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Abstract

We give a short and elementary proof of the fact that for a linear complementary
pair (C,D), where C and D are 2-sided ideals in a group algebra, D is uniquely
determined by C and the dual code D⊥ is permutation equivalent to C. This includes
earlier results of [3] and [6] on nD cyclic codes which have been proved by subtle and
lengthy calculations in the space of polynomials.

Throughout this note let K be a finite field. A pair (C,D) of linear codes over K of
length n is called a linear complementary pair (LCP) if C ∩D = {0} and C+D = Kn, or

equivalently if C⊕D = Kn. In the special case that D = C⊥ where the dual is taken with
respect to the Euclidean inner product the code C is referred to a linear complementary

dual (LCD) code. LCD codes have first been considered by Massey in [7]. The nowadays
interest of LCP codes aroused from the fact that they can be used in protection against
side channel and fault injection attacks [1], [2], [4]. In this context the security of a linear
complementary pair (C,D) can be measured by the security parameter min{d(C),d(D⊥)}.
Clearly, if D = C⊥, then the security parameter for (C,D) is d(C).

Just recently, it has been shown in [3] that for linear complementary pairs (C,D) the
codes C and D⊥ are equivalent if C and D are both cyclic or 2D cyclic codes under the
assumption that the characteristic of K does not divide the length. In [6], this result has
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been extended to the case that both C and D are nD cyclic for n ∈ N. In both papers the
proof is rather complicated and formulated in the world of polynomials.

Recall that an nD cyclic code is an ideal in the algebra

Rn = K[x1, . . . , xn]/〈x
m1 − 1, . . . , xmn − 1〉,

and that Rn is isomorphic to the group algebra KG where G = Cm1
× · · · × Cmn

with
cyclic groups Cmi

of order mi. Thus the above mentioned results are results on ideals in
abelian group algebras.

A linear code C is called a group code, or G-code, if C is a right ideal in a group algebra

KG = {a =
∑

g∈G

agg | ag ∈ K}

where G is a finite group. The vector space KG ∼= K |G| with basis g ∈ G serves as
the ambient space and the weight function is defined by wt(a) = |{g ∈ G | ag 6= 0}|
(which corresponds to the classical weight function via the isomorphism KG ∼= K |G|).
Note that KG carries a K-algebra structure via the multiplication in G. More precisely,
if a =

∑
g∈G agg and b =

∑
g∈G bgg are given, then

ab =
∑

g∈G

(
∑

h∈G

ahbh−1g)g.

In this sense nD cyclic codes are group codes for abelian groups G and vice versa since a
finite abelian group is the direct product of cyclic groups.

There is a natural K-linear anti-algebra automorphismˆ: KG −→ KG which is given
by g 7→ g−1 for g ∈ G (in the isomorphism KG ∼= K |G|, the automorphism ˆ corresponds
to a permutation of the coordinates). Thus we may associate to each a =

∑
g∈G agg ∈ KG

the adjoint â =
∑

g∈G agg
−1 and call a self-adjoint if a = â.

In addition, the group algebra KG carries a symmetric non-degenerate G-invariant
bilinear form 〈. , .〉 which is defined by

〈g, h〉 =

{
1 if g = h
0 otherwise.

Here G-invariance means that 〈ag, bg〉 = 〈a, b〉 for all a, b ∈ KG and all g ∈ G. Via
the isomorphism KG ∼= K |G|, the above form corresponds to the usual Euclidean inner
product. With respect to this form we may define the dual code C⊥ of a group code
C ≤ KG as usual and say that C is self-dual if C = C⊥. Note that for a group code C
the dual C⊥ is a right ideal since for all c ∈ C, c⊥ ∈ C⊥ and g ∈ G we have

〈c, c⊥g〉 = 〈cg−1, c⊥〉 = 0.
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Thus with C the dual C⊥ is a group code as well.

In [9] we classified completely group algebras which contain self-dual ideals. More
precisely, a self-dual G-code exists over the field K if and only if |G| and the character-
istic of K are even. In [5] we investigated LCD group codes and characterized them via
self-adjoint idempotents e2 = e = ê in the group algebra KG.

In this short note we prove the following theorem which includes the above mentioned
results of [3] and [6]. Observe that we require no assumption on the characteristic of the
field K.

Theorem. Let G be a finite group. If C ⊕D = KG where C and D are 2-sided ideals
in KG, then D is uniquely determined by C and D⊥ is permutation equivalent to C. In
particular d(D⊥) = d(C).

In order to prove the Theorem we state some elementary facts from representation
theory.

Definition. If M is a right KG-module, then the dual vector space M∗ = HomK(M,K)
becomes a right KG-module via

m(αg) = (mg−1)α

where m ∈ M,α ∈ M∗ and g ∈ G. With this action M∗ is called the dual module of M .
Clearly, dim M∗ = dim M.

Lemma A. (Okuyama-Tsushima, [8]) If e = e2 ∈ KG, then êKG ∼= eKG∗. In particular,
dim êKG = dim eKG.

Proof: A short proof is given in Lemma 2.3 of [5]. ✷

Lemma B. If D = eKG with e2 = e ∈ KG, then D⊥ = (1− ê)KG.

Proof: First observe that ê2 = ê and that 〈ab, c〉 = 〈b, âc〉 for all a, b, c ∈ KG. Thus

〈ea, (1 − ê)b〉 = 〈e2a, (1− ê)b〉 = 〈ea, ê(1− ê)b〉 = 0

for all a, b ∈ KG. Hence, (1− ê)KG ⊆ D⊥. As

dim (1− ê)KG = |G| − dim êKG
= |G| − dim eKG∗ (by Lemma A)
= |G| − dim eKG
= dim D⊥

we obtain (1− ê)KG = D⊥. ✷
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Proof of the Theorem: Since C⊕D = KG we may write D = eKG and C = (1−e)KG
for a suitable central idempotent

e = e2 ∈ Z(KG) = {a | ab = ba for all b ∈ KG}

(see [5]). Lemma B says that D⊥ = (1 − ê)KG. Via the map ˆ : KG −→ KG the K-
linear code (1 − ê)KG is permutation equivalent to the K-linear code KG(1 − e). But
KG(1− e) = (1− e)KG = C since e is central, which completes the proof. ✷

If C and D are only right ideals, then D is uniquely determined by C, but D⊥,
in general, is not necessarily permutation equivalent to C. It even may happen that
d(D⊥) 6= d(C) as the next example shows.

Example. Let K = F2 and let

G = 〈a, b | a7 = 1 = b2, ab = a−1〉

be a dihedral group of order 14. If we put

e = 1 + a+ a2 + a4 + b+ a2b+ a5b+ a6b,

then e = e2. With Magma one easily computes d((1− e)KG) = 2 and d(KG(1− e)) = 3.
Now let C = (1 − e)KG and D = eKG. By Lemma B, we have D⊥ = (1 − ê)KG.

Thus
d(D⊥) = d((1 − ê)KG) = d(KG(1− e)) = 3,

but d(C) = d((1 − e)KG) = 2. We like to mention here that C and D are quasi-cyclic
codes. ✷

Remark. Let |K| = q2. In this case we may consider the Hermitian inner product on
KG which is defined by

〈
∑

g∈G

agg,
∑

h∈G

bhh〉 =
∑

g∈G

agb
q
g.

For a =
∑

g∈G agg we put a(q) =
∑

g∈G aqgg. With this notation we have

D⊥ = (1− ê(q))KG

in Lemma B. Applying the anti-automorphismˆ: KG −→ KG we see that D⊥ is permu-
tation equivalent to KG(1 − e(q)). If in addition e is central, then e(q) is central. Thus
D⊥ is permutation equivalent to (1− e(q))KG = ((1− e)KG)(q).

It follow that

d(D⊥) = d((1− e)KG)(q)) = d((1− e)KG) = d(C).

Thus, in the Hermitian case a linear complementary pair (C,D) of 2-sided group codes C
and D also has security parameter d(C).
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