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Abstract

We consider the classical Wright–Fisher model with mutation and se-
lection. Mutations occur independently in each locus, and selection
is performed according to the sharp peak landscape. In the asymp-
totic regime studied in [3], a quasispecies is formed. We find explicitly
the distribution of this quasispecies, which turns out to be the same
distribution as for the Moran model.

1 Introduction

The concept of quasispecies first appeared in 1971, in Manfred Eigen’s cel-
ebrated paper [7]. Eigen studied the evolution of a population of macro-
molecules, subject to both selection and mutation effects. The selection
mechanism is coded in a fitness landscape; while many interesting landscapes
might be considered, some have been given more attention than others. One
of the most studied landscapes is the sharp peak landscape: one particu-
lar sequence—the master sequence—replicates faster than the rest, all the
other sequences having the same replication rate. A major discovery made
by Eigen is the existence of an error threshold for the mutation rate on the
sharp peak landscape: there is a critical mutation rate qc such that, if q > qc
then the population evolves towards a disordered state, while if q < qc then
the population evolves so as to form a quasispecies, i.e., a population con-
sisting of a positive concentration of the master sequence, along with a cloud
of mutants which highly resemble the master sequence.

Eigen’s model is a deterministic model, the population of macromolecules
is considered to be infinite and the evolution of the concentrations of the
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different genotypes is driven by a system of differential equations. Therefore,
when trying to apply the concepts of error threshold and quasispecies to other
areas of biology (e.g. population genetics or virology), Eigen’s model is not
particularly well suited; a model for a finite population, which incorporates
stochastic effects, is the most natural mathematical approach to the matter.

Several works have tackled the issue of creating a finite and stochastic ver-
sion of Eigen’s model [1], [5], [6], [9], [10], [11], [12], [13], [14]. Some of
these works have recovered the error threshold phenomenon in the case of
finite populations: Alves and Fontantari [1] find a relation between the error
threshold and the population size by considering a finite version of Eigen’s
model on the sharp peak landscape. Demetrius, Schuster and Sigmund [5]
generalise the error threshold criteria by modelling the evolution of a popu-
lation via branching processes. Nowak and Schuster [12] also find the error
threshold phenomenon in finite populations by making use of a birth and
death chain. Some other works have tried to prove the validity of Eigen’s
model in finite populations by designing algorithms that give similar results
to Eigen’s theoretical calculations [9], while others have focused on propos-
ing finite population models that converge to Eigen’s model in the infinite
population limit [6], [11].

The Wright–Fisher model is one of the most classical models in mathemat-
ical evolutionary theory, it is also used to understand the evolution of DNA
sequences. In [3], some counterparts of the results on Eigen’s model were de-
rived in the context of the Wright–Fisher model. The Wright–Fisher model
describes the evolution of a population of m chromosomes of length ` over an
alphabet with κ letters. Mutations occur independently at each locus with
probability q. The sharp peak landscape is considered: the master sequence
replicates at rate σ > 1, while all the other sequences replicate at rate 1.
The following asymptotic regime is studied:

`→ +∞ , m→ +∞ , q → 0 ,

`q → a ,
m

`
→ α .

In this asymptotic regime the error threshold phenomenon present in Eigen’s
model is recovered, in the form of a critical curve αψ(a) = lnκ in the param-
eter space (a, α). If αψ(a) < lnκ, then the equilibrium population is totally
random, whereas a quasispecies is formed when αψ(a) > lnκ. In the regime
where a quasispecies is formed, the concentration of the master sequence in
the equilibrium population is also found. The aim of this paper is to continue
with the study of the Wright–Fisher model in the above asymptotic regime in
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order to find the distribution of the whole quasispecies. It turns out that the
resulting distribution is the same as the one found for the Moran model in [4].
Nevertheless, the techniques we use to prove our result are very different from
those of [4]. The study of the Moran model relied strongly on monotonicity
arguments, and the result was proved inductively. The initial case and the
inductive step boiled down to the study of birth and death Markov chains,
for which explicit formulas could be found. The Wright–Fisher model is a
model with no overlapping generations, for which this approach is no longer
suitable. In order to find a more robust approach, we rely on the ideas
developed by Freidlin and Wentzell to investigate random perturbations of
dynamical systems [8], as well as some techniques already used in [3]. Our
setting is essentially the same as the one in [3], the biggest difference being
that we work in several dimensions instead of having one dimensional pro-
cesses. The main challenge is therefore to extend the arguments from [3] to
the multidimensional case. This is achieved by replacing the monotonicity
arguments employed in [3] by uniform estimates.

We present the main result in the next section. The rest of the paper is
devoted to the proof.

Acknowledgement: I want to thank the anonymous referee for his work and
contribution, which helped to improve the article.

2 Main Result

We present the main result of the article here. We start by describing the
Wright–Fisher model, we state the result next, and we give a sketch of the
proof at the end of the section.

2.1 The Wright–Fisher model

Let A be a finite alphabet and let κ be its cardinality. Let `,m ≥ 1. El-
ements of A` represent the chromosome of an individual, and we consider
a population of m such chromosomes. Two main forces drive the evolution
of the population: selection and mutation. The selection mechanism is con-
trolled by a fitness function A : A` → [0,+∞[ . We define a selection function
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F : A` × (A`)m → [0, 1] by setting

∀u ∈ A` ∀x ∈ (A`)m F (u, x) =
A(u)card{ i : 1 ≤ i ≤ m, x(i) = u }

A(x(1)) + · · ·+ A(x(m))
.

For a given population x, the value F (u, x) is the probability that the individ-
ual u is chosen when sampling from x. Throughout the replication process,
mutations occur independently on each allele with probability q ∈ ]0, 1−1/κ[ .
When a mutation occurs, the letter is replaced by a new letter, chosen uni-
formly at random among the remaining κ − 1 letters of the alphabet. The
mutation mechanism is encoded in a mutation matrix M(u, v), u, v ∈ A`.
The analytical formula for the mutation matrix is as follows:

∀u, v ∈ A` M(u, v) =
∏̀
j=1

(
(1− q)1u(j)=v(j) +

q

κ− 1
1u(j)6=v(j)

)
.

We consider the classical Wright–Fisher model. The transition mechanism
from one generation to the next one is divided in two steps. Firstly, we sample
with replacement m chromosomes from the current population, according to
the selection function F given above. Secondly, each of the sampled chromo-
somes mutates according to the law given by the mutation matrix. Finally,
the whole old generation is replaced with the new one, so generations do not
overlap. For n ≥ 0, we denote by Xn the population at time n, or equiva-
lently, the n–th generation. The Wright–Fisher model is the Markov chain
(Xn)n≥0 with state space (A`)m, having the following transition matrix:

∀n ∈ N ∀x, y ∈ (A`)m

P (Xn+1 = y |Xn = x) =
m∏
i=1

(∑
u∈A`

F (u, x)M(u, y(i))

)
.

2.2 Main result

We will work only with the sharp peak landscape: there exists a sequence
w∗ ∈ A`, called master sequence, whose fitness is A(w∗) = σ > 1, whereas
for all u 6= w∗ in A` the fitness A(u) is 1. We introduce Hamming classes in
the space A`. The Hamming distance between two chromosomes u, v ∈ A`
is defined as follows:

dH(u, v) = card{ i ∈ { 1, . . . , ` } : u(i) 6= v(i) } .
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For K ∈ { 1, . . . , ` } and a population x ∈ (A`)m, we denote by NK(x) the
number of sequences in the population x which are at distance K from the
master sequence, i.e.,

NK(x) = card{ i ∈ { 1, . . . ,m } : dH(x(i), w∗) = K } .

Let us denote by I(p, t) the rate function governing the large deviations of a
binomial law of parameter p ∈ [0, 1]:

∀t ∈ [0, 1] I(p, t) = t ln
t

p
+ (1− t) ln

1− t
1− p

.

We define, for a ∈ ]0,+∞[ ,

∀k ≥ 0 ρ∗k = (σe−a − 1)
ak

k!

∑
i≥1

ik

σi
,

ρ∗(a) =

{
ρ∗0 if σe−a > 1

0 if σe−a ≤ 1

ψ(a) = inf
l∈N

inf

{
l−1∑
k=1

I

(
σρk

(σ − 1)ρk − 1
, γk

)
+ γkI

(
e−a,

ρk+1

γk

)
:

ρ0 = ρ∗(a), ρl = 0, ρk, γk ∈ [0, 1] for 0 ≤ k < l

}
.

Theorem 2.1. We suppose that

`→ +∞ , m→ +∞ , q → 0 ,

in such a way that

`q → a ∈ ]0,+∞[ ,
m

`
→ α ∈ [0,+∞] .

We have the following dichotomy:

• if αψ(a) < lnκ, then

∀K ≥ 0 lim
`,m→∞, q→0
`q→a, m

`
→α

lim
n→∞

E

(
NK(Xn)

m

)
= 0 ,

• if αψ(a) > lnκ, then

∀K ≥ 0 lim
`,m→∞, q→0
`q→a, m

`
→α

lim
n→∞

E

(
NK(Xn)

m

)
= ρ∗K .
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Moreover, in both cases,

∀K ≥ 0 lim
`,m→∞, q→0
`q→a, m

`
→α

lim
n→∞

Var
(
NK(Xn)

m

)
= 0 .

We denote byQ(σ, a) the distribution of the quasispecies of parameters σ > 1
and a ≥ 0, i.e., the probability distribution that assigns the mass ρ∗k to each
non–negative integer k. In [4] we can find a couple of graphs showing the
concentrations of the master sequence as a function of a, for different values
of the parameter σ.

2.3 Sketch of proof

The Wright–Fisher process (Xn)n≥0 is hard to handle, mainly due to the huge
size of the state space and the lack of a natural ordering in it. Instead of
directly working with the Wright–Fisher process, we work with the occupancy
process (On)n≥0. The occupancy process is a simpler process which derives
directly from the original process (Xn)n≥0, but only keeps the information
we are interested in, namely, the number of chromosomes in each of the `+ 1
Hamming classes. The state space of the occupancy process is much simpler
than that of the Wright–Fisher process, and it is endowed with a partial
ordering. The occupancy process will be the main subject of our study.

We fix next K ≥ 0 and we focus on finding the concentration of the individ-
uals in the K–th Hamming class. We compare the time that the occupancy
process spends having at least one individual in one of the Hamming classes
0, . . . , K (persistence time), with the time the process spends having no se-
quences in any of the classes 0, . . . , K (discovery time). Asymptotically,
when αψ(a) < lnκ, the persistence time becomes negligible with respect to
the discovery time, whereas when αψ(a) > lnκ, it is the discovery time that
becomes negligible with respect to the persistence time. This fact, which
already proves the first assertion of theorem 2.1, is shown in [3] for the case
K = 0; the more general case K ≥ 1 is dealt with in the same way as the
case K = 0, and the proof does not make any new contributions to the un-
derstanding of the model. Therefore, we will admit this fact and focus on
the interesting case αψ(a) > lnκ.

We build a coupling to compare the occupancy process with some simpler
processes, which will only keep track of the dynamics of the Hamming classes
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0, . . . , K. The simpler processes can be viewed as random perturbations of
the same dynamical system. The dynamical system has two fixed points: an
unstable one, 0, and a stable one, ρ∗ = (ρ∗0, . . . , ρ

∗
K). We use the theory

developed by Freidlin and Wentzell [8], as well as some useful estimates
from [3], to show that the perturbed processes spend the greatest part of
their time very close to the stable fixed point ρ∗, thus showing that the
invariant measures of the perturbed processes converge to the Dirac mass in
ρ∗.

2.4 The occupancy process

The occupancy process (On)n≥0 will be the starting point of our study. It is
obtained from the original Wright–Fisher process (Xn)n≥0 by using a tech-
nique known as lumping (section 4 of [3]). Let Pm`+1 be the set of the ordered
partitions of the integer m in at most `+ 1 parts:

Pm`+1 =
{

(o(0), . . . , o(`)) ∈ N`+1 : o(0) + · · ·+ o(`) = m
}
.

A partition (o(0), . . . , o(`)) is interpreted as an occupancy distribution, which
corresponds to a population with o(l) individuals in the Hamming class l, for
0 ≤ l ≤ `. The occupancy process (On)n≥0 is a Markov chain with values in
Pm`+1 and transition matrix given by:

∀o, o′ ∈ Pm`+1 pO(o, o′) =
∏

0≤h≤`

(∑
k∈{ 0,...,` } o(k)AH(k)MH(k, h)∑

h∈{ 0,...,` } o(h)AH(h)

)o′(h)

,

where AH is the lumped fitness function, defined as follows

∀b ∈ { 0, . . . , ` } AH(b) =

{
σ if b = 0 ,

1 if b ≥ 1 ,

and MH is the lumped mutation matrix: for b, c ∈ { 0, . . . , ` } the coefficient
MH(b, c) is given by∑

0≤k≤`−b
0≤l≤b
k−l=c−b

(
`− b
k

)(
b

l

)
qk(1− q)`−b−k

(
q

κ− 1

)l(
1− q

κ− 1

)b−l
.

The state space Pm`+1 of the occupancy process is endowed with a partial
order. Let o, o′ ∈ Pm`+1, we say that o is lower than or equal to o′, and we
write o � o′, if

∀l ∈ { 0, . . . , ` } o(0) + · · ·+ o(l) ≤ o′(0) + · · ·+ o′(l) .
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3 Stochastic bounds

In this section we build simpler processes in order to bound stochastically the
occupancy process (On)n≥0. We will couple the simpler processes with the
original occupancy process and we will compare their invariant probability
measures.

3.1 Lower and upper processes

We begin by constructing a lower process (O`
n)n≥0 and an upper process

(OK+1
n )n≥0 in order to bound stochastically the original occupancy process

(On)n≥0. In other words, the lower and upper processes will be built so that
for every occupancy distribution o ∈ Pm`+1, if the three processes start from o,
then

∀n ≥ 0 O`
n � On � OK+1

n .

The new processes will have simpler dynamics than the original occupancy
process.

Let us describe loosely the dynamics of the lower process. As long as there
are no master sequences present in the population, the lower process evolves
exactly as the original occupancy process. As soon as a master sequence
appears, all the chromosomes in the Hamming classesK+1, . . . , ` are directly
sent to the class `. Moreover, as long as the master sequence remains present
in the population, all mutations towards the classes K+1, . . . , ` are also sent
to the Hamming class `. The dynamics of the upper process is similar, this
time with the Hamming class ` replaced by the class K + 1. The rest of the
section is devoted to formalising this construction.

Let ΨO be the coupling map defined in section 5.1 of [3]. We modify this
map in order to obtain a lower map Ψ`

O and an upper map ΨK+1
O . The

coupling map ΨO takes two arguments, an occupancy distribution o ∈ Pm`+1

and a matrix r ∈ R, where R is the set of matrices of size m× (`+ 1) with
coefficients in [0, 1]. The Markov chain (On)n≥0 is built with the help of the
map ΨO and a sequence (Rn)n≥1 of independent random matrices with values
in R, the entrances of the same random matrix Rn being independent and
identically distributed, with uniform law over the interval [0, 1].

8



Let us define two maps π`, πK+1 : Pm`+1 → Pm`+1 by setting, for every o ∈ Pm`+1,

π`(o) =
(
o(0), . . . , o(K), 0, . . . , 0,m− o

(
(0) + · · ·+ o(K)

))
,

πK+1(o) =
(
o(0), . . . , o(K),m−

(
o(0) + · · ·+ o(K)

)
, 0, . . . , 0

)
.

Obviously,
∀o ∈ Pm`+1 π`(o) � o � πK+1(o) .

We denote by W∗ the set of occupancy distributions having at least one
master sequence, i.e.,

W∗ = { o ∈ Pm`+1 : o(0) ≥ 1 } ,

and we denote by N the set of occupancy distributions having no master
sequences, i.e.,

N = { o ∈ Pm`+1 : o(0) = 0 } .

Let us define

o`enter = (1, 0, . . . , 0,m− 1) , o`exit = (0, . . . , 0,m) .

The occupancy distributions o`enter and o`exit are the absolute minima of the
sets W∗ and N . We define the lower map Ψ`

O by setting, for o ∈ Pm`+1 and
r ∈ R,

Ψ`
O(o, r) =


ΨO(o, r) if o ∈ N and ΨO(o, r) 6∈ W∗ ,
o`enter if o ∈ N and ΨO(o, r) ∈ W∗ ,
π`
(
ΨO(π`(o), r)

)
if o ∈ W∗ and ΨO(π`(o), r) 6∈ N ,

o`exit if o ∈ W∗ and ΨO(π`(o), r) ∈ N .

Likewise, we define the occupancy distributions

oK+1
enter = (m, 0, . . . , 0) , oK+1

exit = (0,m, 0, . . . , 0) ,

which are the absolute maxima of the sets W∗ and N . We define an upper
map ΨK+1

O by setting, for o ∈ Pm`+1 and r ∈ R,

ΨK+1
O (o, r) =


ΨO(o, r) if o ∈ N and ΨO(o, r) 6∈ W∗,
oK+1
enter if o ∈ N and ΨO(o, r) ∈ W∗,
πK+1

(
ΨO(πK+1(o), r)

)
if o ∈ W∗ and ΨO(πK+1(o), r) 6∈ N ,

oK+1
exit if o ∈ W∗ and ΨO(πK+1(o), r) ∈ N .

9



The coupling map ΨO is monotone —lemma 5.5 of [3]— i.e., for every pair
of occupancy distributions o, o′ and for every r ∈ R,

o � o′ =⇒ ΨO(o, r) � ΨO(o′, r) .

We deduce that the lower map Ψ`
O is below the coupling map ΨO and the

upper map ΨK+1
O is above the coupling map ΨO, i.e.,

∀o ∈ Pm`+1 ∀r ∈ R Ψ`
O(o, r) � ΨO(o, r) � ΨK+1

O (o, r) .

We use the lower and upper maps, along with the i.i.d. sequence of random
matrices (Rn)n≥0, in order to build a lower occupancy process (O`

n)n≥0 and
an upper occupancy process (OK+1

n )n≥0. Let o ∈ Pm`+1 be the starting point
of the processes. We set O`

0 = OK+1
0 = o and

∀n ≥ 1 O`
n = Ψ`

O(O`
n−1, Rn) , OK+1

n = ΨK+1
O (OK+1

n−1 , Rn) .

Proposition 3.1. Suppose that the processes (On)n≥0, (O`
n)n≥0, (OK+1

n )n≥0
start all from the same occupancy distribution o. We have

∀n ≥ 0 O`
n � On � OK+1

n .

The proof is similar to the proof of proposition 8.1 in [2].

3.2 Dynamics of the bounding processes

We study now the dynamics of the lower and upper processes in W∗. Since
the calculations are the same for both processes, we take θ to be either K+1
or `, and we denote by (Oθ

n)n≥0 the corresponding process. For the process
(Oθ

n)n≥0, the states in the set

T θ = { o ∈ Pm`+1 : o(0) ≥ 1 and o(0) + · · ·+ o(K) + o(θ) < m } ,

are transient, and the states inN ∪ (W∗ \ T θ) form a recurrence class. Let us
take a look at the transition mechanism restricted to N ∪ (W∗ \ T θ). Since

W∗ \ T θ = { o ∈ Pm`+1 : o(0) ≥ 1 and o(0) + · · ·+ o(K) + o(θ) = m } ,

a state in W∗ \ T θ is totally determined by the occupancy numbers of the
Hamming classes 0, . . . , K; whenever the process (Oθ

n)n≥0 starts form a state
in W∗ \ T θ, the dynamics of

(
Oθ
n(0), . . . , Oθ

n(K)
)
n≥0 is Markovian until the
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time of exit fromW∗ \ T θ. We build now a Markov chain (Zθ
n)n≥0 which will

replicate the dynamics of the coordinates 0, . . . , K of (Oθ
n)n≥0 in W∗ \ T θ,

but with no neutral phase. Let us define the set

D = { z ∈ NK+1 : z0 + · · ·+ zK ≤ m } .

We define the projection π : Pm`+1 → D by setting, for o ∈ Pm`+1,

π(o) = (o(0), . . . , o(K)) .

We denote by (Zθ
n)n≥0 the Markov chain with state space D and transition

matrix given by: for z, z′ ∈ D and for any n ≥ 0, let o be the unique element
of Pm`+1 \ T θ such that π(o) = z,

• if z0, z′0 ≥ 1,

P (Zθ
n+1 = z′ |Zθ

n = z) = P (π(Oθ
n+1) = z′ |Oθ

n = o) .

• if z0 ≥ 1 and z′0 = 0,

P (Zθ
n+1 = zθexit |Zθ

n = z) =
∑
z′:z′0=0

P (π(Oθ
n+1) = z′ |Oθ

n = o) ,

where z`exit = (0, . . . , 0) and zK+1
exit = (0,m, 0, . . . , 0).

• if z = zθexit,
P (Zθ

n+1 = zθenter |Zθ
n = zθexit) = 1 ,

where z`enter = (1, 0, . . . , 0) and zK+1
enter = (m, 0, . . . , 0) .

The remaining non–diagonal coefficients of the transition matrix are null.
The diagonal coefficients are chosen so that the matrix is stochastic, i.e.,
each row adds up to 1. Let us denote by pθ(z, z′) the above transition matrix
and let us compute its value for z, z′ ∈ D such that z0, z′0 ≥ 1. We introduce
some notation first. For d ≥ 1 and a vector v ∈ Rd, we denote by |v|1 the L1

norm of v:
|v|1 = |v1|+ · · ·+ |vd| .

For d ≥ 1, a square matrix M ∈ Rd2 , and i ∈ { 1, . . . , d }, we denote by
M(i, ·) or Mi· the i–th row of M , and by M(·, i) or M·i the i–th column of
M . We also denote by |M |1 the L1 norm of M in Rd2 :

|M |1 =
d∑

i,j=1

|Mij| .
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We say that a vector s ∈ D is compatible with another vector z ∈ D, and we
write s ∼ z, if

zi = 0 ⇒ si = 0 for i ∈ { 0, . . . , K } and |z|1 = m ⇒ |s|1 = m.

We say that a matrix b ∈ N(K+1)2 is compatible with the vectors s, z′ ∈ D,
and we write b ∼ (s, z′), if

∀i ∈ { 0, . . . , K } |b(i, ·)|1 ≤ si and |b(·, i)|1 ≤ z′i .

Finally, for i ∈ { 0, . . . , K }∪{θ}, we defineMH(i) to be the vector of [0, 1]K+1

given by
MH(i) =

(
MH(i, 0), . . . ,MH(i,K)

)
.

Let z, z′ ∈ D such that z0, z′0 ≥ 1. We now use the transition mechanism of
(Oθ

n)n≥0 in order to compute the value of pθ(z, z′):

pθ(z, z′) =
∑
s∼z

∑
b∼(s,z′)

pθ(z, s, b, z′) ,

where pθ(z, s, b, z′) is the probability that, given Zθ
n = z:

• for i ∈ { 0, . . . , K }, si individuals from the class i are selected, and m−|s|1
individuals from the class θ are selected. The probability of this event is

m!

s0! · · · sK !(m− |s|1)!
× (σz0)

s0zs11 · · · z
sK
K (m− |z|1)m−|s|1

((σ − 1)z0 +m)m
,

• for i, j ∈ { 0, . . . , K }, bij individuals from the class i mutate to the class
j, and si − |b(i, ·)|1 individuals from the class i mutate to the class θ. For
i ∈ { 0, . . . , K }, the probability of this event is

si!

bi0! · · · biK !(si − |b(i, ·)|1)!
×MH(i, 0)bi0 · · ·MH(i,K)biK (1−|MH(i)|1)si−|b(i,·)|1 ,

• for j ∈ { 0, . . . , K }, z′j−|b(·, j)|1 individuals from the class θ mutate to the
class j, and m− |s|1 − |z′|1 + |b|1 individuals from the class θ do not mutate
to any of the classes { 0, . . . , K }. The probability of this event is

(m− |s|1)!
(z′0 − |b(·, 0)|1)! · · · (z′K − |b(·, K)|1)!(m− |s|1 − |z′|1 + |b|1)!

×MH(θ, 0)z
′
0−|b(·,0)|1 · · ·MH(θ,K)z

′
K−|b(·,K)|1(1− |MH(θ)|)m−|s|1−|z′|1+|b|1 .
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Finally,

pθ(z, s, b, z′) =
m!

s0! · · · sK !(m− |s|1)!
× (σz0)

s0zs11 · · · z
sK
K (m− |z|1)m−|s|1

((σ − 1)z0 +m)m
×

K∏
i=0

si!

bi0! · · · biK !(si − |bi·|1)!
×MH(i, 0)bi0 · · ·MH(i,K)biK (1− |MH(i)|1)si−|bi·|1

× (m− |s|1)!
(z′0 − |b·0|1)! · · · (z′K − |b·K |1)!(m− |s|1 − |z′|1 + |b|1)!

×MH(θ, 0)z
′
0−|b·0|1 · · ·MH(θ,K)z

′
K−|b·K |1(1− |MH(θ)|1)m−|s|1−|z

′|1+|b|1 .

3.3 Bounds on the invariant measure

Let us denote by µO, µ
`
O, µ

K+1
O the invariant probability measures of the

processes (On)n≥0, (O
`
n)n≥0, (O

K+1
n )n≥0. Let ν be the image measure of µO

through the map

o ∈ Pm`+1 7−→
o(0) + · · ·+ o(K)

m
=
|π(o)|1
m

∈ [0, 1] .

For every function g : [0, 1] 7→ R,∫
[0,1]

g dν =

∫
Pm`+1

g

(
|π(o)|1
m

)
dµO = lim

n→∞
E

(
g

(
|π(On)|1

m

))
.

Let now g : [0, 1] 7→ R be an increasing function such that g(0) = 0. Thanks
to proposition 3.1, the following inequalities hold: for all n ≥ 0,

g

(
|π(O`

n)|1
m

)
≤ g

(
|π(On)|1

m

)
≤ g

(
|π(OK+1

n )|1
m

)
.

Taking the expectation and sending n to ∞ we deduce that∫
Pm`+1

g

(
|π(o)|1
m

)
dµ`O(o) ≤

∫
[0,1]

g dν ≤
∫
Pm`+1

g

(
|π(o)|1
m

)
dµK+1

O (o) .

Next, we seek to estimate the above integrals. The strategy is the same for
the lower and upper integrals; we set θ to be either K + 1 or ` and we study
the invariant probability measure µθO. We will rely on the following renewal
result. Let E be a finite set and let (Xn)n≥0 be an ergodic Markov chain with
state space E and invariant probability measure µ. Let W∗ be a subset of E
and let e ∈ E be a state outside W∗. We define

τ ∗ = inf{n ≥ 0 : Xn ∈ W∗ } , τ = inf{n ≥ τ ∗ : Xn = e } .
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Proposition 3.2. For every function f : E 7→ R, we have

∫
E
f dµ =

E

(
τ−1∑
n=0

f(Xn)

∣∣∣∣∣X0 = e

)
E(τ |X0 = e)

.

The proof is standard and similar to that of proposition 9.2 of [2]. We apply
the renewal result to the process (Oθ

n)n≥0 restricted toN ∪ (W∗ \ T θ), the set
W∗ \ T θ, the occupancy distribution oθexit and the function o 7→ g

(
|π(o)|1/m

)
.

We set

τ ∗ = inf{n ≥ 0 : Oθ
n ∈ W∗ \ T θ } , τ = inf{n ≥ τ ∗ : Oθ

n = oθexit } .

Applying the renewal theorem we get

∫
Pm`+1

g

(
|π(o)|1
m

)
dµθO(o) =

E

(
τ−1∑
n=0

g

(
|π(Oθ

n)|1
m

) ∣∣∣∣∣Oθ
0 = oθexit

)
E(τ |Oθ

0 = oθexit)
.

Whenever the process (Oθ
n)n≥0 is inW∗ \ T θ, the dynamics of the first K+ 1

Hamming classes,
(
π(Oθ

n)
)
n≥0, is that of the Markov chain (Zθ

n)n≥0 defined
at the end of the previous section. Let us suppose that (Zθ

n)n≥0 starts from
zθenter ∈ D, where z`enter = (1, 0, . . . , 0) and zK+1

enter = (m, 0, . . . , 0). Let τ0 be the
first time that Zθ

n(0) becomes null:

τ0 = inf{n ≥ 0 : Zθ
n(0) = 0 } .

Since the process (Oθ
n)n≥0 always enters the set W∗ \ T θ at the state oθenter,

the law of τ0 is the same as the law of τ − τ ∗ for the process (Oθ
n)n≥0 starting

from oθexit. We conclude that the trajectories
(
π(Oθ

n)
)
τ∗≤n≤τ and

(
Zθ
n

)
0≤n≤τ0

have the same law. Therefore,

E(τ − τ ∗ |Oθ
0 = oθexit) = E(τ0 |Zθ

0 = zθenter) ,

E

(
τ−1∑
n=τ∗

g

(
|π(Oθ

n)|1
m

) ∣∣∣∣∣Oθ
0 = oθexit

)
= E

(
τ0−1∑
n=0

g

(
|Zθ

n|1
m

) ∣∣∣∣∣Zθ
0 = zθenter

)
.

Thus, we can rewrite the formula for the invariant probability measure µθO
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as follows:

∫
Pm`+1

g

(
|π(o)|1
m

)
dµθO(o) =

E

(
τ∗−1∑
n=0

g

(
|π(Oθ

n)|1
m

) ∣∣∣∣∣Oθ
0 = oθexit

)
E(τ ∗ |Oθ

0 = oθexit) + E(τ0 |Zθ
0 = zθenter)

+

E

(
τ0−1∑
n=0

g

(
|Zθ

n|1
m

) ∣∣∣∣∣Zθ
0 = zθenter

)
E(τ ∗ |Oθ

0 = oθexit) + E(τ0 |Zθ
0 = zθenter)

.

The objective of the following sections is to estimate each of the terms ap-
pearing in the right hand side of this formula.

4 Replicating Markov chains

We study now the Markov chains (Z`
n)n≥0 and (ZK+1

n )n≥0. The computations
are the same for both processes, we take θ to be either K + 1 or ` and we
study the Markov chain (Zθ

n)n≥0. We will carry out all of our estimates in
the asymptotic regime

`→ +∞ , m→ +∞ , q → 0 , `q → a ∈ ]0,+∞[ .

We will say that a property holds asymptotically, if it holds for `,m large
enough, q small enough and `q close enough to a.

4.1 Large deviations for the transition matrix

We define the set D ⊂ RK+1 by

D =
{
r ∈ RK+1 : r0 ≥ 0, . . . , rK ≥ 0 and r0 + · · ·+ rK ≤ 1

}
.

For p, t ∈ D, we define the quantity IK(p, t) as follows:

IK(p, t) =
K∑
k=0

tk ln
tk
pk

+ (1− |t|1) ln
1− |t|1
1− |p|1

,

We make the convention that a ln(a/b) = 0 if a = b = 0. The function
IK(p, ·) is the rate function governing the large deviations of a multinomial
distribution with parameters n and p0, . . . , pK , 1−|p|1. We have the following
estimate for the multinomial coefficients:
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Lemma 4.1. For all n ≥ 1, N < n and i0, . . . , iN ∈ {0, . . . , n} such that
s = i0 + · · ·+ iN ≤ n, we have∣∣∣∣∣ ln n!

i0! · · · iN !(n− s)!
+

N∑
k=0

ik ln
ik
n

+(n−s) ln
n− s
n

∣∣∣∣∣ ≤ (N+2) lnn+2N+3 .

The proof is similar to that of lemma 7.1 of [3].

We define a function f : D → D by setting

∀r ∈ D f(r) =
1

(σ − 1)r0 + 1
(σr0, r1, . . . , rK) .

We also define a function I` : D×D× [0, 1](K+1)2 ×D → [0,+∞] by setting,
for r, ξ, t ∈ D and β ∈ [0, 1](K+1)2 ,

I`(r, ξ, β, t) = IK(f(r), ξ) +
K∑
k=0

ξkIK

(
MH(k), ξ−1k β(k, ·)

)
+ (1− |ξ|1)IK

(
MH(θ), (1− |ξ|1)−1(t0 − |β(·, 0)|1, . . . , tK − |β(·, K)|1)

)
.

Thanks to the previous identities, for all z, z′, s ∈ D and b ∈ N(K+1)2 , we can
express the logarithm of the transition probability pθ(z, s, b, z′) as follows:

ln pθ(z, s, b, z′) = −mIK
(
f
( z
m

)
,
s

m

)
−

K∑
k=0

skIK
(
MH(k), s−1k b(k, ·)

)
− (m− |s|1)IK

(
MH(θ), (m− |s|1)−1

(
z′0 − |b(·, 0)|1, . . . , z′K − |b(·, K)|1

))
+ Φ(z, s, b, z′) = −mI`

(
z

m
,
s

m
,
b

m
,
z′

m

)
+ Φ(z, s, b, z′) .

The error term Φ(z, s, b, z′) satisfies, for all m ≥ 1,

∀z, z′, s ∈ D ∀b ∈ N(K+1)2
∣∣Φ(z, s, b, z′)

∣∣ ≤ C(K)(lnm+ 1) ,

where C(K) is a constant that depends onK but not onm. In the asymptotic
regime, for all i, j ≥ 0,

MH(i, j) −→ M∞(i, j) =

 e−a
aj−i

(j − i)!
si i ≤ j ,

0 si i > j .
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For k ∈ { 0, . . . , K }, we set

M∞(k) =
(
M∞(k, 0), . . . ,M∞(k,K)

)
.

For t ∈ D, we call B(t) the subset of [0, 1](K+1)2 of the upper triangular
matrices β such that the sum of the columns of β is equal to the vector t,
i.e.,

B(t) =
{
β ∈ [0, 1](K+1)2 : βij = 0 for i > j and

|β(·, k)|1 = tk for 0 ≤ k ≤ K
}
.

In the asymptotic regime, for r, ξ, t ∈ D and β ∈ [0, 1](K+1)2 , we get

I`(r, ξ, β, t) −→

{
I(r, ξ, β, t) if β ∈ B(t) ,

+∞ otherwise,

where the function I(r, ξ, β, t) is given by

I(r, ξ, β, t) = IK(f(r), ξ) +
K∑
k=0

ξkIK(M∞(k), ξ−1k β(k, ·)) .

We define a function V1 : D ×D → [0,∞] by setting, for r, t ∈ D,

V1(r, t) = inf
{
I(r, ξ, β, t) : ξ ∈ D, β ∈ B(t)

}
.

For r ∈ RK+1, we denote by brc the vector brc = (br0c, . . . , brKc).

Proposition 4.2. The one step transition probabilities of the Markov chain
(Zθ

n)n≥0 verify the large deviations principle governed by V1:

• For any subset U of D and for any ρ ∈ D, we have, for n ≥ 0,

− inf
{
V1(ρ, t) : t ∈ U

o }
≤ lim inf

`,m→∞, q→0
`q→a

1

m
lnP

(
Zθ
n+1 ∈ mU

∣∣Zθ
n = bmρc

)
.

• For any subsets U,U ′ of D, we have, for n ≥ 0,

lim sup
`,m→∞, q→0

`q→a

1

m
ln sup

z∈mU
P
(
Zθ
n+1 ∈ mU ′

∣∣Zθ
n = z

)
≤ − inf

{
V1(r, t) : r ∈ U, t ∈ U ′

}
.
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Proof. We begin by showing the large deviations upper bound. Let U,U ′ be
two subsets of D and take z ∈ mU . For n ≥ 0,

P
(
Zθ
n+1 ∈ mU ′ |Zθ

n = z
)

=
∑

z′∈mU ′∩D

pθ(z, z′)

=
∑

z′∈mU ′∩D

∑
s∼z

∑
b∼(s,z′)

pθ(z, s, b, z′) .

Thanks to the estimates on pθ, we have, for m ≥ 1,

sup
z∈mU

P
(
Zθ
n+1 ∈ mU ′ |Zθ

n = z
)

≤ (m+ 1)C(K) max
{
pθ(z, s, b, z′) : z ∈ mU, s ∼ z, z′ ∈ mU ′, b ∼ (s, z′)

}
≤ (m+1)C(K) exp

(
−mmin

{
I`

( z
m
,
s

m
,
b

m
,
z

m

)
:
z ∈ mU, z′ ∈ mU ′
s ∼ z, b ∼ (s, z′)

})
,

where C(K) is a constant depending on K but not on m. For each m ≥ 1, let
zm, sm, z

′
m ∈ D, bm ∈ { 0, . . . ,m }(K+1)2 be four terms that realise the above

minimum. We observe next the expression

lim sup
`,m→∞, q→0

`q→a

−I`
(
zm
m
,
sm
m
,
bm
m
,
z′m
m

)
.

Since D and [0, 1](K+1)2 are compact sets, up to the extraction of a subse-
quence, we can suppose that when m→∞,

zm
m
→ ρ ∈ U , sm

m
→ ξ ∈ D , bm

m
→ β ∈ [0, 1](K+1)2 ,

z′m
m
→ t ∈ U ′ .

If β is not an upper triangular matrix, or if, for some j ∈ { 0, . . . , K },
|β(·, j)| 6= tj, the limit is −∞. Thus, the only case we need to take care of is
when β ∈ B(t). In this case, we have

lim sup
`,m→∞, q→0

`q→a

−I`
(zm
m
,
sm
m
,
bm
m
,
zm
m

)
≤ −I(ρ, ξ, β, t) .

Optimising with respect to ρ, ξ, β, t, we obtain the upper bound of the large
deviations principle.

We show next the lower bound. Let ξ, t ∈ D and β ∈ B(t). We have

P
(
Zθ
n+1 = bmtc

∣∣Zθ
n = bmρc

)
≥ pθ(bmρc, bmξc, bmβc, bmtc)

≥ (m+ 1)−C(K) exp

(
−mI`

(
bmρc
m

,
bmξc
m

,
bmβc
m

,
bmtc
m

))
.
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We take the logarithm and we send m, ` to ∞ and q to 0. We obtain then

lim inf
`,m→∞, q→0

`q→a

1

m
lnP

(
Zθ
n+1 = btmc

∣∣Zθ
n = bρmc

)
≥ −I(ρ, ξ, β, t) .

Moreover, if t ∈ U
o
, for m large enough, btmc belongs to mU . Therefore,

lim inf
`,m→∞, q→0

`q→a

1

m
lnP

(
Zθ
n+1 ∈ mU

∣∣Zθ
n = bmρc

)
≥ −I(ρ, ξ, β, t) .

We optimise over ξ, β, t and we obtain the large deviations lower bound.

A similar proof shows that the l–step transition probabilities of (Zθ
n)n≥0 also

satisfy a large deviations principle. For l ≥ 1, we define a function Vl on
D ×D as follows:

Vl(r, t) = inf
{ l−1∑

k=0

I(ρk, ξk, βk, ρk+1) :

ρ0 = r, ρl = t, ρk, ξk ∈ D, βk ∈ B(t) for 0 ≤ k < l
}
.

Corollary 4.3. For l ≥ 1, the l–step transition probabilities of (Zθ
n)n≥0 sat-

isfy the large deviations principle governed by Vl:

• For any subset U of D and for any ρ ∈ D, we have, for n ≥ 0,

− inf
{
Vl(ρ, t) : t ∈ U

o }
≤ lim inf

`,m→∞, q→0
`q→a

1

m
lnP

(
Zθ
n+l ∈ mU

∣∣Zθ
n = bρmc

)
.

• For any subsets U,U ′ of D, we have, for n ≥ 0,

lim sup
`,m→∞, q→0

`q→a

1

m
ln sup

z∈mU
P
(
Zθ
n+l ∈ mU ′

∣∣Zθ
n = z

)
≤ − inf

{
Vl(r, t) : r ∈ U, t ∈ U ′

}
.

4.2 Perturbed dynamical system

We look next for the zeros of the rate function I(r, ξ, β, t). We see that
I(r, ξ, β, t) = 0 if and only if ξ = f(r), β ∈ B(t) and β(k, ·)/ξk = M∞(k) for
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0 ≤ k ≤ K. We define a function F = (F0, . . . , FK) : D → D by setting, for
r ∈ D and k ∈ { 0, . . . , K },

Fk(r) =
k∑
i=0

fi(r)e
−a ak−i

(k − i)!
.

Replacing f by its value in the above formula, we can rewrite, for 0 ≤ k ≤ K,

Fk(r) =
e−a

(σ − 1)r0 + 1

(
ak

k!
σr0 +

k∑
i=1

ak−i

(k − i)!
ri

)
.

The Markov chain (Zθ
n)n≥0 can be seen as a perturbation of the dynamical

system associated to the map F :

z0 ∈ D , ∀n ≥ 1 zn = F (zn−1) .

Let ρ∗ be the point of D given by:

∀k ∈ { 0, . . . , K } ρ∗k = (σe−a − 1)
ak

k!

∑
i≥1

ik

σi
.

Proposition 4.4. We have the following dichotomy:

• if σe−a ≤ 1, the function F has a single fixed point, 0, and (zn)n≥0 converges
to 0.

• if σe−a > 1, the function F has two fixed points, 0 and ρ∗. If z00 = 0,
the sequence (zn)n∈N converges to 0, whereas if z00 > 0, the sequence (zn)n∈N
converges to ρ∗.

Proof. For k ∈ { 0, . . . , K }, the function Fk(r) is a function of r0, . . . , rk only;
we can inductively solve the system of equations

Fk(r) = rk , 0 ≤ k ≤ K .

For k = 0, we have

F0(r) =
σe−ar0

(σ − 1)r0 + 1
.

The equation F0(r) = r0 has two solutions: r0 = 0 and r0 = ρ∗0. For k in
{ 1, . . . , K }, we have Fk(r) = rk if and only if

rk =
e−a

(σ − 1)r0 + 1− e−a

(
ak

k!
σr0 +

k−1∑
i=1

ak−i

(k − i)!
ri

)
.
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We end up with a recurrence relation. If the initial condition is r0 = 0, the
only solution is rk = 0 for all k ∈ { 0, . . . , K }, whereas if the initial condition
is r0 = ρ∗0, the only solution is rk = ρ∗k for all k ∈ { 0, . . . , K }, this last
assertion is shown in section 2.2 of [4].

It remains to show the convergence. We will show the convergence in the case
σe−a > 1, z00 > 0. The other cases are dealt with in a similar fashion, or are
even simpler. We will prove the convergence by induction on the coordinates.
Since the function

F0(r) =
σe−ar0

(σ − 1)r0 + 1

is increasing, concave, and satisfies F0(ρ
∗) = ρ∗0, the sequence (zn0 )n≥0 is

monotone and converges to ρ∗0. Let k ∈ { 1, . . . , K } and let us suppose that
the following limit holds:

lim
n→∞

(zn0 , . . . , z
n
k−1) = (ρ∗0, . . . , ρ

∗
k−1) .

Let ε > 0. We define two functions F , F : [0, 1] → [0, 1] by setting, for
ρ ∈ [0, 1],

F (ρ) =
e−a

(σ − 1)(ρ∗0 + ε) + 1

(
ak

k!
σ(ρ∗0 − ε) +

k−1∑
i=1

ak−i

(k − i)!
(ρ∗i − ε) + ρ

)
,

F (ρ) =
e−a

(σ − 1)(ρ∗0 − ε) + 1

(
ak

k!
σ(ρ∗0 + ε) +

k−1∑
i=1

ak−i

(k − i)!
(ρ∗i + ε) + ρ

)
.

By the induction hypothesis, there exists N ∈ N such that for all n ≥ N and
i ∈ { 0, . . . , k − 1 }, |zni − ρ∗i | < ε. We have then, for all n ≥ N and for all
ρ ∈ [0, 1],

F (ρ) ≤ Fk(z
n
0 , . . . , z

n
k−1, ρ) ≤ F (ρ) .

We define two sequences, (zn)n≥N and (zn)n≥N , by setting zN = zN = zNk
and for n > N

zn = F (zn−1) , zn = F (zn−1) .

Thus, for all n ≥ N , we have zn ≤ znk ≤ zn. Since F (ρ) and F (ρ) are affine
functions, and for ε small enough their main coefficient is strictly smaller
than 1, the sequences (zn)n≥N and (zn)n≥N converge to the fixed points of
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the functions F et F , which are given by:

ρ∗
k

=
e−a

(σ − 1)(ρ∗0 + ε) + 1− e−a

(
ak

k!
σ(ρ∗0 − ε) +

k−1∑
i=1

ak−i

(k − i)!
(ρ∗i − ε)

)
,

ρ∗k =
e−a

(σ − 1)(ρ∗0 − ε) + 1− e−a

(
ak

k!
σ(ρ∗0 + ε) +

k−1∑
i=1

ak−i

(k − i)!
(ρ∗i + ε)

)
.

We let ε go to 0 and we see that

lim
n→∞

znk =
e−a

(σ − 1)ρ∗0 + 1− e−a

(
ak

k!
σρ∗0 +

k−1∑
i=1

ak−i

(k − i)!
ρ∗i

)
= ρ∗k ,

which finishes the inductive step.

4.3 Comparison with the master sequence

In section 3, in order to build the bounding occupancy processes, we have
fixed an integer K ≥ 0 and we have kept the relevant information about the
dynamics of the occupancy numbers of the Hamming classes 0, . . . , K. Let
us call (Θ`

n)n≥0 and (Θ1
n)n≥0 the lower and upper occupancy processes that

are obtained for K = 0, and let us call, as before, (O`
n)n≥0 and (OK+1

n )n≥0
the lower and upper occupancy processes corresponding to K > 0. Let us
define the following stopping times:

τ(Θ`) = inf{n ≥ 0 : Θ`
n ∈ N } , τ(OK+1) = inf{n ≥ 0 : OK+1

n ∈ N } .

We have constructed the processes (Θ`
n)n≥0, (Θ

1
n)n≥0, (O

`
n)n≥0, (O

K+1
n )n≥0 in

such a way that they are all coupled and the following relations hold: if the
four processes start from the same occupancy distribution o ∈ W∗, then

∀n ∈ { 0, . . . , τ(Θ`) } Θ`
n � O`

n � OK+1
n � Θ1

n ,

∀n ∈ { 0, . . . , τ(OK+1) } OK+1
n � Θ1

n .

These inequalities are naturally inherited by the Markov chains derived from
the occupancy processes; let (Z`

n)n≥0 and (ZK+1
n )n≥0 be the Markov chains

associated to the processes (O`
n)n≥0 and (OK+1

n )n≥0, as in the end of sec-
tion 3.2. Likewise, let (Y `

n )n≥0 and (Y 1
n )n≥0 be the Markov chains associated

to the processes (Θ`
n)n≥0 and (Θ1

n)n≥0. The state space of the Markov chains
(Z`

n)n≥0, (ZK+1
n )n≥0 is the set D defined in section 3.2, whereas the state
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space for the Markov chains (Y `
n )n≥0, (Y 1

n )n≥0 is { 0, . . . ,m }. Let us define
the following stopping times:

τ(Y `) = inf{n ≥ 0 : Y `
n = 0 } , τ(ZK+1) = inf{n ≥ 0 : ZK+1

n (0) = 0 } .

Let z ∈ D be such that z0 ≥ 1, let the Markov chains (Z`
n)n≥0, (ZK+1

n )n≥0
start from z, and let z0 be the starting point of the Markov chains (Y `

n )n≥0,
(Y 1

n )n≥0. The inequalities between the occupancy processes translate to the
associated Markov chains as follows:

∀n ∈ { 0, . . . , τ(Y `) } Y `
n ≤ Z`

n(0) ≤ ZK+1
n (0) ≤ Y 1

n ,

∀n ∈ { 0, . . . , τ(ZK+1) } ZK+1
n (0) ≤ Y 1

n .

The occupancy processes (Θ`
n)n≥0, (Θ1

n)n≥0, along with the associated Markov
chains (Y `

n )n≥0, (Y 1
n )n≥0, have been studied in detail in [3]. Thanks to the

relations just stated, we will be able to make use of many of the estimates
derived in [3]. Let θ be K + 1 or ` and let us call Ṽ the cost function
associated to the Markov chain (Y θ

n )n≥0. We will make use of the following
results from [3]:

Let us define a function F̃ : [0, 1]→ [0, 1] as follows:

∀r ∈ [0, 1] F̃ (r) = e−a
σr

(σ − 1)r + 1
.

Lemma 4.5. Suppose that σe−a > 1. For s, t ∈ [0, 1], we have Ṽ (s, t) = 0 if
and only if

• either s = t = 0,

• or there exists l ≥ 1 such that t = F̃ l(s),

• or s 6= 0, t = ρ∗.

Let τ(Y θ) be the first time that the Markov chain (Y θ
n )n≥0 becomes null:

τ(Y θ) = inf{n ≥ 0 : Y θ
n = 0 } .

Proposition 4.6. Let a ∈ ]0,+∞[ and let i ∈ { 1, . . . ,m }. The expected
value of τ(Y θ) starting from i satisfies

lim
`,m→∞, q→0

`q→a

1

m
lnE(τ(Y θ) |Y θ

0 = i) = Ṽ (ρ∗0, 0) .
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4.4 Concentration near ρ∗

We show next that, when σe−a > 1, asymptotically, the Markov chain
(Zθ

n)n≥0 concentrates in a neighbourhood of ρ∗. Let us loosely describe the
strategy we will follow. The Markov chain (Zθ

n)n≥0 is a perturbation of the
dynamical system associated to the map F . The map F has two fixed points:
0 and ρ∗. The fixed point 0 is unstable, while ρ∗ is a stable fixed point. The
proof relies mainly on two different kind of estimates. We estimate first the
typical time the process (Zθ

n)n≥0 needs to leave a neighbourhood of the region
{ z ∈ D : z0 = 0 }; since the instability at 0 concerns principally the dynamics
of the master sequence, we will be able to make use of the estimates devel-
oped in [3] by means of the inequalities stated in section 4.3. We estimate
then the time the process (Zθ

n)n≥0 spends outside a neighbourhood of the
region { z ∈ D : z0 = 0 } and ρ∗. Since (Zθ

n)n≥0 tends to follow the discrete
trajectories given by the dynamical system associated to F , it cannot stay a
long time outside such a neighbourhood. This fact will be proved with the
help of the large deviations principle stated in the previous section. This
estimate will help us to bound the number of excursions outside a neigh-
bourhood of ρ∗, as well as the length of these excursions. We formalise these
ideas in the rest of the section. In order to simplify the notation, from now
on we omit the superscript θ and we denote by Pz and Ez the probabilities
and expectations for the Markov chain (Zn)n≥0 starting from z ∈ D.

Let us define
Dδ =

{
r ∈ D : 0 < r0 < δ

}
.

Lemma 4.7. For all δ > 0, there exists c > 0, depending on δ, such that,
asymptotically, for all z ∈ D such that z0 ≥ 1, we have

Pz
(
Z1(0) > 0, . . . , Zbc lnmc−1(0) > 0, Zbc lnmc ∈ m(D \Dδ)

)
≥ 1

mc lnm
.

Proof. Let (Y `
n )n≥0 be the Markov chain defined in section 4.3. By the re-

marks in section 4.3 we can see that

Pz
(
Z1(0) > 0, . . . , Zbc lnmc−1(0) > 0, Zbc lnmc ∈ m(D \Dδ)

)
≥

Pz
(
Z1(0) > 0, . . . , Zbc lnmc−1(0) > 0, Zbc lnmc ∈ m(D \Dδ), τ(Y `) > bc lnmc

)
≥ P1

(
Y `
1 > 0, . . . , Y `

bc lnmc−1 > 0, Y `
bc lnmc > m(ρ∗0 − δ)

)
.

As shown in lemma 7.8 of [3], this last probability is bounded from below by
1/mc lnm, which gives the desired result.
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We estimate next the length of a typical excursion of (Zn)n≥0 outside a
neighbourhood of { z ∈ D : z0 = 0 } and mρ∗. For ρ ∈ D and δ > 0, we
define the δ-neighbourhood of ρ by

U(ρ, δ) =
{
r ∈ D : |r − ρ| < δ

}
.

Lemma 4.8. For all δ > 0, there exist h ≥ 1 and c > 0, depending on δ,
such that, asymptotically, for all r ∈ D such that r0 ≥ δ, we have

Pbmrc
(
Z1(0) > 0, . . . , Zh−1(0) > 0, Zh ∈ mU(ρ∗, δ)

)
≥ 1− exp(−cm) .

Proof. Let δ > 0 and let us define the set

K = { r ∈ D : r0 ≥ δ } .

For each r ∈ K there exists an integer hr ≥ 0 such that F hr(r) ∈ U(ρ∗, δ/4).
By continuity of the map F , for each r ∈ K there exist also positive numbers
δr0, . . . , δ

r
hr

such that δr0, . . . , δrhr < δ/2 and

∀k ∈ { 0, . . . , hr } F
(
U(F k−1(r), δrk−1)

)
⊂ U(F k(r), δrk/2) .

The family {U(r, δr0) : r ∈ K} is an open cover of the set K; since K is a
compact set, we can extract a finite subcover, i.e., there exist N ∈ N and
r1, . . . , rN ∈ K such that

K ⊂ U0 =
N⋃
n=1

U(rn, δ
rn
0 ) .

Let us set h = max{hri : 1 ≤ i ≤ N }, For n ∈ { 1, . . . , N } we take
δrnhrn+1, . . . , δ

rn
h to be positive numbers such that, as before,

∀k ∈ {hrn + 1, . . . , h } F
(
U(F k−1(rn), δrnk−1)

)
⊂ U(F k(rn), δrnk /2) .

Let us define

∀k ∈ { 1, . . . , h− 1 } Uk =
N⋃
n=1

U(F k(rn), δrnk ) .

We have then, for any r ∈ K,

Pbmrc
(
Z1(0) > 0, . . . , Zh−1(0) > 0, Zh ∈ mU(ρ∗, δ)

)
≥

Pbmrc
(
∀k ∈ { 1, . . . , h } Zk ∈ mUk

)
.

The rest of the proof is carried out as for lemma 7.10 in [3].
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Corollary 4.9. Let δ > 0. There exist h ≥ 1, c ≥ 0, depending on δ, such
that, asymptotically, for all r ∈ D \ (Dδ ∪ U(ρ∗, δ)) and for all n ≥ 0, we
have

Pbmrc
(
Zt ∈ D \ (Dδ ∪ U(ρ∗, δ)) for 0 ≤ t ≤ n

)
≤ exp

(
− cm

⌊n
h

⌋)
.

The proof is carried out by dividing the interval { 0, . . . , n } in subintervals of
length h and using the estimate of lemma 4.8 on each of the subintervals. We
will not write the details, which can be found in the proof of corollary 7.11
of [3].

Proposition 4.10. Let g : [0, 1] → [0, 1] be an increasing and continuous
function, such that g(0) = 0. For all z0 ∈ D such that z00 ≥ 1, we have

lim
`,m→∞, q→0

`q→a

E

( τ0−1∑
n=0

g

(
|Zn|1
m

) ∣∣∣∣Z0 = z0
)

E(τ0 |Z0 = z0)
= g(|ρ∗|1) .

Proof. The proof is an adaptation of the proof of theorem 7.12 in [3] to the
case of K + 1 dimensions. Thus, we will only outline the proof, and refer the
reader to [3] for the details. Let ε > 0 and let δ > 0 be small enough so that
such that

∀ρ ∈ U(ρ∗, 2δ)
∣∣g(|ρ|1)− g(|ρ∗|1)

∣∣ < ε .

We define next a sequence of stopping times in order to control the excursions
of the Markov chain (Zn)n≥0 outside U(ρ∗, δ). We take T0 = 0 and

T ∗1 = inf

{
n ≥ 0 :

Zn
m
∈ U(ρ∗, δ)

}
T1 = inf

{
n ≥ T ∗1 :

Zn
m
6∈ U(ρ∗, 2δ)

}
...

...

T ∗k = inf

{
n ≥ Tk−1 :

Zn
m
∈ U(ρ∗, δ)

}
Tk = inf

{
n ≥ T ∗k :

Zn
m
6∈ U(ρ∗, 2δ)

}
...

...

Let us also define, for n ≥ 0,

K(n) = max
{
k ≥ 1 : Tk−1 < n

}
.
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We can proceed as in [3] and break the sum up to time τ0 according to the
sequence of stopping times we just defined, thus reducing the problem to
showing

K(τ0)∑
k=1

(T ∗k ∧ τ0 − Tk−1) −→ 0 .

We introduce the same threshold tηm as in [3]: in order to get rid of the τ0 in
the above expression:

K(τ0)∑
k=1

(T ∗k ∧ τ0 − Tk−1) ≤ 1τ0>tηmτ0 + 1τ0≤tηm

K(τ0)∑
k=1

(T ∗k ∧ τ0 − Tk−1) .

Thanks to the estimates developed in section 7.3 of [3], we know that, uni-
formly on the starting point of the Markov chain,

lim
m→∞

E(1τ0>tηmτ0) = 0 .

Proceeding as in lemma 7.14 of [3], we can obtain the following bound on K:

Lemma 4.11. There exists c > 0, depending on δ, such that, asymptotically,

∀k, n ≥ 0 P (K(n) > k) ≤ nk

k!
exp(−cmk) .

We estimate the term

E

(
1τ0≤tηm

K(τ0)∑
k=1

(T ∗k ∧ τ0 − Tk−1)

)

as in [3]: we use the Cauchy–Schwarz inequality along with the Markov
property to obtain the bound

E

(
1τ0≤tηm

N(τ0)∑
k=1

(T ∗k ∧ τ0 − Tk−1)

)
≤

∑
z∈D: z0≥1

Ez
(
(T ∗1 ∧ τ0)2

)
P
(
ZTk−1

= z
)
.

The following lemma will help to bound the random time T ∗1 ∧ τ0.

Lemma 4.12. For all δ > 0, there exist h ≥ 1, c > 0, depending on δ, such
that, asymptotically, for z ∈ D such that z0 ≥ 1,

Pz
(
Zbc lnmc+h ∈ mU(ρ∗, δ)

)
≥ 1

2mc lnm
.
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The proof consists on applying lemmas 4.7 and 4.8 to obtained the desired
bound, in a similar way as for lemma 7.15 of [3].

Corollary 4.13. For all δ > 0, there exist h ≥ 1, c > 0, depending on δ,
such that, asymptotically, for all z ∈ D such that z0 ≥ 1,

∀n ≥ 0 Pz
(
T ∗1 ∧ τ0 ≥ n(bc lnmc+ h)

)
≤
(

1− 1

2mc lnm

)n
.

The rest of the proof follows closely the argument in the end of section 7.3
of [3]. Using corollary 4.13 we obtain the bound

E
(
(T ∗1 ∧ τ0)2

)
≤ m3c lnm ,

which combined with lemma 4.11 gives

E

(
1τ0≤tηm

N(τ0)∑
k=0

(
T ∗k ∧ τ0 − Tk−1

))

≤ m3c lnm

(
tηm exp(−cm/3) +

∑
k≥0

exp
(k

2
− cmk

3

))
.

We choose η such that 0 < η < c/3. from the definition of tηm and the
preceding inequality, we see that

lim sup
`,m→∞, q→0

`q→a

1

m
lnE

(
1τ0≤tηm

N(τ0)∑
k=1

(
T ∗k ∧ τ0 − Tk−1

))

≤ Ṽ (ρ∗0, 0) + η − c

3
< Ṽ (ρ∗0, 0) .

Theses estimates, along with the result of proposition 4.6, imply that∣∣∣∣∣E
( τ0−1∑

n=0

g

(
|Zn|1
m

))
− g(|ρ∗|1)E(τ0)

∣∣∣∣∣ ≤ 3εE(τ0) ,

which concludes the proof of proposition 4.10.

5 Synthesis

The first statement of theorem 2.1 is proved in [3] for the case of the master
sequence, K = 0. The proof for the case K ≥ 1 does not involve any
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new arguments or ideas for a better understanding of the model; it is a
straightforward generalisation of the proof for the case K = 0. Thus we
deal only with the second statement of theorem 2.1. Let us suppose that
αψ(a) > lnκ. As shown in [3], the following estimates hold: ∀a ∈ ]0,+∞[ ,
∀α ∈ [0,+∞],

lim
`,m→∞, q→0
`q→a, m

`
→α

1

m
lnE(τ0 |Zθ

0 = zθenter) = Ṽ (ρ∗, 0) ,

lim sup
`,m→∞, q→0
`q→a, m

`
→α

1

`
lnE(τ ∗ |Oθ

0 = oθexit) ≤ lnκ .

Thus, since we are studying the case αψ(a) > lnκ,

lim
`,m→∞, q→0
`q→a, m

`
→α

E(τ0 |Zθ
0 = zθenter)

E(τ ∗ |Oθ
0 = oθexit)

= +∞ .

On one hand, g being a bounded function, the above identity readily implies
that

lim
`,m→∞, q→0
`q→a, m

`
→α

E

(
τ∗−1∑
n=0

g

(
|π(Oθ

n)|1
m

) ∣∣∣∣∣Oθ
0 = oθexit

)
E(τ ∗ |Oθ

0 = oθexit) + E(τ0 |Zθ
0 = zθenter)

= 0 .

On the other hand, using proposition 4.10, we see that

lim
`,m→∞, q→0
`q→a, m

`
→α

E

(
τ0−1∑
n=0

g

(
|Zθ

n|1
m

) ∣∣∣∣∣Zθ
0 = zθenter

)
E(τ ∗ |Oθ

0 = oθexit) + E(τ0 |Zθ
0 = zθenter)

= g(ρ∗0 + · · ·+ ρ∗K) .

Reporting back in the formula at the very end of section 3.3, we conclude
the proof of theorem 2.1.
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