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Abstract

We study a classical multitype Galton–Watson process with mutation
and selection. The individuals are sequences of fixed length over a
finite alphabet. On the sharp peak fitness landscape together with in-
dependent mutations per locus, we show that, as the length of the
sequences goes to ∞ and the mutation probability goes to 0, the
asymptotic relative frequency of the sequences differing on k digits
from the master sequence approaches

(σe−a − 1)
ak

k!

∑
i≥1

ik

σi
,

where σ is the selective advantage of the master sequence and a is the
product of the length of the chains with the mutation probability. The
probability distribution Q(σ, a) on the non negative integers given by
the above formula is the quasispecies distribution with parameters σ
and a.

1 Introduction

Understanding the origin of life on Earth has always been a major objective of
science. One of the many important contributions to the subject is the 1971
article by Manfred Eigen [7], which theoretically explores the early stages
of life on our planet. As an explanation of how evolution of very simple
macromolecules might have happened, Eigen proposed a model known today
as Eigen’s model or the quasispecies model. The model aims at describing
the evolution of a population of macromolecules, driven both by selection and
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mutation forces. Due to the simplicity of the reproducing individuals, Eigen’s
model can be synthesised as a system of differential equations, obtained from
the chemico–kinetic reactions the different macromolecules are subject to:

x′k(t) =
N∑
i=1

f(i)Q(i, k)xi(t)− xk(t)
N∑
i=1

f(i)xi(t) , 1 ≤ k ≤ N .

Here, the different possible genotypes are numbered from 1 to N ; xk(t) rep-
resents the concentration of individuals with genotype k at time t; f(i) is the
fitness (reproductive rate) of the i–th genotype, and Q(i, k) is the probabil-
ity that an individual with genotype i is transformed into an individual with
genotype k by mutation (unfaithful replication during reproduction). Thus,
the first term in the differential equation accounts for the production of geno-
type k individuals, while the second term accounts for the loss of individuals
with genotype k; the second term is proportional to the concentration of
genotype k individuals as well as to the population’s average fitness, and it
helps to keep the total concentration of chains constant.

One of the simplest scenarios we can consider is that of the sharp peak land-
scape together with independent mutations per locus. In the sharp peak
fitness landscape all sequences but one, the master sequence, have the same
fitness, while the master sequence has a higher fitness than the rest. Mu-
tations happen during reproduction independently on each locus of the se-
quence, with equal probability. Eigen studied this simple scenario and found
that two major phenomena take place. The first is an error threshold phe-
nomenon: there is a critical mutation probability such that for above–critical
mutation probabilities the equilibrium state of the population is a totally dis-
ordered one. The second phenomenon is found for below–critical mutation
probabilities: in this case the equilibrium state of the population is no longer
disordered; it contains a positive concentration of the master sequence, to-
gether with a cloud of mutants that closely resemble the master sequence.
This kind of distribution has come to be known as a quasispecies distribution.

The concept of error threshold, as well as that of quasispecies, are very
appealing to the scientific community, mostly due to their potential for qual-
itatively explaining the behaviour of a wide range of biological populations.
Since Eigen introduced them, it has long been sought to extend the concepts
to many other situations, both experimentally and theoretically. From a
theoretical point of view, there are two main objections to the applicability
of Eigen’s model to more complex kinds of populations. The first objection
comes from considering at the same time finite chain length and infinite popu-
lation size: if the individuals we seek to model are fairly complex, the number
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of possible genotypes largely exceeds the size of any viable population, a fea-
ture that Eigen’s model fails to account for. The second objection is due
to the deterministic nature of Eigen’s model: again, for fairly complex indi-
viduals, the description of the reproduction mechanism by chemico–kinetic
reactions is completely out of reach, and it is typically replaced by some ran-
dom mechanism. The program is thus settled: to retrieve the error threshold
phenomenon and a quasispecies distribution for finite population stochastic
models. For a discussion on the several contributions to this program we
refer the reader to [2, 4].

In the series of papers [2–5], the authors study the classical Moran and
Wright–Fisher models, recovering both the error threshold phenomenon and
a quasispecies distribution for mutation rates below the error threshold. Fur-
thermore, the quasispecies distribution happens to be the same for both mod-
els, and an explicit formula is found: the concentration of sequences differing
in exactly k digits from the master sequence is given by

(σe−a − 1)
ak

k!

∞∑
i=1

ik

σi
,

where σ > 1 is the reproductive advantage of the master sequence and a is
the product of the mutation probability with the length of the sequences. We
call this distribution the quasispecies distribution with parameters σ and a,
and we denote it by Q(σ, a). Both the Moran and the Wright–Fisher models
are constant population models, since their aim is to describe a sufficiently
large population which has stabilised in its environment. However, we might
be interested in studying the evolution of a population in its early stages. The
size of such a population is very likely to undergo significant fluctuations, the
classical stochastic model for this situation is the Galton–Watson branching
process. The aim of our article is to study a Galton–Watson branching
process, with selection and mutation, in order to recover the phase transition
phenomenon and the quasispecies distribution.

Demetrius, Schuster and Sigmund [6] already pursued this task in a more
general context: a general fitness landscape as well as a general mutation
kernel. In [1], Antoneli, Bosco, Castro and Janini generalise the work in [6]
by studying a multivariate branching process, which incorporates neutral,
deleterious and beneficial mutations. Our setting is closer to that of [6]
than [1]; our aim is to show that for the sharp peak landscape along with
per–locus independent mutations, the quasispecies distribution is again the
one obtained for the Moran model and for the Wright–Fisher model. In [6],
it is proved that the relative frequencies of the genotypes converge to those
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given by the stationary solution of Eigen’s system of differential equations.
However, the quasispecies distribution is a distribution on the Hamming
classes of the sequence space, which arises in a particular asymptotic regime.
Thus, we cannot apply the results in [6] directly. In the line of [2–5], we
develop our argument from scratch. We start by defining the Galton–Watson
process on the genotypes, with selection and mutation. We formally show
how to pass from the process on the genotypes to a Galton–Watson process
on the Hamming classes. The relative frequencies of the classes are shown to
converge to the stationary solution of the corresponding Eigen’s system, as
done in [6]. Finally, the stationary solution to this particular Eigen’s system
is shown to converge to the quasispecies distribution.

Our article is organised as follows: first we define a multitype Galton–Watson
process to model the evolution of a finite population. We state next the main
result of the article, and all the remaining sections are devoted to the proof
of the main result.

2 The Galton–Watson process

In this section we define a multitype Galton–Watson process driving the
dynamics of a finite population, which incorporates both selection and mu-
tation effects. Let us begin by introducing the individuals that will form the
population.

Individuals. Let A be a finite alphabet of cardinality κ ≥ 1, and consider
sequences of fixed length ` ≥ 1 over the alphabet A. A sequence in A`
represents the genotype of an haploid individual. We study the evolution of
a population of such individuals, with selection and mutation.

Sharp peak landscape. The selection mechanism is given by a fitness func-
tion A : A` −→ R+. Many fitness landscapes might be considered, but we
choose to work with the sharp peak landscape: there is a particular sequence
w∗ ∈ A`, called the master sequence, whose fitness is σ ≥ 1, while every other
sequence in A` has fitness 1. So, the fitness function in this case is given by

∀u ∈ A` A(u) =

{
σ if u = w∗ ,

1 if u 6= w∗ .

Independent mutations per locus. Mutations happen randomly due to un-
faithful replication of the chains, independently on each locus of the chain,
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with equal probability q ∈ ]0, 1[ for all loci. When an allele mutates, it does
so to a randomly chosen letter, uniformly from the κ − 1 letters still avail-
able in the alphabet A. This mutation mechanism can be encoded into a
mutation kernel in the following manner:

∀u, v ∈ A` M(u, v) =
∏̀
i=1

(
(1− q)1u(i)=v(i) +

q

κ− 1
1u(i)6=v(i)

)
.

The multitype Galton–Watson process is a Markov chain with values in Nκ` ,

Xn =
(
Xn(u), u ∈ A`

)
, n ≥ 0 .

For each u ∈ A` and n ≥ 0, Xn(u) represents the number of individuals
with genotype u present in the population at time n. Each generation, each
individual in the population gives birth to a random number of children,
independently of the other individuals and of the past of the process. The
number of offspring of an individual u ∈ A` is distributed as a Poisson random
variable with mean A(u). The newborn individuals then mutate according
to the kernel M . The new generation is formed by all the offspring, after
mutation.

Generating functions. The classical tool for studying the Galton–Watson
process we just described is generating functions, which are also useful for
formally defining the transition mechanism of the process. Let u ∈ A` and
define the function fu : [−1, 1]A

` −→ R by:

∀s ∈ [−1, 1]A
`

fu(s) =
∑
r∈NA`

pu(r)
∏
v∈A`

s(v)r(v) ,

where pu(r) represents the probability that an individual with genotype u
has r(v) children with genotype v, for each v ∈ A`:

∀r ∈ NA`

pu(r) = e−A(u)
A(u)|r|1

|r|1!
∏
v∈A`

M(u, v)r(v) .

Here |r|1 represents the usual 1–norm of the vector r, that is, the sum of
its components. For an initial population X0 consisting of one genotype u
individual only, X1 is a random vector having generating function fu. In
general, for n ≥ 0, if Xn = r ∈ NA`

, then Xn+1 is the sum of |r|1 random
vectors, where, for each u ∈ A`, r(u) of the random vectors have generating
function fu. Note that the null vector is an absorbing state.
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3 Main result

Since we work with the sharp peak landscape fitness function, we can classify
the sequences in A` according to the number of digits they differ from the
master sequence. Precisely, the Hamming distance between two sequences
u, v ∈ A` is defined as the number of digits where the two sequences differ:

dH(u, v) = card
{
i ∈ { 1, . . . , ` } : u(i) 6= v(i)

}
.

For each k ∈ { 0, . . . , ` } let Ck be the set of the sequences in A` at Hamming
distance k from the master sequence:

Ck = {u ∈ A` : dH(u,w∗) = k } .

We refer to the set Ck as the k–th Hamming class. Our aim is to study
the concentration of the individuals of Xn which are in the class k in the
following asymptotic regime:

`→∞ , q → 0 , `q → a ∈ [0,∞] .

We have the following result.

Theorem 3.1. The process (Xn)n≥0 has a positive probability of survival.
Conditioned on the event of non–extinction, if σe−a ≤ 1, then

∀k ≥ 0 lim
`→∞, q→0
`q→a

lim
n→∞

1

|Xn|1

∑
u∈Ck

Xn(u) = 0 .

If σe−a > 1, then

∀k ≥ 0 lim
`→∞, q→0
`q→a

lim
n→∞

1

|Xn|1

∑
u∈Ck

Xn(u) = (σe−a − 1)
ak

k!

∑
i≥1

ik

σi
.

The right hand side in this formula is the concentration of the k–th Hamming
class in the distribution of the quasispecies Q(σ, a) with parameters σ and
a. We devote the rest of the paper to the proof of this result.

4 The occupancy process

In this section we build an occupancy process

(Zn)n≥0 = (Zn(0), . . . , Zn(`))n≥0 ,
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to keep track of the number of sequences in each of the Hamming classes.
Here Zn(l) represents the number of individuals in Xn that are at distance l
from the master sequence. In order to build the occupancy process formally,
we use the classical lumping technique [9].

Fitness. The fitness function A can be factorised into Hamming classes:
define the function AH : { 0, . . . , ` } −→ R+ by

∀l ∈ { 0, . . . , ` } AH(l) =

{
σ if l = 0 ,

1 if 1 ≤ l ≤ ` .

Then, for each u ∈ A` we have A(u) = AH(dH(u,w∗)).

Mutations. The mutation matrix M can also be factorised into the Hamming
classes. Indeed, for each u ∈ A` and c ∈ { 0, . . . , ` }, the value∑

v∈Cc

M(u, v)

depends on u through its Hamming class only (lemma 6.1 in [2]). For b, c ∈
{ 0, . . . , ` }, let us call MH(b, c) this common value for u in Cb. The coefficient
MH(b, c) can be analytically expressed as∑

0≤k≤`−b
0≤l≤b
k−l=c−b

(
`− b
k

)(
b

l

)
qk(1− q)`−b−k

( q

κ− 1

)l(
1− q

κ− 1

)b−l
.

Lumping. Let Z : NA` −→ N`+1 be the map that associates to each popula-
tion r ∈ NA`

the corresponding occupancy distribution:

∀r ∈ NA` ∀l ∈ { 0, . . . , ` } Z(r)(l) =
∑
u∈Cl

r(u) .

The occupancy process (Zn)n≥0 is defined by

∀n ≥ 0 Zn = Z(Xn) .

We check next that the occupancy process is again a Galton–Watson process.

7



Let k ∈ { 0, . . . , ` }, u ∈ Ck, and z ∈ N`+1. We have

∑
r∈NA`

Z(r)=z

pu(r) =
∑
r∈NA`

Z(r)=z

e−A(u)
A(u)|r|1

|r|1!
∏
v∈A`

M(u, v)r(v)

= e−AH(k)AH(k)|z|1

|z|1!
∑
r∈NA`

Z(r)=z

∏
v∈A`

M(u, v)r(v) .

Decomposing the last sum and product into Hamming classes:

∑
r∈NA`

Z(r)=z

∏
v∈A`

M(u, v)r(v) =
∑̀
l=0

∑
t∈NCl

|t|1=z(l)

∏
v∈Cl

M(u, v)t(v)

=
∏̀
l=0

(∑
v∈Cl

M(u, v)

)z(l)
=
∏̀
l=0

MH(k, l)z(l) .

Let

pk(z) =
∑
r∈NA`

Z(r)=z

pu(r) = e−AH(k)AH(k)|z|1

|z|1!
∏̀
l=0

MH(k, l)z(l) .

Since this expression depends on u only through k, the sum∑
r′∈N`+1

Z(r′)=z′

P
(
Xn+1 = z′ |Xn = r

)

depends on r only through z = Z(r). Thus, by the classical lumping theorem,
the process (Zn)n≥0 is a Markov chain (the classical lumping theorem is stated
in [9] for finite state space Markov chains, but both the result and the proof
carry over word by word to the case of denumerable Markov chains). Let us
define, for k ∈ { 0, . . . , ` } and s ∈ [0, 1]`+1,

fk(s) =
∑

z∈N`+1

pk(z)
∏̀
l=0

s(l)z(l) .

The process (Zn)n≥0 is in fact a Galton–Watson process with ` + 1 types,
having the following transition mechanism: for all n ≥ 0 and z ∈ N`+1, if
Zn = z, then Zn+1 is the sum of |z|1 independent random vectors, where, for
each k ∈ { 0, . . . , ` }, z(k) of the vectors have generating function fk.
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5 Proof of the theorem

We use now the classical theory of branching processes [8] in order to study
the process (Zn)n≥0. The mean matrix W of (Zn)n≥0 is the matrix with
coefficients W (i, j), 0 ≤ i, j ≤ `, given by the expected number of class j
individuals in the first generation, when the process starts with a population
consisting of just one individual in the class i. The mean matrix is thus given
by:

∀i, j ∈ { 0, . . . , ` } W (i, j) = AH(i)MH(i, j) .

The entries of the matrix W are all positive. By the Perron–Frobenius the-
orem, there exist a unique largest eigenvalue λ of W and a unique positive
and unitary eigenvector ρ associated to λ. By the general theory of multi-
type Galton–Watson processes (theorems 7.1 and 9.2 in chapter II of [8]),
if λ ≤ 1 then the population goes extinct with probability one. If λ > 1
there is a positive probability of survival, and conditioned on the event of
non extinction, we have

lim
n→∞

Zn(k)

Zn(0) + · · ·+ Zn(`)
= ρ(k) , 0 ≤ k ≤ ` .

From their definition, λ and ρ satisfy

λρ(k) =
∑̀
i=0

ρ(i)AH(i)MH(i, k) , 0 ≤ k ≤ ` .

Summing the above expression over k, since ρ is a unitary vector, we deduce
that

λ =
∑̀
i=0

ρ(i)A(i) = (σ − 1)ρ(0) + 1 .

Thus, the eigenvalue λ is equal to the average fitness of a population whose
concentrations are given by the vector ρ. We remark that solving the above
system of equations is equivalent to finding the stationary solutions of the
corresponding Eigen’s system of differential equations. From the above equa-
tion, we see that in particular λ ∈ ]1, σ[ , and this implies the first statement
of the theorem: the process (Zn)n≥0 has a positive probability of survival. It
remains to study the asymptotic behaviour of λ and ρ when ` goes to ∞, q
goes to 0 and `q goes to a. In this asymptotic regime the mutation kernel
MH converges to the following limiting expression:

∀i, k ≥ 0 lim
`→∞, q→0
`q→a

MH(i, k) =

 e−a
ak−i

(k − i)!
if k ≥ i ,

0 if k < i .
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Up to extraction of a subsequence, we can suppose that the following limits
exist

λ∗ = lim
`→∞, q→0
`q→a

λ , ρ∗(k) = lim
`→∞, q→0
`q→a

ρ(k) , k ≥ 0 .

Writing down the first equation of the system λρ = ρTW , we see that

σρMH(0, 0) < λρ(0) < σρMH(0, 0) + max
1≤i≤`

MH(i, 0) .

Since we also know that λ > 1, we conclude that λ∗ ≥ max{ 1, σe−a }. As we
have already pointed out,

λ = (σ − 1)ρ(0) + 1 .

Thus, taking the limits in the above two equations we deduce that,

λ∗ = (σ − 1)ρ∗(0) + 1 , λ∗ρ∗(0) = σρ∗(0)e−a .

Since λ∗ ≥ max{ 1, σe−a }, we conclude that:

• If σe−a ≤ 1, then λ∗ = 1 and ρ∗(0) = 0.

• If σe−a > 1, then

λ∗ = σe−a and ρ∗(0) =
σe−a − 1

σ − 1
.

Finally, writing down the k–th equation of the system λρ = ρTW , we see
that

σρ0MH(0, k) +
k∑
i=1

ρ(i)MH(i, k) < λρ(k) <

σρ0MH(0, k) +
k∑
i=1

ρ(i)MH(i, k) + max
k<i≤`

MH(i, k) .

Thus, taking the limit we obtain the recurrence relation

σe−aρ∗(k) = σρ∗(0)e−a
ak

k!
+

k∑
i=1

ρ∗(i)e−a
ak−i

(k − i)!
, k ≥ 1 .

We conclude that if σe−a ≤ 1, then ρ∗(k) = 0 for all k ≥ 0, and if σe−a > 1,
then

ρ∗(k) = (σe−a − 1)
ak

k!

∑
i≥1

ik

σi
, k ≥ 0 .

This can be seen by solving the recurrence relation by the method of gener-
ating functions, for example see [4].
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