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Abstract

We consider the Moran model on the sharp peak landscape, in the
asymptotic regime studied in [3], where a quasispecies is formed. We
find explicitly the distribution of this quasispecies.

1 Introduction

In his paper [10], Eigen introduced the model of quasispecies to describe the
evolution of a population of macromolecules which is subject to two main
forces: mutation and selection. The model was developed further in a series
of papers by Eigen and Schuster [12, 13, 14], and analysed in great detail by
Eigen, McCaskill and Schuster in [11]. A major conclusion is that this kind of
evolutionary process, rather than selecting a single dominant species, is more
likely to select a master sequence (the macromolecule with the highest fitness)
along with a cloud of mutants that closely resemble the master sequence.
Hence the name quasispecies. One other major discovery that Eigen made
was the existence of an error threshold allowing a quasispecies to form: if
the mutation rate exceeds the error threshold, then the population evolves
towards a totally random state, whereas if the mutation rate is below the
error threshold, a quasispecies can be formed.

Even if Eigen’s original goal was to explain the behaviour of a population
of macromolecules, the theory of quasispecies rapidly extended to other ar-
eas of biology. In particular, experimental studies support the validity of
the model in virology [9]. Some RNA viruses are known to have very high
mutation rates, like the HIV virus, and this is a factor of resistance against
conventional drugs. A promising strategy to combat this kind of viruses con-
sists in developing mutagenic drugs that would increase the mutation rate
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beyond the error threshold, in order to induce an error catastrophe [2, 24].
This strategy has successfully been applied to several types of RNA viruses
[5]. Moreover, several similarities have been observed between the evolution
of cancer cell populations and RNA viruses, in particular, the possibility of
inducing an error catastrophe [23].

Two important features of Eigen’s model are its deterministic nature (the
model is based on a system of differential equations derived from certain
chemical and physical laws) and the fact that the population is considered to
be infinite. When dealing with simple macromolecules, these assumptions are
quite natural. Nevertheless, they become unrealistic if we want to apply this
model to population genetics, and they are two of the major drawbacks when
applying it to virus populations, as pointed out by Wilke [25]. On one hand,
we have to take into account the stochastic nature of the evolution of a finite
population. The higher the complexity of the individuals, the harder it is to
explain the replication and mutation schemes via chemical reactions. This
fact, together with the widely recognised role of randomness in evolutionary
processes strongly suggest a stochastic approach to the matter. On the other
hand, when dealing with populations of complex individuals, the amount of
possible genotypes largely exceeds the size of the population. Therefore, if
we want to use Eigen’s model in population genetics, a finite and stochastic
version of the model is called for.

The interest of a finite stochastic counterpart to Eigen’s model is not new.
Eigen, McCaskill and Schuster already emphasise the importance of develop-
ing such a model [11], so does Wilke in the more recent paper [25]. Several
researchers have pursued this task. Demetrius, Schuster and Sigmund [7]
introduce stochasticity into Eigen’s model using branching processes. Mc-
Caskill [17] also develops a stochastic version of Eigen’s model. Nowak and
Schuster [20] use birth and death Markov processes to give a finite stochastic
version of Eigen’s model on the sharp peak landscape. Alves and Fontanari
[1] study the dependence of the error threshold on the population size for the
sharp peak replication landscape. Saakian, Deem and Hu [22] compute the
variance of the mean fitness in a finite population model in order to control
how it approximates the infinite population model. Deem, Muñoz and Park
[21] use a field theoretic representation in order to derive analytical results.
Other recent papers introduce finite stochastic models that approach Eigen’s
model asymptotically when the population size goes to ∞, like Musso [19]
or Dixit, Srivastava, Vishnoi [8].

In [3], Cerf studies a population of size m of chromosomes of length ` over an
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alphabet A of cardinality κ, which evolves according to a Moran model [18].
The mutation probability per locus is q. Only the sharp peak landscape is
considered: the master sequence, which we denote by w∗, replicates with rate
σ > 1, while all the other sequences replicate with rate 1. In the asymptotic
regime where

`→ +∞ , m→ +∞ , q → 0 ,

`q → a ,
m

`
→ α ,

a critical curve is obtained in the parameter space (a, α), which is given
by αφ(a) = lnκ. If αφ(a) < lnκ, then the population is totally random,
i.e., the fraction of the master sequence in a population at equilibrium con-
verges to 0. On the contrary, if αφ(a) > lnκ, then a quasispecies is formed,
i.e., at equilibrium, the population contains a positive fraction of the mas-
ter sequence, which in the asymptotic regime presented above converges to
(σe−a − 1)/(σ − 1).

The aim of our article is to obtain the whole distribution of the quasispecies.
As it is customary with this kind of models, we introduce Hamming classes
with respect to the master sequence in the space A` of sequences of length `.
We say that a chromosome u ∈ A` belongs to the class k ∈ { 0, . . . , ` } if
it differs from the master sequence in exactly k characters. We study then
the fraction of each of these classes in a population at equilibrium. For
k ≥ 0 fixed, in the above asymptotic regime, we recover the critical curve
αφ(a) = lnκ. If αφ(a) < lnκ, then the fraction of the class k converges to
0, whereas if αφ(a) > lnκ, then the fraction of the class k in a population at
equilibrium converges to

ρ∗k = (σe−a − 1)
ak

k!

∑
i≥1

ik

σi
.

We denote by Q(σ, a) the probability distribution which assigns mass ρ∗k to
each non–negative integer k, and we call it the distribution of the quasispecies
with parameters σ, a.

Similar results have been obtained in [4, 6] for the Wright–Fisher model.
In [4] a population of size m of chromosomes of length ` over an alphabet of
cardinality κ is considered to evolve according to the classical Wright–Fisher
model. In the asymptotic regime considered above a different critical curve
is obtained separating the regime where the population at equilibrium is to-
tally random from the regime where the population at equilibrium forms a
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quasispecies, the fraction of the master sequence in the quasispecies is again
given by (σe−a − 1)/(σ − 1). The model is further studied in [6], where the
distribution of the quasispecies is shown to converge to Q(σ, a). The results
in both articles are similar and also the broad idea of the proofs, namely
the construction of certain "simplified" Markov chains that can be compared
to a suitably lumped version of the population process, is analogous. How-
ever, the quantitative form of the criterion for the asymptotic selection of a
master sequence is different in the two models, and also the available proof
techniques are quite different. In [6], large deviation estimates for multino-
mial random vriables were used to show that for large m the comparison
processes closely track a dynamical system. Here, in the case of the Moran
model, a comparison with suitably constructed birth and death chains, whose
equilibria can be computed explicitly, is feasible.

The article is organised as follows. First, we present our main result, along
with a sketch of the proof and some background material from [3]. The re-
maining sections are devoted to the proof. We use coupling and monotonicity
arguments to derive simpler Markov chains from the Moran model. We deal
then with these simpler processes by obtaining large deviation estimates for
several stopping times.
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2 Main Result

Let A be a finite alphabet of cardinality κ and ` ≥ 1 an integer. We consider
the space A` of sequences of length ` over the alphabet A. Elements of the
space A` represent the chromosome of an haploid individual. We consider a
population of size m of individuals from A`. The size of the population m is
kept constant throughout the evolution.

When a reproduction occurs, the chromosome is subject to mutations. We
suppose that mutations occur independently at random at each locus, with
probability q ∈ ]0, 1[ . If a mutation occurs, we replace the letter with a
new one, chosen uniformly at random between the remaining κ− 1 letters of
the alphabet A. The mutation mechanism is encoded in a mutation matrix(
M(u, v), u, v ∈ A`

)
, where M(u, v) is the probability that the chromo-

some u is transformed into v by mutation. We have the following analytical
expression for M(u, v):

M(u, v) =
∏̀
l=1

(
(1− q)1u(l)=v(l) +

q

κ− 1
1u(l) 6=v(l)

)
.
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The only allowed transformations in a population consist of replacing a chro-
mosome of the population with a new one. For a population x ∈

(
A`
)m,

j ∈ { 1, . . . ,m }, u ∈ A`, we denote by x(j ← u) the population x where the
j–th chromosome x(j) has been replaced by u:

x(j ← u) =



x(1)
...

x(j − 1)
u

x(j + 1)
...

x(m)


.

The replication mechanism is encoded in a fitness function:

A : A` −→ [0,+∞[ .

The continuous time Moran model is the Markov process (Xt)t≥0 having the
following infinitesimal generator: for ψ a function from

(
A`
)m to R and for

any x ∈
(
A`
)m,

lim
t→0

1

t

(
E
(
ψ(Xt)|X0 = x

)
− ψ(x)

)
=∑

1≤i,j≤m

∑
u∈A`

A(x(i))M(x(i), u)
(
ψ
(
x(j ← u)

)
− ψ(x)

)
.

We will only consider the sharp peak landscape. Let σ > 1 be a real number.
There exists a particular sequence, called the master sequence or the wild
type, denoted by w∗, for which the replication rate is σ. The replication rate
for all other sequences is 1. The fitness function is then given by

∀u ∈ A` A(u) =

{
1 if u 6= w∗ ,

σ if u = w∗ .

We denote by dH the Hamming distance between two chromosomes:

∀u, v ∈ A` dH(u, v) = card
{
l : 1 ≤ l ≤ `, u(l) 6= v(l)

}
.

Let x be a population in
(
A`
)m. We fix an integer K ≥ 0 and we look at the

number NK(x) of chromosomes in x which are at distance K or less from
the master sequence:

NK(x) = card
{
i : 1 ≤ i ≤ m, dH(x(i), w

∗) ≤ K
}
.
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Let φ : R+ −→ R+ ∪ {+∞} be the map given by

∀a < lnσ φ(a) =
σ(1− e−a) ln

σ(1− e−a)

σ − 1
+ ln(σe−a)

1− σ(1− e−a)
,

and φ(a) = 0 for a ≥ lnσ. Let (ρ∗k)k≥0 be the sequence given by

∀k ≥ 0 ρ∗k = (σe−a − 1)
ak

k!

∑
i≥1

ik

σi
.

We have the following result:

Theorem 2.1. Suppose that

`→ +∞ , m→ +∞ , q → 0 ,

`q → a ∈ ]0,+∞[ ,
m

`
→ α ∈ [0,+∞] .

We have the following dichotomy:

• If αφ(a) < lnκ, then

∀K ≥ 0 lim
`,m→∞, q→0
`q→a, m

`
→α

lim
t→∞

E
( 1

m
NK(Xt)

)
= 0 .

• If αφ(a) > lnκ, then

∀K ≥ 0 lim
`,m→∞, q→0
`q→a, m

`
→α

lim
t→∞

E
( 1

m
NK(Xt)

)
= ρ∗0 + · · ·+ ρ∗K .

Furthermore, in both cases

∀K ≥ 0 lim
`,m→∞, q→0
`q→a, m

`
→α

lim
t→∞

Var
( 1

m
NK(Xt)

)
= 0 .

We stated the result for a continuous time Moran model. For the proof, we
will work with the discrete time counterpart of the Moran model (Xn)n≥0,
suitably renormalised. Its transition matrix is given by

∀x ∈
(
A`
)m ∀j ∈ { 1, . . . , ` } ∀u ∈ A` \ { x(j) }

p
(
x, x(j ← u)

)
=

1

m

∑
1≤i≤m

A(x(i))M(x(i), u)

A(x(1)) + · · ·+ A(x(m))
.
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The other non diagonal coefficients of the transition matrix are zero. The
diagonal coefficients are arranged so that the matrix is stochastic, i.e., the
sum over each row equals 1.

As it is shown in section 5 of [3], the invariant measure of the continuous
Moran model is the same as the invariant measure of the discrete normalised
Moran model.

The statement of theorem 2.1 for the case K = 0 is just the main result
in [3]. The proof of the first assertion of theorem 2.1 is essentially the same
for K ≥ 1 and for K = 0, with minor changes in some of the calculations.
These changes do not really give a better understanding of the model, thus,
we will omit the proof of the first statement of theorem 2.1 and focus on the
more interesting case αφ(a) > lnκ.

2.1 The occupancy process

Let (Xn)n≥0 be the normalised Moran model as described in the end of the
previous section. The state space of the Markov chain (Xn)n≥0 has cardinality
κ`m, which is too big to work with. Thus, we work with a simpler process
(On)n≥0, called the occupancy process, whose state space is much smaller.
The occupancy process (On)n≥0 keeps track of the number of chromosomes
in each of the `+1 Hamming classes. It is obtained from the original Moran
process (Xn)n≥0 via lumping, as shown in section 6.2 of [3]. This process will
be the main subject of our study.

Let Pm
`+1 be the set of ordered partitions of the integer m in at most ` + 1

parts:

Pm
`+1 =

{
(o(0), . . . , o(`)) ∈ N`+1 : o(0) + · · ·+ o(`) = m

}
.

A partition (o(0), . . . , o(`)) is interpreted as an occupancy distribution, which
corresponds to a population with o(l) individuals in the Hamming class l, for
0 ≤ l ≤ `. The set Pm

`+1 is the state space of the occupancy process (On)n≥0.
Since we are working with a Moran model, only one chromosome can change
classes at a time, i.e., the only possible transitions for the occupancy process
(On)n≥0 are of the form

o −→ o(k → l) , 0 ≤ k, l ≤ ` ,

where o(k → l) is the occupancy distribution obtained by transferring a
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chromosome from the Hamming class k to the class l, i.e.,

∀h ∈ { 0, . . . , ` } o(k → l)(h) =


o(h) if h 6= k, l ,

o(k)− 1 if h = k ,

o(l) + 1 if h = l .

We will work with the discrete time occupancy process (On)n≥0, whose tran-
sition matrix is given by

∀o ∈ Pm
`+1 ∀k, l ∈ { 0, . . . , ` } , k 6= l ,

pO
(
o, o(k → l)

)
=

o(k)

(
σo(0)MH(0, l) +

∑̀
h=1

o(h)MH(h, l)

)
m((σ − 1)o(0) +m)

,

whereMH is the lumped mutation matrix: for b, c ∈ { 0, . . . , ` } the coefficient
MH(b, c) is given by∑

0≤k≤`−b
0≤l≤b

k−l=c−b

(
`− b
k

)(
b

l

)
qk(1− q)`−b−k

( q

κ− 1

)l(
1− q

κ− 1

)b−l

.

In order to interpret this formula, note that a passage from the class b to the
class c is done by mutating "towards the master sequence" in k sites, which
can be done in (

`− b
k

)
qk(1− q)`−b−k

ways, and mutating "away from the master sequence" in l sites, which can
be done in (

b

l

)( q

κ− 1

)l(
1− q

κ− 1

)b−l

ways. Of course, k and l must satisfy b+k− l = c. In other words, the above
formula is the probability that

Binomial(`− b, q)− Binomial(b, q/(κ− 1)) = c− b .

One of the main advantages of working with the occupancy process is that
we can conveniently endow the state space Pm

`+1 with the following partial
order: for all o, o′ ∈ Pm

`+1

o � o′ ⇔ ∀l ∈ { 0, . . . , ` } o(0) + · · ·+ o(l) ≤ o′(0) + · · ·+ o′(l) .
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Let µO be the invariant probability measure of the occupancy process, and let
f : [0, 1] −→ R be a continuous mapping. The aim of the following sections
will be to show that

lim
`,m→∞, q→0
`q→a,m/`→α

∫
Pm
`+1

f
(o(0) + · · ·+ o(K)

m

)
dµO(o) = f(ρ∗0 + · · ·+ ρ∗K) .

Throughout the text, when we say that some property holds asymptotically,
we mean that it holds for `,m large enough, q small enough, `q close enough
to a and m/` close enough to α.

2.2 Sketch of proof

In order to demonstrate theorem 2.1, we will compare the time that the pro-
cess (On)n≥0 spends having at least a sequence in one of the Hamming classes
0, . . . , K (which we call the persistence time), with the time the process
(On)n≥0 spends having no sequences in any of the Hamming classes 0, . . . , K
(which we call the discovery time). Asymptotically, when αφ(a) < lnκ,
the persistence time becomes negligible with respect to the discovery time,
whereas when αφ(a) > lnκ, it is the discovery time that becomes negligible
with respect to the persistence time. This already settles the first assertion
in theorem 2.1. These facts are rigorously proven in [3] for the case K = 0.
When K ≥ 1 the proofs are essentially the same, and since the minor changes
required for them do not improve the understanding of the model, we will
omit the proof of the first statement of theorem 2.1.

The second statement of the theorem requires much more work. We suppose
that αφ(a) > lnκ. From the previous paragraph (taking K = 0) we know
that asymptotically, the time the master sequence is absent in the population
becomes negligible with respect to the time it is present. Therefore, we focus
on the dynamics of (On)n≥0 when the master sequence is present. In order
to understand the heuristics of the proof, let o ∈ Pm

`+1, and let us compute,
for k ∈ { 0, . . . , ` }, the following expectation:

E
(
On+1(k)−On(k) |On = o

)
=
∑
i:i6=k

p(o, o(i→ k))−
∑
i:i6=k

p(o, o(k → i))

=
1

(σ − 1)o(0) +m

(
m− o(k)

m

(
σo(0)MH(0, k) +

∑̀
l=1

o(l)MH(l, k)

)
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− o(k)

m

(
σo(0)

(
1−MH(0, k)

)
+
∑̀
l=1

o(l)
(
1−MH(l, k)

)))

=

(
(σ − 1)

o(0)

m
+ 1

)−1(
σ
o(0)

m
MH(0, k) +

∑̀
l=1

o(l)

m
MH(l, k)

)
− o(k)

m
.

Thus, when m is large, we can interpret the Markov chain (On/m)n≥0 as a
random perturbation of the system of differential equations

ẋk =
(
(σ− 1)x0 + 1

)−1
(
σx0MH(0, k) +

∑̀
l=1

xlMH(l, k)

)
− xk , 0 ≤ k ≤ ` .

In other words, (On)n≥0 is a density dependent process converging to the
above system of differential equations in the infinite population limit. Taking
the asymptotic regime

`→∞ , q → 0 , `q → a ,

and recalling that each row in the mutation kernel MH is obtained as the
difference of two binomial variables, we see that, asymptotically, mutations
towards the master sequence are negligible, while mutations away from the
master sequence follow a Poisson distribution of parameter a, i.e.

lim
`→∞, q→0

`q→a

MH(l, k) =


ak−l

(k − l)!
e−a if l ≤ k ,

0 otherwise .

Therefore, it is natural to expect that asymptotically, the stationary dis-
tribution of the process (On/m)n≥0 will be concentrated around the stable
stationary solutions of the limiting system

ẋk =
(
(σ − 1)x0 + 1

)−1
(
σx0e

−aa
k

k!
+

k∑
l=1

xle
−a ak−l

(k − l)!

)
− xk , 0 ≤ k ≤ ` .

We are assuming that αφ(a) > lnκ, which in particular means that σe−a > 1,
and when σe−a > 1, the only stable stationary solution of the limiting system
is given by the distribution of the quasispecies (ρ∗k)k≥0.

The goal is to show that the invariant probability measure of the occupancy
process converges to the distribution of the quasispecies (ρ∗k)k≥0. In order
to do so we construct several stochastic processes: in section 3, we build
a pair of processes (O`

n)n≥0, (O
1
n)n≥0, which bound the original occupancy
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process, and have the property of exiting always at the same point from the
set of distributions where the master sequence is present. This allows us,
via a renewal result, to express the invariant probability measures of the
bounding processes in terms of their dynamics when the master sequence is
present in the population, i.e., we can forget the neutral phase. We finish
section 3 by constructing two Markov chains (Z`

n)n≥0, (Z
1
n)n≥0 that replicate

the dynamics of the bounding occupancy processes, but which do not have
a neutral phase, i.e., as soon as the master sequence disappears from the
population, it is created again. The proof of the theorem will be achieved
if we manage to show that the invariant measures of (Z`

n)n≥0, (Z
1
n)n≥0 both

converge to Q(σ, a).

In section 4, we fix K ≥ 0 and we estimate the typical time that the processes
(Z`

n)n≥0, (Z
1
n)n≥0 spend inside and outside a neighbourhood of (ρ∗0, . . . , ρ∗K).

The time they spend inside such a neighbourhood is typically of exponential
order in m, while the time they spend outside it is typically of polynomial
order inm. These large deviations estimates are enough to prove theorem 2.1.
The estimates are obtained by induction on k. Both at the base case and
at the induction step, we can bound stochastically the dynamics of each
coordinate k of (Z`

n)n≥0 and (Z1
n)n≥0 with a pair of birth and death Markov

chains (Zk
n)n≥0 and (Z

k

n)n≥0. These birth and death chains have the following
properties: for any point in a certain neighbourhood of (ρ∗0, . . . , ρ

∗
k−1), the

probability of loosing an individual in the class k for (Z`
n)n≥0, (Z

1
n)n≥0, is

bounded between the probabilities of a death happening in (Zk
n)n≥0 and

(Z
k

n)n≥0, while the probability of producing an individual in the class k for
(Z`

n)n≥0, (Z
1
n)n≥0, is bounded between the probabilities of a birth happening

in (Zk
n)n≥0 and (Z

k

n)n≥0. For these chains, we use classical explicit formulas
to compute their hitting times. Finally, we use the above estimates to prove
the desired convergence.

3 Stochastic bounds

In this section we modify the occupancy process in order to simplify its
study. We can regard the dynamics of the occupancy process as having two
different phases: the neutral phase, where no master sequence is present,
and the phase where the master sequence remains present in the population.
We are only interested in the latter, and the presence of the neutral phase
is inconvenient for our purposes. Thus, we get rid of it by bounding the
invariant probability measure of (On)n≥0 with the invariant measures of a
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pair of new Markov chains. These Markov chains have exactly the same
dynamics as the occupancy process whenever the master sequence is present
in the population, but every time they reach the neutral phase they jump back
out of it immediately. We formalise these ideas in the rest of the section. We
denote by W∗ the set of the occupancy distributions containing the master
sequence, i.e.,

W∗ = { o ∈ Pm
`+1 : o(0) ≥ 1 } ,

and by N the set of the occupancy distributions which do not contain the
master sequence, i.e.,

N = { o ∈ Pm
`+1 : o(0) = 0 } .

We define the following occupancy distributions:

o`enter = (1, 0, . . . , 0,m− 1) , o`exit = (0, . . . , 0,m) ,

o1enter = (1,m− 1, . . . , 0) , o1exit = (0,m, 0, . . . , 0) .

Note that o`exit and o1exit are the extreme points of N , while o`enter and o1enter
are the extreme points of W∗ that the occupancy process can reach when
jumping from N to W∗, i.e.,

∀o ∈ N o`exit � o � o1exit ,

∀o ∈ { o ∈ Pm
`+1 : o(0) = 1 } o`enter � o � o1enter .

Let R and ΦO be the set and the coupling map defined in section 7.1 of [3].
The set R and the map ΦO are such that, given a sequence of i.i.d. random
variables (Rn)n≥1 on R, we can build the process (On)n≥0 by setting O0 =
o ∈ Pm

`+1 and
∀n ≥ 1 On = ΦO

(
On−1, Rn

)
.

Moreover (lemma 7.5 of [3]), the map ΦO is non–decreasing with respect to
the occupancy distribution, i.e.,

∀o, o′ ∈ Pm
`+1 ∀r ∈ R o � o′ ⇒ Φ(o, r) � Φ(o′, r) .

We define a lower map and an upper map Φ`
O,Φ

1
O : Pm

`+1 × R −→ Pm
`+1 by

setting, for o ∈ Pm
`+1, r ∈ R and θ = 1 or `,

Φθ
O(o, r) =


oθexit if o ∈ W∗ and ΦO(o, r) ∈ N
oθenter if o ∈ N and ΦO(o, r) ∈ W∗

ΦO(o, r) otherwise
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We use these two maps, and the i.i.d. sequence (Rn)n≥1, to build a lower
process (O`

n)n≥0 and an upper process (O1
n)n≥0. We set O`

0 = O1
0 = o ∈ Pm

`+1

and
∀n ≥ 1 O`

n = Φ`
O(O

`
n−1, Rn) , O1

n = Φ1
O(O

1
n−1, Rn) .

If all the processes (On)n≥0, (O`
n)n≥0, (O1

n)n≥0 start from the same occupancy
distribution o, then

∀n ≥ 0 O`
n � On � O1

n .

The process (O`
n)n≥0 behaves pretty much like (On)n≥0. The only difference

being that whenever it jumps from the set N to W∗ it jumps to the lowest
possible occupancy distribution of W∗ that can be reached from N , and
whenever it jumps from the set W∗ to N it jumps to the lowest possible
occupancy distribution of N . The process (O1

n)n≥0 is built in a similar way.
For k ∈ { 0, . . . , ` }, let πk : Pm

`+1 −→ N be the function given by

∀o ∈ Pm
`+1 πk(o) = o(0) + · · ·+ o(k) .

Let us denote by µO, µ
`
O, µ

1
O the invariant probability measures of the pro-

cesses (On)n≥0, (O
`
n)n≥0, (O

1
n)n≥0. Let us also fix a non–decreasing function

f : [0, 1] −→ R. By stochastic domination, we have

∀n ≥ 0 f
(πK(O`

n)

m

)
≤ f

(πK(On)

m

)
≤ f

(πK(O1
n)

m

)
.

By the ergodic theorem for Markov chains, taking the expectation and send-
ing n to ∞, we get∫

Pm
`+1

f
(πK(o)

m

)
dµ`

O(o) ≤
∫
Pm
`+1

f
(πK(o)

m

)
dµO(o) ≤

∫
Pm
`+1

f
(πK(o)

m

)
dµ1

O(o).

Our next goal is to find estimates on the above integrals. The strategy is
the same for the lower and upper integrals. Let θ be either ` or 1 and let us
study the invariant probability measure µθ

O. We will rely on a renewal result,
which we state next.

Let (Yn)n≥0 be a discrete time Markov chain taking values in a finite space E .
We suppose that (Yn)n≥0 is irreducible and we call µ its invariant probability
measure.

Proposition 3.1. Let W∗ be a subset of E and let e be a point in E \ W∗.
Let f be a function from E to R. We define

τ ∗ = inf{n ≥ 0 : Yn ∈ W∗ } , τ = inf{n ≥ τ ∗ : Yn = e } .

14



We have ∫
E
f(y) dµ(y) =

1

E(τ |Y0 = e)
E

(
τ−1∑
n=0

f(Yn)

∣∣∣∣∣Y0 = e

)
.

The proof is standard and similar to the proof of proposition 8.2 in [3], so
we omit it. We apply this renewal result to the process (Oθ

n)n≥0, the set W∗,
the occupancy distribution oθexit and the function o 7→ f(πK(o)/m). Set

τ ∗ = inf{n ≥ 0 : Oθ
n ∈ W∗ } , τ = inf{n ≥ τ ∗ : Oθ

n = oθexit } .

We have then

∫
Pm
`+1

f

(
πK(o)

m

)
dµθ

O(o) =

E

(
τ−1∑
n=0

f

(
πK(O

θ
n)

m

) ∣∣∣∣∣Oθ
0 = oθexit

)
E(τ |Oθ

0 = oθexit)
=

E

(
τ∗−1∑
n=0

f

(
πK(O

θ
n)

m

) ∣∣∣∣∣Oθ
0 = oθexit

)
E(τ |Oθ

0 = oθexit)
+

E

(
τ−1∑
n=τ∗

f

(
πK(O

θ
n)

m

) ∣∣∣∣∣Oθ
0 = oθexit

)
E(τ |Oθ

0 = oθexit)
.

Our goal is to prove that, when αφ(a) > lnκ,

lim
`,m→∞, q→0
`q→a,m/`→α

∫
Pm
`+1

f

(
πK(o)

m

)
dµθ

O = f(ρ∗0 + · · ·+ ρ∗K) .

The first term in the above sum can be bounded by

f(1)
E(τ ∗ |Oθ

0 = oθexit)

E(τ ∗ |Oθ
0 = oθexit) + E(τ − τ ∗ |Oθ

0 = oθexit)
.

We have the following large deviations estimates from [3] (corollary 9.2 and
propositions 10.13, 10.16):

lim
`,m→∞, q→0
`q→a,m/`→α

1

m
lnE(τ − τ ∗ |Oθ

0 = oθexit) = φ(a) ,

lim
`,m→∞, q→0
`q→a,m/`→α

1

`
lnE(τ ∗ |Oθ

0 = oθexit) = lnκ .
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Thus, when αφ(a) > lnκ, the first term goes to 0, and we only need to take
care of the second term, which we can rewrite as follows:

(
E(τ ∗ |Oθ

0 = oθexit)

E(τ − τ ∗ |Oθ
0 = oθexit)

+ 1

)−1

×
E

(
τ−1∑
n=τ∗

f

(
πK(O

θ
n)

m

) ∣∣∣∣∣Oθ
0 = oθexit

)
E(τ − τ ∗ |Oθ

0 = oθexit)
.

The previous observations imply that the first term of the product goes to
1, so it suffices to prove that

1

E(τ − τ ∗ |Oθ
0 = oθexit)

E

(
τ−1∑
n=τ∗

f

(
πK(O

θ
n)

m

) ∣∣∣∣∣Oθ
0 = oθexit

)
→ f(ρ∗0+· · ·+ρ∗K) .

We have reduced the problem to show the convergence of an expression which
only depends on the dynamics of (Oθ

n)n≥0 insideW∗. We build now a Markov
chain (Zθ

n)n≥0, which will replicate the dynamics of (Oθ
n)n≥0 in W∗, but with

no neutral phase. Let (Zθ
n)n≥0 be a Markov chain with state space Pm

`+1 and
transition matrix pθ given by:

∀o ∈ W∗ ∀o′ ∈ Pm
`+1 pθ(o, o′) = P (Oθ

1 = o′ |Oθ
0 = o) ,

∀o ∈ N pθ(o, oθenter) = 1 .

The other non–diagonal elements of the matrix are null. The diagonal coef-
ficients are arranged so that the matrix is stochastic, i.e., the sum over each
row equals 1. We define

τ0 = inf{n ≥ 0 : Zθ
n(0) = 0 } .

We then have

E

(
τ−1∑
n=τ∗

f

(
πK(O

θ
n)

m

) ∣∣∣∣∣Oθ
0 = oθexit

)
= E

(
τ0−1∑
n=0

f

(
πK(Z

θ
n)

m

) ∣∣∣∣∣Zθ
0 = oθenter

)
,

E(τ − τ ∗ |Oθ
0 = oθexit) = E(τ0 |Zθ

0 = oθenter) .

Let νθ be the invariant probability measure of (Zθ
n)n≥0. We apply the renewal

result of proposition 3.1 to the process (Zθ
n)n≥0, the set N , the occupancy

distribution oθenter and the function o 7→ f(πK(o)/m), which, with the help of
the Markov property, gives

∫
Pm
`+1

f
(πK(o)

m

)
dνθ =

E

( τ0−1∑
n=0

f
(πK(Zθ

n)

m

) ∣∣∣∣Zθ
0 = oθenter

)
1 + E(τ0 |Zθ

0 = oθenter)
.
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In view of the above remarks, our problem now boils down to show the
convergence

lim
`,m→∞, q→0
`q→a,m/`→α

∫
Pm
`+1

f
(πK(o)

m

)
dνθ(o) = f(ρ∗0 + · · ·+ ρ∗K) .

In passing from the process (Oθ
n)n≥0 to the process (Zθ

n)n≥0, we have elimi-
nated the neutral phase, the newly built process (Zθ

n)n≥0 has the same dy-
namics as the original occupancy process inside W∗, but whenever it enters
the neutral phase, it automatically jumps back to W∗. The upcoming sec-
tions will be concerned with the study of the Markov chain (Zθ

n)n≥0.

4 Induction and estimates

We estimate next some hitting times associated to the Markov chain (Zθ
n)n≥0.

From now on, we will denote by Po, Eo the probabilities and expectations for
the process (Zθ

n)n≥0 starting from the occupancy distribution o. Let us define
for 0 ≤ k ≤ K and for ε > 0,

Uk(ε) =
{
o ∈ Pm

`+1 :
∣∣∣o(i)
m
− ρ∗i

∣∣∣ < ε, 0 ≤ i ≤ k
}
.

We also define, for any subset A ⊂ Pm
`+1 the hitting time of A:

τ(A) = inf{n ≥ 0 : Zθ
n ∈ A } .

Theorem 4.1. Let ε > 0. For all 0 ≤ k ≤ K, there exist real numbers
αk, α

′
k, λk, λ

′
k > 0 (depending on ε), such that asymptotically:

∀o ∈ Pm
`+1 Po

(
τ(Uk(ε)) ≥ mαk

)
≤ exp(−α′

km) .

∀o ∈ Uk(ε) Po

(
τ(Uk(2ε)

c) ≤ exp(λkm)
)
≤ exp(−λ′km) .

We will prove this theorem by induction on k. The strategy is as follows.
From the definition of Uk(ε) we see that

U0(ε) ⊃ U1(ε) ⊃ · · · ⊃ UK(ε) ,

and that in order to know whether the process (Zθ
n)n≥0 is in Uk(ε), it is

enough to check the coordinates 0 to k. To deal with the base case, k = 0,
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we bound stochastically the dynamics of (Zθ
n(0))n≥0 with a pair of birth and

death Markov chains, which are very similar to the ones studied in section 9
of [3]. If the estimates hold at rank k − 1, then we know that the process
(Zθ

n)n≥0 spends almost all of its time inside the set Uk−1(ε). As long as
the process is in Uk−1(ε), we can again bound stochastically the dynamics
of (Zθ

n(k))n≥0 with a pair of birth and death Markov chains; these Markov
chains can also be studied with the same techniques as the base case.

4.1 Bounding coordinate k

In this section we show how to use birth and death Markov chains in order
to bound stochastically the dynamics of (Zθ

n(k))n≥0 when the process is in
Uk−1(ε), for ε > 0 and 1 ≤ k ≤ K, as well as the dynamics of (Zθ

n(0))n≥0. This
is accomplished by building, for 0 ≤ k ≤ K, birth and death Markov chains
(Zk

n)n≥0, (Z
k

n)n≥0 with the following properties: for k = 0 the probability
of Zθ

n(0) loosing an individual is bounded between the death probabilities of
Z0

n, Z
0

n. Likewise, the probability of Zθ
n(0) earning an individual is bounded

between the birth probabilities of Z0
n, Z

0

n. For k ≥ 1, provided that Zθ
n is in

Uk−1(ε), the probability of Zθ
n(k) loosing an individual is bounded between

the death probabilities of (Zk
n)n≥0, (Z

k

n)n≥0. Likewise, provided that Zθ
n is in

Uk−1(ε), the probability of Zθ
n(k) earning an individual is bounded between

the birth probabilities of (Zk
n)n≥0, (Z

k

n)n≥0. Let us define the bounding birth
and death Markov chains first. We set β0

0 = β0
0 = 1 and

∀i ∈ { 1, . . . ,m } β0
i =

m− i
m

σiMH(0, 0)

(σ − 1)i+m
,

β0
i =

m− i
m

σiMH(0, 0) + (m− i)MH(1, 0)

(σ − 1)i+m
,

∀i ∈ { 0, . . . ,m } δ0i =
i

m

σi(1−MH(0, 0)) +m− i
(σ − 1)i+m

,

δ0i =
i

m

σi(1−MH(0, 0)) + (m− i)(1−MH(1, 0))

(σ − 1)i+m
.

For ρ ∈ [0, 1]k, let ||ρ||1 be the 1–norm of ρ, i.e.,

||ρ||1 = ρ0 + · · ·+ ρk−1 .
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For 1 ≤ k ≤ K, 0 ≤ i ≤ m, and ρ ∈ [0, 1]k we set

bki (ρ) =
1− i/m

(σ − 1)ρ0 + 1

(
σρ0MH(0, k) +

k−1∑
l=1

ρlMH(l, k) +
i

m
MH(k, k)

)
,

dki (ρ) =
i/m

(σ − 1)ρ0 + 1

(
σρ0
(
1−MH(0, k)

)
+

k−1∑
l=1

ρl
(
1−MH(l, k)

)
+

i

m

(
1−MH(k, k)

)
+ 1− ||ρ||1 −

i

m

)
,

bki (ρ) =
1− i/m

(σ − 1)ρ0 + 1

(
σρ0MH(0, k) +

k−1∑
l=1

ρlMH(l, k) +
i

m
MH(k, k)

+
(
1− ||ρ||1 −

i

m

)
MH(k + 1, k)

)
,

dki (ρ) =
i/m

(σ − 1)ρ0 + 1

(
σρ0
(
1−MH(0, k)

)
+

k−1∑
l=1

ρl
(
1−MH(l, k)

)
+

i

m

(
1−MH(k, k)

)
+
(
1− ||ρ||1 −

i

m

)(
1−MH(k + 1, k)

))
.

Let ε > 0. We also define, for 1 ≤ k ≤ K, 0 ≤ i ≤ m, and ρ ∈ [0, 1]k,

βk
i = min{ bki (ρ) : |ρl − ρ∗l | < ε, 0 ≤ l ≤ k − 1 } ,
βk
i = max{ bki (ρ) : |ρl − ρ∗l | < ε, 0 ≤ l ≤ k − 1 } ,
δki = max{ dki (ρ) : |ρl − ρ∗l | < ε, 0 ≤ l ≤ k − 1 } ,
δki = min{ dki (ρ) : |ρl − ρ∗l | < ε, 0 ≤ l ≤ k − 1 } .

Asymptotically, we have βk
i + δki ≤ 1 and βk

i + δki ≤ 1. For k ∈ { 0, . . . , K }
and ε > 0, (Zk

n)n≥0 will be a Markov chain with state space { 0, . . . ,m } and
transition probabilities given by: for all n ≥ 0 and i ∈ { 0, . . . ,m }

P (Zk
n+1 = i+ 1 |Zk

n = i) = βk
i , P (Zk

n+1 = i− 1 |Zk
n = i) = δki .

The remaining off–diagonal coefficients of the transition matrix are null, the
diagonal coefficients are arranged so that the matrix is stochastic. We define
a Markov chain (Z

k

n)n≥0 in an analogous way.

Theorem 4.2. i) For all o ∈ Pm
`+1, if Zθ

0 = o and Z0
0 = Z0

0 = o(0), then

∀n ≥ 0 Z0
n ≤ Zθ

n(0) ≤ Z0
n .
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ii) For all o ∈ Uk−1(ε), if Zθ
0 = o and Zk

0 = Zk
0 = o(k), then

∀n ∈ { 0, . . . , τ(Uk−1(ε)
c) } Zk

n ≤ Zθ
n(k) ≤ Zk

n .

The remaining of the section is devoted to the proof of the theorem. We will
only prove the second statement; the first statement is much simpler and can
almost be seen as a particular case of the second one. We wish to couple the
processes (Zθ

n)n≥0, (Z
k
n)n≥0, (Z

k

n)n≥0 together. We start by defining a coupling
map for the process (Zθ

n)n≥0, which will be well suited to compare it with
the other two processes. For each o ∈ Pm

`+1, let o1(o), . . . , oN(o)(o) be the set
of the states o′ ∈ Pm

`+1 such that pθ(o, o′) > 0, numbered according to the
following rule: there exist n1(o) < n2(o) in { 1, . . . , N(o) } such that

∀n ∈ { 1, . . . , n1(o) } on(o)(k) = o(k)− 1 ,

∀n ∈ {n1(o) + 1, . . . , n2(o) } on(o)(k) = o(k) ,

∀n ∈ {n2(o) + 1, . . . , N(o) } on(o)(k) = o(k) + 1 .

In other words, all the states with one less individual in the class k are piled
up at the beginning, and all those with one more individual in the class k
are piled up in the end. We define a coupling map C : Pm

`+1× [0, 1] −→ Pm
`+1

as follows:

∀o ∈ Pm
`+1 ∀u ∈ [0, 1] C(o, u) = oN(o,u)(o) ,

where N(o, u) is the only index n ∈ { 1, . . . , N(o) } such that

pθ(o, o1(o)) + · · ·+ pθ(o, on−1(o)) ≤ u < pθ(o, o1(o)) + · · ·+ pθ(o, on(o)) .

The coupling map C is defined so that if U is a uniform random variable on
[0, 1], then

∀o, o′ ∈ Pm
`+1 P (C(o, U) = o′) = pθ(o, o′) .

Moreover, for all n ≥ 0 and o ∈ Pm
`+1

C(o, u)(k) = o(k)− 1 ⇐⇒ u < Po(Z
θ
1(k) = o(k)− 1) ,

C(o, u)(k) = o(k) + 1 ⇐⇒ u ≥ 1− Po(Z
θ
1(k) = o(k) + 1) .

Let (Un)n≥1 be an i.i.d. sequence of uniform random variables on [0, 1], and
let o ∈ Pm

`+1 be a starting point. We build the process (Zθ
n)n≥0 as follows: we

set Zθ
0 = o and

∀n ≥ 1 Zθ
n = C(Zθ

n−1, Un) .
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Next we define the coupling maps for the processes (Zk
n)n≥0 and (Z

k

n)n≥0. De-
fine C,C : { 0, . . . ,m }× [0, 1] −→ { 0, . . . ,m } by setting, for i ∈ { 0, . . . ,m }
and u ∈ [0, 1]

C(i, u) = i− 1u<δki
+ 1u≥1−βk

i
, C(i, u) = i− 1u<δki

+ 1u≥1−βk
i
.

We define the processes (Zk
n)n≥0, (Z

k

n)n≥0 with the help of the same sequence
(Un)n≥1 as for (Zθ

n)n≥0. Let i ∈ { 0, . . . ,m } be the starting point of the
processes. We set Zk

0 = Zk
0 = i and

∀n ≥ 1 Zk
n = C(Zk

n−1, Un) , Zk
n = C(Zk

n−1, Un) .

Lemma 4.3. For all o ∈ Uk−1(ε) and 0 ≤ i ≤ o(k) ≤ j ≤ m, we have,
asymptotically:

∀u ∈ [0, 1] C(i, u) ≤ C(o, u)(k) ≤ C(j, u) .

Proof. The proof is the same for both inequalities, so we take care of the
first one only. The only non–trivial cases are i = o(k) and i = o(k)− 1. Let
o ∈ Uk−1(ε). We set

δ(o) = Po(Z
θ
1(k) = o(k)− 1) , β(o) = Po(Z

θ
1(k) = o(k) + 1) .

If i = o(k), we have, by the above remarks,

C(o, u)(k)− C(i, u) = −1u<δ(o) + 1u<δki
+ 1u>1−β(o) − 1u>1−βk

i
.

For all k ∈ { 0, . . . , K }, asymptotically

∀l > k + 1 0 < MH(l, k) < MH(k + 1, k) .

Thus, from the definition of δki and βk
i and since o ∈ Uk−1(ε), the above

expression is necessarily non–negative. Now let i = o(k)− 1. We have

C(o, u)(k)− C(i, u) = 1− (1u<δ(o) − 1u<δki
) + (1u>1−β(o) − 1u>1−βk

i
) .

If this quantity were to be negative, then we would have δ(o) + βk
i > 1 .

We will show that, asymptotically, δ(o) + βk
i is strictly lower than 1. Since
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o ∈ Uk−1(ε), taking ρ = o/m, the expression δ(o) + βk
i is bounded by

ρk
(σ − 1)ρ0 + 1

(
σρ0
(
1−MH(0, k)

)
+
∑̀
l=1

ρl
(
1−MH(l, k)

))

+
1− ρk + 1/m

(σ − 1)ρ0 + 1

(
σρ0MH(0, k) +

k∑
l=1

ρlMH(l, k)−
1

m
MH(k, k)

)
≤ 1

(σ − 1)ρ0 + 1

(
σρ0

(
ρk
(
1−MH(0, k)

)
+ (1− ρk)MH(0, k)

)
+

k∑
l=1

ρl

(
ρk
(
1−MH(l, k)

)
+ (1− ρk)MH(l, k)

)
+
∑̀
l=k+1

ρl

)

+
1

m

(
σρ0MH(0, k) +

k∑
l=1

MH(l, k)

)
.

Yet, for u, v ∈ [0, 1] we have u(1− v) + (1− u)v ≤ max{v, 1− v}. Setting

M∗ = max{MH(l, k), 1−MH(l, k) : 0 ≤ l ≤ k } ,

the above inequality is bounded by

1

(σ − 1)ρ0 + 1

((
σρ0 +

k∑
l=1

ρl

)
M∗ +

∑̀
l=k+1

ρl

)

+
1

m

(
σρ0MH(0, k) +

k∑
l=1

MH(l, k)

)
,

which is asymptotically strictly lower than 1.

Proof of theorem 4.2. We can now finish the proof by induction. The case
n = 0 is a hypothesis of the theorem, and the induction step is a direct
conclusion of the induction hypothesis and the lemma we just proved.

4.2 Birth and death Markov chains

Let k ∈ { 0, . . . , K } and ε > 0. The aim of this section is to study the
asymptotic behaviour of the birth and death Markov chains (Zk

n)n≥0, (Z
k

n)n≥0
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defined in the previous section (recall that they depend on ε). Let ε′ > 0
and define

V (ε′) = { i ∈ { 0, . . . ,m } : |i/m− ρ∗k| < ε′ } .

We define the hitting time of a subset A ⊂ { 0, . . . ,m } for the processes
(Zk

n)n≥0, (Z
k

n)n≥0 as follows:

τ(A) = inf{n ≥ 0 : Zk
n ∈ A} , τ(A) = inf{n ≥ 0 : Zk

n ∈ A} .

Theorem 4.4. Let ε′ > 0. For ε small enough, there exist real numbers
α, α′, λ, λ′ > 0 (depending on ε, ε′) such that, asymptotically:

• For all i ∈ { 0, . . . ,m }

Pi

(
τ(V (ε′)) ≥ mα

)
∨ Pi

(
τ(V (ε′)) ≥ mα

)
≤ exp(−α′m) .

• For all i ∈ V (ε′)

Pi

(
τ(V (2ε′)c) ≤ exp(λm)

)
∨ Pi

(
τ(V (2ε′)c) ≤ exp(λm)

)
≤ exp(−λ′m) .

The rest of the section is devoted to the proof of the theorem. We will
show the result only for the chain (Zk

n)n≥0 when k ∈ { 1, . . . , K }. The case
of (Z

k

n)n≥0 is dealt with in an analogous way. The case k = 0 is slightly
different, but the techniques to study it are the same as for k ∈ { 1, . . . , K },
while the calculations become simpler in the case k = 0, since there is no
parameter ε, indeed, for k ≥ 1 we need the chain (Zθ

n/m)n≥0 to be in an
ε–neighbourhood of (ρ∗0, . . . , ρ∗k−1), while for k = 0 there is no assumption of
this kind. In order to ease the notation, let us fix k ∈ { 1, . . . , K } and ε > 0,
and let us rename the process (Zk

n)n≥0 with parameters ε and k as simply
(Zn)n≥0, we also omit the underline and the superscript k in the rest of the
notation, so for example bki (ρ), dki (ρ), βk

i , δ
k
i become bi(ρ), di(ρ), βi, δi. First

of all, we look for the points ρ that minimise and maximise the maps bi(ρ)
and di(ρ). The function bi(ρ) is non–decreasing with respect to the variables
ρ1, . . . , ρk−1. Likewise, the function di(ρ) is non–increasing with respect to
the variables ρ1, . . . , ρk−1. Therefore, for all i ∈ { 0, . . . ,m }

βi = min{ bi(ρ0, ρ∗1 − ε, . . . , ρ∗k−1 − ε) : |ρ0 − ρ∗0| < ε } ,
δi = max{ di(ρ0, ρ∗1 − ε, . . . , ρ∗k−1 − ε) : |ρ0 − ρ∗0| < ε } .
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Let us take the partial derivatives with respect to ρ0:

∂bi(ρ)

∂ρ0
=

1− i/m
((σ − 1)ρ0 + 1)2

×(
σMH(0, k)− (σ − 1)

( k−1∑
l=1

ρlMH(l, k) +
i

m
MH(k, k)

))
,

∂di(ρ)

∂ρ0
=

i/m

((σ − 1)ρ0 + 1)2
×(

− σMH(0, k) + (σ − 1)

( k−1∑
l=1

ρlMH(l, k) +
i

m
MH(k, k)

))
.

The sign of these partial derivatives does not depend on ρ0. In particular,
for fixed ρ1, . . . , ρk−1, the functions bi(ρ), di(ρ) are monotonous with respect
to ρ0. Furthermore, the partial derivatives above have opposite signs, and
their value is 0 if and only if

σMH(0, k) = (σ − 1)
( k−1∑

l=1

ρlMH(l, k) +
i

m
MH(k, k)

)
.

Since this equation is linear with respect to i, we conclude that there exists
an η∗ ∈ [0, 1] (depending on m, ρ∗1, . . . , ρ∗k−1, ε) such that:

• If 0 ≤ i < η∗m, the function ρ0 7→ bi(ρ0, ρ
∗
1 − ε, . . . , ρ∗k−1 − ε) is non–

decreasing, the function ρ0 7→ di(ρ0, ρ
∗
1 − ε, . . . , ρ∗k−1 − ε) is non–increasing,

and

βi = bi(ρ
∗
0 − ε, ρ∗1 − ε, . . . , ρ∗k−1 − ε) ,

δi = di(ρ
∗
0 − ε, ρ∗1 − ε, . . . , ρ∗k−1 − ε) .

• If η∗m < i ≤ m, the function ρ0 7→ bi(ρ0, ρ
∗
1 − ε, . . . , ρ∗k−1 − ε) is non–

increasing, the function ρ0 7→ di(ρ0, ρ
∗
1 − ε, . . . , ρ∗k−1 − ε) is non–decreasing,

and

βi = bi(ρ
∗
0 + ε, ρ∗1 − ε, . . . , ρ∗k−1 − ε) ,

εi = di(ρ
∗
0 + ε, ρ∗1 − ε, . . . , ρ∗k−1 − ε) .

For i ∈ { 0, . . . ,m− 1 } we define the products π(i) by setting π(0) = 1 and

∀i ∈ { 1, . . . ,m− 1 } π(i) =
β1 · · · βi
δ1 · · · δi

.
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These products are important in the study of the Markov chain (Zn)n≥0

(chapter 4 of [15]). In order to understand their behaviour, we study first
the ratio bi(ρ)/di(ρ). For 1 ≤ i ≤ m− 1 we have

bi(ρ)

di(ρ)
= g(MH(0, k), . . . ,MH(k, k), ρ, i/m) ,

where the function g : ]0, 1]k+1× ]0, 1[k× ]0, 1[−→ ]0,∞[ is given by

∀γ ∈ ]0, 1]k+1 ∀ρ ∈ ]0, 1[k ∀η ∈ ]0, 1[

g(γ, ρ, η) =

(1− η)
(
σρ0γ0 +

k−1∑
l=1

ρlγl + ηγk

)

η

(
σρ0(1− γ0) +

k−1∑
l=1

ρl(1− γl) + η(1− γk) + 1− ||ρ||1 − η
) .

The behaviour of the products π(i) depends on whether the value of g is
larger or smaller than 1. The equation g(γ, ρ, η) = 1 is linear with respect to
η, its only root being

r(γ, ρ) =
1

(σ − 1)ρ0 + 1− γk

(
σρ0γ0 +

k−1∑
l=1

ρlγl

)
.

Therefore,

g(γ, ρ, η) > 1 if η < r(γ, ρ) ,

g(γ, ρ, η) < 1 if η > r(γ, ρ) .

Moreover, the function g(γ, ρ, η) is continuous and non–decreasing with re-
spect to each component of the variable γ. Take ψ : ]0, 1]k+1× ]0, 1[−→
]0,+∞[ to be the function defined by:

∀γ ∈ ]0, 1]k+1 ∀η ∈ ]0, 1[

ψ(γ, η) =

{
g(γ, ρ∗0 − ε, ρ∗1 − ε, . . . , ρ∗k−1 − ε, η) if η ≤ η∗

g(γ, ρ∗0 + ε, ρ∗1 − ε, . . . , ρ∗k−1 − ε, η) if η > η∗

Recall (section 2.2) that we have the following limits for the mutation prob-
abilities:

lim
`→∞, q→0

`q→a

MH(l, k) =


ak−l

(k − l)!
e−a if l ≤ k

0 otherwise

We have the following large deviations estimates for the products π(i):
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Proposition 4.5. Let a ∈ ]0,+∞[ . For η ∈ [0, 1], we have

lim
`,m→∞

q→0, `q→a

1

m
ln π(bηmc) =

∫ η

0

lnψ
(
e−aa

k

k!
, . . . , e−a, s

)
ds .

By the above development, the limit on the left–hand side can be rewritten
as

lim
`,m→∞

q→0, `q→a

1

m

bηmc∑
i=0

lnψ
(
MH(0, k), . . . ,MH(k, k), i/m

)
,

which can be interpreted as a Riemann approximation of the integral on the
right–hand side. The rigorous proof of the proposition is very similar to that
of proposition 9.1 of [3], so we omit it. Let us define

ρ− = min

{
r
(
e−aa

k

k!
, . . . , e−a, ρ∗0 − ε, ρ∗1 − ε, . . . , ρ∗k−1 − ε

)
,

r
(
e−aa

k

k!
, . . . , e−a, ρ∗0 + ε, ρ∗1 − ε, . . . , ρ∗k−1 − ε

)}
,

ρ+ = max

{
r
(
e−aa

k

k!
, . . . , e−a, ρ∗0 − ε, ρ∗1 − ε, . . . , ρ∗k−1 − ε

)
,

r
(
e−aa

k

k!
, . . . , e−a, ρ∗0 + ε, ρ∗1 − ε, . . . , ρ∗k−1 − ε

)}
.

From the definitions, we see that

ψ
(
e−aa

k

k!
, . . . , e−a, η

)
> 1 for η < ρ− ,

ψ
(
e−aa

k

k!
, . . . , e−a, η

)
< 1 for η > ρ+ .

In particular, the function

η 7→
∫ η

0

lnψ
(
e−aa

k

k!
, . . . , e−a, s

)
ds

is non–decreasing on ]0, ρ−[ and non–increasing on ]ρ+, 1[ . Furthermore,
when ε goes to 0, both the points ρ− and ρ+ converge to the point

r(e−aa
k

k!
, . . . , e−a, ρ∗0, . . . , ρ

∗
k−1) .
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Calling this point ρk, and using the definition of the function r, we see that
ρk is precisely the solution to the recurrence relation

ρk =
1

(σ − 1)ρ0 + 1− e−a

(
σρ0e

−aa
k

k!
+

k−1∑
l=1

ρle
−a ak−l

(k − l)!

)
,

with initial condition ρ0 = ρ∗0 = (σe−a − 1)/(σ − 1). Solving this recurrence
relation, for example by the method of generating functions, we see that

ρk = ρ∗k = (σe−a − 1)
ak

k!

∑
i≥1

ik

σi
.

We also define

r− = min
{
r
(
MH(0, k), . . . ,MH(k, k), ρ

∗
0 − ε, ρ∗1 − ε, . . . , ρ∗k−1 − ε

)
,

r
(
MH(0, k), . . . ,MH(k, k), ρ

∗
0 + ε, ρ∗1 − ε, . . . , ρ∗k−1 − ε

)}
,

r+ = max
{
r
(
MH(0, k), . . . ,MH(k, k), ρ

∗
0 + ε, ρ∗1 − ε, . . . , ρ∗k−1 − ε

)
,

r
(
MH(0, k), . . . ,MH(k, k), ρ

∗
0 − ε, ρ∗1 − ε, . . . , ρ∗k−1 − ε

)}
.

We then have

1 ≤ i ≤ j ≤ r−m =⇒ π(i) ≤ π(j) ,

r+m ≤ i ≤ j ≤ m =⇒ π(i) ≥ π(j) ,

and the situation between r−m and r+m is somewhat more delicate. Anyhow,
we have

lim
`,m→∞

q→0, `q→a

r− = ρ− , lim
`,m→∞

q→0, `q→a

r+ = ρ+ .

We are now ready to prove theorem 4.4.

Proof of Theorem 4.4. We begin by showing the first statement in the the-
orem. Let ε′ > 0. The cases i ≤ ρ∗km and i ≥ ρ∗km are dealt with in a
similar way, thus, we will only show the result for i ≤ ρ∗km. Let us call b the
minimum of the discrete interval V (ε′), i.e.,

b = b(ρ∗k − δ′)mc+ 1 .
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Starting from i < b, the expectation of the hitting time of b is given by the
formula

Ei

(
τ({ b })

)
=

b−1∑
j=i

b−1∑
k=j

1

βj

π(j)

π(k)
.

The formula is classical (see for example formula 5.2.4 in [16]). From the
definition of βj, we see that, for ε small enough, we have asymptotically

∀j ∈ { 0, . . . ,m− 1 } βj ≥
C

m2
,

where the constant C might depend on ε but not on m; and that r− ∈ V (ε′),
so that b ≤ r− and therefore,

1 ≤ j ≤ k ≤ b− 1 =⇒ π(j)

π(k)
≤ 1 .

It follows that
Ei

(
τ(V (ε′))

)
= Ei

(
τ({ b })

)
≤ m4

C
.

Let κ > 4. By the Markov inequality

Pi

(
τ(V (ε′)) ≥ mκ

)
≤ m−(κ−4)

C
.

We estimate next, for n ≥ 1,

Pi

(
τ(V (ε′)) ≥ nmκ

)
.

We decompose the interval { 0, . . . , nmκ } into subintervals of length mκ and
with the help of the Markov property we apply repeatedly the previous in-
equality, in order to get

Pi

(
τ(V (ε′)) ≥ nmκ

)
≤ exp

(
− n

(
(κ− k − 2) lnm+ lnC

))
.

Thus, setting n = m, we obtain the desired result with α = κ + 1 and
α′ = (κ− 4) lnm0 + lnC for m0 large enough so that α′ > 0.

We show next the second statement of theorem 4.4. Let ε′ > 0. Let n > 0,
i ∈ V (ε′), and let us first estimate the value of

Pi

(
τ(V (2ε′)c) ≤ n

)
.

Let θ be the last time the process (Zn)n≥0 visits the set V (ε′) before time
τ(V (2ε′)c), i.e.,

θ = max
{
s < τ(V (2ε′)c) : Zs ∈ V (ε′)

}
.
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We denote by b and c the extreme points of the discrete interval V (ε′),

b = b(ρ∗k − ε′)mc+ 1 , c = b(ρ∗k + ε′)mc .

Likewise, we denote by b′ and c′ the extreme points of the discrete interval
V (2ε′),

b′ = b(ρ∗k − 2ε′)mc+ 1 , c′ = b(ρ∗k + 2ε′)mc .

We have then

Pi

(
τ(V (2ε′)c) ≤ n

)
=
∑
s<n

Pi

(
θ = s, τ(V (2ε′)c) ≤ n

)
=∑

s<n

(
Pi(θ = s, Zs = b, τ(V (2ε′)c) ≤ n)+Pi(θ = s, Zs = c, τ(V (2ε′)c) ≤ n)

)
Let us consider the first term within the parenthesis. By the Markov property,

Pi

(
θ = s, Zs = b, τ(V (2ε′)c) ≤ n

)
=

Pi

(
Zs = b, Zs+1 = b− 1, τ(V (2ε′)c) ≤ n, Zr 6∈ V (ε′) for s < r ≤ τ(V (2ε′)c)

)
≤ Pb−1

(
Zr 6∈ V (ε′) for r ≤ τ(V (2ε′)c), τ(V (2ε′)c) ≤ n− s− 1

)
≤ Pb−1

(
Zτ(V (2ε′)c∪{b}) ∈ V (2ε′)c

)
= Pb−1

(
Zτ({b′−1,b}) = b′ − 1

)
.

Once again, an explicit formula for this last probability exists:

Pb−1

(
Zτ({b′−1,b}) = b′ − 1

)
=

( b−1∑
i=b′−1

1

π(i)

)−1
1

π(b− 1)
≤ π(b′ − 1)

π(b− 1)
.

Let ε > 0. By proposition 4.5, asymptotically,∣∣∣∣ 1m ln π(b− 1)−
∫ ρ∗k−ε′

0

lnψ(e−aa
k

k!
, . . . , e−a, s) ds

∣∣∣∣ < ε

2
,∣∣∣∣ 1m ln π(b′ − 1)−

∫ ρ∗k−2ε′

0

lnψ(e−aa
k

k!
, . . . , e−a, s) ds

∣∣∣∣ < ε

2
.

Thus,

π(b′ − 1)

π(b− 1)
= exp

(
m
( 1

m
ln π(b′ − 1)− 1

m
ln π(b− 1)

))
≤ exp

(
−m

( ∫ ρ∗k−ε′

ρ∗k−2ε′
lnψ(e−aa

k

k!
, . . . , e−a, s) ds− ε

))
.
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We can choose ε small enough so that

λ1 =

∫ ρ∗k−ε′

ρ∗k−2ε′
lnψ(e−aa

k

k!
, . . . , e−a, s) ds− ε

is positive. We have then

Pi

(
θ = s, Zs+1 = b− 1, τ(V (2ε′)c) ≤ n

)
≤ exp(−λ1m) .

The term
Pi

(
θ = s, Zs+1 = c+ 1, τ(V (2ε′)c) ≤ n

)
is dealt with in a similar fashion, and we obtain that there exists λ2 > 0 such
that

Pi

(
θ = s, Zs = c, τ(V (2ε′)c) ≤ n

)
≤ exp(−λ2m) .

It follows that

Pi

(
τ(V (2ε′)c) ≤ n

)
≤ n

(
exp(−λ1m) + exp(−λ2m)

)
.

We choose λ < min(λ1, λ2) and for m0 large enough

λ′ = min(λ1 − λ, λ2 − λ)−
1

m0

ln 2 .

We apply the previous inequality at time n = exp(λm) and we obtain the
desired result.

4.3 Proof of theorem 4.1

In this section we conclude the proof of theorem 4.1. The base case, k = 0,
is a direct application of theorems 4.2 and 4.4. The induction step relies
also strongly on these two theorems, but it requires some more work. Let
us suppose that the result of theorem 4.1 holds at rank k − 1. Let ε, ε′ > 0
with 2ε′ < ε. Thanks to the induction hypothesis, there exist positive real
numbers αk−1, α

′
k−1, λk−1, λ

′
k−1 (depending on ε′) such that asymptotically,

∀o ∈ Pm
`+1 Po(τ(Uk−1(ε

′)) ≥ mαk−1) ≤ exp(−α′
k−1m) ,

∀o ∈ Uk−1(ε
′) Po(τ(Uk−1(2ε

′)c) ≤ exp(λk−1m)) ≤ exp(−λ′k−1m) .

Let o ∈ Pm
`+1 and choose αk > αk−1. We have

Po(τ(Uk(ε)) ≥ mαk) = Po(τ(Uk−1(ε
′)) ≥ mαk−1 , τ(Uk(ε)) ≥ mαk)

+ Po(τ(Uk−1(ε
′)) < mαk−1 , τ(Uk(ε)) ≥ mαk) .
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By the induction hypothesis the first term in the sum is bounded above by
exp(−α′

k−1m). We use the Markov property to control the second term:

Po(τ(Uk−1(ε
′)) < mαk−1 , τ(Uk(ε)) ≥ mαk)

=
∑

n<mαk−1

o′∈Uk−1(ε′)

Po(τ(Uk−1(ε
′)) = n, Zθ

n = o′, τ(Uk(ε)) ≥ mαk)

=
∑

n<mαk−1

o′∈Uk−1(ε′)

Po′(τ(Uk(ε)) ≥ mαk − n)Po

(
τ(Uk−1(ε

′)) = n, Zθ
n = o′) .

Let m be large enough so that mαk −mαk−1 < exp(λk−1m) . For n < mαk−1 ,

Po′(τ(Uk(ε)) ≥ mαk − n) ≤ Po′(τ(Uk(ε)) ≥ mαk −mαk−1)

= Po′(τ(Uk−1(2ε
′)c) ≤ exp(λk−1m), τ(Uk(ε)) ≥ mαk −mαk−1)

+ Po′
(
τ(Uk−1(2ε

′)c) > exp(λk−1m), τ(Uk(ε)) ≥ mαk −mαk−1) .

By the induction hypothesis, the first term in the sum is bounded above by
exp(−λ′k−1m). For the second term we have:

Po′(τ(Uk−1(2ε
′)c) > exp(λk−1m), τ(Uk(ε)) ≥ mαk −mαk−1)

≤ Po′(τ(Uk(ε)) ≥ mαk −mαk−1
∣∣ τ(Uk−1(2ε

′)c) > exp(λk−1m)) .

Since exp(λk−1m) > mαk − mαk−1 and 2ε′ < ε, conditionally on the event
τ(Uk−1(2ε

′)c) > exp(λk−1m), we have, in view of theorem 4.2,

∀n < mαk −mαk−1 Zn ≤ Zθ
n(k) ≤ Zn .

Therefore,

Po′(τ(Uk(ε)) ≥ mαk −mαk−1
∣∣ τ(Uk−1(2ε

′)c) > exp(λk−1m))

≤ Po′(∀n < mαk −mαk−1 , Zn > ρ∗k + ε or Zn < ρ∗k − ε)
≤ Po′(k)(τ(V (ε)) ≥ mαk −mαk−1) + Po′(k)(τ(V (ε)) ≥ mαk −mαk−1) .

Let α, α′ > 0 be given by theorem 4.4. Choosing αk large enough so that
mαk −mαk−1 > mα, this last expression is bounded by 2 exp(−α′m), and this
yields the desired bound for the hitting time of Uk(ε).

In order to show the bound on the exit time of Uk(2ε), we argue in a similar
way. Let o ∈ Uk(ε). Let λk−1 be given by the induction hypothesis and let
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λk > 0. We have

Po(τ(Uk(2ε)
c) ≤ exp(λkm)) =

Po(τ(Uk−1(2ε)
c) ≤ exp(λk−1m), τ(Uk(2ε)

c) ≤ exp(λkm))

+ Po(τ(Uk−1(2ε)
c) > exp(λk−1m), τ(Uk(2ε)

c) ≤ exp(λkm)) .

By the induction hypothesis, the first term in the sum is bounded above by
exp(−λ′k−1m). For the second term we have:

Po(τ(Uk−1(2ε)
c) > exp(λk−1m), τ(Uk(2ε)

c) ≤ exp(λkm))

≤ Po(τ(Uk(2ε)
c) ≤ exp(λkm) | τ(Uk−1(2ε)

c) > exp(λk−1m)) .

Let λ, λ′ be given by theorem 4.4, and λk > 0 such that λk < λk−1 ∧ λ.
Conditionally on τ(Uk−1(2ε)

c) > exp(λk−1m), we have by theorem 4.2,

∀n ∈ { 0, . . . , exp(λk−1m) } Zn ≤ Zθ
n(k) ≤ Zn .

Therefore

Po(τ(Uk(2ε)
c) ≤ exp(λkm) | τ(Uk−1(2ε)

c) > exp(λk−1m))

≤ Po(k)(τ(V (2ε)c) ≤ exp(λkm)) + Po(k)(τ(V (2ε)c) ≤ exp(λkm))

≤ 2 exp(−λ′m) .

This completes the induction step.

4.4 Convergence

In this section we will prove that when σe−a > 1, the invariant probability
measure νθ of (Zθ

n)n≥0 converges to the Dirac mass at ρ∗. Let a > 0 be such
that σe−a > 1.

Theorem 4.6. For every continuous and increasing function f : [0, 1] → R
such that f(0) = 0, we have

lim
`,m→∞, q→0
`q→a, m

`
→α

∫
Pm
`+1

f
(πK(o)

m

)
dνθ(o) = f(ρ∗0 + · · ·+ ρ∗K) .
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Proof. Let ε > 0. We define two sequences of stopping times (Tn)n≥0 and
(T ∗

n)n≥1 as follows. Let T0 = 0 and set

T ∗
1 = inf

{
n ≥ 0 : Zθ

n ∈ UK(ε)
}
, T1 = inf

{
n ≥ T ∗

1 : Zθ
n 6∈ UK(2ε)

}
,

...
...

T ∗
k = inf

{
n ≥ Tk−1 : Z

θ
n ∈ UK(ε)

}
, Tk = inf

{
n ≥ T ∗

k : Zθ
n 6∈ UK(2ε)

}
,

...
...

The ergodic theorem for Markov chains implies that∫
Pm

`+1

f
(πK(o)

m

)
dνθ(o) = lim

N→∞

1

N
E

(
N−1∑
n=0

f

(
πK(Z

θ
n)

m

))
.

Let N ≥ 0. We decompose this last sum as follows:

N−1∑
n=0

f

(
πK(Z

θ
n)

m

)
=
∑
k≥1

T ∗
k∧N−1∑

n=Tk−1∧N

f

(
πK(Z

θ
n)

m

)
+
∑
k≥1

Tk∧N−1∑
n=T ∗

k∧N

f

(
πK(Z

θ
n)

m

)
.

The function f is continuous; let ε > 0 and let us choose ε small enough so
that

∀o ∈ UK(2ε)

∣∣∣∣f(πK(o)m

)
− f(ρ∗0 + · · ·+ ρ∗K)

∣∣∣∣ < ε

2
.

We have then∣∣∣∣E(N−1∑
n=0

f

(
πK(Z

θ
n)

m

))
− Nf(ρ∗0 + · · ·+ ρ∗K)

∣∣∣∣ ≤
2f(1)

∑
k≥1

E
(
T ∗
k ∧N − Tk−1 ∧N

)
+
Nε

2
.

Let us define
K(n) = max

{
k ≥ 0 : Tk ≤ n

}
.

We can bound the last sum as follows:

∑
k≥1

(
T ∗
k ∧N − Tk−1 ∧N

)
≤

K(N)∑
k=1

(
T ∗
k − Tk−1

)
+
(
N − TK(N)

)
.

We study now the random variable K(n). Let k ∈ N, λ > 0 and o ∈ Pm
`+1.

Let us seek estimates on the following probability:

Po

(
K(k exp(λm)/2) ≥ k

)
.
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From the definition of K(n), it follows that K(n) ≥ k if and only if Tk ≤ n.
Thus

Po

(
K(k exp(λm)/2) ≥ k

)
= Po

(
Tk ≤ k exp(λm)/2

)
.

Let us define for i ≥ 1,

Yi = Ti − Ti−1 , Y ∗
i = Ti − T ∗

i .

By theorem 4.1, there exist positive real numbers λ and λ′ such that, for all
i ≥ 1,

Po

(
Yi ≤ exp(λm)

)
≤ Po

(
Y ∗
i ≤ exp(λm)

)
=

∑
o′∈UK(ε)

Po

(
Y ∗
i ≤ exp(λm)

∣∣Zθ
T ∗
i
= o′

)
Po

(
Zθ

T ∗
i
= o′

)
=

∑
o′∈UK(ε)

Po′
(
T1 ≤ exp(λm)

)
Po

(
Zθ

T ∗
i
= o′

)
≤ exp(−λ′m) .

Let us define the following Bernoulli random variables:

∀i ≥ 1, εi = 1Y ∗
i ≤exp(λm) .

Notice that
Tk = Y1 + · · ·+ Yk ≥ Y ∗

1 + · · ·+ Y ∗
k .

If Tk ≤ k exp(λm)/2, then there exist at least k/2 indices in { 1, . . . , k } such
that Y ∗

i ≤ exp(λm). Therefore,

Tk ≤
1

2
k exp(λm) =⇒ ε1 + · · ·+ εk ≥

k

2
.

Thus
Po

(
K
(k exp(λm)

2

)
≥ k

)
≤ P

(
ε1 + · · ·+ εk ≥

k

2

)
.

Let β ≥ 0, thanks to Chebyshev’s exponential inequality we have

P
(
ε1+ · · ·+ εk ≥ k/2

)
≤ exp

(
−β/2+ lnE

(
exp(βε1/k) · · · exp(βεk/k)

))
.

Since ε1, . . . , εk−1 are measurable with respect to
(
Zθ

n, 0 ≤ n ≤ T ∗
k

)
,

E
(
exp(βε1/k) · · · exp(βεk/k)

)
= E

(
E
(
exp(βε1/k) · · · exp(βεk/k) |Zθ

n, 0 ≤ n ≤ T ∗
k

))
= E

(
exp(βε1/k) · · · exp(βεk−1/k)E

(
exp(βεk/k) |Zθ

n, 0 ≤ n ≤ T ∗
k

))
.
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Thanks to the strong Markov property, the above conditional expectation
can be rewritten as follows:

E
(
exp(βεk/k) |Zθ

n, 0 ≤ n ≤ T ∗
k

)
= E

(
exp(βε1/k) |Zθ

0 = Zθ
T ∗
k

)
.

Yet, for all o′ ∈ UK(δ),

Eo′
(
exp(βε1/k)

)
≤ exp

(
− λ′m+

β

k

)
+ 1− exp(−λ′m) .

We iterate this procedure and we obtain

E
(
exp(βε1/k) · · · exp(βεk/k)

)
≤
(
exp

(
− λ′m+

β

k

)
+ 1− exp(−λ′m)

)k
.

The change of variables β → kβ yields

P
(
ε1 + · · ·+ εk ≥ k/2

)
≤ exp

(
− k
(
β/2− ln

(
exp(−λ′m+ β) + 1− exp(−λ′m)

)))
.

Let Λ∗(t) be the Cramér transform of the Bernoulli law with parameter
p = exp(−λ′m):

Λ∗(t) = sup
β≥0

(
βt− ln

(
peβ + 1− p

))
= t ln

t

p
+ (1− t) ln 1− t

1− p
.

Optimising the previous inequality over β ≥ 0, we obtain

P
(
ε1 + · · ·+ εk ≥ k/2

)
≤ exp

(
− kΛ∗(1/2)

)
.

In our particular case, for m large enough,

Λ∗(1/2) =
1

2
ln

exp(λ′m)

2
+

1

2
ln

exp(λ′m)

2(exp(λ′m)− 1)
≥ c(m) ,

where c(m) is a positive constant depending on m but not on k. It follows
that for m large enough,

∀n ≥ 1 Po

(
K
(
k exp(λm)/2

)
≥ k

)
≤ exp

(
− kc(m)

)
.

Let N ≥ 0. We seek next an upper bound for the expectation

E

(K(N)∑
k=1

(
T ∗
k − Tk−1

)
+
(
N − TK(N)

))
.
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The sum inside the parenthesis is at most N , therefore, for i ≥ 1

E

(K(N)∑
k=1

(
T ∗
k − Tk−1

)
+
(
N − TK(N)

))
≤

E

((K(N)∑
k=1

(
T ∗
k − Tk−1

)
+
(
N − TK(N)

))
1K(N)<i

)
+ NP

(
K(N) ≥ i

)
.

Let
iN = min

{
i ∈ N : N ≤ i exp(λm)

2

}
.

On one hand, the analysis of the random variable K(k exp(λm)/2) shows
that taking i = iN , the second term is bounded by

iN
2
eλmP

(
K(iNe

λm/2) ≥ iN
)
≤ iN

2
exp(λm− iNc(m)) ,

which goes to 0 when N goes to ∞. On the other hand, we can bound the
first term thanks to theorem 4.1:

E

((K(N)∑
k=1

(
T ∗
k − Tk−1

)
+
(
N − TK(N)

))
1K(N)<iN

)

≤ E

( iN+1∑
k=1

(
T ∗
k−Tk−1

))
=

iN+1∑
k=1

E
(
T ∗
k−Tk−1

)
≤ (iN+1)

mα

1− exp(−α′m)
,

where α, α′ > 0. We combine the above inequalities, and we obtain for m
large enough and for all N > 0,

1

N
E

(∑
k≥1

(
T ∗
k ∧N − Tk−1 ∧N

))
≤ 2

(iN − 1) exp(λm)

(
iN
2

exp(λm− iNc(m)) + (iN + 1)
mα

1− exp(−α′m)

)
.

When N goes to ∞, this expression goes to 2mα/ exp(λm)(1− exp(−α′m)),
which in turn goes to 0 with m. We deduce that, for m large enough, there
exists Nm > 0 such that for all N ≥ Nm,∣∣∣∣∣ 1NE

( N∑
n=0

f
(πK(Zθ

n)

m

))
− f(ρ∗0 + · · ·+ ρ∗K)

∣∣∣∣∣ < ε .

Thus,

lim
`,m→∞, q→0
`q→a, m

`
→α

∫
Pm

`+1

f
(πK(o)

m

)
dνθ(o) = f(ρ∗0 + · · ·+ ρ∗K) .
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