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ARTICLE INFO ABSTRACT

Keywords: This paper contributes to the growing field of Artificial Neural Networks (ANNs) strategies of
ANN Automatic Modulation Identification (AMI) for Cognitive Radio (CR). Traditional AMI-based ANN
DANN methods suffer from many drawbacks such as overfitting due to ANN architectures with complex
AMI layers, low performance caused by falling into local minima, and the increased training time that
D-STBC keeps them from being used in real-time applications.

HOM ‘We propose generated Dendrogram to decompose the AMI task into sub-components using the
HOS ANN architectures for improved classification accuracy and less training time. In addition, one of

the most significant challenges in AMI is identifying the modulation types and orders in cooperative
systems due to the combination of several received signals propagating through different unknown
channels. We propose dual-hop based on Amplify and Forward protocol (DH-AF) relaying system
to generate the dataset used to train and test the proposed model. In addition, DH-AF relaying
systems provide better coverage and signal reliability for existing wireless communication systems.
‘We consider that the source communicates with the destination over a direct link (S — D) and indirect
link via an intermediate relay (S — R — D) using Distributed Space-Time Block Code (DSTBC). Then
we used High Order Cumulants (HOC) and the High Order Moments (HOM) originating from the
DSTBC-decoded signal as features, followed by the Dendrogram—based ANN (DANN) classifier.
The simulation results confirm that the proposed method outperforms an ordinary ANN and other
counterparts while taking less training time.

1. Introduction Due to its excellent performance and compact architec-
tures, ANN has been engaged in modulation identification
tasks. In [6], the authors proposed a multi-stream network
design for non-cooperative systems that raises the network
width and enhanced the signal features, and in [7], the
authors proposed a Convolutional Neural Network (CNN)
for Multiple-Input and Multiple-Output (MIMO) systems.

In [8], the authors compared two types of supervised
neural network approaches, i.e., Multilayer Perceptron (MLP)
and Radial Basis Function (RBF)-based. However, a single
learner suffers from the lack of hypothesis space or falling
into local minima or maxima; consequently, it experiences
unexpectedly poor performance [9].

We propose an AMI procedure that achieves significant
accuracy for multi-class classification by merging numerous
ANNSs in a hierarchical clustering tree (Dendrogram) struc-
ture. We implement the proposed Dendrogram-based ANN
(DANN) strategy to discriminate between modulation types
and orders. In addition, the results of the DANN approach
were benchmarked versus traditional ANN, Dendrogram-
based Support Vector Machines (DSVM), and other pro-
posed methods to determine its benefits.

Furthermore, to exploit the legacy spectrum more ef-
fectively under the umbrella of CR and meet the projected
future mobile traffic demands as smartphones become more
advanced and power-hungry, we employ dual-hop (DH)
relaying systems using these smartphones [3].

*Corresponding author DH relaying systems are integrated in various practical

B ahbou_djebbareyahoo. fr (A.B. DJEBBAR) systems such as cellular phones and satellites to improve
ORCID(S): 0000-0002-2108-3234 (A.B. DJEBBAR)

Automatic Modulation Identification (AMI) is a proce-
dure that identifies modulated signals without human input.
It is commonly used in military and civilian domains [1]; it is
an essential component of Cognitive Radio (CR) and aware
systems that are able to sense the spectrum and convert to the
optimal modulation schemes automatically [2]. In addition,
it is utilized in 5G networks to monitor the spectrum and
prevent unauthorized transmissions [3].

Two main algorithms are usually employed for AMI,
Likelihood-Based (LB) and Feature-Based (FB). Although
the LB approach can outperform the FB approach, it requires
a high computational cost and depends on the preliminary
data of the received signal [4].

In most cases, the receiver does not have any data con-
cerning the modulation of the signals received; hence, re-
searchers resort to FB approach to provide blind modulation
detection and grant a reasonable tradeoff between low com-
putational cost and high efficiency [5].

The performance of the FB approach depends on the
Higher-Order Statistics (HOS), i.e., Higher-Order Moments
(HOM) and Higher-Order Cumulants (HOC) derived from
received signals.

Different classification frameworks are used in AMI, one
of the most popular ones, Artificial Neural Networks (ANN)
[4].
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throughput and energy efficiency [10]. Furthermore, present
an alternative to the MIMO system by avoiding extra antenna
that requires additional power cost and space in the radio
devices [3].

Motivated by the previous advantages, we used the DH
relaying system to generate the data for training and verify-
ing the proposed model’s efficiency. One of the most well-
known relaying techniques is Amplify-and-Forward (AF)
scheme because of its integrity and inexpensive implemen-
tation cost [10].

We propose in our work a Dendrogram-based on ANNss
to create a deeper architecture by decomposing the AMI
assignment into sub-components instead of using deeper
layers that require more significant memory and an increased
training time.

The literature on AMI for DH-AF relaying systems is
limited compared to non-cooperative systems since pattern
recognition becomes complicated due to the combination of
several received signals propagating via different unknown
channels. Therefore, we used DH-AF relaying systems to
generate the data used in training and testing the proposed
classifier to model the real-world data by modeling channel
impairments under various Signal-to-Noise Ratio (SNR)
levels.

We summarize the contribution of our work in the fol-
lowing steps:

e We leverage the spread-out antenna (installed in smart-
phones) over a wireless network to generate a DH-AF
relaying system data used in training and testing the
proposed model.

e After features extraction using HOM and HOC, we
apply Principal Component Analysis (PCA) to reduce
computational cost.

e We propose a novel classification approach DANN,
constructed by ANNs following a Decision Tree (DT)
structure through Ascendant Hierarchical Clustering
(AHC) to identify the modulation type.

e We evaluate the proposed approach by comparing it
to DSVM and to traditional ANN and other related
works to validate the results.

The remainder of the paper is outlined as follows. In
section 2, we exhibit the considered system model. In section
3, we present the necessary background and previous works
on AMI. The proposed approach is described in section
4. We calculate the computational complexity of the used
and the proposed methods in section 5. In section 6, we
present simulation parameters and evaluate the results; and
we conclude in section 7.

Notations: the upper (lower) bold letters indicates ma-
trix (column vector). (.)~1, ()T, (.)*, and ()*, denote in-
verse, transpose, conjugate, and hermitian operations, re-
spectively. 9g=card(0®) denotes the cardinal of modulations
pool ®. CN(0, %) denotes zero mean white complex Gaus-
sian (ZMWCG) with variance o2.

2. System Model

DH-AF relaying systems are presented to meet MIMO’s
challenges, where instead of using collocated antennas, we
follow a distributed pattern. In other words, each mobile
node participates in a distributed antennas array [10], as-
signing an individual antenna along with its hardware, pro-
cessing, and power resources to serve the communication
between the source and destination nodes. Thus in our work,
we consider DH-AF relaying system with one antenna at the
source and relay nodes, whereas the destination node can
be occupied with one or N, antennas, with transmission di-
versity, mainly achieved by adopting the Distributed Space-
Time Block Code (DSTBC) using AF protocol to reduce the
system complexity and power cost [1].

As shown in Figure 1, the considered DH-AF relaying
system comprises a direct link connecting the source and
destination (S — D), an indirect link established with the
assistance of relay (S — R — D) using AF protocol [10].

In fact, broadcasting data is separated into two phases,
each lasting two-time slots. In the first phase, the source
node broadcasts the information to its destination. Fortu-
nately, the relay node also receives this information due to
the broadcasting nature of wireless channels. During the
second phase, the process of amplifying and dispatching the
received information to the destination is accomplished by
the relay, while the source node remains silent to form the

2:+1] [11].
S2i+1

We assume that the channels linking the nodes present a
flat quasi-static Rayleigh fading. In addition, these channels
are supposed constant during a block of two symbols and
may randomly vary from block to another. The noise terms
are modeled as CN(0, N,) zero-mean, complex Gaussian
random variables with equal variance N [1].

We suppose the broadcast of vectors of N data symbols,
Si = [SiN,SiN 4155 SiN+N, _1]7 that are randomly and
1ndependently drawn from the pool of constellations @ =
{BPSK, 8PSK, 8PAM, 16QAM}. Where in our case N is
fixed to 2 (N,=2) to meet with Alamouti structure.

In the initial transmission phase, the source S conveys
its first Alamouti encoded row vector [s,;, — 83; +1] with
transmitted power P, to the destination and relay nodes. The
received signal by the n,-th antenna of the destination node,
through direct link (S — D), is given by

(n) _ (n,) (n,)
{ dp = VERdga i
h, _ n n,
Vedoie1 = VB (=S50 04500
The received signal at the relay, through (S — R) link, is
given by:

ysr,2i =V Pshsr,iSZi + nsr,Zi (2)
Ysr2i+1

=V Pshsr,i(_szi+1) + Hsr2i+1

where h' d’: and hg, ; are channels between the source and
the destination, and between the source and the relay, respec-
(n,) = (n,)  (n,)

sd,i nsd 2i° rlsd 2i+1

Alamouti STBC matrix S; = [

tively and 5 land i, ; = [Ny 255 Mgy 2it1]
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Alamouti
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8 = [ ]’

DANN Classifier
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Features Vector a; to
Construct a Dataset ('-a.)
Gpthnhlﬂum»mnhﬂn
A Dataset: D, = PCA(D,) "-"/
_ Recognize Modulation
M € {BPSK,8PSK, 8PAM, 16QAM)

Figure 1: Baseband equivalent model of cooperative DH-AF relaying system.

are the corresponding AWGN noises at destination and relay
nodes, respectively.

Alternatively, in the second phase, the relay emulates
MIMO system in a distributed fashion by constructing the
second row vector of the Alamouti matrix by applying con-
jugation to y,, »; and sign reversion as well as conjugation to
Vsr2i+1- followed by permutation between the positions of
the resulting symbols, then amplifying the signal by a factor
A £3 the received vector at the destination is modeled as

A VPO 2is )" Ggra)] 3)

sril? + Ng)~! are the power

where P, and A f,,:\/ P,(P,|h
and the amplification factors at R respectively.
The received signal provided from R to D, via the

indirect link in vector form, is

(n,) (n,) (n,)
{ y(d )21 - h.Yl‘d(l )21 + nsrd 2i ") (4)
n, n,
yrd,2i+l htrd t(s21+1) + nsrd 2i+1

where the equivalent channel hi’:’('j)_i and noise are defined by

(n ) () g s
(srdl _A(fl Pthrdrhvrt )
) n,) / (n, *
r’i‘rd)ZI rd (21 ;i_ Afl hrd ilsr2i (5)
n, n,

(") >(<
Af’ \'% hrdt sr,2i+1

With matrix notation, the resulting signals sent through
direct and indirect links at the destination node can be
rewritten as follow:

Noranivt = Mrd 2is1

(1 (1

y sd2i y rd,2i(—|1—)]
% *
(yrd 2"+ Wggniny)
‘N L (N = Hsit (6)
yszi],:%i)-i- yrd,r2i+1(N |
r * r *
Uit + Ogghiy)
(- ~ J/
Yi

where the equivalent channel matrix H; is defined by

\/_hili)t PP, htr thgi)t
C Ay E
H, - : ™
\/Fsh(sr:irj Af’i V PSP htr lhf";3

(n, ( ,)
Ay v/ PPk (R"yx —\/Px(hv';,)*

SriNTrd i
Since H; is complex and orthogonal we have

Hyg — (nr) 2 2 (n) 2
Hi Hi_(zPlhsdt +A PPlhsrt“hrdz|>

n.=1

®)

For signal recovery, Zero-Forcing (ZF) equalization ma-
trix G; is applied to the received signal as follows [12]

§ =Gy, ®
where G; is defined by

G, = (H/'H,)” H! (10)

3. Previous Work in AMI

Various techniques have been deployed in modulation
detection, such as classification and clustering, to improve
the accuracy of detection. This section reviews the different
studies in this field and presents an overview of distinct kinds
of learning in the context of AMI.

Classification and clustering are two different techniques
used for supervised and unsupervised learning. Identifying
the input instances according to the prior knowledge of
labels is called classification, while grouping them based on
their similarity is known as clustering; consequently, there
is no need for training or testing datasets in clustering [13].

Previous research aims to design a robust and quickly
deployable AMI algorithm that can be a powerful tool
and deliver a good performance in real-time scenarios.
For this purpose, [11] proposed an Automatic Modulation
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Classification (AMC) for STBC-MIMO systems with a
Deep Learning (DL). Sparse Auto-Encoders (SAE) and RBF
Network (RBFN) were used as classifiers. Limited-memory
Broyden-Fletcher-Goldfarb-Shannon (L-BFGS) was used
for optimization, and optimal Maximum-Likelihood (ML)
was used for performance evaluation. Moreover, the per-
formance evaluation carried out perfect Channel State In-
formation (CSI), and channel estimation errors impact the
classification results. The authors in [12] used DL for
modulation classification based on CNN for MIMO systems
using ZF equalization and HOS as features under perfect CSI
conditions.

In [14], the authors proposed an identification of real
signals by a smart embedded devices using Amplitude Shift
Keying (ASK) and Frequency Shift Keying (FSK) mod-
ulations where the signal is identified based on several
classifiers, ANNs, SVM, and DT. While the authors in
[15] proposed ANN-based Adaptive Modulation and Coding
(AMC) for link adaptation in MIMO-Orthogonal Frequency
Division Multiplexing (MIMO-OFDM) systems to optimize
the best modulation and coding scheme under the Packet
Error Rate constraint, they compared the performance of the
ANN with the K-Nearest Neighbors (KNN) classifier. As
a result, ANN exhibited better performance and robustness
than the KNN.

Another recent work in [16] argued that exploiting
the complementary information from I/Q multi-channel,
I-channel, and Q-channel data and utilizing spatial and
temporal properties in the signal may increase the AML
They integrated one-Dimensional (1-D) convolutional, two-
Dimensional (2-D) convolutional, and long short-term mem-
ory (LSTM) layers to extract the features from individual and
combined I/Q samples.

Despite the positive effects and the wide spread of DL
outlined above, negative issues also need to be considered,
such as generalization errors and stalling in local minima
caused by complex and more profound network architecture
that does not suit the signal recognition. In addition, the most
significant disadvantage is the training time that precludes
them from being used in real-time applications. Hence,
researchers often resort to clustering to decrease complexity
and the training time.

In [17], the authors proposed AMI based on a set of
unique properties of modulations. The separation between
FSK and MSK modulations from PSK and QAM modu-
lations was accomplished by estimating the In-phase and
Quadrature (1/Q) constellation diagram of the received sig-
nal using k-means and k-centers. The modulation identifi-
cation was made by calculating the correlation between the
received signal and the data recorded in the database using
an ML classifier.

Likewise, in [ 13] the authors discussed modulation iden-
tification using different clustering algorithms based on 1/Q
samples including hierarchical clustering for the first time.
The modulation order was recovered by clustering the I/Q
samples, and then the centroids of these clusters were ob-
tained using the relevant clustering algorithms. Finally, the

modulation type is estimated by comparing the obtained
centroids to the modulation constellation diagram using the
minimum distance classifier. However, based on the results
observed on the above mentioned algorithms, modulation
identification using clustering requires a large sample size,
many algorithms, and many stages; in addition, it cannot
yield high accuracy under low SNR values.

Since clustering analysis can locate the distribution char-
acteristics and benefit connections among data attributes,
combining it with neural networks results in a powerful tool
to defeat the drawbacks of traditional ANN.

More recently, the authors in [18] proposed modulation
classifiers based on ResNet-50 and Inception ResNet-V2
deep learning model using transfer learning. The authors
used constellation. However, they did not use clustering to
recover the constellation. Instead, a color image has been
produced using filters consisting of three masks based on
the signals’ constellation density. Modulation classification
has been done in three stages by training both models with
generated color images.

Unfortunately, the literature on combining clustering
with ANN in AMI is rarely analyzed and suffers from many
gaps and shortcomings. To overcome this drawbacks, this
paper proposes merging multiple ANNs in the Hierarchical
Clustering (HC) framework to establish the robustness and
high accuracy for modulation classification.

4. Proposed Method

As with any standard AMI system, the proposed system
comprises two subsystems, features extraction and mod-
ulations classification. The features extraction subsystem
consists of two main steps: preprocessing step and the fea-
tures selection step. The processing of the received sig-
nal improves the cognition of communication systems by
smoothing the features extraction phase if it is performed
well. Otherwise, it severely degrades the accuracy of the
classifier [19]. After the preprocessing phase, the features
extraction begins.

Previous works [19, 20, 21] proved that adopting HOC
and HOM as features of interest for signal classification
can produce good performance with extreme computation
simplicity.

The features used in this paper are formed by sequences
of HOM and HOC up to sixth order to construct 7 -dimension
HOS features vectors. Afterward, we will use it as input to
the classifier after applying PCA.

Table 1 presents several theoretic values of HOM and
HOC for various modulation types [22, 7].

4.1. Classification tools
4.1.1. ANN

ANN is a Machine Learning (ML) technique capable
of pattern recognition; in fact, its computational model is
inspired by the human brain’s structure and behavior.

It comprises three layers: the input layer that associates
each neuron with one feature in the features vector a; =
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Table 1
Some statistical moments and cumulants for several
modulation types.

Mf)(] M()l M63 C60 C()l C63
BPSK 1 1 1 16 16 16
8PSK 0 0 1 0 0 4
8PAM 3.62 362 362 719 719 7.19
16QAM 0 038 208 0 1.8 1.8
la;i1,ai0,---> a,’T]T of the training data. The hidden layer ap-

plies a given transformation to the input values via weighted
connections. It connects input nodes to output nodes or
hidden nodes, or it connects hidden nodes to other hidden
nodes, depending on the complexity of the model [8], where
the choice of the structure defines the results.

In our work, we adopt multilayer Feed-Forward Neural
Networks, where each layer directly supplies the next layer,
feeding the inputs forward through the network. The output
of the m-th node in the first hidden layer is [8]:

.
™ _ M M (M
Cim ™= gl <Z Wy 19 T wm,Oai,0> an
=1
(1)

where aflo) denotes the bias of the input layer, and w, ;
denotes a weight in the first hidden layer, connecting #-th
input to m-th hidden node, where wﬁ,)o is the bias weight for
the first hidden layer. g(! is an activation function.

The output of k-th node in the J-th hidden layer is
mathematically described as follows [8]

) ()
W00 >

We consider, c%), and P is the number of nodes in the

(J = 1)-th hidden layer.

b =

w(J)C(J—l)
ik

k.,pi.p +

P
g (2 (12)

p=1

Finally, the output layer produces an output value called 6

label N; corresponding to the modulation type and order
prediction chosen from the candidate pool ©. In the output
layer, the output of the n-th node, using the sigmoid activa-

tion function g, can be written as [8]

13)

K
- N N
Yin =28 <Z wn,kb[,k + wn,()bi,0>
k=1
4.1.2. Dendrogram-based ANN
If O is the target modulation pool consisting of ¢ mod-

ulations, then we aim to select 7 -dimension HOS features
vectors a; = [a;4,4;,, ...,a,-_T]T to differentiate between

each modulation type and order, then we apply features 13

normalization using PCA.
After splitting the data into 90% training subset and
10% testing subset, we decompose the original multiclass

12:

problem using a class hierarchy from which a Dendrogram
of classifiers is constructed. The Dendrogram is built by
applying an agglomerative hierarchical clustering algorithm.
The agglomerative approach works in a bottom-up manner,
starting by assigning each element to a single cluster (sin-
gleton) and then iteratively merging pairs of clusters until
obtaining only one cluster. Clusters are joined based on a
similarity function between them. We adopted linkage based
on correlation (the shortest 1-"Sample correlation" between
clusters) [23].

Thus, the clusters formed between the leaves (the classes)
and the root constitute the Dendrogram’s internal nodes. The
generated Dendrogram provides insight into how close each
class is to other classes in the features space.

Once the Dendrogram is produced, we train binary
ANNSs for every non-leaf node (or parent node) in the class
hierarchy (including the root) to distinguish between its child
nodes. Values closer to "0" in the linkage indicate that the
two classes are nearly identical, while values closer to "1"
indicate that the two classes are entirely distinct. As a result,
we obtain a set of ANNs arranged in a tree. Then, to classify
a new instance, the tree of classifiers is traversed in a top-
down manner applying the classifiers from the root until a
leaf is reached (see Figure 2).

The steps of the proposed DANN approach are summa-
rized in Algorithm 1.

Algorithm 1 The proposed DANN-based AMC

Input: Sampled received signal y;. The algorithm requires
a perfect CSI. 9g : Number of classes in the candidate
pool O.

Output: M, € 0.

: for iter = 1 to 9.
: fori =1to M, (Monte Carlo trials per modulation) do.

Based on the sampled received signal y;, estimate §; using
equation (9).

Extract features using the sequences of HOM and HOC
to construct 7 dimension HOS features vectors a;

T
[ai’l, ahz, ey ai,T] .
end for i.
end for iter.

Construct a dataset D, (set of classified instances) given
in the form of a matrix with 7 rows and N,, columns
(Nt =39 X M, X N).

Normalize predictor variables to produce a new subset
D,=PCA(D,).

Split the entire dataset into two subsets (90% for the
training subset and 10% for the testing subset).

Defining the tree with its binary branchings (structure of
the Dendrogram) by computing the ’1-Sample correlation’
values of the features for each class.

Build the model DANN by training binary ANN at each
parent node.

Using the testing subset, predict the modulation type and
order (Mi).
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Table 2
Configuration of the classifiers used in the proposed work.
Method Type Input Hidden Hidden Penalty RBF Learning Output
Layerl Layer2 factor rate
Neurons Neurons
DANN Feed- T -neurons 10 15 / / 0.01 d¢-neurons
Forward
Neural
Network
DSVM Binary T / 2 RBF- / N, e
SVM Kernel {0,...9¢ —
(o = 10) 1}
ANN Feed- T -neurons 10 15 / / 0.01 Jg-neurons
Forward
Neural
Network

Following the previous steps yields the Dendrogram
shown in Figure 2. At the root node, the first binary deci-
sion appears for 16QAM versus the rest of the modulation
{BPSK, 8PSK, 8PAM }. Hence, the 16QAM class is a termi-
nal node (leaf) and will be considered a negative class during
the training of ANN-1, while the remaining combined three
classes are positive. Similarly, the second binary classifier
in the tree ANN-2 considers SPAM as a negative class and
elements of {BPSK, 8PSK} as positive. Finally, ANN-3
discriminates the elements of BPSK from those of 8PSK
ones.

ANN2

ANN3

BPK (=3 [ 160AM

Figure 2: Dendrogram constructed through AHC illustrates the
multiple ANNs produced for the candidate pool ©.

4.1.3. DSVM

Like DANN, DSVM is a hierarchical cluster employing
SVMs through binary decisions to differentiate between
modulation type and order. To guarantee an unbiased and
coherent comparison, we used the same structure used for
DANN by following the same binary decisions and using
clustering based on correlation. A previous study using sleep
stage classification revealed that combining multiple deep
SVMs might reach more increased classification accuracy

[23]; however, the advantage of fusion SVMs in Dendro-
gram is unknown in modulation classification.

Based on the configurations reported in Table 2, DANN
and ANN have the same parameters; however, ANN is
trained on the entire training dataset while DANN decom-
poses the AMI assignment into sub-components; hence it
is trained on smaller datasets. Following the same strategy
as DANN, DSVM also decomposes the AMI assignment
into sub-components using binary SVMs to perform the
classification based on the parameters mentioned in Table
2.

5. Computational complexity

The computational complexities at each SNR of the used
and proposed methods, in this paper, are summarized in
Table 3.

Table 3
Computational complexity of ANN and SVM based ap-
proaches.

| Training | Testing
ANN O(T N, 8)PNur ) O(T N,,9)
SVM O(T (N, 8)%) O(TN,,9)
DANN O(T2N,(8¢-1)PNuLT) O(T2N,,(9¢-1))
DSVM OT 2N, (96-1))%) O(T2N,, (9 — 1))
In Table 3, N, is the number of training instances,

N,, is the number of testing instances, I is the number of
iterations used in ANN and DANN, and N is the number
of hidden layers, where each containing P neurons. Csys,, =
O(N;9¢N,N,) and Csys,, = O(N,,9¢ N, N,) are the DH-
AF relaying signals generation computational load without
classification tools for training and testing steps respectively.
Consequently, the computational complexity using different
classifiers for training and testing steps are obtained by
adding Csys,, to each element of the first column and by
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adding Csys,, to each element of the second column of the
Table 3, respectively.

6. Simulation results

The proposed classification methods mentioned above
were tested through a set of experiments employing Monte-
Carlo simulations.

The proposed approach was confirmed for the digital
modulation pool @={BPSK,8PSK,8PAM,16QAM}. M, =
1000 Monte Carlo trials per modulation were conducted for
each SNR value.

We consider that the SNR across source-relay link
(SNR,,) and the SNR across relay—destination links (say
SNR,,) are fixed to SNR = SNR,;, = SNR,,.

We generated a random message and Rayleigh fading
channel from i.i.d. zero-mean independent complex Gaus-
sian random variables with the same variance in each run,
and the number of samples were varied between N = 512,
and 2048 samples.

We consider a single relay for all the experiments, and
the STBC encoder type Alamouti with (2x1) (N, = 1) and
(2X2) (N, = 2) antennas configurations are inspected.

6.1. Evaluation Measures for Classifiers
Performances

We employed several performance metrics to evaluate
the proposed method, namely the Accuracy (ACC), Sen-
sitivity (SEN), Specificity (SPE), Precision (PRE), and F-
SCORE. Equation (14) states that they are derived by true
and false, positive and negative rates (TP, TN, FP, and FN)
extracted from the confusion matrix.

ACC =((TN +TP))/(TP+TN + FP + FN))
SEN =TP/(TP+FN))

SPE=TN/(TN + FP))

PRE =TP/(TP + FP))

F — SCORE =2x(SENxPRE)/(SEN + PRE)

14)

We compute the Probability of Correct Classification P,,
across all classes to evaluate the classifier’s performance.
It is employed frequently as an individual metric of global
performance in AMI. P,, is the average of the diagonal
components of the confusion matrix for each value of SNR,
it is defined as:

N
P..=—5x100 (15)

tot

where N, = ). X1,e0 N, with N, represents the num-
ber of trials when the modulation is correctly recognized.
M,, and M,, are the correct and estimated modulations types
and orders, respectively.

The performance of the DANN strategy is assessed by
operating several validation metrics in section (6.2), includ-
ing sensitivity, specificity, and precision (Figure 3). The
simulation results are compared to other methods such as

DSVM and ANN in section (6.3), in terms of Accuracy and
F-score (Figure 7), and in terms of probability of correct
classification (Figure 4 and Figure 5) and by calculations of
confusion matrices (Figure 6).

In Section (6.4), we conducted an impartial comparison
between the performances of the DANN method with popu-
lar existing methods in other related works (see Table 4).

6.2. DANN performance

Figure 3 depicts the PRE, SEN, and SPE of DANN.
All modulations are tracked with the SPE above 0.94. The
highest performances were observed for BPSK and SPAM
with PRE and SEN of 0.99 and SPE of 1. On the other hand,
8PSK and 16QAM are detected with lower SPE of 0.94 and
0.95, respectively. In addition, they experience a drop in the
PRE (0.83 for 8PSK and 0.84 for I6QAM) and in the SEN
(0.84 for 8PSK and 0.82 for 16QAM).

EPRE OSEN BSPE

Qa8 " %28 .
a o a o o 2]
o <+ o
M 3 @ u 3 &
o © S o
BPSK 8PSK 8PAM 16QAM

Figure 3: Class-specific metrics for DANN performance, at
SNR=0dB, N, =2, and N =512.

The explanation for the drop in PRE and SEN for 8PSK
and 16QAM modulations can be derived from the confusion
matrix of the DANN classifier (see Figure 6a).The values of
the off-diagonal elements quantify the misclassification rate.
Hence, the DANN confusion matrix shows that 16.13% of
8PSK modulation was incorrectly predicted as 16QAM, and
17.65% of 16QAM modulation was incorrectly predicted as
8PSK. This intense confusion between 8PSK and 16QAM
accounts for their low SEN.

6.3. Comparison between DANN, DSVM and ANN

We compare, in this subsection, the proposed DANN
using a DH-AF relaying system against DSVM and ANN
algorithms in respect of P, as a function of SNR by varying
the number of samples N and the number of receiving
antennas N,.

Figure 4 plots the P, of different classifiers for different
values of N, the number of receiving antennas for this set

H. MOULAY, A. B. DJEBBAR, B. DEHRI, and |I. DAYOUB: Preprint submitted to Elsevier

Page 7 of 12



H. MOULAY, A. B. DJEBBAR, B. DEHRI, and I. DAYOUB

of experiments is fixed to N, = 2. At low SNR values, we
observe progress in classification accuracy as N increases
from 512 to 2048 samples, the proposed classifier achieved
the most significant improvement with 12% P, ., because
small sample size of N makes the test data-limited and does
not appear to achieve completely error-free performance
particularly at low SNR values.

However, the impact of N on P,. diminishes when the
SNR>0dB, due to the time and space diversity gain achieved
by DH-AF relaying system that reduces the errors rate of the
received signal, thus improving the quality of the dataset for
the training process.

As presented in Figure 4, the proposed DANN approach
yields a promising performance compared to the other tech-
niques. The results indicate that DANN grants more than
90% P,. under low SNR rates, as it upgrades the perfor-
mance when SNR=-5dB, where we can see that the P,, of
DANN is about 4% and 5% higher than ANN and DSVM,
respectively when N = 512, while it exhibits a 7% and 10%
higher P,, than ANN and DSVM at the same SNR value
when N = 2048.

In addition, it attains 100% P,. when the SNR surpasses
5dB. This improvement is induced through training sub-
classifiers individually on its subset of children labels, which
improves the prediction performed using this hierarchical
architecture.

o
8

2
&

= ~ANN, N=512

=
8

--©:-DANN, N=512

o
o

--=-DSVM, N=512
—=—ANN, N=2048
—e=—DANN, N=2048
—+—DSVM, N=2048

@
&

2
as

Probability of Correct Classification (%)

SNR(dB)

Figure 4: Classification performance per SNR(dB) of cooper-
ative DH-Relaying system with N, = 2, and different symbol
length N =512,2048.

Figure 5 depicts the P,, versus SNR for the DH-AF re-
laying system. Two antenna configurations (2x1) and (2x2)
were inspected, considering N = 512 samples. The pro-
posed method can maintain better P,, than the others in
both configurations, especially at low SNR values. It reaches
P.. = 41% at SNR=-5dB when N, = 1 and 56% when
N, = 2, at the same SNR point. When SNR=0dB, the
proposed classifier reaches 91% when N, = 2 and 50%
when N, = 1 and reaches 100% regardless of the antennas
configuration for SNR> 154 B.

—=-ANN, 2x1
—& -DANN, 2x1
~v -DSVM, 2x1
—=—ANN, 2x2
—o—DANN, 2x2
—v—DSVM, 2x2

Probability of Correct Classification (%)

-5 0 5 10 15 20
SNR(dB)

Figure 5: Classification performance per SNR(dB) of coop-
erative DH-Relaying system with N = 512, and different
configuration antennas N,=1,2.

ANN exhibits exciting behavior exceeding DSVM. How-
ever, We observe that for N, = 1, DSVM presents poor per-
formance with P,, around 50% at SNR range [0dB, 10dB]
and less than 80% at SNR=20dB. The explanation behind
the results obtained by the DSVM classifier can be inferred
from Figure 6¢c. We can see that when N, = 2 DSVM
confuses between 8PSK and 16QAM, where 50% of 8PSK
modulation was misclassified as 16QAM. Hence, decreasing
the number of receive antennas to N, = 1 increases the
distortion in DSVM classification and significantly affects
its performance in this SNR range.

Based on the results, we conclude that DSVM is not
robust against noise when N, = 1.

One can see that the proposed method is robust because
decomposing the AMI task into sub-components using the
ANN architectures lowers the misclassification rate and
defeat the distortion between 16QAM and 8PSK.

To investigate the classification performance of the pro-
posed method, Figure 6 illustrates three confusion matrices
generated by the proposed DANN and the other counterpart
methods across all four classes for SNR=0dB, N, = 2, and
N = 512 samples. Most classification errors appear to be
found for 8PSK and 16QAM, which can be interpreted using
Table 1. We can see that their HOS have the closest values.
Consequently, they reflect adjacent instances in the features
space, which cause distortion between their instances under
low SNR values.

Our results prove that generating enhanced Dendrogram
design utilizing AHC is a fundamental source of perfor-
mance optimization, particularly for 8PSK, where the pro-
posed DANN framework achieves a higher classification
performance.

The F-score and Accuracy metrics of the proposed
method are compared with DSVM and ANN methods in
Figure 7. The performance of the proposed classifier, in
terms of the F-score and ACC, is better than applying
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Figure 6: Confusion matrices produced (a) DANN, (b) ANN and (c) DSVM, SNR=0dB,
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Figure 7: Comparison of the Accuracy and F-score between three methods: ANN, DANN, and DSVM, SNR=0dB, N =512, and

N, =2.

DSVM or standard ANN since they demonstrate lower F-
score and ACC performance compared to the DANN. The
results confirm the acquired results previously, where we
can see lower results for 8PSK and 16QAM modulations
for all the classification results. In addition, we can see
that the proposed method achieves the highest performance
compared to other counterparts.

6.4. Comparison with popular clustering methods
for AMI

Table 4 briefly compares our proposed method with
some related works.

Despite the underlying assumption that each of the re-
ferred papers generates its datasets, we approximate the
classifiers mentioned in the referred articles conditions by
simulating our proposed model in their appropriate system
parameters as presented in Table 4, which can still provide
a fair comparison regarding the probability of correct clas-
sification. In [11], the authors tackled the issue of AMI in
MIMO-STBC systems using low complexity DL and RBEN.
However, our proposed method grants a slight improvement
in the performance compared to theirs.

Similarly, [7] used DL to recognize the modulation type
in MIMO systems based on a convolutional neural network

(CNN). They used ZF to recover the received signal; from
the results in Table 4, we can see that our proposed method
presents a similar performance to theirs.

Other related works [13, 18] generated random bit
streams in AWGN channels and modulated them in the
referred modulation pool. Then, relying on the modulation
constellation, they applied modulation detection. In [13],
clustering algorithms were used to recover the constellation
and minimum distance classifier to recover the modulation
type and lower the execution time, but their method requires
a large number of samples and higher SNR values to iden-
tify the modulation accurately, whereas in many practical
scenarios only a small sample set is available.

However, the authors in [18] addressed the modula-
tion classification by transforming constellations into color
images; then, proposed using ResNet-50 and ResNet-V2
to estimate the modulation type and order. Their method
achieved minute improvement higher then ours, except at
SNR=0dB, our method provides around 12% higher P,

A recent work in [24] addressed the AMI in DH trans-
mission system based on AF protocol; however, they did
not consider D-STBC. The suggested approach is based on
theoretical representations of cross-correlation functions of
the received signals. They proved that a family of modulation
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Table 4
Comparison the proposed method with popular existing methods.
Method Modulation Symbols System Channel P, (%) at
pool Length model type -5dB  0dB 5dB  10dB
DNN [11] {BPSK, QPSK, STBC-MIMO Quasi- 98 100 100
8PSK, 16QAM} 500 system static
RBFN [11] Rayleigh 96 100 100
Proposed  work DH-AF relaying fading 99 100 100
'DANN'’ system
ResNet-50 [18] {2ASK, 4ASK, 1000 Randomly gener- ~ AWGN 325 4825 787 99
QPSK, 8PSK, ated bit streams
8QAM, 16QAM,
32QAM,
64QAM}
Proposed  work DH-AF relaying  Quasi-static 32 60 77 98
'DANN'’ system Rayleigh fading
Cross- {BPSK, QPSK, 2048 DH-AF Rayleigh fading X X X 67.95
Correlation 8PSK, 16QAM} cooperative
[24] system (2x1)
Proposed  work DH-AF relaying  Quasi-static 65 96 100 100
'DANN’ system (2x1) Rayleigh fading
CNN/ZF-AMC {BPSK, QPSK, 128 MIMO  system Rayleigh fading 83 100 100 100
[7] 8PSK, 16QAM} (2x4)
Proposed  work DH-AF relaying  Quasi-static 83 99 100 100
'DANN’ system (2x4) Rayleigh fading
Clustering [13] {8PSK, 2048 Randomly gener- ~ AWGN 0 0 0 89
16QAM} ated bit streams
Proposed  work DH-AF relaying  Quasi-static 65 90 100 100
'DANN'’ system Rayleigh fading
CCNN [25] {BPSK, QPSK, 500 Randomly gener-  AWGN X 78.4 94 99
8PSK, 16QAM, ated bit streams
32QAM,
64QAM}
Proposed  work DH-AF relaying  Quasi-static 35 63 83 92

'DANN’

system

Rayleigh fading

"x" indicates that P,. at the relative SNR point was note reviewed in the related work

types induces spikes for certain cross-correlation functions
while others do not. The P,. was derived through a tree-
based method utilizing the false-alarm criterion for spike
detection, yet this method requires a large number of samples
and high SNR values for accurate detection.

In [25], the authors proposed an AMI based on com-
bining clustering with neural networks. AWGN corrupts the
generated signals with specified SNR range. The results
show that their method presents higher P,. compared to ours,
but one must keep in mind that there are different causes
for these results that must be acknowledged. The first reason
is the difference in the channel type. We used Rayleigh
multi-paths fading channel, whereas in their work, they used
AWAGN as is the case with [13, 18]. Secondly, the difference
in the dataset, we used a DH-AF relaying system while they
used randomly generated bit streams.

Figure 8, presents a comparison of training time among
different classifiers. One can see that DL is the most com-
putationally expensive classifier (68 sec for training) com-
pared to other classifiers because of its inherent architecture
complexity involving deeper layers resulting in additional
operations. Therefore, our proposed classifier provides a
more practical alternative with lower training time (5.05 sec)
and higher performance.

This study strives to investigate the possibility of opti-
mizing modulation classification performance by integrating
the advantages of ANN classification (Storing information
on the entire network, having a distributed memory, parallel
processing capability, etc.) with induced Dendrogram meth-
ods.

According to the comparison presented in this work,
DSVM presented the lowest training time because it is the
simplest model, but it demonstrated the lowest robustness,
particularly for one receive antenna, while ANN presented
stable results regardless of the antennas configuration and
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Figure 8: Comparison of the consumed training for proposed
framework with the other models.

sample size used for the evaluation. DANN provided higher
accuracy and robustness compared to DSVM, ANN, and
other classification models in the literature as shown in Table
4, and displayed the lowest training time compared to other
models with similar architectures (DL, RBEN, and ANN).

ANN has a higher training time (7.95 sec) than DANN,
while DANN reduces the training time by 36.47%.

Generally, improving classification accuracy leads to an
increase in training time due to the use of deeper neural
networks. However, despite the overall deep architecture
of DANN compared to traditional ANN, training time is
reduced due to the modularization of the multi-class clas-
sification task into smaller classification tasks by inducing a
Dendrogram, where traditional ANN is trained on a larger
dataset.

7. Conclusion

This paper proposed a new modulation classification
method, namely Dendrogram-based Artificial Neural Net-
works (DANN) by merging ANN with Dendrogram for
DH-AF relaying system using DSTBC scheme operating in
multipath fading channels.

We compare the performance of the proposed method
with other existing methods.

The simulation results have shown that the proposed
classification method outperformed the existing methods
and presented good performance even when using a single
antenna at each operating node in the DH-AF relaying sys-
tem, responding to the demands in terms of low profile for
power and complexity.

The DANN approach is promising in terms of reducing
overall training time and improving accuracy as well. Instead
of using deeper architectures to extract the subtle differences
between schemes. This work creates deeper ANN architec-
ture by separately trained ANN classifiers, whose hierarchy
is determined based on the correlation using generated Den-
drogram. The overall neural network learns distinct features

at higher levels and subsequently learns features with higher
similarities at lower levels. In our future work, we will
consider including OFDM in DH-AF relaying system; in
addition, we will consider the effect of Carrier Frequency
Offset (CFO) and channel estimation errors on the classifi-
cation accuracy.
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