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On a generalization of one heap Nim game

We introduce and study a generalization of the two players Nim Game involving one heap. Starting from an heap of objects, two players alternatively remove a number of items with the condition that belongs to a pre-defined set of moves . To win, a player must remove at least the last object. The aim of the paper is to study the full strategy of these games. Such a strategy is given whenever the set of moves has cardinality 2 or is a range. The study of some three moves cases illustrates the surprinsing complexity of the problem.

INTRODUCTION

Nim games are mathematical games of strategy involving two players. See [START_REF] Ferguson | A course in game theory[END_REF] for a general introduction to game theory. The most classical Nim game starts with a heap of items and players take turns to play. During his turn, a player must remove 1, 2 or 3 items of the heap. The game ends when the heap is empty. The player who has removed the last item of the heap wins the game. Many variants of this version exist: more than one heap, declaration of the winner (the winner can be the one who does not remove the last item), ... In the literature we can find many research papers dealing generalizations of Nim games involving many heaps [START_REF] Bouton | Nim, a game with a complete mathematical theory[END_REF][START_REF] Michael | Nim restrictions[END_REF][START_REF] Mani |  play in candy nim[END_REF]]. However, it seems that the generalization of the one heap classical Nim game obtained by replacing the number of items that can be removed by an arbitrary set of integers has not been studied much. It is therefore the generalization we are interested in.

We denote by ℤ the set of all integers, by ℕ the set of non-negative integers and by ℕ + the set of positive integers.

GENERALIZED ONE HEAP NIM GAME

We reconsider the classical one heap Nim game. At the beginning of the game, the number of items in the heap is known, let us denote it by . During its turn, a player removes 1, 2 or 3 items and so the size of the heap is strictly decreasing during the game. Denoted by the number of items on the heap after the turn we obtain the relations

0 = together with = -1 - for ⩾ 1,
where, for each ⩾ 1, belongs to the set = {1, 2, 3}. The integer is then the number of items removed from the heap during the th turn. The game ends at turn where satisfies = 0 and -1 ≠ 0. For the sequel, we assume ≠ 0 and so is well-defined. Note that ( ) is strictly decreasing because, during its turn, a player must remove at least one item of the heap, i.e., 0 ∉ .

The nature of items of the heap is irrelevant, only the initial size of the heap is important. If we allow the integer and the subset to have different values we obtain many generalizations of the classical Nim game. More precisely:

Date: October 2022. Definition 1.1. We define a set of moves to be a non empty subset of ℕ + .

The Nim games we are interested in this paper are: Definition 1.2. Let be in ℕ + and be a set of moves. The game Nim( , ) is a two players game starting with items. Players take turn to play and remove ∈ items on the heap, constructing a sequence ( ) ⩾0 of integers: 0 = and = -1for ⩾ 1.

If is non-positive and -1 > 0, the current player wins, otherwise the game continues with a new turn.

In our generalizarion, to win, a player has to take at least the last item. Note that the winning condition is not exactly the same as for the classical Nim game for wich a player win removing the last item. This modification is necessary whenever 1 is not in . Indeed for any size 0 < < min of the heap there exists no move for the next player with classical Nim rules.

Winning position. For ⩾ 1, the -next player, denoted , is the player who has to play the th turn and the -previous player, denoted , is the other player. We use notations of Definition 1.2. We say that is a winning position for if whatever the sequence of moves +1 , +3 , ... of = +1 , it exists a sequence of moves +2 , +4 , ... such that wins the game. Similarly, we say that is a winning position for if there exists a move +1 such that +1 = -+1 is a winning position for +1 = . We remark that during a given turn, previous moves are not significant to determine if a position is winning or not for a given player: index of the turn is then insignificant in this context. We then say that a position is winning for the previous player, denoted , or the next player, denoted , without information on the turn. 

WINNING AND STRATEGIC WORDS

The aim of the paper is to determine for which player a given position is winning or not during a Nim game with set of moves . This corresponds to colorize integers in ℤ with (resp. ) accordingly if the given integer is a winning position for the previous player (resp. the next player). Definition 2.1. Let be a set of moves. We define a map ∶ ℤ → { , } by induction by ( ) = for all ⩽ 0 and for > 0 by

( ) = if there exists ∈ such that ( -) = , if for all ∈
we have ( -) = .

The inifinite word

= (1) (2) (3) … ∈ { , } ℕ .
is the winning word of .

The following proposition is a direct consequence of the construction of and the caracterization of a winning position. 

= NNNPNNNPNNNP … = (NNNP) * ,
where * denotes the inifite repetition of the word .

For a given set of moves , the knowledge of allows a player to determine if a position is a winning position or not but he has no information on which moves can be played to win. Definition 2.4. Let be a set of moves. We define a map ∶ ℤ → ( ) putting ( ) = ∅ for all ⩽ 0 and

( ) = { ∈ such that ( -) = ∅}, for > 0. The inifinite word = (1) (2) (3) … ∈ ( ) ℕ ,
is the strategic word of .

It is straigtforward to obtain the winning from the strategic word using the following operation.

Definition 2.5. For a given subset of we put

̂ = if = ∅, otherwise
We extend naturaly the notation to each ( )-word.

For example we have ( ) = ̂ ( ) and = ̂ .

Example 2.6. For the classical Nim's game with = {1, 2, 3}, we have = {1, 2, 3}{2, 3}{3}∅{1}{2}{3}∅ … Such a strategic word can be diagrammatically represented as in Figure 1.

= 1 2 3 ⋯ FIGURE 1.
Each column corresponds to an element of ( ) and lines are labelled by moves. A gray square indicates that the corresponding move appears in .

We note that is ultimately periodic, i.e., = * with

= 1 2 3 = 1 2 3
The associated winning word is then = ( ) * = ( ) * .

One can ask what happens whenever the possible moves have a non trivial common divisor.

Proposition 2.7. Let be a set of moves and the gcd of its elements. Denoting by ′ the set 1 ⋅ = { | ∈ }, for all ⩾ 0, we have

′ ( ) = 1 ⋅ ( ) and 
( ) = ⋅ ′ ⌈ ⌉ .
and so

′ ( ) = ( ) and ( ) = ′ ⌈ ⌉ .
Proof. We start proving ′ ( ) = 1 ⋅ ( ) for ∈ ℤ. By very definition of and ′ we have ( ) = ∅ and ′ ( ) = ∅ for all ⩽ 0. Hence equalities hold for ⩽ 0. Assume we have established ′ ( ) = 1 ⋅ ( ) for all < with > 0. We have

∈ ′ ( ) ⇔ ′ ( -) = ∅ ⇔ ( - ) = ∅ ⇔ ∈ ( ).
We have then established

′ ( ) = 1 ⋅ ( ) and 
( ) = ⋅ ′ ( ).
Since each move of is greater than , we have The sequel of the paper is devoted to the study of the word whenever elements of are co-primes. Proposition 2.9. For every finite set of moves , the word (and so ) is ultimately periodic.

Proof. Let be the maximal element of . The value of ( ) is then entirely determined from the vector ( -), … , ( -1) ∈ ( ) .

As there are at most 2 card( ) such vectors, the result holds.

As the first values ot the strategic word are determined by the ( ) with ⩽ 0 (which are ∅) we can easily describe them. Definition 2.10. For a finite set of moves = { 1 < … < } we denote by the word of length 1 + defined by

= 1 ( ⧵ { 1 }) 2 -1 ( ⧵ { 1 , 2 }) 3 -2 … { } --1 ∅ 1 .
We will prove in Lemma 2.12 that the word is a prefix of . Before we start with the following definition that will be usefull in the sequel. Definition 2.11. Let be a finite set of moves and , be two finite ( )-words of length and respectively. We say that explains , denoted by ⊢ if ⩾ max( ) and if writing

= 1 … +1 … + , we have = { ∈ | -= ∅} for all ∈ [ + 1, + ].
Lemma 2.12. For every set of moves = { 1 < … < } we have ∅ ⊢ and so is a prefix of .

Proof. By very definition we have ∅ ⊢ 1 . The next letter after ∅ 1 can not contains 1 as the move 1 go to the set wich is not empty. We obtain then ∅ 1 ⊢ ( ⧵ { 1 }) 2 -1 . Inductively we obtain that the word

1 ( ⧵ { 1 }) 2 -1 ( ⧵ { 1 , 2 }) 3 -2 … { } --1
of length is a prefix of . In particular starts with non-empty letters. Hence the 1 next letters are ∅ and the result follows. as stated by Lemma 2.12.

CASE OF TWO MOVES

In this section, we consider = { , } with < and gcd( , ) = 1. We will also define and form the euclidean division of by : = + with 0 ⩽ < . Proof. By Lemma 2.12 we know that begins with = { } -∅ . As the word { } -∅ explains { } -, we obtain that We assume now that is at least 2. We denote by and the quotient and reminder of the euclidean division of by 2. 

= { } -∅ { } -is a prefix of . As illustrated on FIGURE 2, we have ⊢ with = 2 -{ } -∅ { } -. From = { } -∅ … = …,
- { } -∅ { } - ⊢ 2 - { } -∅ { } -
= { } -∅ { } ∅ -1 { } of length 2 -and period = { } -∅ { } - ∅ { } ∅ -1 of length + .
In particular, we obtain = -(( ) ) * whose period length is + .

Proof. Drawings in this proof use convention of FIGURE 2. By Lemma 2.12 the strategic word begins with = { } -∅ . The following diagram

{ } -∅ ⊢ { } ∅ { } ... { } ∅ { } { } -∅ { } - ∅ ({ })
gives ⊢ ({ }) with

( ) = ∅ -1 { } and = { } -∅ { } - ∅ .
Then, for = { } or = , we have ( ) ⊢ ( ) :

∅ ∅ ... ∅ { } -∅ { } - ∅ ⊢ ∅ ... ∅ { } -∅ { } - ∅ ( ) ( )
At this point we have 

= { } -∅ { } ∅ -1 { } of length 2 --and period = ∅ { } -{ } ∅ ∅ -1 of length + .
In particular we obtain = --+ ( ) * whose period length is + .

Proof. Drawings in this proof use convention of FIGURE 2. By Lemma 2.12 the strategic word begins with = { } -∅ . The following diagram

{ } -∅ ⊢ { } ∅ { } ... { } ∅ { } - { } ∅ ({ })
gives ⊢ ({ }) where

( ) = ∅ -1 and = ∅ { } -{ } ∅
Then, for = { } or = , we have ( ) ⊢ ( ) :

∅ ∅ ... ∅ { } - { } ∅ ⊢ ∅ ... ∅ { } - { } ∅ ( ) ( )
At this point we have We failed to obtain a complete description of the winning word on generic games with three moves or more. Here we study some families of games which illustrate the complexity of the generic problem. Complete proofs are not given since they are very similar with the ones of the previous section. 4.1. Three moves. Experiments suggest that three moves games are richer than the two moves ones. Here we fix = { , , } with < < . We will study four families of moves:

 1 ∶ 2 ⩾ , + ⩾ ,  2 ∶ = + 1, = 2 + 2,  3 ∶ = 2 + 1, = 4 + 1,  4 ∶ = 2 + 1, = 3 + 1.
Note that, contrary to  1 , sets of moves of the three last families depend only of the move . Proof idea. The startegic word depends on the sign of -2 .

For -2 ⩾ 0 we have

= + + * with + = { , } -2 and + = { , } + -{ } -∅ { } -{ , } 2 -{ } -2 .
For -2 ⩽ 0 we have

= - - * with -= - and -= 2 -{ , } -{ } -∅ { } -{ , } -.
Note that in case = 2 we have + = -and + = -. Also observe that the length of ± and ± areand + respectively. We observe that winning words associated to  1 moves follow the same pattern and have always period + . However the corresponding startegic word depends on the sign of -2 . Observe that the period of the winning word of a  2 set of moves is + which is different from the  1 case. One can ask if there exists a set of moves for which the period of the winning word is + . Proposition 4.5. For ∈  3 , the winning word is

= -( ) *
and has period length 3 + 1 = + .

Proof idea. The strategic word = * is given by

= { , } +1 { } 2 ∅ { } ∅{ } -1 { , }, =∅ { , } -1 ∅{ } -1 .
Example 4.6. For = {3, 7, 13} ∈  3 we have: Results obtained for set of moves in the first three families could suggest that the period of winning word of three moves is always a sum of two moves or a linear combination of moves. Actually it is more complicated: Proposition 4.7. For ∈  4 , the winning word is

= 2 +1 -1 ∏ =0 +1 2 +1 --1 *
and has period length 4 2 + 3 .

Proof idea. The strategic word = * is given by

= { , } +1 , ={ } ∅ -1 ∏ =0 { } { } -∅ +1 { } --1 { , }{ } { } -{ } +1 ∅ --1 .
Example 4.8. For = {3, 7, 10} ∈  4 we have: Note that in case = we have + = -and + = -. Also observe that the lenght of ± is 2 + . 

CONCLUSION

We have obtained a full description of the winning word of generalized Nim games in the case of two moves or whenever the set of moves is a range. The additive caracterization of the winning word and these results suggest a similarity with the Frobenius problem on numerical semigroups [START_REF] Ramírez Alfonsín | The Diophantine Frobenius problem[END_REF][START_REF] Rosales | Numerical semigroups[END_REF] A program computing diagram of strategic period and preperiod of generalized Nim games is available online at https://jfromentin.github.io/nim/.
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 13 Let us consider the classical Nim game with set of moves = {1, 2, 3}. Positions ⩽ 0 are winning for the previous player (the player who has just played). Positions 1, 2, 3 are winning for the next player (the player who has to play), indeed he can play the move 3 as 1 -3 = -2, 2 -3 = -1 and 3 -3 = 0 are winning positions for the previous player. Position 4 is a winning position for the previous player as 4 -1 = 3, 4 -2 = 2 and 4 -3 = 1 are all wining positions for the next player.
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 3 for all ⩾ 0. Proposition follows.Example 2.8. Let= {4, 6} be a set of moves. Using notation of Proposition 2.7 we have = 2, ′ = {2, 3} and we obtain:Remark that the word ′ is obtained from by grouping consecutively letters by pairs.

Proposition 3 . 1 .

 31 For = 1, we have = * with preperiod = -and period = 2 -{ } -∅ { } - of lenghtand + respectively. In particular we have = * .

Example 3 . 2 .

 32 Illustration of Proposition 3.1 with = {4, 7}.

2

 2 

FIGURE 2 .Proposition 3 . 3 .

 233 FIGURE 2. A block is explained by its outgoing arrows. A move (resp. ) is depicted by a black (resp. gray) arrow. Blocks on the right of the ⊢ symbol have exactly one outgoing black arrow and one gray arrow. A block on the right of ⊢ contains (resp. ) iff the outgoing black (resp. gray) arrow ends to an empty block. A dotted frame identifies a group of blocks.
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 34 the last letters of and are different, the pre-period of cannot be a strict prefix of . Illustration of Proposition 3.3 with = {4, 19}.
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 35 For = 1 we have = * with preperiod

Proposition 4 . 1 .

 41 For ∈  1 the winning word is = ( ) * .

Example 4 . 2 .

 42 Illustration of the proof idea of Proposition 4.1. Case -2 ⩾ 0: for = {5, 7, 11} we obtain

  length 3 + 3 = + . Proof idea. The strategic word = * is given by = { , }{ } +1 ∅ { }, = { , } -1 { }∅{ } -1 { , }{ }∅ { , }.
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 44 For = {3, 4, 8} ∈  2 we have:
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 33342 Figure3summarizes the different period of the winnig word obtained in studied three moves games.
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 410 Illustration of Proposition 4.9 with =

  Proposition 2.2. Let be a set of moves. An integer ∈ ℤ is a winning position for the previous player (resp. the next player) if and only if ( ) = (resp. ( ) = ).

	Example 2.3. For the classical Nim's games with	= {1, 2, 3}, we have