 0}.
Lemma 3.1. Let p(x, y) ∈ C[x, y] be a homogeneous polynomial of degree d, and let n = #V (p(x, y)).
If n ≥ 3, then

#S(p(x, y)) ≤ n! d.

Proof. Let G := S(p(x, y)). Since every g ∈ G fixes p(x, y), G acts on V (p(x, y)). Scalar matrices
fix V (p(x, y)) point-wise, so this action induces an action of Ḡ ⊆ PGL2(C), where Ḡ is the image
of G in PGL2(C). It is well-known that PGL2(C) acts sharply 3-transitively on P1(C). Since
#V (p(x, y)) ≥ 3, every permutation of V is realized by at most one ḡ in PGL2(C), whence Ḡ is
finite.

Any ḡ ∈ Ḡ has exactly d pre-images in G: if g ∈ G is such a pre-image, then all the pre-images
in PGL2(C) are given by λg for λ ∈ C \ {0}. But

p(λg)(x, y) = λdpg(x, y) = λdp(x, y),

so that λg ∈ G if and only if λd = 1.
There are n! permutations of V (p(x, y)), so at most n! elements in Ḡ. Thus #G ≤ n! d. �

Theorem A is now an easy consequence.

Proof of Theorem A. If V (p(x, y)) ≥ 3, then S(p(x, y)) is finite by Lemma 3.1. If V (p(x, y)) < 3,
then p(x, y) is conjugate to xnym for m,n ∈ N ∪ {0}, which is easily seen to have an infinite group
of symmetries. �

3.2. The finite case. If a homogeneous polynomial p(x, y) ∈ C[x, y] has finite group of symmetries
S(p(x, y)) ⊆ GL2(C), its image S̄(p(x, y)) ⊆ PGL2(C) is also finite. The following theorem gives a
classification of all finite subgroups of PGL2(C) up to conjugation.

Theorem 3.2 (Blichfeldt [B17]). If H ≤ PGL2(C) is finite, then H is conjugate to one of the
following groups:

(1)
〈[

1 0
0 ζ′n

]〉

∼= Cn for a certain n ∈ N.

(2)
〈[

1 0
0 ζ′n

]

, [ 0 1
1 0 ]

〉

∼= Dn for a certain n ∈ N.

(3)
〈

[

1 0
0 −1

]

,
[

ζ′4 ζ′4
1 −1

]〉

∼= A4.

(4)
〈[

1 0
0 ζ′

4

]

,
[

ζ′
4

ζ′
4

1 −1

]〉

∼= S4.

(5)
〈[

ζ′5 0

0 ζ′4
5

]

,
[

0 1
−1 0

]

, 1
10

[

(
√
5+5)ζ′5−

√
5−5 (−2

√
5+10)ζ′5−3

√
5+5

(−2
√
5+10)ζ′5−3

√
5+5 (−

√
5−5)ζ′5+

√
5−5

]〉

∼= A5.

It follows that S(p(x, y)) ⊆ GL2(C) is (up to conjugation) a central extension of the groups listed

above by the cyclic group Cd = 〈
[

ζ′
d

0

0 ζ′
d

]

〉, where d is the degree of p(x, y). These are classified by

second cohomology groups, which are known to be the following:
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G H2(G,Cd)

Cn Z/ gcd(d, n)Z

Dn







Z/2Z ⊕ Z/2Z d even, n even
Z/2Z d even, n odd
0 otherwise

A4















Z/2Z 2 | d, 3 ∤ d
Z/3Z 2 ∤ d, 3 | d
Z/2Z ⊕ Z/3Z 2 | d, 3 | d
0 otherwise

S4

{

Z/2Z⊕ Z/2Z d even
0 otherwise

A5

{

Z/2Z d even
0 otherwise

Not all groups in the list above can actually occur, since we are looking at those which have a
faithful representation in GL2(C). This is not the case for example for A5: in this case d has to be
even and the trivial extension A5×Cd is not possible, so that the only possibility is SL(2, 5)×Cd/2 .

Remark 2. A natural question that arises is whether or not it is possible to realize the groups of
Blichfeldt’s Theorem as the group of symmetries of the weight enumerator of a code. We provide
some examples for the first four cases:

(1) If Cn denotes the [n, 1, n]q repetition code for n ≥ 3 and q > 2, the direct sum C = Cn⊕C2n
realizes the group Cn:

wC(x, y) = x3n + (q − 1)x2nyn + (q − 1)xny2n + (q − 1)2y3n =⇒ S̄(wC(x, y)) ∼= Cn.

(2) The [n, 1, n]2 repetition code for n ≥ 3 realizes Dn:

wC(x, y) = xn + yn =⇒ S̄(wC(x, y)) ∼= Dn.

(3) The [12, 6, 6]3 ternary Golay code realizes A4:

wC(x, y) = x12 + 264x6y6 + 440x3y9 + 24y12 =⇒ S̄(wC(x, y)) ∼= A4.

(4) The [8, 4, 4] extended Hamming code realizes S4:

wC(x, y) = x8 + 14x4y4 + y8 =⇒ S̄(wC(x, y)) ∼= S4.

These examples can be deduced by straightforward calculations (for part 1 and 2) and using our
algorithm in Section 4 (for part 3 and 4). It is however not clear if the group A5 can be realized
and how to realize it.

3.3. The infinite case. We proceed to the classification of codes with weight enumerators having
infinite group of symmetries. We will need a lemma.

Lemma 3.3. Let C be a code over Fq with q 6= 2 such that all codewords of C have even weight.
Let x, y ∈ C be codewords, with y of weight two and support supp(y) = {i, j}. Then there exists
λ ∈ Fq such that (xi, xj) = (λyi, λyj).

Proof. Suppose that (xi, xj) 6= (λyi, λyj) for every λ ∈ Fq. We show that for suitable µ ∈ Fq, the
codeword x+ µy has odd weight. Since (xi, xj) 6= 0(yi, yj) = (0, 0) we may assume without loss of
generality that xi 6= 0.

If xj = 0, pick any µ ∈ Fq \ {0,−xiy
−1
i } (which is non-empty since q > 2). We have xi +µyi 6= 0

and therefore supp(x+µy) = supp(x) ∪ {j} has odd cardinality. If xj 6= 0, we can set µ = −xiy
−1
i

and find supp(x+ µy) = supp(x) \ {i}, which has again odd cardinality. �

As an immediate consequence we have:



8 M. BORELLO AND O. MILA

Corollary 1. Let C be a code over Fq with q 6= 2. Assume all codewords of C have even weight.
Let c1, . . . , cr ∈ C of weight 2 such that ci 6= λcj for any λ ∈ Fq and i 6= j. Then

supp(ci) ∩ supp(cj) = ∅
for every i 6= j.

The first classification result is the following.

Lemma 3.4. Let C be a linear code of even length n over Fq with q 6= 2. Suppose that

wC(x, y) = (x2 + ay2)n/2, a ∈ R \ {0}.
Then a = q − 1 and

C ∼=
n/2
⊕

i=1

〈(1, 1)〉Fq .

Proof. If n = 2 it is clear that C = 〈(1, 1)〉Fq . Let n > 2. Expanding the above expression, we
see that C has no codewords of odd weight. Moreover, the number of codewords of length 2 is
an−2 = an/2 6= 0. Let r := an−2/(q − 1) and let c1, . . . , cr be a set of codewords of weight 2 such
that ci 6= λcj for any λ ∈ Fq and i 6= j. They have disjoint supports by Corollary 1.

Let S :=
⋃

i supp ci and let CS := 〈c1, . . . , cr〉Fq . Every codeword x ∈ C can be written as a sum

x = y + z, y, z ∈ Fn
q ,

with supp(y) ⊆ S and supp(z)∩S = ∅. By Lemma 3.3, y is in CS ⊆ C and thus so is z. Consequently,
C is the direct sum

C = CS ⊕ CSc ,

where CSc = {c ∈ C | supp(c) ∩ S = ∅}. This implies that wC(x, y) = wCS (x, y) · wCSc (x, y).
Now observe that CS is monomially equivalent to the code

⊕r
i=1〈(1, 1)〉Fq , and hence its weight

enumerator is wCS (x, y) = (x2 + (q − 1)y2)r. Therefore, we must have a = (q − 1). By induction,

CSc ∼=
⊕n/2−r

i=1 〈(1, 1)〉Fq so that C ∼=
⊕n/2

i=1〈(1, 1)〉Fq , as desired. �

Let us now prove the classification theorem for codes whose weight enumerator has an in-
finite group of symmetries. Notice that the weight enumerator wC(x, y) of a code C satisfies
#V (wC(x, y)) < 3 if an only if wC(x, 1) has at most two distinct roots in Z (the ring of alge-
braic integers).

Theorem 3.5. Let C ⊆ Fn
q be a linear code with weight enumerator wC(x, 1) ∈ Z[x] having at most

two distinct roots in Z. Then only the following possibilities can hold:

(a) wC(x, y) = xn and C = {0};
(b) wC(x, y) = (x+ (q − 1)y)n and C = Fn

q ;

(c) n is even, wC(x, y) = (x2 + (q − 1)y2)n/2 and, if q 6= 2, C ∼=
⊕n/2

i=1〈(1, 1)〉.
Proof. Let −a, −b be the roots of wC(x, 1) in Z, so that wC(x) = (x+ a)r(x+ b)n−r for r ∈ N. The
number of codewords in C of weight one is then l := ra+ (n − r)b.

First, assume that l 6= 0 and let m = l/(q − 1). Taking arbitrary linear combinations of the
codewords of weight one gives a copy of Fm

q in C. Therefore, C = C1 ⊕ C2, with C1 = Fm
q and

C2 := {c ∈ C | supp(c) ∩ supp(d) = ∅ ∀d ∈ C1}. Hence
wC(x, y) = (x+ (q − 1)y)m · wC2(x, y).

Consequently, −(q − 1) is a root of f ; we may assume w.l.o.g. that a = q − 1. We get

m =
ra+ (n− r)b

q − 1
= r +

(n− r)b

q − 1
≥ r.

Hence, either b = 0 and r = n, or (x+ (q− 1)y) divides (x+ by)n−r, which implies b = q− 1. Both
cases give that wC(x, y) = (x + (q − 1)y)n. But this implies #C = wC(1, 1) = qn = #Fn

q , whence
C = Fn

q , as desired.
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Now assume C has no codewords of weight one, i.e. l = ra + (n − r)b = 0. If a is real then
so is b, and both must be non-negative: since wC(x, y) is non-zero and has positive coefficients,
wC(r, 1) > 0 for any real r > 0, so wC(x, 1) has only non-positive roots. Since ra = −(n − r)b, we
must have a = b = 0 whence wC(x, 1) has only one root and C = {0}.

If a is non-real, then a and b are complex conjugate algebraic integers, and we must have r = s,
which is possible only if n is even. Consequently,

wC(x, y) = (x2 +Tr(a)xy +N(a)y2)n/2

where Tr(a) = a+ ā and N(a) = aā. The fact that C has no codeword of weight one implies that
Tr(a) = 0 and hence

wC(x, y) = (x2 +N(a)y2)n/2.

If q 6= 2, Lemma 3.4 gives the desired conclusion about C. If q = 2, we must show that N(a) = 1.
Since a is an algebraic integer, N(a) ∈ Z. Since q = 2, the number of codewords of weight n is

N(a)n/2 = 1

so that N(a) = ±1. But N(a) = −1 is impossible, since wC(x, y) has non-negative coefficients. �

Note that Theorem 3.5 almost classifies, up to monomial equivalence, all linear codes having
weight enumerator with at most two distinct roots in Z. The case q = 2 is left unsolved and seems
to be a difficult problem. If q = 2, the sum of two codewords of weight 2 cannot have weight 3, so
the argument in the proof of Lemma 3.4 does not work.

Question. Is it possible to classify binary codes of length n with weight enumerator (x2 + y2)n/2?

Let C and C′ be two codes with weight enumerator (x2 + y2)n/2 and (x2 + y2)n
′/2 respectively.

Then C ⊕ C′ has weight enumerator (x2 + y2)(n+n′)/2. Hence, if we let

M := {binary codes of length n and weight enumerator (x2 + y2)n/2 | n ∈ 2N},
we have that (M,⊕) is a semigroup; in order to answer positively to Question 3.3 it thus suffices
to find all irreducible elements in M, which means to find a minimal set of generators of (M,⊕).
As usual, we consider elements in M as classes of codes up to equivalence.

Clearly, the generator with minimum length is the [2, 1, 2] code X1 := 〈(1, 1)〉. Furthermore, every
element in M is formally self-dual and all formally self-dual codes up to length 16 are classified in
[BH01]. From an analysis of the tables in the paper we find that, up to length 16, there are exactly
4 other irreducible elements of M, namely the formally self-dual (but not self-dual) [6, 3, 2] code
X2 with generator matrix

[

1 0 0 1 1 1
0 1 0 1 1 1
0 0 1 1 1 1

]

and three [14, 7, 2] codes, which we call X3,X4 and X5, with generator matrices [I|X3],[I|X4] and
[I|X5] respectively, where

X3 :=







1 1 1 0 0 0 0
1 1 1 0 0 0 0
1 1 1 0 0 0 0
1 0 0 1 1 1 1
1 0 0 1 1 1 1
1 0 0 1 1 1 1
1 0 0 0 0 0 0






, X4 :=







1 1 1 1 1 0 0
1 1 1 1 1 0 0
1 1 1 1 1 0 0
1 1 1 1 1 0 0
1 1 1 1 0 1 0
1 1 1 1 0 1 0
1 1 1 1 1 1 1






, X5 :=







1 0 1 0 1 0 0
1 0 1 0 1 0 0
1 0 1 0 1 0 0
1 0 1 0 1 0 0
1 1 1 0 1 0 1
1 1 1 0 1 0 1
1 1 1 1 1 1 1






,

and I is the 7 × 7 identity matrix. It is not clear how to construct other generators and it seems
already too complex for a software like Magma [BCP97]. It is not obvious whether or not there
are infinitely many such generators.

We conclude this section showing a relation between our result and the Gleason-Pierce Theorem
(cf. [Ken94]). Recall that a code is divisible if there exists an integer m > 1 such that the weight
of every codeword of C is divisible by m.

Theorem 3.6 (Gleason-Pierce). Let C be a formally self-dual divisible code. Then

• q = 2 and m ∈ {2, 4},
• q = 3 and m = 3,
• q = 4 and m = 2,
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• or q arbitrary, m = 2 and wC(x, y) = (x2 + (q − 1)y2)n/2.

Hence, Theorem 3.5 implies the following.

Corollary 2. For q > 4, if C is a formally self-dual divisible code of length 2n, then C is equivalent
to the direct sum of n copies of 〈(1, 1)〉Fq .

4. The algorithm

The proof of Lemma 3.1 gives an algorithm to find the stabilizer of every weight enumerator.
Let C be a linear code. Suppose that its weight enumerator wC(x, y) is known and of degree n.

1. Set G := ∅.
2. Calculate V := {z1, . . . , zn} the set of roots of wC(x, 1).
3. Call V3 the set of all ordered 3-subsets of V .

Clearly we have #V3 =
1
6n

3 − 1
2n

2 + 1
3n.

4. For every triple {w1, w2, w3} ∈ V3:
4a. Solve the system zia + b − wizic − wid = 0, i ∈ {1, 2, 3}, where the unknowns are

a, b, c, d. It has clearly infinitely many solutions depending on one complex parameter
λ (the action of PGL2(C) is sharply 3-transitive, as we said). Call a, b, c, d one solution.

4b. If {azi+b
czi+d | zi ∈ V } = V , then

4bi. Let A :=
[

a b
c d

]

.

4bii. Calculate λ := wC(b,d)
wC(0,1)

.

4biii. Let G := G ∪ {ζnλ1/nA | ζn ∈ C s.t. ζnn = 1}.
Then G is equal to S(wC(x, y)).

This algorithm can be implemented easily in Magma, but there is a problem for Step 2: in C,
we do not have access to the exact roots but only to approximations. There are two ways to solve
this. The first one is to consider the splitting field of wC(x, 1) instead of C. This gives exact results
but is computationally more expensive. The second one is to use approximations of the roots and
control the error to find an approximated version of the stabilizer. This is done in the Master thesis
of the second author [M15].

Finally, we give a small lemma that allows one to prove the triviality of the group of symmetries
of a given polynomial. Recall that the cross ratio of four points (z1 : 1), . . . , (z4 : 1) is defined as

[z1, z2, z3, z4] :=
(z1 − z3)(z2 − z4)

(z1 − z4)(z2 − z3)
.

Make the symmetric group S4 acts on the cross ratios by permuting the points, and observe that
for any σ ∈ V4 := {id, (12)(34), (13)(24), (14)(23)}, we have [zσ(1), zσ(2), zσ(3), zσ(4)] = [z1, z2, z3, z4].

Let Z be a set of at least four complex points. A 4-tuple of distinct elements (z1, z2, z3, z4) ∈
Z4 will be called critical if for any 4-tuple of distinct elements (y1, y2, y3, y4) ∈ Z4, we have
[z1, z2, z3, z4] = [y1, y2, y3, y4] if and only if (y1, y2, y3, y4) = (zσ(1), zσ(2), zσ(3), zσ(4)) for some σ ∈ V4.

Lemma 4.1. Let p(x, y) ∈ C[x, y] be a polynomial with 5 roots z1, z2, z3, z4, z5 of p(x, 1) such that
both (z1, z2, z3, z4) and (z1, z2, z3, z5) are critical. Then S(p(x, y)) is trivial.

Proof. Every ḡ in PGL2(C) sends {z1, z2, z3, zj} to itself, for j = 4, 5, since it must preserve the
cross ratio of these four points. If ḡ sends z4 to zj for j ∈ {1, 2, 3}, then from the fact that ḡ fixes
{z1, z2, z3, z5} if follows that some element of this set is also sent to zj, contradicting the injectivity
of ḡ. Thus ḡz4 = z4. But the only permutation of (z1, z2, z3, z4) which fixes the cross ratio and sends
z4 to z4 is the identity. Hence ḡ fixes four points of P1(C). Since the action is sharply 3-transitive,
ḡ = id and the conclusion follows. �
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5. Reed-Muller codes

In this section we study Reed-Muller codes in deeper detail. The first subsection is focused on the
binary Reed-Muller codes and contains the proof of Theorem B as well as a table listing the groups
of symmetries of some small Reed-Muller codes. The second subsection gives some corresponding
tables for Reed-Muller codes over larger fields, some classification results and remarks for further
development.

5.1. Binary Reed-Muller codes. For the next lemma, let us define

A :=
〈[

1 0
0 ζ′

4

]

, [ 0 1
1 0 ]

〉

⊆ GL2(C), and Ā = image of A in PGL2(C).

Lemma 5.1. Let C be a code with Ā ⊆ S̄(wC(x, y)). Then either

(1) S̄(wC(x, y)) = Ā ∼= D4 or
(2) C is formally self-dual or

(3) wCv(x, y) = ±wC(x, y), where v = 1√
2

[

1 ζ′
8

ζ′−1

8
−1

]

.

Proof. Since S̄(wC(x, y)) contains Ā ∼= D4, Blichfeldt’s Theorem implies that either S̄(wC(x, y)) ∼=
D4 or S̄(wC(x, y)) ∼= S4. We assume that S̄(wC(x, y)) ∼= S4 and we must show that part 2 or 3 is
satisfied.

By Blichfeldt’s Theorem again we see that S̄(wC(x, y)) is conjugate to B̄ := 〈Ā, w̄〉 ⊆ PGL2(C),
where w̄ is the image in PGL2(C) of w := 1√

2

[

1 1
1 −1

]

. Let ḡ ∈ PGL2(C) be such that S̄(wC(x, y)) =

ḡB̄ḡ−1. The group ḡĀḡ−1 ⊆ S̄(wC(x, y)) is isomorphic to D4, and since all copies of D4 in S4 are
conjugate we may assume that ḡ normalizes Ā. A straightforward calculation then shows that ḡ
must be the image in PGL2(C) of a matrix of the form

g1 =
[

ζ16 0

0 ζ−1

16

]

or g2 =
[

0 ζ16
−ζ−1

16
0

]

.

Let g ∈ GL2(C) be a pre-image of ḡ of this form. We have that S̄(wC(x, y)) = 〈Ā, w̄′〉 with
w̄′ the image in PGL2(C) of w′ := gwg−1, and it follows that there exists some λ ∈ C× with

λw′ ∈ S(wC(x, y)). Let p(x, y) = wC(x, y). Since w′2 = I, we have p(x, y) = p(λw
′)2(x, y) =

pλ
2I(x, y) = λ2 deg p(x,y)p(x, y) whence λ2 deg p(x,y) = 1. Therefore pw

′

(x, y) = (p(λw
′))(λ

−1I)(x, y) =
λ− deg p(x,y)p(x, y) = ±p(x, y), and so p(x, y) is either invariant or anti-invariant under w′.

Let us define the following polynomials:

f1(x, y) = wĤ3
(x, y), f2(x, y) = wG24

(x, y), f3(x, y) = x12 − 33x8y4 − 33x4y8 + y12.

Recall that, by Gleason’s Theorem, the invariant ring of B := 〈A,w〉 is the ring C[f1(x, y), f2(x, y)]
and hence the invariant ring of B′ := 〈A,w′〉 is easily seen to be C[f ′

1(x, y), f
′
2(x, y)] with f ′

i =
fi ◦ g for i = 1, 2. Moreover, if a polynomial is invariant under A but anti-invariant under w, it
must be fixed by C := 〈A,wAw〉 whence in the invariant ring of C which is C[f1(x, y), f3(x, y)].
Now it is easy to see that the anti-invariance under w implies that the polynomial is in fact in
f3(x, y) · C[f1(x, y), f2(x, y)]. This implies finally that a polynomial is invariant under A but anti-
invariant under w′ if and only if it is in f ′

3(x, y) · C[f ′
1(x, y), f

′
2(x, y)] with f ′

i = fi ◦ g for i = 1, 2, 3.
Now if ζ16 is not primitive, then fi ◦ g = fi for i = 1, 2, 3. Therefore if p(x, y) is invariant (resp.

anti-invariant) under w′, then it is also invariant (resp. anti-invariant) under w. Now pw(x, y) is
the weight enumerator of the dual code and has positive coefficients, so anti-invariance under w is
excluded. Moreover, pw(x, y) = p(x, y) if and only if C is formally self-dual, which is part 2 of the
lemma.

Finally, if ζ16 is primitive then w′ is the v from part 3 of the lemma, and the proof is complete. �

Let us continue with the proof of Theorem B.

Proof of Theorem B. Part 1 is trivial since these codes are simply the whole space F2m
2 . For part 4

observe that these Reed-Muller codes are precisely the self-dual doubly-even ones, and so the result
follows from Gleason’s Theorem. Now remark that part 2 (resp. part 3) is the dual version of part
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5 (resp. part 6). Hence the result follows by replacing S with its conjugate by w, and by replacing
the polynomials by their composition with w (where w is the Mac-Williams’ transformation).

We are left with proving 5 and 6. For 5, we have i > 2 and so the divisibility condition and the
symmetry in the variables x and y gives that the weight enumerator is invariant under the matrices

d2i =
[

1 0
0 ζ′

2i

]

and t = [ 0 1
1 0 ] .

Hence the corresponding group in PGL2(C) must contain 〈d2i , t〉 ∼= D2i . We want to show that this
group of symmetries cannot be larger. Using Blichfeldt’s Theorem again, this amounts to showing
that this group cannot be isomorphic to some Dk containing 〈d2i , t〉. It is not hard to prove that
any such group must contain dk =

[

1 0
0 ζk

]

and therefore we simply need to show that our code

cannot be divisible by some integer k > 2i with 2i|k. The divisibility condition in Ax’s theorem is
a strict one, and so it cannot be divisible by a larger power of 2. Moreover, the minimum distance
of RM(r,m) being 2m−r (see [AK92]) we see that any integer by which the code is divisible must
be a power of 2. Therefore the group S̄(wC(x, y)) must be equal to D2i . It is now an easy exercise
to show that a polynomial is symmetric with powers a multiple of 2i if and only if it is in the ring

C[x2
i
+ y2

i
, x2

i+1

+2(2i+1 − 1)x2
i
y2

i
+ y2

i+1

], which is precisely the ring mentioned in the theorem.
For 6, the assertion about the invariant ring is the same as in 5, and the rest follows from Lemma

5.1, observing that these Reed-Muller codes are not formally self-dual. �

The following table gives the group of symmetries in PGL2(C) of some small Reed-Muller codes
up to conjugation. It was computed using known facts about the weight enumerators and the
algorithm of Section 4.

Table 1. S̄(wRM2(r,m)(x, y))

r\m 1 2 3 4 5 6 7
0 ∞ D4 D8 D16 D32 D64 D128

1 ∞ D4 S4 D8 D16 D32 D64

2 ∞ ∞ D8 D8 S4 D4 D8

3 ∞ ∞ ∞ D16 D16 D4 S4

4 ∞ ∞ ∞ ∞ D32 D32 D8

5 ∞ ∞ ∞ ∞ ∞ D64 D64

6 ∞ ∞ ∞ ∞ ∞ ∞ D128

5.2. Further results. In this subsection we give some results on the group of symmetries of Reed-
Muller codes over larger fields.

Theorem 5.2. If q is even, m is odd and 2r = m(q − 1)− 1 then

S̄(wRMq(r,m)(x, y)) ∼= S4.

Proof. Under these hypotheses RMq(r,m) is self-dual, so Gleason’s theorem holds. �

Theorem 5.3. If

• q ∈ {3, 4, 5} and m ≥ 2r + 1, or
• q > 5 and m ≥ r + 1,

then S̄(wRMq(r,m)(x, y)) and S̄(wRMq(m(q−1)−r−1,m)(x, y)) are either cyclic or dihedral.

Proof. Under these hypotheses, RMq(r,m) is divisible by some n = q⌊m−1

r ⌋ > 5 by Ax’s Theorem.

Therefore Cn
∼= 〈

[

1 0
0 ζ′n

]

〉 ⊆ S̄(wRMq(r,m)(x, y)). By Blichfeldt’s Theorem, S̄(wRMq(r,m)(x, y)) must

be cyclic or dihedral. The same holds for S̄(wRMq(m(q−1)−r−1,m)(x, y)), the group of symmetries

of the dual, so that it is conjugate to S̄(wRMq(r,m)(x, y)) by MacWilliams’ transformation. �



SYMMETRIES OF WEIGHT ENUMERATORS 13

Notice that with the same arguments, one can prove a similar result for projective Reed-Muller
codes.

Remark 3. Theorem 5.2 and 5.3 are the first steps in the understanding of a general picture for
the groups of symmetries of Reed-Muller codes over larger fields. However, some of the arguments
we used to prove Theorem B do not work in the general case.

The following two tables give some insight on the shape of the group of symmetries of some
Reed-Muller codes over F3 and F4. They are obtained using the algorithm presented in Section 4.
Notice that three cells are left empty, because for those parameters the calculation of the weight
enumerator takes too much time.

Table 2. S̄(wRM3(r,m)(x, y))

r\m 1 2 3 4
0 D3 D9 D27 D81

1 D3 C3 C9 C27

2 ∞ C3 C3 C3

3 ∞ D9 C3

4 ∞ ∞ C9

5 ∞ ∞ D27 C3

6 ∞ ∞ ∞ C27

7 ∞ ∞ ∞ D81

Table 3. S̄(wRM4(r,m)(x, y))

r\m 1 2 3
0 D8 D16 D64

1 V4 C4 C16

2 D8 {Id} C4

3 ∞ {Id} {Id}
4 ∞ C4

5 ∞ D16 {Id}
6 ∞ ∞ C4

7 ∞ ∞ C16

8 ∞ ∞ D64

A remarkable case is that of RM4(1, 1):

S̄(wRM4(1,1)(x, y)) =
〈[

3−
√
−15 6+2

√
−15

−4
√
−15−3

]

,
[

1 3
1 −1

]

〉

∼= V4

and wRM4(1,1)(x, y) ∈ C[f1(x, y), f2(x, y)], where f1(x, y) := 2x2 + (3 +
√
−15)xy + (3 −

√
−15)y2

and f2(x, y) := 53x4 − 36x3y − 18x2y2 + 636xy3 + 213y4. The symmetry
[

3−
√
−15 6+2

√
−15

−4
√
−15−3

]

does

not come from divisibility conditions nor from MacWilliams’ identities.
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