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Abstract

We prove that a Moran model converges in probability to Eigen’s qua-
sispecies model in the infinite population limit. We show further that
the invariant probability measure of the Moran model converges to the
unique stationary solution of Eigen’s quasispecies model.

1 Introduction

The concept of quasispecies was proposed by Manfred Eigen in order to
explain how a population of macromolecules behaves when subject to an
evolutionary process with selection and mutation. In his celebrated paper [9],
Eigen models the evolution of a population of macromolecules via a system
of differential equations, which arises from the laws of chemical kinetics.
Selection is performed according to a fitness landscape, and mutations occur
in the course of reproductions, independently at each locus with rate q. On
the sharp peak landscape —all but one sequence, the master sequence, have
the same fitness and the master sequence has higher fitness than the rest—
Eigen discovered that an error threshold phenomenon takes place: there
exists a critical mutation rate q∗ such that if q > q∗ then at equilibrium
the population is totally random, while if q < q∗ then at equilibrium the
population forms a quasispecies, i.e., it contains a positive fraction of the
master sequence along with a cloud of mutants that closely resemble the
master sequence. The concepts of error threshold and quasispecies might
not only be relevant in molecular genetics, but also in several other areas of
biology, namely population genetics or virology [8]. Nevertheless, in Eigen’s
model the dynamics of the concentrations of the different genotypes is driven
by a system of differential equations, which is a major drawback for the
viability of the model in settings more complex than the molecular level [22].

1



A stochastic version of Eigen’s quasispecies model, for a finite population,
would be much more suitable to expand the quasispecies theory to other
areas [10, 19, 22].

The issue of designing a finite population version of the quasispecies model
has been tackled by several authors. Different approaches have been consid-
ered in the literature: Alves and Fontanari [1] propose a finite population
model and they study the dependence of the error threshold on the popu-
lation size, a similar approach is taken by McCaskill [14], Park, Muñoz and
Deem [17], and Saakian, Deem and Hu [18], who all suggest different kinds of
finite population models. Nowak and Schuster [16] derive the error threshold
for finite populations using a birth and death chain. More recently, Cerf [3, 4],
shows that the error threshold and quasispecies concepts arise for both the
Moran model and the Wright–Fisher model in the appropriate asymptotic
regimes. Some other authors propose stochastic models that converge to
Eigen’s model in the infinite population limit, this is the approach taken by
Demetrius, Schuster and Sigmund [6], who use branching processes, Dixit,
Srivastava and Vishnoi [7] or Musso [15].

Showing convergence of a finite population model to Eigen’s model is in gen-
eral a delicate matter; to our knowledge, all the works that have been done in
this direction prove that some stochastic process converges to Eigen’s model
in expectation. As pointed out in [6], convergence in expectation can be
misleading sometimes, mainly due to the fact that variation might increase
as expectation converges, leading to a poor understanding of the asymptotic
behaviour of the stochastic process. In the current work we consider the
Moran model studied by Cerf [3] driving the evolution of a finite population
subject to selection and mutation effects. This Moran model is shown to
converge to Eigen’s quasispecies model in the infinite population limit, in-
dependently of the fitness landscape: on any finite time interval, we prove
convergence in probability for the supremum norm. The interest of our re-
sult not only lies on the type of convergence, but also on the choice of the
model: the Moran model is possibly one of the simplest models for which
such a result can be expected. The result is proven by means of a theorem
due to Kurtz [13], which gives sufficient conditions for the convergence of
a sequence of Markov processes to a deterministic trajectory, characterised
by a system of differential equations. In Eigen’s system of differential equa-
tions, the error threshold and quasispecies phenomena arise by studying the
equilibrium solutions. The Moran model being a Markov chain, in analogy
with the equilibrium solutions of the differential system, we study its in-
variant probability measure. We show that, in the infinite population limit,
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this measure concentrates around the unique stationary solution of Eigen’s
system of differential equations.

The article is organised as follows: first we briefly introduce Eigen’s quasis-
pecies model and the Moran model. We state the main results in section 3. In
section 4 we adapt Kurtz’s theorem, which originally deals with continuous
state space Markov chains, to the discrete state space setting. In section 5,
we apply Kurtz’s theorem in order to prove the convergence of the Moran
model to Eigen’s model. Finally, in section 6, we prove the convergence of the
invariant probability measure of the Moran model to the unique stationary
solution of Eigen’s system of differential equations.

2 The Eigen and Moran models

We present here Eigen’s quasispecies model and a discrete Moran model.
Consider a set of N different genotypes, labelled from 1 to N . Both Eigen’s
model and the Moran model describe the evolution of a population of in-
dividuals having genotypes 1, . . . , N . In both models the evolution of the
population is driven by two main forces: selection and mutation. The se-
lection and mutation mechanisms depend only on the genotypes, and are
common to both models. Selection is performed with a fitness landscape
(fi)1≤i≤N , fi being the reproduction rate of an individual having genotype i.
The mutation scheme is encoded in a mutation matrix (Qij)1≤i,j≤N , Qij being
the probability that an individual having genotype i mutates into an indi-
vidual having genotype j. The mutation matrix is assumed to be stochastic,
i.e., its entries are non–negative and the rows add up to 1. Eigen’s model is
a system of differential equations, while the Moran model is a Markov chain.
In order to ensure existence and uniqueness of the stationary solutions of
Eigen’s model, as well as of the invariant probability measure of the Moran
model, we will further assume that the matrix (W (i, j))1≤i,j≤N defined by
W (i, j) = fiQij is irreducible.

Eigen’s model. Eigen originally formulated the quasispecies model to ex-
plain the evolution of a population of macromolecules. The evolution of the
concentration of the different genotypes is driven by a system of differential
equations, obtained from the theory of chemical kinetics. Let us denote by
SN the unit simplex, i.e.,

SN = {x ∈ RN : xi ≥ 0, 1 ≤ i ≤ N and x1 + · · ·+ xN = 1 } .
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An element x ∈ SN represents a population in which the concentration of
the individuals having the i–th genotype is xi, for 1 ≤ i ≤ N . Let us denote
by x(t) the population at time t ≥ 0. Eigen’s model describes the dynamics
of x(t) thorough the following system of differential equations:

(∗) x′j(t) =
N∑
i=1

xi(t)fiQij − xj(t)
N∑
i=1

xi(t)fi , 1 ≤ j ≤ N .

The first term in the differential equation accounts for the production of indi-
viduals having genotype j, while the second term accounts for the destruction
of individuals having genotype j, and helps to keep the total concentration
constant.

Theorem 2.1. Under the hypothesis that the matrix W is irreducible, the
system (∗) has a unique stationnary solution ρ∗. Moreover, for every x0 ∈
SN , the solution x(t) of (∗) with initial condition x(0) = x0 converges to ρ∗
when t goes to infinity.

The proof of this theorem can be found in several different articles [2, 11,
12, 21], it relies on the Perron–Frobenius theorem for positive irreducible
matrices. In fact, the stationary solution ρ∗ is nothing but the Perron–
Frobenius eigenvector of the matrix W . The Perron–Frobenius eigenvalue
φ of the matrix W corresponds to the mean fitness of the population at
equilibrium:

φ =
N∑
i=1

ρ∗i fi .

A recent review on Eigen’s quasispecies model can be found in [20].

The Moran model. Moran models aim at describing the evolution of a
finite population. The dynamics of the population is stochastic, the evolution
is described by a Markov chain. Loosely speaking, the Moran model evolves
as follows: at each step of time, an individual is selected from the current
population according to its fitness, this individual then produces an offspring,
which is subject to mutations. Finally, an individual chosen uniformly at
random from the population is replaced by the offspring. The state space of
the Moran process will be the set PmN of the ordered partitions of the integer
m in at most N parts:

PmN = { z ∈ NN : z1 + · · ·+ zN = m } .

An element z ∈ PmN represents a population in which zi individuals have the
genotype i, for 1 ≤ i ≤ N . The only allowed changes at each time step
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consist in replacing an individual from the current population by a new one.
If we denote by (ei)1≤i≤N the canonical basis of RN , the only allowed changes
in a population are of the form

z −→ z − eh + ej 1 ≤ h, j ≤ N .

Let λ be a constant such that λ ≥ max{ fi : 1 ≤ i ≤ N }. The Moran
process is the Markov chain (Zn)n≥0 having state space PmN and transition
matrix p given by: for all z ∈ Pm`+1 and h, j ∈ { 1, . . . , N } such that h 6= j,

p(z, z − eh + ej) =
zh
m
× 1

λm

N∑
i=1

zifiQij .

The other non–diagonal coefficients of the transition matrix are null, the
diagonal coefficients are arranged so that the matrix is stochastic, i.e., the
entries are non–negative and the rows add up to 1. Under the hypothesis
that the matrix W is irreducible, the Moran process is an ergodic Markov
chain, and has a unique invariant probability measure µ.

3 Main results

Our aim is to show that Eigen’s quasispecies model arises as the infinite
population limit of the Moran model. More precisely, we will prove the
following result:

Theorem 3.1. Let (Zn)n≥0 be the Moran process described above. Suppose
that we have the convergence of the initial conditions towards x0 ∈ SN :

lim
m→∞

1

m
Z0 = x0 .

Then, for every δ, T > 0, we have

lim
m→∞

P

(
sup

0≤t≤T

∣∣∣∣ 1mZbλmtc − x(t)
∣∣∣∣ > δ

)
= 0 ,

where (x(t))t≥0 is the solution of (∗) with initial condition x(0) = x0.

This result is a consequence of theorem 4.7 in [13]. In order to prove the
result, we proceed in two steps. In section 4, we state theorem 4.7 in [13],
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and in section 5, we show that all the hypotheses needed to apply the theorem
are fulfilled in our particular setting. We remark that a similar result has
been proven in [5], for a continuous–time model where mutations are not
coupled to the reproduction events.

We have denoted by µ the unique invariant probability measure of the Moran
process. Consider the image ν of the measure µ by the map z ∈ PmN 7→ z/m ∈
SN . We will show that the probability measure ν converges to the Dirac mass
at the unique stationary solution of Eigen’s system, ρ∗.

Theorem 3.2. When m goes to infinity, the measure ν converges weakly to
the Dirac mass at ρ∗, i.e., for every continuous mapping g : SN −→ R,

lim
m→∞

∫
PmN

g
( z
m

)
µ(dz) = lim

m→∞

∫
SN
g(x)ν(dx) = g(ρ∗) .

This theorem will be proven in section 6. For 1 ≤ i ≤ N , let us define the
quantity ρi by:

ρi = lim
n→∞

E
(Zn(i)

m

)
.

Since the Markov chain (Zn)n≥0 is ergodic, the limits are well defined. The
following corollary is an immediate consequence of the previous theorem.

Corollary 3.3. For every i ∈ { 1, . . . , N }, we have, limm→∞ ρi = ρ∗i .

4 Convergence of a family of Markov chains

Let d ≥ 1 and let E be a subset of Rd. Let
(
(Xm

n )n≥0,m ≥ 1
)
be a sequence

of discrete time Markov chains with state spaces Em ⊂ E and transition
matrices (pm(x, y))x,y∈Em . Let F : Rd → Rd and consider the system of
differential equations

x′i(t) = Fi(x(t)) , 1 ≤ i ≤ N .

Theorem 4.7 in [13] gives a series of sufficient conditions under which the
sequence of Markov chains (Xm)m≥1 converges to a solution of the above
system of differential equations. The original statement of theorem 4.7 in [13]
is written for the more general setting of continuous state space Markov
chains. We modify just the notation in [13] in order to state the result in a
way which is more suited to our particular setting. Theorem 4.7 in [13] can
be applied if the following set of conditions is satisfied. There exist sequences
of positive numbers (αm)m≥1 and (εm)m≥1 such that
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1. lim
m→∞

αm =∞ and lim
m→∞

εm = 0.

2. sup
m≥1

sup
x∈Em

αm
∑
y∈Em

|y − x|pm(x, y) <∞.

3. lim
m→∞

sup
x∈Em

αm
∑

y∈Em:|y−x|>εm

|y − x|pm(x, y) = 0.

Define, for m ≥ 1, Fm(x) = αm
∑
y∈Em

(y − x)pm(x, y).

4. lim
m→∞

sup
x∈Em

|Fm(x)− F (x)| = 0.

5. There exists a constant M such that

∀x, y ∈ E , |F (x)− F (y)| ≤ M |x− y| .

Theorem 4.1 (Kurtz). Suppose that conditions 1–5 are satisfied. Suppose
further that we have the convergence of the initial conditions

lim
m→∞

Xm
0 = x0 .

Then, for every δ, T > 0, we have

lim
m→∞

P

(
sup

0≤t≤T

∣∣Xm
bαmtc − x(t)

∣∣ > δ

)
= 0 .

5 Proof of theorem 3.1

Let (Zn)n≥0 be the Moran process defined in section 2. Our aim is to apply
theorem 4.1 to the sequence of Markov chains

(
(Zn/m)n≥0,m ≥ 1

)
. We

only need to find the appropriate sequences (αm)m≥1 and (εm)m≥1 and verify
that conditions 1–5 are satisfied in our setting. For m ≥ 1, let αm = λm and
εm = 2/m. The sequences (αm)m≥1 and (εm)m≥1 obviously verify condition 1.
As for condition 2, we have, for z ∈ PmN∑

z′∈PmN

∣∣∣ z
m
− z′

m

∣∣∣p(z, z′) =
N∑

i,j=1

∣∣∣− ei
m

+
ej
m

∣∣∣p(z, z − ei + ej) ≤
√
2

m
.

Thus,

sup
m≥1

sup
z∈PmN

αm
∑
z′∈PmN

∣∣∣ z′
m
− z

m

∣∣∣p(z, z′) ≤ λ
√
2 < ∞ ,
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as required for condition 2. Since p(z, z′) > 0 if and only if |z− z′| ≤
√
2, for

all m ≥ 1 and z ∈ PmN , we have∑
z′∈PmN :|z′−z|>mεm

∣∣∣ z′
m
− z

m

∣∣∣p(z, z′) = 0 ,

and condition 3 is also satisfied. Let F : RN → RN be the function defined
by

∀i ∈ { 1, . . . , N } , ∀x ∈ RN , Fi(x) =
N∑
j=1

fjQjixj − xi
N∑
j=1

fjxj .

Since all the partial derivatives of F are bounded on the simplex SN , F is a
Lipschitz function on SN , i.e., condition 5 holds. Finally, let us compute, for
m ≥ 1 and x ∈ PmN /m, the value of Fm(x). By definition,

Fm(x) = λm
∑
z∈PmN

( z
m
−x
)
p(mx, z) = λ

N∑
i,j=1

(−ei+ ej)p(mx,mx− ei+ ej) .

Thus, for i ∈ { 1, . . . , N } we have

Fm
i (x) = λ

∑
k:k 6=i

p(mx,mx− ek + ei)− λ
∑
k:k 6=i

p(mx,mx− ei + ek)

=
∑
k:k 6=i

xk

N∑
j=1

fjQjixj −
∑
k:k 6=i

xi

N∑
j=1

fjQjkxj .

Since x1 + · · ·+ xN = 1 and for all i ∈ { 1, . . . , N }, Qi1 + · · ·+QiN = 1,

Fm
i (x) = (1−xi)

N∑
j=1

fjQjixj−xi
N∑
j=1

fj(1−Qji)xj =
N∑
j=1

fjQjixj−xi
N∑
j=1

fjxj.

Thus, the function Fm coincides with the function F on the set PmN /m,
which readily implies condition 4. Since all five conditions are satisfied, we
can apply theorem 4.1 to the sequence of Markov chains

(
(Zn/m)n≥0,m ≥ 1

)
and we obtain the desired result.

6 Proof of theorem 3.2

We proceed now to the proof of theorem 3.2. Throughout this whole section,
we work with the 1–norm on RN , which we denote by | · |1. An open ball of
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radius r (with respect to the distance derived from the 1–norm) and center
x will be represented by B(x, r). The proof will rely on the theorem 3.1 as
well as on the properties of the system of differential equations (∗). Let us
define the mapping b : SN −→ SN by

∀x ∈ SN ∀ j ∈ { 1, . . . , N } bj(x) =
N∑
i=1

xifiQij − xj
N∑
i=1

xifi .

Lemma 6.1. The mapping b : SN −→ SN is a Lipschitz function with
Lipschitz constant L ≤ 3λN , i.e.,

∀x, y ∈ SN |b(x)− b(y)|1 ≤ 3λN |x− y|1 .

Proof. Let x, y ∈ SN and j ∈ { 1, . . . , N }. We have,

|bj(x)− bj(y)| ≤
N∑
i=1

|xi − yi|fiQij +

∣∣∣∣xj N∑
i=1

xifi − yj
N∑
i=1

yifi

∣∣∣∣
≤ λ

N∑
i=1

|xi − yi|+ xj

N∑
i=1

|xi − yi|fi + |xj − yj|
N∑
i=1

yifi

≤ λ
N∑
i=1

|xi − yi|+ λ
N∑
i=1

|xi − yi|+ λ
N∑
i=1

|xi − yi| ≤ 3λ|x− y|1 .

We conclude that for all x, y ∈ SN ,

|b(x)− b(y)|1 =
N∑
j=1

|bj(x)− bj(y)| ≤ 3λN |x− y|1 ,

as desired.

The system of differential equations (∗) can now be expressed by means of
the map b as x′(t) = b(x(t)).

Proposition 6.2. For every δ > 0, there exists T (δ) > 0 such that for every
x0 ∈ SN

∀ t ≥ T (δ) |x(t)− ρ∗|1 < δ .

Where ρ∗ is the unique stationary solution of (∗), as given by theorem 2.1,
and (x(t))t≥0 is the solution of (∗) with initial condition x(0) = x0.
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Proof. Let δ > 0. By theorem 2.1, there exists 0 < δ′ < δ such that for every
initial condition x0 ∈ B(ρ∗, δ′), the solution (x(t))t≥0 of (∗) satisfies

∀ t ≥ 0 |x(t)− ρ∗|1 < δ .

Define, for x0 ∈ SN , the time T (x0) by:

T (x0) = inf
{
t ≥ 0 : x(t) ∈ B(ρ∗, δ′), x(0) = x0

}
.

Note that in view of theorem 2.1, T (x0) < +∞ for every x0 ∈ SN . For
x0, y0 ∈ SN , let (x(t))t≥0 and (y(t))t≥0 be the solutions of (∗) with initial
conditions x(0) = x0 and y(0) = y0. Since b : SN −→ SN is a Lipschitz
function with Lipschitz constant smaller than 3λN , we have, for every t ≥ 0,

|x(t)− y(t)|1 ≤ |x0 − y0|1 +
∫ t

0

∣∣b(x(s))− b(y(s))∣∣
1
ds

≤ |x0 − y0|1 + 3λN

∫ t

0

|x(s)− y(s)|1 ds .

Thus, by Gronwall’s lemma,

|x(t)− y(t)|1 ≤ |x0 − y0|1e3λNt .

We conclude from this inequality that T (x0) is an upper semi–continuous
function of x0 ∈ SN . Since SN is compact, T (x0) attains its maximum
T < +∞ on SN , from where the statement of the corollary follows.

We proceed now to the proof of theorem 3.2. Consider a continuous mapping
g : SN −→ R, and let us show that

lim
m→∞

∫
Pm`+1

g
( z
m

)
µ(dz) = g(ρ∗) .

By the ergodic theorem for Markov chains, the firs integral can be expressed
as ∫

Pm`+1

g
( z
m

)
µ(dz) = lim

T→∞
E

(
1

T

∫ T

0

g
(Zbλmtc

m

)
dt

)
.

Let ε > 0 and choose δ > 0 such that

|x− ρ∗|1 < δ =⇒ |g(x)− g(ρ∗)|1 < ε .
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As we have shown in the previous proposition, there exists T (δ/3) > 0 such
that for every x0 ∈ SN , the solution (x(t))t≥0 of (∗) with initial condition
x(0) = x0 satisfies

∀ t ≥ T (δ/3) |x(t)− ρ∗|1 < δ/3 .

Let T1 > T (δ/3). By applying the Markov property on the times T1, 2T1, . . . ,
we get, for all T > 0.

E

(∣∣∣∣ ∫ T

0

g
(Zbλmtc

m

)
dt−Tg(ρ∗)

∣∣∣∣) ≤ bT/T1c∑
k=0

∫ (k+1)T1

kT1

∣∣∣∣g(Zbλmtm

)
−g(ρ∗)

∣∣∣∣
1

dt

≤
(
bT/T1c+ 1

)
sup
z∈Pm`+1

E

(∫ T1

0

∣∣∣∣g(Zbλmtcm

)
− g(ρ∗)

∣∣∣∣
1

dt

∣∣∣∣Z0 = z

)
.

Let z ∈ PmN and let us denote by Pz, Ez the probability and the expectation
for the process (Zn)n≥0 with initial point z. Let z ∈ PmN , and let (x(t))t≥0 be
the solution of (∗) with initial condition x(0) = z/m. We have,

Ez

(∫ T1

0

∣∣∣∣g(Zbλmtcm

)
− g(ρ∗)

∣∣∣∣
1

dt

)
= Ez

(∫ T1

0

∣∣∣∣g(Zbλmtcm

)
− g(ρ∗)

∣∣∣∣
1

dt 1
sup0≤t≤T1

∣∣∣∣Zbλmtcm
−x(t)

∣∣∣∣
1

>δ/3

)
+ Ez

(∫ T1

0

∣∣∣∣g(Zbλmtcm

)
− g(ρ∗)

∣∣∣∣ dt 1sup0≤t≤T1 ∣∣∣∣Zbλmtcm
−x(t)

∣∣∣∣
1

≤δ/3

)
≤ 2T1 sup

x∈SN
|g(x)|Pz

(
sup

0≤t≤T1

∣∣∣∣Zbλmtcm
− x(t)

∣∣∣∣
1

> δ/3

)
+ 2T (δ/3) sup

x∈SN
|g(x)|+ (T1 − T (δ/3))ε .

Take T1 large enough so that 2T (δ/3) supx∈SN |g(x)|/T1 < ε. If the proba-
bility in the above sum converges to zero when m goes to infinity, uniformly
on z ∈ PmN , we conclude that, for m large enough

Ez

(
1

T1

∫ T1

0

∣∣∣∣g(Zbλmtcm

)
− g(ρ∗)

∣∣∣∣
1

dt

)
≤ 3ε .

Thus, it remains to prove the uniformity of the limit. According to the-
orem 3.1, for every ε, δ, T > 0 and x0 ∈ SN , there exist m(x0) ∈ N and
δ′(x0) > 0 such that for all m ≥ m(x0) and z ∈ PmN satisfying z/m ∈
B(x0, δ′(x0)),

Pz

(
sup

0≤t≤T

∣∣∣∣Zbλmtcm
− x(t)

∣∣∣∣
1

> δ

)
< ε ,
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where (x(t))t≥0 is the solution of (∗) with initial condition x(0) = x0. The
collections of balls {B(x0, δ′(x0)), x0 ∈ SN } being an open cover of the
compact set SN , we can extract a finite subcover, and take the maximum of
the m(x0) on this subcover, which proves the desired uniformity result.
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