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Abstract 18 

Effects of climate change can be handled by means of mitigation and adaptation. In the 19 

biological sciences, adaptations are solutions which evolved when organisms needed to 20 

match an ecological challenge. Based on Adaptive Dynamics theory, a definition is proposed 21 

of adapted states and adaptational lags applicable during periods with environmental change 22 

of any speed. Adaptation can thus be studied when it emerges from complex eco-evolutionary 23 

processes or when targets for adaptation are not defined a priori. The approach is exemplified 24 

with a model for delayed germination in an annual plant. Plasticity and maternal effects are 25 

often presumed to be adaptive and added to the model to investigate lags in these modes of 26 

trait determination. Adaptational lags can change sign and to understand their dynamics, 27 

effects of trait space boundaries and characteristics of years with large numbers of recruits 28 

had to be considered. Adaptational lags can be crucial elements of adaptive control strategies 29 

for managed ecosystems. To demonstrate their practical relevance, examples from pest 30 

management show that evolutionary adaptation has been used to infer targets of control. 31 

Adaptational lags then serve as measures of the distance to the control target and become 32 

integral elements of strategies for adaptive pest population management.  33 

  34 
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Introduction 35 

 36 

Climate change generates massive challenges to our societies. Other species will show a 37 

range of responses to environmental change (Newman et al. 2011), and these can be to our 38 

own advantage or not. Initially, human policy to deal with climate change mostly focused on 39 

mitigating our interactions with the environment (Schipper 2006), by reducing the speed and 40 

magnitude of change or by dampening the effects of environmental changes. However, 41 

awareness has increased that human adaptation is necessary, merits attention and that it 42 

interacts with mitigation (Kane & Shogren 2000).  43 

In biology, adaptation is a term which predates the development of evolutionary biology 44 

(Amundson 1996). It is not equivalent to the presence of an evolutionary response. Walsh and 45 

Lynch (2018) for example, a reference work on selection and evolutionary responses, hardly 46 

use the term and equate "adaptive" to "beneficial". Fisher (1930) stated that adaptation 47 

concerns assessing the conformity of an organismal phenotype to an adapted phenotype 48 

determined from an imagined comparison of several potential environments and phenotypes. 49 

In this view, adaptation is not merely a description of an actual evolutionary process, but an 50 

investigation of the conformity of phenotypes with predictions obtained from considering a 51 

wider range of environments and phenotypes. Adaptation is believed to be important for the 52 

survival of populations, but more recent modelling also found the opposite: evolutionary 53 

suicide can occur when populations adapt (Gyllenberg & Parvinen 2001). Above all, 54 

assuming adaptation helps formulating and testing hypotheses. When we assume perfect 55 

adaptation to arrive at sharp predictions, this leads to hypotheses which are generally 56 

falsifiable.  57 
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In the context of human climate change responses, "adaptation" has become reframed over 58 

the years from the eco-evolutionary meaning applicable to any organism into a policy 59 

response (Schipper 2006); from describing a dynamics of (autonomously) evolving systems 60 

into a concept more in line with human adaptive systems control towards a given target 61 

(Tyukin 2011). This trend complicates the integration of evolutionary adaptation by 62 

biological systems into adaptation policies. A revised or re-clarified notion of evolutionary 63 

adaptation to climate change could address this. 64 

The consensus is that most organisms currently respond to climate change with phenotypic 65 

plasticity (Gienapp & Merilä 2018), i.e., developmental changes that are often believed to be 66 

adaptive in response to altered environmental conditions (Merilä & Hendry 2014). The 67 

alternative which is usually considered, evolution and adaptation by changes in genotype 68 

frequencies, requires the presence of heritable genetic variation for the involved traits. 69 

Therefore, most studies looking for ongoing adaptation in natural systems focused on 70 

demonstrating that phenotypic responses were due to changes in gene frequencies (Gienapp 71 

& Merilä 2018). However, evolutionary responses don't need to move systematically in the 72 

direction where we expect that adaptation would be fastest or even where phenotypic changes 73 

are adaptive (Leimar 2009, Teplitsky et al. 2014). On top of that, the target of adaptation can 74 

move over time. This has usually been modelled by making the target an explicit time-75 

dependent parameter (Lynch et al 1991), i.e., as if the changes in the target of adaptation are 76 

highly predictable or known. For situations where the targets of adaptation need to emerge 77 

from a study of eco-evolutionary processes across environments and phenotypes, it is unclear 78 

how to predict them precisely or how to capture their time patterns during climate change 79 

with a simple function.  80 

 81 
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Below, I propose a strategy to determine adaptations during climate change. Essential to the 82 

proposal is that most of the concepts applied were already developed in so-called Adaptive 83 

Dynamics approximations (Metz et al. 1996, Geritz et al. 1998) also known as evolutionary 84 

invasion analysis (Otto & Day 2007). A classical model for delayed germination in annual 85 

plants with a seed bank (Cohen 1966, Ellner 1997) is used as an example of an analysis of 86 

evolutionary adaptation and adaptational lags during environmental change. I then attempt to 87 

characterize the combination of evolutionary adaptation and adaptive control and give 88 

examples of managed ecosystems where predictions of evolutionary adaptation are relevant 89 

for their control and where adaptational lags are measures of the distance from the control 90 

target. 91 

 92 

A general approach to determine adaptations during environmental change 93 

 94 

Organisms adapt to a range or set of situations encountered, hence adaptation always 95 

accounts for environmental variability (Fisher 1930, Levins 1968). When adapted states are 96 

determined, it is often assumed that these variable environments don't show any lasting trends 97 

over time and occur with fixed probabilities. The time series of the variables describing them 98 

are then stationary (Tuljapurkar 1986, Metz et al. 1992, Coulson 2020). On the other hand, 99 

projections of environmental variables in periods of climate change involve systematically 100 

changing temperature and rainfall averages (Collins et al. 2013). We describe these 101 

environmental changes as time-dependent changes in the parameters of probability 102 

distributions of environmental variables (Figure 1A). These parameters determine how the 103 

mean and dispersion of environmental variables change over time. We usually assume that 104 

they change gradually within the same probability distribution family. The actual 105 
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environmental history observed will thus be a realization from a stochastic process with time-106 

dependent parameters (Fig. 1B). Each probability distribution per time point, say year, is 107 

specified by a set of parameter values and this distribution of environmental states represents 108 

a collection of situations to which organisms can adapt. For each given set of parameter 109 

values of the environment, we can therefore determine what the adaptative phenotypes are 110 

(Fig. 1C). The result for a period of environmental change is then a time series of adapted 111 

stated determined using a time series of parameters of the distributions of environmental 112 

variables (Fig. 1C). Adapted states can be determined using Adaptive Dynamics 113 

approximations (Metz et al. 1996, see also Abrams 2005, Methods Supplement), which 114 

assume separated ecological and evolutionary timescales and simple genetics in order to 115 

focus the analysis on the relationship between ecological environments and phenotypes 116 

(Dieckmann 1997). Adaptive Dynamics approximations have been used to generate new 117 

hypotheses, to predict evolutionary outcomes driven by ecological interactions (Dieckmann 118 

1997) and to develop management strategies, for example for the management of epidemies 119 

during climate change (Sabelis and Metz 2002). For evolving populations where genotypes 120 

are not necessarily at an adapted state all the time, we can determine how far each individual 121 

in the population is from a predicted adapted state at each given point in time (Fig. 1D). For 122 

example, for an individual with a scalar phenotypic trait x and an adapted phenotypic state at 123 

time t which is xt
*, the adaptational lag is xt

* - x.  124 

 125 

Adaptational lags in delayed germination 126 

 127 

Several aspects of the determination of adaptational lags can be illustrated using a well-128 

known model for the demography of an annual plant (Cohen 1966, Bulmer 1984). This model 129 
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tracks densities (number per unit of area) of individual seeds of a single genotype in a seed 130 

bank across years, each time censused right after seed production. With Nt the number of 131 

seeds at the end of the season in year t and assuming large population sizes such that 132 

demographic stochasticity can be ignored, the number of seeds one year later is 133 

 134 

𝑁𝑡+1 = (𝑝𝑓𝑡(𝑝𝑁𝑡) + (1 − 𝑝)𝑠)𝑁𝑡 (Eqn. 1) 135 

 136 

with p their probability of germination, s the survival probability in the seed bank across one 137 

year and ft the per capita number of seeds contributed to the seed bank by a germinated seed 138 

in year t. The number of seeds recruited is stochastic and density-dependent. It depends on 139 

the total number germinated pNt. Across successive years the population grows in a 140 

multiplicative manner. The population density 𝑁𝑡+𝜏 after an interval of  years is: 141 

 142 

𝑁𝑡+𝜏 = ∏ (𝑝𝑓𝑖(𝑝𝑁𝑖) + (1 − 𝑝)𝑠)𝑡+𝜏−1
𝑖=𝑡 𝑁𝑡 (Eqn. 2a) 143 

 144 

This is one of the simplest and best-known structured population models (during the growing 145 

season ungerminated seeds and plants are simultaneously present). It is the prime example 146 

used to demonstrate that adaptation is not always towards the fastest life history with the 147 

largest number of offspring (Stearns 2000).  148 

This model is easily modified to allow for the occurrence of many genotypes in a population. 149 

We can then use simple forward simulations to investigate how selection gradually changes 150 

population composition among genotypes with different phenotypic traits. A common idea is 151 

that adapted states emerge when genotype frequencies equilibrate, for example by fixation of 152 
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one genotype among several already present in a population. However, evolutionary invasion 153 

analysis (Adaptive Dynamics, Metz et al. 1996, Geritz et al. 1998, Methods Supplement) 154 

finds adapted states differently and also considers genotypes not yet present in a population. 155 

It values resistance to invasion and we therefore need to determine which genotypes can 156 

invade so-called resident populations (established populations, with stationary fluctuations or 157 

equilibria in their densities). More importantly, we must determine which resident population 158 

compositions (1) can evolve by means of a trait substitution sequence fuelled by mutations 159 

and (2) additionally have the property that once their state attained, they cannot be invaded by 160 

genotypes with similar germination phenotypes. Hence, they can persist in a longer-term 161 

evolutionary sense and are considered to be adapted to the ecological circumstances. In order 162 

to determine these states, invasion fitness (Metz et al. 1992) is used to assess the evolutionary 163 

stability (convergence stability and invasibility, see Methods Supplement) of resident 164 

population states. Here we assume that only a single resident phenotype affects the success of 165 

rare genotypes, and that the process characterising the resident state and the fluctuations in 166 

demographic parameters is stochastic, stationary and ergodic (Rand et al. 1994, Ferrière & 167 

Gatto 1995, Ripa & Dieckmann 2013) such that the precise starting point t becomes 168 

irrelevant.  For a single resident genotype with the germination trait value p as above, and a 169 

rare mutant genotype with a different germination probability p', invasion fitness equals   170 

 171 

ρ(𝑝′, 𝑝) = lim
𝜏→∞

1

𝜏
ln (∏ (𝑝′𝑓𝑡(𝑝𝑁𝑡(𝑝)) + (1 − 𝑝′)𝑠)𝜏

𝑡=1 ) (Eqn. 2b) 172 

 173 

This expression assumes clonal inheritance and that the number of seeds recruited varies 174 

between years, even for an identical amount of germinated seeds. 𝑁𝑡(𝑝) is the number of 175 

seeds in the seed bank at time t  ̧with the resident genotype having phenotype p. By 176 
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extension, when survival in the seed bank is also allowed to be time-dependent, we get the 177 

invasion fitness 178 

 179 

ρ(𝑝′, 𝑝) = lim
𝜏→∞

1

𝜏
ln (∏ (𝑝′𝑓𝑡(𝑝𝑁𝑡(𝑝)) + (1 − 𝑝′)𝑠𝑡)𝜏

𝑡=1 ) (Eqn. 2c) 180 

 181 

Invasion fitness is directly related to the establishment probability of a new strategy in a given 182 

stationary environment with a resident population already present (Haldane 1927, Ripa & 183 

Dieckmann 2013).  184 

Ellner (1997) contains an insightful presentation of results which exploit a partial derivative 185 

used to determine whether delayed germination, i.e., a germination probability below one, can 186 

invade. This derivative is 
∂

∂𝑝′
ρ(𝑝′, 𝑝)|

𝑝′=𝑝=1
 (Eqn. 3a). From its sign we know whether selection 187 

favours mutant germination probabilities smaller than the resident germination probability, 188 

which is equal to one. When it is positive, mutant germination probabilities below one are 189 

disfavoured and it is adaptive to always germinate. When it is negative, we can expect adapted 190 

states with a germination probability below one, i.e., the establishment of a seed bank where 191 

seeds remain one or several seasons. A crucial insight in evolutionary ecology was that such 192 

probabilities can only be adaptive when life history parameters fluctuate. In these cases, we 193 

need to determine the intermediate germination probability values that are so-called 194 

evolutionarily singular points (ESS, Geritz et al. 1998, represented here as p*). For resident 195 

populations with a single genotype, these are defined by the condition that the fitness derivative 196 

∂

∂𝑝′
ρ(𝑝′, 𝑝)|

𝑝′=𝑝
(Eqn. 3b) locally vanishes. There is no directional selection driving traits away 197 

from an ESS germination probability p*. Local second-order partial derivatives determine 198 

further requirements for adapted states: they need to be convergence stable, hence reachable, 199 

and non-invasible (see Methods). When adapted states consist of a single genotype, they are 200 
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called CSS (Continuously Stable Strategy, Eshel 1983). There is no analytical expression for 201 

the adaptations p*. Their dependence on environmental parameters needs to be determined from 202 

numerical analysis. 203 

 204 

Continuation. If we assume that years can be good with probability q and otherwise bad, that 205 

the total recruitment to the seed bank equals K per unit of area in a good year and k in a bad 206 

year, then (Eqn. 3a) can be worked out. This is an exercise in Elmer (1997) which I don't want 207 

to spoil, but the result is summarized in Figure two. For environments with fluctuations 208 

between good and bad years that occur according a Bernoulli distribution with probability q, it 209 

is adaptive to delay germination when recruitment parameters K and k of good and bad years 210 

differ sufficiently, when survival in the seed bank s is high and when probability q is 211 

intermediate (Fig. 2). Now arises the question what this tells us on adaptation when the 212 

environment changes in a non-stationary manner, for example when s and q would gradually 213 

change between years. A first line of attack could be to assume "continuation" (Kuznetsov 214 

2004), namely that the population will always be able to attain the adapted state very rapidly 215 

and that gradual environmental changes provoke gradually changing population states that are 216 

each predicted well by the adapted state for the environment of that year (e.g., Ferrière & 217 

Legendre 2013). For the example model here, the state of the environment in a specific year is 218 

given by the four parameters s, q, K and k.  Three examples of continuation trajectories are 219 

given in Fig. 2. The first two are for gradual changes in survival and the probability that years 220 

are good, with contrasting patterns. It can be first adaptive to have a seed bank when survival 221 

in the seed bank is still high, and when survival has decreased, to always germinate. The 222 

opposite route can also be adaptive: first always germinate, but when good years occur less 223 

often and survival gradually decreases, it can become adaptive to develop a seed bank. If 224 

recruitment parameters gradually change as well, differences between good and bad years 225 
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could first become smaller and subsequently larger again. This scenario is elaborated below. 226 

However, Fig. 2 already shows that in such cases having a seed bank can first be adaptive, then 227 

it can become adaptive to always germinate, followed by a second period where delayed 228 

germination is adaptive.  229 

 230 

Adaptational lag. However, it is a strong assumption to make that populations would be well 231 

adapted all the time when the environment changes. For an individual with a genotypically 232 

determined germination probability p and an adapted state at time t which is pt
* the adaptational 233 

lag equals the difference pt
* - p. It is positive when the adapted state is a larger germination 234 

probability than the one for this individual, negative when it is smaller. The average 235 

adaptational lag in a population is the average of this quantity among the individuals present at 236 

a given census point. Even with high levels of standing additive genetic variation, non-zero 237 

average lags are predicted to occur when adapted states are boundary values and genetic 238 

variation remains present due to mutation pressure or segregation. In other cases, average 239 

adaptational lags are immediately generated when distributions of standing variation are 240 

asymmetric around an adapted state, when selection fluctuates over time or when organisms 241 

have complex life histories inherently generating lags in selection responses. 242 

 243 

From now on, think of good and bad years as referring to initially warm and cool years 244 

(Figure 3), such that q is the probability of a warm year, K is the total recruitment in a warm 245 

year and k in a cold year. To explore potential time trajectories of adaptational lags, we 246 

investigate a scenario where the probability q of a relatively warm year gradually changes. At 247 

the same time, and mimicking an effect where all years become gradually warmer, K and k 248 

change in values over time (as in example C in Fig.2). When warm years become hot, K will 249 
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decrease. At the same time, cold years gradually improve such that recruitment k increases. 250 

Survival probability in the seed bank gradually decreases, for example due to gradually 251 

increasing soil temperatures (Ooij 2012). This scenario has an intermittent period where an 252 

egg bank is not adaptive (Fig. 3). I determined the adapted state for each year in the scenario 253 

and simulated a population of selfing annual plants with a substantial mutation rate per 254 

individual (0.01 per individual, Methods, Fig. 3). The lag remains substantial even with this 255 

large continual input of new mutational variation. It is not the case that the population 256 

equilibrates at a constant lag distance from the CSS adaptive state as in many other models 257 

(Kopp and Matuszewski 2015). While the CSS moves towards a boundary trait value, 258 

remains there and subsequently moves away from it, the adaptational lag changes sign (Fig. 259 

3). Mutational pressure on the germination probability near p = 1, makes it that the seed bank 260 

never completely disappears, even when that would be adaptive. This opposes the idea that 261 

increased amounts of heritable genetic variation will inherently lead to improved adaptation.  262 

 263 

Phenotypic plasticity and parental effects. Additional relevant components of trait 264 

determination were added to this model, by allowing germination to depend on an 265 

environmental cue perceived by a plant embryo (phenotypic plasticity) or by the mother plant 266 

(a parental effect). Botero et al. (2015) already investigated environmental changes that 267 

demanded restructuring of phenotype determination, but did not work out any adaptational 268 

lags. For the annual plant example, the reaction norm specification becomes as follows (Eqn. 269 

4): 270 

 271 

𝑝𝑡(𝑔, 𝑏, 𝑚, 𝑀) = invlogit(g + 𝑏𝐸𝑡 + 𝑚𝑀) (Eqn. 4) 272 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 2, 2022. ; https://doi.org/10.1101/742916doi: bioRxiv preprint 

https://doi.org/10.1101/742916
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

 273 

where invlogit denotes the inverse-logit function, invlogit(𝑥) = 𝑒𝑥/(1 + 𝑒𝑥). 274 

Germination probability 𝑝𝑡 now depends in a non-linear manner on a genotypic component of 275 

an individual g, on an environmental cue Et and on a maternal cue M stored by that 276 

individual. The maternal and the environmental cues are weighed by specific factors, b and m 277 

respectively. These factors and the genotypic component g can evolve by mutations and 278 

selection. For the maternal cue, it is assumed that it is a marker left by a mother on an 279 

offspring individual, that it can have two states and that it is fixed and stored by the 280 

individual in the same state for the rest of its life. I assume that only part of the individuals 281 

are responsive to a cue for a good year or get the right cue from their parent. In the 282 

simulations presented, 70% of individuals respond to a warm year (warm year Et = 1, cool 283 

year Et = 0). In a warm year, 70% of individuals get the maternal cue M  = 1, the others get M 284 

= 0. In a cool year, 70% of individuals get M = 0, the others M = 1. Because of the inverse-285 

logit transformation, trait values g, b, m can range from minus to plus infinity, while the 286 

individual germination probabilities remain constrained between zero and one. Note that each 287 

individual has five state variables, of which three are evolving and adapting via mutations 288 

and selection. What is also important is that with maternal effects, the seed bank contains 289 

individuals in different states, namely those that carry maternal cue M = 0 and the others 290 

carrying M = 1. 291 

If we rerun the environmental scenario of Fig. 3 and determine the adapted CSS states per 292 

year for the three trait components, then adapted states for the plasticity weight are generally 293 

extreme (Figure 4A), while a pattern similar to Fig. 3 is observed for the genotypic value, 294 

with a shorter time interval where bet-hedging is not adaptive. The adaptive maternal effect 295 

weight is often opposite in sign to the plasticity weight. In fact, in part of the time interval 296 
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where bet-hedging is not adaptive, all three traits jointly have their adapted states at 297 

maximum values. The eco-evolutionary dynamics of the simulated population shows a rather 298 

different pattern (Fig. 4B): the maximum average genotypic value g in the simulation is only 299 

reached when bet-hedging is already adaptive again. Note that the genotypic value g slightly 300 

increases further in the second time interval where bet-hedging is adaptive, even when its 301 

adaptational lag has already changed sign. The plasticity weight also evolves for part of the 302 

years in a direction opposite from where the adapted state is for these years. When adapted 303 

states are not determined by means of trait substitution sequences but approximated by 304 

simulated evolution in the environment characteristic for a year, the mutational pressures near 305 

trait boundaries and standing amounts of variation have effects on the outcome (Fig. 4D). 306 

Approximate adapted states on trait space boundaries are much less observed than in Fig. 4A, 307 

and when a trait such as g has not evolved to the boundary, the parental effect for example 308 

seems to converge to a different value as well. This demonstrates that approximating adapted 309 

states by evolutionary simulations with a continual input of a lot of genetic variation is 310 

imprecise.  311 

 312 

Multivariate lags? When individual phenotypes depend on several underlying component 313 

traits, we can calculate adaptational lags in different ways. It is straightforward to represent 314 

lags by vectors in a multivariate trait space, but there is no obvious standardization of each 315 

axis to make different trait components directly comparable. As Fisher (1930) focused on 316 

organismal individual phenotypes, we can focus on the germination phenotypes and 317 

substitute the evolving components of individuals in the actual population (g, b, m) by the 318 

values at the adapted state (g*, b*, m*), leaving the non-evolving state variables of each 319 

individual untouched (Et and M). The adaptational lag of an individual then becomes  320 
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 321 

invlogit(g∗ + 𝑏∗𝐸𝑡 + 𝑚∗𝑀) −  invlogit(g + 𝑏𝐸𝑡 + 𝑚𝑀)    (Eqn. 5) 322 

 323 

Note that a study of lags could provide evidence of genetic conflicts: selective pressures on 324 

heritable phenotype components evidenced by speeds of trait change, can change in 325 

dependence on the magnitude of the lag in others. Next to that, the average lags in the more 326 

elaborate model version with evolving genotypic values, plasticity and parental effects show 327 

non-trivial trajectories (Fig. 4E), with overshoots around an adapted state and average lag 328 

trajectories resembling those of a stable focus in other dynamical systems (Kuznetsov 2004).  329 

Adaptational lag averages in the population can be calculated for warm and cool years 330 

separately, and this demonstrates (Fig. 4F) that in the first half of the simulation, lags become 331 

smallest in warm years, when these occur more often than cool years. In the second half, the 332 

lags become smallest in cool years. This suggests that evolution reduces adaptational lags in 333 

the most common environments fastest. 334 

 335 

Responsiveness to selection and establishment probabilities. The average adaptational lag 336 

can be useful as a measure of the lag in other population statistics. For example, many 337 

evolutionary models find the maximum population density at the adaptive state and the 338 

adaptational lag then represents the distance from that situation. In the model example it is 339 

less obvious what the practical relevance of the lag might be and this requires further 340 

exploration. Such a simple exploration was carried out for the model version with plasticity 341 

and maternal effects. 342 
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As a measure of turnover indicating how fast a population can respond to selection on 343 

juvenile and adult traits, I calculated per year which fraction of the seed bank at the end of the 344 

reproductive season was recruited in that same year. Figure four shows that it relates well to 345 

the average germination probability in a population (Fig. 5A), but that the dependence on the 346 

adaptational lag is complex and gives the lag little predictive value for this measure of 347 

responsiveness to selection (Fig. 5B). Peischl and Kirkpatrick (2012) found that 348 

establishment probabilities of populations in arbitrarily changing environments depend on the 349 

time pattern of fluctuations and that the per capita number of offspring of a new strategy in its 350 

first year has the largest weight on the outcome. When the log per capita number of offspring 351 

of germinated seeds is estimated, this relates poorly to the average germination probability in 352 

the population (Fig. 5C), while the adaptational lag predicts it to some extent. A lowess 353 

regression with a restricted span of the smoother shows a peak near zero adaptational lag 354 

(Fig. 5D). When mutants appear with effects in the juvenile or adult stage that are slightly 355 

advantageous, they will have larger probabilities to get established when the adaptational lag 356 

for germination probability in the population is near zero. This adaptational lag can thus be 357 

seen as a measure of general adaptability. In Fig. 4F we observed that the lag was smallest in 358 

the cooler years near the end of the simulation. Upon inspection, it turns out that the lag is 359 

smallest when the total number of recruits per year is largest. This requires, however, 360 

phenotypic plasticity of the germination probability. Plastic strategies can exploit the good 361 

years to outcompete other strategies more easily by germinating with probability one and 362 

don't need to implement a compromise between good and bad years because of lack of 363 

information.  364 

 365 

Evolutionary Adaptation and Adaptive Control 366 
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 367 

There have been repeated calls for an increased use of control theory in ecology, where the 368 

most successful applications thus far were in agriculture (Loehle 2006). The objective of 369 

control theory is to develop control actions (a "controller") for dynamical systems such that 370 

their outputs follow a desired pattern. Several notions of adaptive control exist (Tyukin 371 

2011), while there is no mention of adaptive control in the review by Loehle (2006) on 372 

control theory in ecology. According Walters and Hilborn (1978), adaptive control refers to 373 

situations where the best control action of a dynamical system must be established through 374 

sequential reassessment of system states and dynamic relationships. This generally requires 375 

tuning the controller (Tyukin 2011) in dependence on the state of the environment and the 376 

responses of the system. In addition, adaptive control often uses a model-based reference 377 

response (MRAC, model reference adaptive control, Frank 2018), and this model can also be 378 

updated as part of the tuning or when new knowledge becomes available. MRAC can involve 379 

actions with the intention of improving knowledge on the system. Such actions can trade-off 380 

or conflict with adaptively managing other targets (Walters & Hilborn 1978) and make 381 

adaptive management or control more prone to implementation failure (Allen & Gunderson 382 

2011). The implementation of adaptive control is generally challenging (Anderson & 383 

Dehghani 2008). It needs to be determined how concepts of evolutionary adaptation and 384 

adaptational lags during climate change relate to adaptive control as defined in control theory 385 

and in the context of adaptive management of population dynamical systems.  386 

Next to its relevance for the adaptive management of populations, control theory has been 387 

used to derive predictions from modelling for phenotypic traits which can vary continually 388 

over time (Frank 2019) and are thus examples of phenotypic plasticity or flexible phenotypes. 389 

This line of research can be used to illustrate the principles of adaptive control and to situate 390 

it relative to evolutionary adaptation, by gradually incrementing the complexity of a series of 391 
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trait determination models, where the apparent phenotypic traits are examples of system 392 

outputs. A simple partitioning of the contributions of genetic and an environmental input is a 393 

common representation of the determination of phenotypes (Fig. 6A&B). The environmental 394 

input generates predictable phenotypic consequences in the presence of phenotypic plasticity. 395 

There is no control of phenotypes here towards a specific target because all inputs are 396 

assumed to have additive and linear effects. Models of phenotypic switches do invoke a sort 397 

of controller (Fig. 6B, Leimar et al. 2006), which is usually a non-linear function of an 398 

underlying liability. Models of phenotypic plasticity which explicitly assume a controller of 399 

plasticity or flexibility exist (Fig.6C, Frank 2019), and classical dynamical models of energy 400 

allocation can be interpreted in this manner too (Perrin & Sibly 1993). These controls do not 401 

have the recurrent tuning by environment and system states characterizing adaptive control. 402 

They can assume that the controller is the result of evolutionary adaptation (Frank 2019) but 403 

the control in itself can be non-adaptive in the sense of control theory (compare Fig. 6C with 404 

Fig. 6D). On the other hand, experimental studies on the control of gaits or bipedal movement 405 

envisage elements of adaptive control in locomotor control: Lam et al. (2006) for example 406 

explicitly mention that the nervous system uses an internal model for the control of 407 

locomotion.  408 

Adaptive control could use a model of evolutionary adaptation (Fig. 6E) to generate a model 409 

reference and target of control (Fig. 6F). This would integrate evolutionary adaptation and 410 

adaptive control, with the adaptational lag providing the distance from the control target or 411 

becoming the quantity to control. This raises the question what an adaptive controller will 412 

look like in this case and how to assure that it operates safely without divergence from the 413 

target or a general crash of an ecological system. Much remains to be developed. However, 414 

there are examples where evolutionary modelling of managed ecosystems led to proposals to 415 

control adaptational lags.  416 
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 417 

Adaptive pest and crop management  418 

 419 

Studies which considered coevolutionary principles in the adaptive management programs of 420 

plant diseases in agriculture, tend to focus on minimizing evolution (Zhan et al. 2015). 421 

Pathogens at adapted states are generally undesirable in agricultural practises when properties 422 

of the agro-ecology lead to the evolutionary minimization of plant resources available to 423 

competing pathogens (Lion & Metz 2018), hence maximization of yield losses.  Adaptational 424 

lags should then be kept maximal or control should be towards increasing diversifying and 425 

disruptive selection weakening selection and imposing trade-offs (Zhan et al. 2015).  426 

Précigout et al. (2020), for example, studied adaptation of the latent period of a plant 427 

pathogen to plant traits which depend on fertilization levels. The analysis demonstrated that 428 

adaptive pathogen states minimize the amount of healthy leaf canopy, and that it is therefore 429 

desirable to maximize the adaptational lag. Preventing adaptation can occur by reducing 430 

selection gradients through generally limiting pathogen growth rates (Carolan et al. 2017).  431 

Bargués-Ribera and Gokhale (2020) present an example optimizing cumulative yield in 432 

dependence on rotation schemes between cash and cover crops. We also start considering the 433 

maintenance of pathogen diversity as a useful strategy, if this limits the evolution of pathogen 434 

virulence and reduces average pathogen reproduction per host by increasing host diversity 435 

(Dutta et al. 2021). However, if adaptation favours a polymorphism of coexisting strains each 436 

specializing on a different host plant, avoiding such adaptive genetic polymorphisms can be 437 

crucial in heterogeneous landscapes (Précigout 2018). Alternatively, also in plant crops cases 438 

are imaginable where adaptational lags need to be maximized, when plant stages are 439 
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harvested which occur at their lowest densities in adapted states, for example due to 440 

asymmetric competition. 441 

It seems easier to imagine examples where adaptational lags in crops should be minimized. 442 

Loeuille et al. (2013) use adaptive dynamics modelling to predict consequences of different 443 

agricultural practises and landscape designs, presenting an example where adaptation by 444 

plants minimizes nutrient loss, therefore maximizes sustainability of the ecosystem. 445 

Adaptation of plants is desirable from this point of view, and adaptive management should 446 

aim to minimize the adaptational lag in plants even if this does not necessarily occur by 447 

natural selection. van den Bosch et al. (2007) were to my knowledge the first to demonstrate 448 

that predictions of adapted states have relevance in agricultural systems and made a point of 449 

general relevance: the control strategy should be chosen depending on whether adapted states 450 

imply increased or reduced crop damage. van den Bosch et al. (2007) modelled the adaptation 451 

of virus strains in response to different disease control strategies and assumed that control 452 

would lead to zero adaptational lag. Sanitation by roguing came out as a control strategy 453 

where virus evolution leads to more favourable adaptive states, because these reduce virus 454 

titre in comparison to virus adaptation to other control strategies.  455 

Among prospects for future research in modelling plant virus epidemiology, Jeger et al. 456 

(2018) pointed to the importance of environmental change, of considering evolution but did 457 

not propose to integrate both. In the studies above, the target of control was identified, but it 458 

remained unclear whether that control in itself would need to occur in an adaptive manner. 459 

These studies all assumed that adaptation occurs in a period without environmental change. I 460 

conjecture that when environments change gradually and unpredictably to some extent, most 461 

control will need to become adaptive. 462 

 463 
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Discussion 464 

 465 

The term "adaptation" links a cluster of concepts which each are at the core of a subject in 466 

climate change research. In this paper, adaptational lag is introduced in the context of 467 

evolutionary adaptation and its integration into adaptive control theory is proposed. Other 468 

related concepts, such as adaptability and adaptive capacity are only minimally discussed 469 

here (Nelson et al. 2007, Bateson 2017, Siders 2018, Angeler et al. 2019). 470 

 471 

Moving optimum models (Kopp & Matuszewski 2015) generally assume that the adaptive 472 

states are optimal phenotypes which follow a prescribed and linear pattern of change. With 473 

more involved life histories and selection on different life history components it is known that 474 

generally and even without environmental change, fitness is largest for a compromise 475 

phenotype which is in many cases not equal to any of the phenotypes maximizing individual 476 

life history components (Cotto et al. 2019). Adaptation in complex life histories should be 477 

seen in the sense of Levins (1968) where strategies weigh different options they encounter 478 

and achieve the best compromise in the face of their constraints. For example, the 479 

compromise phenotype of Cotto el al. (2019, their Eqn. 9) then is the adaptive state. When 480 

the genetic variance-covariance at the adaptive state would be restricted to what is maintained 481 

by selection in the long run, when not assuming linear environmental change in the adapted 482 

state or that the adaptational lag equilibrates at a fixed distance from the compromise 483 

phenotype, their method would approach the proposal here. Johansson and Jonzén (2012) 484 

were the first to consider frequency-dependence within species in their determination of 485 

adapted states for bird arrival date. They determined adaptive states but did not consider 486 

adaptational lags. Gienapp et al. (2013) inserted adapted states determined for a different 487 
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model of bird breeding dates as the optimal phenotypes in a standard quantitative genetic 488 

model from which adaptational lags were determined. Their study can thus be interpreted as 489 

the first where the current approach was implemented.  490 

In principle, the approach to determine adaptational lags based on Adaptive Dynamics can be 491 

carried out for any ecological system where the dependencies of demography on 492 

environmental state (including feedbacks of population state) are specified and where 493 

phenotypic trait determination is known or assumed to work in a particular way such that an 494 

evolutionary model can be constructed. In the example of the evolution of germination 495 

probability in an annual plant, the adapted states were germination probabilities which 496 

depended on the scenario of environmental change. Adaptive Dynamics studies have 497 

distinguished various types of adapted states, of which Figure seven gives a non-exhaustive 498 

overview. Next to adapted states with single genotypes, with plasticity or not, outcomes such 499 

as adaptive genetic polymorphisms can occur (Geritz et al. 1998). For these adapted states, it 500 

remains to be worked out how to calculate adaptational lags best, but it has already been 501 

proposed that in some cases, maladaptation should be the target here (Précigout 2018). 502 

Johansson (2008) determined lags for one-, two- and three species systems exploiting a 503 

resource distribution. These were calculated with respect to the evolutionarily repelling trait 504 

matching the resource with the largest carrying capacity, which is opposite the definition of 505 

adaptational lag used here based on attracting adapted states. Evolutionary suicide is another 506 

possible outcome of adaptation (Gyllenberg & Parvinen 2001), where the adapted state is 507 

extinction. Next to the existence of these qualitatively different outcomes, multiple adapted 508 

states can co-occur for one environmental setting such that adaptational lags become 509 

multivalued. Further outcomes which are not represented in Fig. 7 are coevolutionary adapted 510 

states of several species (Débarre et al. 2014), relevant in the agro-ecological context of 511 
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plants and pests, and adapted states which are cyclic (Dercole & Rinaldi 2008), with a non-512 

equilibrium attractor of the adaptive dynamics. 513 

It was found that adaptational lags can't be removed for boundary adaptive strategies if any 514 

non-adaptive genotypic variance remains present, and in general, extreme strategies face a 515 

variance load (Lande & Shannon 1996) with any individual phenotypic variance present. If 516 

we extend this idea to human socio-economic evolution, climate adaptation strategies which 517 

are extreme and therefore boundary strategies, will never be reached as long as variation in 518 

our population remains.  Beckage et al. (2018) modelled the feedback between human 519 

behaviour and projected climate change. Nudging the perceived risk of climate change was 520 

proposed as a mitigation policy response, but whether behavioural responses will be adaptive 521 

was not considered. In evolutionary ecology, cue perception and associated response 522 

plasticity are often studied as adaptations and even if we refuse to compare our own 523 

adaptation to an evolutionary response, it might be useful to try to determine the adapted 524 

states of what we aim to implement. Despite the differences between evolutionary adaptation 525 

and adaptive control, they can be modelled jointly. In the adaptation policy context, clear 526 

metrics of adaptation in comparison to mitigation seem to lack (Michaelowa & Stadelmann 527 

2018). Using an adaptive control perspective in adaptation policies naturally leads to relevant 528 

metrics: they are the distances to the model reference which the controller assesses and uses 529 

for its updates. The examples of control and evolutionary adaptation in agro-ecologies can be 530 

used to model and determine strategies for adaptive management during environmental 531 

change and can lead to strategies for developing appropriate controllers. 532 

From the simulation results, it turned out that adaptational lags might be partial predictors of 533 

the invasion success of mutants in other life history traits than germination. If we develop our 534 

understanding of adaptational lags further, it could be of use in conservation biology and 535 

agro-ecology as partial measures of adaptability. For extant populations, would it be possible 536 
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to estimate adaptational lag and adaptive state approximately with limited modelling? In 537 

models with pre-defined adaptive states, the difference between the population average of a 538 

trait and its adaptive state is a commonly used measure of the lag (Kopp & Matuszewski 539 

2015) and in the vicinity of the adapted state, it can be determined from slope and curvature 540 

of fitness surfaces (Estes & Arnold 2007). In the current environment, selection optima can 541 

be estimated using data on the dependency of the number of offspring on phenotype, and the 542 

changes in optima over successive years can be tracked or projected. As a first 543 

approximation, we could use these as proxies. However, additional modelling and data 544 

analysis should be carried out alongside such estimation to determine whether the 545 

approximation is warranted and remains useful during environmental change. In other words, 546 

we should implement an adaptive control strategy. 547 

 548 
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Methods 727 

 728 

Adaptive Dynamics approximations describe evolutionary processes where it is assumed that 729 

characters exist which are faithfully replicated in offspring (Metz et al. 1996), except for rare 730 

mutational changes. Additionally, mutations are often assumed to have small effects at the 731 

individual phenotypic level (Dieckmann and Law 1996, Champagnat et al. 2002).  732 

Characteristic is that evolving populations can feed back onto selective pressures through the 733 

selective environments they create. However, it is assumed that external environmental 734 

fluctuations that act as input are stationary (Ripa and Dieckmann 2003, Geritz et al. 1998) 735 

and that the rarity of mutational changes makes the so-called resident environments stationary 736 

too. Based on all these assumptions, a deterministic dynamic system can be defined, referred 737 

to as the canonical equation of AD (Dieckmann and Law 1996). Not assuming small 738 

mutations implies that evolutionary trait substitution sequences are studied (Champagnat et 739 

al. 2002) where in each substitution a resident genotype is replaced by a mutant with positive 740 

invasion fitness. Convergence and stability of singular points is then based on geometric 741 

arguments, not directly deriving from a deterministic dynamical system.  Evolutionarily 742 

singular points (candidate adapted states) can be CSS endpoints of trait substitution 743 

sequences or the canonical equation of Adaptive Dynamics when conditions on second order 744 

partial derivatives of invasion fitness confirm convergence stability and non-invasibility 745 

(Geritz et al. 1998). CSS's and their properties are relatively independent of genetic makeup 746 

when adapted states contain one phenotype (Van Dooren 2006). Systematic phenotypic 747 

advantages for heterozygotes are not expected for most smooth genotype-phenotype maps 748 

(Van Dooren 2000).  749 
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Simulation code for R used to study the germination probability model is available on 750 

request. I simulated populations of selfing plants according the model described in the main 751 

text. For the simulation with genotypically determined germination probabilities, trait values 752 

were discretized from zero to one in steps of 0.02. The initial state of the population was a 753 

uniform distribution of individuals over all trait values, with densities summing up to value 754 

one half. The mutation probability was set at 0.1 per individual and mutants occupied trait 755 

bins adjacent to their parental trait value. To determine adapted states for this model version 756 

with genotypic germination probabilities only, evolutionary trait substitution sequences were 757 

simulated with trait step sizes of 0.1 starting from germination probability one and trait 758 

boundaries at values 0.1 and one. For the forward simulations with plasticity and maternal 759 

effects, trait values were discretized at integer values from -5 to +5 for each trait g, b, m 760 

resulting in 1331 trait combinations which occurred. The mutation rate was set at 0.1 per 761 

individual. Mutant individuals were uniformly distributed over all bins adjacent to their 762 

parental trait combination and within the range of trait values allowed. The initial state of the 763 

population was in each forward simulation a uniform distribution over all trait combinations, 764 

with densities summing up to value one. For the evolutionary invasion analysis used to 765 

determine adapted states, evolutionary trait substitution sequences were simulated with trait 766 

step sizes of 0.1 and starting from zero trait values for g, b and m.  At each substitution, 767 

simultaneous trait changes were made in all traits with a direction of positive invasion fitness. 768 

Trait boundaries were fixed at -5, 5 for each trait.   769 

  770 
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Figure Legends 771 

 772 

Figure one. A general approach to determine adaptations and adaptational lags during periods 773 

of environmental change. (A) Environmental change is described by gradual changes in 774 

parameters of the probability distributions of environmental variables. (B) The actual 775 

environmental history is a single realization of this time-dependent stochastic process. (C) For 776 

each value or set of values of environmental parameters per time point, adapted states which 777 

evolution could arrive at can be determined (blue). (D) An actual population shows 778 

evolutionary responses depending on, inter alia, selection occurring at each point in time. At 779 

each point in time, there will be a range of phenotypes present (grey band), and an average 780 

phenotypic value across the population (black line). The difference between the phenotypic 781 

trait value or traits composing an adapted state and the phenotype of an individual is the 782 

adaptational lag. It therefore varies between individuals, and population statistics of this lag 783 

can be calculated. 784 

Figure two. Continuation of adaptations during environmental change. We can determine 785 

which combinations of total recruitment in good (K) and bad years (k), survival in the seed 786 

bank (s) and the probability that a year is good (q) lead to (CSS) adaptations where the 787 

adaptive germination probability p* is smaller than one. To the right of each curve labeled 788 

with the corresponding recruitment parameters (recruitment boundary), adapted germination 789 

probabilities for these combinations of s and q and the recruitment values specified on the 790 

boundary are smaller than one, hence a seed bank adaptive. When the difference between K 791 

and k increases, boundaries shift to the left and more combinations of s and q have a CSS p* 792 

< 1. When environments change gradually, we can assume that parameter values (s, q, k, K) 793 

change gradually between years and that evolution tracks the adapted germination probability 794 

value specific to the environmental regime of each year. Three examples are given, with 795 

adapted states where p* < 1 in black, with p* = 1 in red: (a) If survival in the seed bank is 796 

decreasing, then it will become adaptive to always germinate.  (b) Environmental change 797 

decreases q and s such that it is first adaptive to always germinate, later it becomes adaptive 798 

to develop a seed bank. (c) If recruitment parameters would gradually change as well, we can 799 

imagine that differences between good and bad years become smaller and then larger again, 800 

as in the scenario elaborated further in the main text.  801 

Figure three. Adaptational lags for a single evolving trait. (A) A scenario of gradual change in 802 

the four parameters characterising the environment per year. As in the example (C) of Fig.2, 803 

the difference between recruitment parameters K (warm year) and k (cool year) first gradually 804 

decreases, then increases again. It can be determined that there is a time window from years 805 

188 to 329 where it is adaptive to germinate with probability p* = 1. (B) Calculation of the 806 

adaptational lag for the environmental change scenario in the left panel and a simulation of a 807 

population of selfing individuals with a high mutation rate in the germination probability. Full 808 

blue line: Adapted states determined using Adaptive Dynamics. Grey line: population 809 

trajectory, average germination probability of the seeds in the seed bank. Red line: difference 810 

between adapted states and population average.  811 
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Figure four: Adapted states and adaptational lags for a model version with multiple components 812 

of trait determination. The same environmental change scenario as in Fig. 2 is simulated. (A) 813 

Adapted states of the three trait components. The genotypic component is drawn in dark blue, 814 

the plasticity weight in blue and the maternal effect weight in light blue (B) Population 815 

trajectories of the averages of each trait component. (C) Average adaptational lag trajectories 816 

per trait component. (D) Approximate adapted states determined by evolution with a large 817 

supply of mutational variation in each stationary environment. (E) Average adaptational lag as 818 

a three-dimensional trajectory. (F) Average adaptational lag calculated for the germination 819 

probability as described by Eqn. 5. Points for warm and cool years are plotted in red and brown, 820 

respectively.  821 

Figure five. Relationships between demographic statistics and adaptational lag. For the 822 

germination probability model with plasticity and maternal effects. (A) and (B) I calculated per 823 

year the fraction of the seed bank that was recruited within that year. This statistic is indicative 824 

of how fast a population might respond as a whole to selection during the juvenile and adult 825 

stages. Panels (A) and (B) show the dependence on average germination probability and 826 

adaptational lag (as in Fig. 3F), respectively. (C) and (D) The log per capita number of seeds 827 

contributed by a juvenile plant (the growth rate of the pure strategy which always germinates), 828 

is a component of the establishment probability of variants. Panel (C) shows its dependence on 829 

average germination probability and (D) on the adaptational lag. Lowess regression fits 830 

(Cleveland 1981) with a smoother span of 0.1 are added as wide grey lines in panels (C) and 831 

(D).  832 

Figure six. Adaptive control and adapted states. Left. Elaborating modes of trait determination 833 

demonstrates that adaptive control shares characteristics with a particular mode of trait 834 

determination. Right. Evolutionary adaptation and its integration within an adaptive controller. 835 

(A) Phenotypic plasticity (B) Phenotypic switch (C) Plasticity with controller (D) Adaptive 836 

control (E) Adaptive dynamics predicts adapted trait values for a trait determination process 837 

using a demographic model with environmental feedbacks and mutational variation. (F) These 838 

predictions can be used as a model reference in an adaptive control system. 839 

Figure seven. A provisory overview of possible adaptational lag patterns driven by eco-840 

evolutionary dynamics. The y-axis represents a scalar phenotypic trait, the x-axis time. (A) The 841 

population approaches an adapted state. (B) There is convergence to an equilibrium 842 

adaptational lag. The population then lags with respect to the adapted state at a fixed distance. 843 

(C) The adaptational lag changes sign. The population average trait shows inertia in adaptation, 844 

the adaptational lag diverges again. (D) Multiple adapted states can co-occur for the 845 

environment specific to one year. The lag then becomes a multi-valued function of time. (E) 846 

Evolutionary suicide. The adapted state is extinction. (F) For a range of environmental states, 847 

the adapted state is an adaptive polymorphism. The population can then also become 848 

phenotypically polymorphic or not. 849 

 850 
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