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Abstract: In this paper, we develop a theory of stochastic Riesz spaces
equipped with a stochastic topology that allows to define a general fi-
nancial market model defined by a partial order. For such a model, we
provide a construction of continuous-time portfolio processes from the
discrete-time ones. We study the no-arbitrage condition AIP of the lit-
erature that states that the super-hedging prices of the non negative
European claims are non negative. We show that this condition may be
equivalent in discrete-time and in continuous-time and that the infimum
super-hedging prices of a given payoff may also coincide in discrete-time
and in continuous-time. At last, the construction of an upper linear
stochastic integral is proposed in the setting of stochastic Riesz spaces.
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1. Introduction

The usual approach in mathematical finance is to define a financial market
model as given by a stochastic basis (Ω, (Ft)t∈[0,T ],P) where Ω is the set
of all possible market states on some period [0, T ], T > 0 is the horizon
date, (Ft)t∈[0,T ] is a filtration, i.e. an increasing sequence of σ-algebras and
P is a probability measure. For each t ∈ [0, T ], Ft describes the available
market information between time 0 and time t. Moreover, a stochastic price
process S = (St)t∈[0,T ], describing the prices of the risky assets composing
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the financial market, is exogenously given. At each time t ∈ [0, T ], St is
supposed to be Ft-measurable. This means that St is observable thanks to
the information given by Ft, i.e. at time t. Also, a strategy is defined as a
stochastic process θ = (θt)t∈[0,T ] describing the quantity that a financial agent
holds. It is assumed that θt is Ft-measurable, which means that the financial
agent fixes the quantity θt at time t in terms of the available information Ft
at time t. Therefore, the stochastic structure of the financial market models
is fundamental as the financial decisions are based on the information. This
gives rise to specific developments in the field of enlargement of filtration,
see [5], where the natural question is how the additional information affects
the financial market.

A very classical problem is the so-called super-hedging problem. The goal is
to characterize the self-financing portfolio processes (investment portfolios),
i.e. Vt = θtSt, t ∈ [0, T ], for models without transactions costs, such that
the terminal value VT ≥ hT for some given payoff hT . For the well known
European Call option of strike K > 0, the payoff is hT = (ST −K)+. Then,
the initial value V0 is interpreted as a price for the payoff hT , as it allows
to start an investment whose terminal value VT is larger than or equal to
the payoff hT that the option contract seller must provide to the buyer at
time T . The resolution of the super-hedging problem clearly depends on the
stochastic structure of the financial market model. It also depends on the type
of model, e.g. with transaction costs (we also say with friction) or without
transaction costs (frictionless models).

The theory is very well developed for frictionless models. Some no-arbitrage
conditions are imposed so that it is possible to characterize the super-hedging
prices by the mean of dual elements. A no-arbitrage condition may be in-
terpreted as a market equilibrium. The most famous one for discrete-time
models is the no-arbitrage condition NA, see [[14], Section 2.1]. The Dalang-
Morton-Willinger theorem [6] states that NA is equivalent to the existence of
a martingale probability measures under which the discounted price process
is a martingale. Then, a dual characterization of the super-hedging prices is
deduced, see [[14], Theorem 2.1.11], using the martingale probability mea-
sures as dual elements. In continuous time, the theory is more sophisticated
and several no-arbitrage conditions have been introduced as the No Free
Lunch condition NFL, see [17] and [10], but also the NFLVR condition, see
[9]. These conditions are equivalent in most of the cases to the existence of
local martingale probability measures, which appear to be the dual elements
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to characterize the super-hedging prices. These no-arbitrage conditions im-
plies that the price process is a semi-martingale and portfolio processes are
stochastic integrals. This gave rise to a huge development of the stochastic
calculus, see [15], since the pioneering works of Black, Scholes and Merton,
see [3] and [22].

The theory for financial market models with friction is more recent. Most
of the results are formulated for models with only proportional transaction
costs, see [[14], Section 3]. Contrarily to the frictionless models, a portfo-
lio process is expressed in physical values, i.e. it is a vector-valued financial
position. A financial market model with friction may be simply defined by
a stochastic basis and a partial order between the vector-valued financial
positions, which is defined from a stochastic random set of all solvent fi-
nancial positions, see [14], [21]. With proportional transaction costs, several
no-arbitrage conditions exist which are mainly equivalent to the existence of
dual elements, called Consistent Price Systems, see [13], that allow to get a
dual characterization of the super-hedging prices as in the frictionless case,
see [[14],Theorem 3.2.1, Theorem 3.3.3] and [8].

For more general transaction costs, in particular with fixed costs, the usual
tools of the convex analysis are no more adapted and it is not possible to
obtain a dual characterization of the super-hedging prices. A new approach
is proposed in [20] where the financial market model is defined by a partial
order. This gave rise to new problems in the field of random preorders with
applications in finance as developed in [11], [12] and [19]. In this paper, we
follow this philosophy by considering a general framework based on stochas-
tic Riesz spaces that we introduce, see Section 2. Some stochastic topologies
are introduced, see Section 3, in order to define continuous-time portfolio
processes as limits of discrete-time portfolio processes with a financial mean-
ing, see Section 4. Then, we study the recent no-arbitrage condition AIP of
[4] and we show that this condition is equivalently satisfied in discrete and
continuous time, see Section 5 and Section 6. At last, we propose in Section
7 the construction of a stochastic integral in the setting of the stochastic
Riesz spaces that allows to consider a larger class of portfolio processes in
continuous time.

3



2. Stochastic Riesz spaces

We consider two Riesz spaces F and R, respectively endowed with partial
orders that we denote by � and ≤ respectively. We refer to [24] for the theory
of Riesz spaces. In the following, we suppose that F is a union indexed on time
t ∈ [0, T ], T > 0, of some increasing Riesz subspaces, i.e. F = ∪t∈[0,T ]Ft with
Ft1 ⊆ Ft2 if t1 ≤ t2 ≤ T and FT = F . We say that the elements of Ft are the
Ft-measurable elements of F , using here the usual vocabulary of stochastic
finance. In finance, Ft can be interpreted as the set of all financial positions
(which are random variables) at time t ≤ T . In that case, the Ft measurability
in understood in the usual sense with respect to a given filtration (Ft)t∈[0,T ]
describing the available flow of information of the financial market.

Similarly, we suppose that R = ∪t∈[0,T ]Rt with RT = R and the elements
of the increasing Riesz subsetsRt are also called the Ft-measurable 1 elements
of R by analogy and an abuse of notation. We suppose that R0 is a vector
space of dimension 1 so that, w.l.o.g., we assume that R0 = R is the real
line. We introduce the notation F+

t := {Xt ∈ Ft : Xt � 0} to designate
the Ft-measurable elements of Ft and R+

t := {Xt ∈ Rt : Xt ≥ 0}. Also
F+
T = F+ and R+

T = R+.

The elements of R are interpreted as scalars. Precisely, we suppose that
there exists a (left) product (α, F ) 7→ αF between the elements α ∈ R and
F ∈ F , i.e. αF ∈ F makes sense for all α ∈ R and F ∈ F . We suppose the
following usual properties:

Assumption A:

A1) For any α1, α2 ∈ R and F ∈ F , (α1 + α2)F = α1F + α2F .
A2) For any α ∈ R and F1, F2 ∈ F , α(F1 + F2) = αF1 + αF2.
A3) For any αt ∈ Rt and Xt ∈ Ft, we have αtXt ∈ Ft.
A4) If X, Y ∈ F satisfies X � Y , then αX � αY for all α ∈ R+.

At last, we define the set It of all Ft-measurable components of R as the
elements It of R+

t such that It ≤ 1 and It ∧ (1 − It) = 0. In the case where
Rt is the set of all Ft-measurable real-valued random variables, for a given
σ-algebra Ft, then It is the family of all indicator functions It = 1Ft defined
as 1Ft(ω) = 1 if ω ∈ Ft and 1Ft(ω) = 0 if ω /∈ Ft where Ft ∈ Ft. Note that
0, 1 ∈ It.

1Instead of Rt-measurable.
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Definition 2.1. Let t ∈ [0, T ]. We say that a subset B of F (resp. R) is Ft
bounded from above if there exists γt ∈ Ft (resp. γt ∈ Rt) such that b � γt
(resp. b ≤ γt) for all b ∈ B.

Definition 2.2. Let t ∈ [0, T ]. We say that a subset B of F (resp. R) is Ft
bounded from below if there exists γt ∈ Ft (resp. γt ∈ Rt) such that b � γt
(resp. b ≥ γt) for all b ∈ B.

We also say that a subset is bounded if it is bounded from above and below.
In the following, we suppose that F is Dedekind complete in the following
sense:

Definition 2.3. We say that F is Dedekind sup-complete if, for all t ∈ [0, T ],
any Ft bounded from above subset B of F admits a supremum in Ft that we
denote by ess supFt

B ∈ Ft.

Definition 2.4. We say that F is Dedekind inf-complete if, for all t ∈ [0, T ],
any Ft bounded from below subset B of F admits an infimum in Ft that we
denote by ess infFt B ∈ Ft.

In the case where F = L0(R,FT ) and Ft = L0(R,Ft), t ∈ [0, T ], are
the families of Ft-measurable variables with real values, for a given complete
stochastic basis (Ω, (Ft)t∈[0,T ],P), it is well known that F is both Dedekind
sup and inf-complete, see [2] and [[14], Section 5.3.1].

Definition 2.5. We say that F is Dedekind complete if it is both Dedekind
sup-complete and Dedekind inf-complete.

When B = {X} is a singleton where X ∈ F is Ft-bounded from be-
low (resp. from above), we use the notation ess infFt X = ess infFt B ∈ Ft
(resp. ess supFt

X = ess supFt
B ∈ Ft) for t ∈ [0, T ]. Note that, if Xt is

Ft-measurable, we have ess supFt
Xt = ess infFt Xt = Xt.

Definition 2.6. The stochastic Riesz space F is compactifiable if there exists
a one to one correspondence c from F into G where G = ∪t∈[0,T ]Gt is a
stochastic Riesz space such that c(Ft) ⊆ Gt for all t ≤ T and G is G0 bounded
and Dedekind complete. Moreover, for any f1, f1 ∈ F , f1 � f2 if and only if
we have c(f1) ≤ c(f2) where ≤ is the partial order of G.

The typical example in finance is when Ft = L0(R,Ft), t ∈ [0, T ], where
(Ft)t∈[0,T ] is a filtration, and c(x) = arctan(x) so that G is F0 bounded by
the deterministic random variable π/2. In that case, any element of F may
be identified as an element of G and it is then possible to define ess supFt

D
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and ess infFt D for all subset D of F even if D is not Ft bounded. In par-
ticular, with Ft = L0(R,Ft), t ∈ [0, T ], ess infFt D may be infinite, see [[14],
Section 5.3.1]. In the following, we shall suppose that F is compactifiable so
that ess supFt

D and ess infFt D always exit, at least in G, but they are not
necessary elements of F . We easily deduce the following properties:

Lemma 2.7. Let t ∈ [0, T ] and X ∈ F . The following properties holds:

1) If X � 0, then ess supFt
X � X � ess infFt X � 0.

2) For any D ⊆ F , ess supFt
(−D) = − ess infFt D.

3) For any D ⊆ F and t1 ≤ t2 ≤ T , we have

ess supFt1
D = ess supFt1

(
ess supFt2

D
)
, (2.1)

ess infFt1
D = ess infFt1

(
ess infFt2

D
)
. (2.2)

4) If Dt ⊆ Ft, then we have:

ess supFt
Dt = ess supFT

Dt, ess infFt Dt = ess infFT
Dt. (2.3)

Proof. We show 3) as follows. Since D � ess supFt1
D and ess supFt1

D is Ft1-
measurable hence Ft2-measurable, we get that ess supFt2

D � ess supFt1
D.

It follows that ess supFt1

(
ess supFt2

D
)
� ess supFt1

D. Moreover, since we

have D � ess supFt2
D, we get that ess supFt1

D � ess supFt1

(
ess supFt2

D
)

.

We then deduce (2.1) by antisymmetry. The same type of reasoning allows
to show (2.2).

As we have seen above, if Dt ⊆ Ft, ess supFt
Dt = ess supFt

(
ess supFT

Dt

)
.

Moreover, ess supFT
Dt � ess supFt

Dt hence we deduce that

ess supFt

(
ess supFT

Dt

)
� ess supFt

Dt.

We then deduce that 4) holds by antisymmetry.

Example 2.8. We consider a Riesz space F which is Dedekind complete with
weak order unit e and equipped with conditional expectations T = (Tt)t∈[0,T ]
on F which are strictly positive order continuous linear projections with
Tt(e) = e and having a Dedekind complete range such that TuTt = TtTu = Tt
for all u ≥ t, see [16].
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Definition 2.9. A stochastic Riesz space is a pair of Riesz space F := (F ,R)
as defined above, i.e. such that F = ∪t∈[0,T ]Ft and R = ∪t∈[0,T ]Rt. Moreover,
Assumption A is supposed to be satisfied and F is compactifiable so that the
properties of Lemma 2.7 hold.

We now suppose that F is equipped with a topology O which is compatible
with the stochastic structure of F in the following sense:

Definition 2.10. The topology O on the stochastic Riesz F is said compatible
if the following properties hold at any time t ∈ [0, T ]:

1) F+
t is closed in O.

2) If (αnt )n ∈ F+
t converges to zero in O then, for any (βnt )n ∈ F+

t , such
that βnt � αnt , (βnt )n converges to zero.

3) If (αnt )n ∈ F+
t converges to zero in O then, for any βt ∈ R+

t , βtα
n
t

converges to zero in O.
4) If (αnt )n ∈ F+

t and (βnt )n ∈ F+
t converge to zero for O then (αnt + βnt )n

converges to zero for O.
5) If (αnt )n ∈ F+

t converges to zero in O then (αnt )n is Ft bounded from
above.

Note that the topology of convergence in probability on F = L0(R,F) is
compatible.

3. Stochastic topology on F .

In the following, we consider a topology O which is compatible with the
stochastic Riesz space F .

Definition 3.1. Let t ∈ [0, T ]. We say that a sequence (Xn)n of F is T +
t -

convergent to X ∈ F , if X � Xn + αnt for all n ≥ 1, where (αnt )n ∈ F+
t

converges to zero in O.

The following result is trivial, as O is compatible, see Definition 2.10, 2) :

Lemma 3.2. (Xn)n≥1 T +
t -converges to X if and only if ess supFt

(X−Xn)+

converges to zero in O, as n→∞.

The T +
t -convergence we have defined above comes from a topology that

we also denote by T +
t . Indeed, consider the set O0 of all neighborhoods of 0

in the topology O. In particular, any finite intersection or arbitrary union of
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elements of O0 is still in O0. We then define a neighborhood base Bt(X) of
any point X of F as follows:

Bt(X) : = {Bt(X, V0) : V0 ∈ O0},
Bt(X, V0) : = {Z ∈ F ; ess supFt

(X − Z)+ ∈ V0}.

A subset U of F is said to be an open set for the topology T +
t if, for any

X ∈ U , there exists BX ∈ Bt(X) such that X ∈ BX ⊂ U . We then easily
verify that the collection of open sets U for T +

t , as previously defined, is
a topology. Moreover, the convergence of Definition 3.1 coincides with the
convergence induced by this topology.

Remark 3.3. The topology T +
t is not Hausdorff. For example, if X, Y ∈ F

are such that X � Y , then, X − Y � 0 and (X − Y )+ = 0. It follows
that ess supFt

(X − Y )+ = 0 ∈ V0 for every V0 ∈ O0 and we conclude that
Y ∈ Bt(X) for all Bt(X) ∈ Bt(X).

Lemma 3.4. If E is a closed set of F for T +
t , then E is a lower set, i.e.

E −F+ ⊆ E.

Proof. Indeed, consider Z � γ where γ ∈ F . Then, (Z − γ)+ = 0 hence the
constant sequence (γn = γ)n≥1 converges to Z and, finally, Z ∈ F .

Lemma 3.5. If (Xn)n∈N converges to X with respect to T +
t and (X̃n)n∈N is

another sequence such that Xn � X̃n, for all n ∈ N, then (X̃n)n∈N converges
to X with respect to T +

t .

Proof. There exists a sequence (αnt )n ∈ F+
t converging to zero in O such that

X � Xn + αnt � X̃n + αnt . The conclusion follows.

Proposition 3.6. Let (Xn)n∈N and (Y n)n∈N be two sequences of elements
of F which converge to X and Y respectively, with respect to T +

t . Then, the
following convergences hold with respect to T +

t :

1) The sequence (Xn + Y n)n∈N converges to X + Y .

2) The sequence (αtX
n)n∈N converges to αtX, for all αt ∈ R+

t .

3) The sequence (ess supFt
(Xn))n∈N converges to ess supFt

(X) with respect
to T +

t .

Proof. Observe that X+Y � Xn+αnt +Y n+βnt where αnt , β
n
t ∈ F+

t converge
to zero in O. We then conclude by the statement 4) of Definition 2.10 that
1) holds. Similarly, αtX � αtX

n + αtα
n
t . We conclude by the statement
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3) of Definition 2.10 that 2) holds. At last, X = (X − Xn) + Xn hence
X � ess supFt

(X −Xn) + ess supFt
(Xn). We deduce that

ess supFt
(X) � αnt + ess supFt

(Xn),

where αnt = ess supFt
(X − Xn) tends to 0 in O by Lemma 3.2. We then

conclude that 3) holds.

Proposition 3.7. A sequence (Xn)n≥1 of elements in F converges with re-
spect to T +

t if and only if ess infFT
((Xn)n≥1) exists in F or, equivalently, the

sequence (Xn)n≥1 is FT -bounded from below. Moreover, under these equiva-
lent conditions, ess infFT

((Xn)n≥1) is a limit of (Xn)n≥1 for T +
t .

Proof. If the sequence (Xn)n≥1 converges to X then X � Xn + αnt where
αnt ∈ F+

t converge to zero in O. By the statement 5) of Definition 2.10,
(αnt )n≥1 is bounded from above by some αt ∈ F+

t . Therefore, X � Xn + αt
and Xn � X−αt. This means that the sequence (Xn)n≥1 is FT -bounded from
below. As F is Dedekind complete, we then deduce that ess infFT

((Xn)n≥1)
exists in F . Reciprocally, if ess infFT

((Xn)n≥1) exists in F , we deduce from
Xn � ess infFT

((Xn)n≥1) that (ess infFT
((Xn)n≥1)−Xn)+ = 0. This implies

that ess supFt
(ess infFT

((Xn)n≥1) − Xn)+ = 0 hence (Xn)n≥1 converges to
ess infFT

((Xn)n≥1) with respect to T +
t . Therefore, the sequence (Xn)n≥1 is

convergent with respect to T +
t .

Corollary 3.8. A sequence (Xn)n≥1 of elements in F is such that (Xn)n≥1
and (−Xn)n≥1 converge with respect to T +

t if and only if ess supFT
((|Xn|)n≥1)

exists in F .

Proof. By Proposition 3.7, there exists α, β ∈ F such that Xn � β and
−Xn � −α for all n ≥ 1. We may replace β by −β− and α by α+, hence we
may suppose w.l.o.g. that α, β � 0 and −β � Xn � α. Therefore, (Xn)+ ≤ α
and (Xn)− ≤ β, for all n ≥ 1. We then deduce that |Xn| � α + β, for all
n ≥ 1. As F is Dedekind complete, we conclude that ess supFT

((|Xn|)n≥1)
exists in F . The reverse implication is immediate by Proposition 3.7.

By the same type of reasoning, we deduce the following:

Lemma 3.9. A sequence (Xn)n≥1 of elements in F is such that (Xn)n≥1
converges to X and (−Xn)n≥1 converges to −X with respect to Tt if and only
if ess supFt

(|X −Xn|) converges to 0 for O.
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In the following, we recall the classical definitions of limit infimum and
supremum of a sequence (Xn)n≥1 of F , adapted to our Riesz structure:

lim inf
n

Xn := ess supFT
{ess infFT

{Xk : k ≥ n} : n ≥ 1},

lim sup
n

Xn := ess infFT
{ess supFT

{Xk : k ≥ n} : n ≥ 1}.

We easily see that lim supnX
n = − lim infn(−Xn) and, for any X ∈ F ,

lim infn(X+Xn) = X+lim infnX
n and lim supn(X+Xn) = X+lim supnX

n.
Also, if Xn � Y n, for all n ≥ 1, we have lim supnX

n ≤ lim supn Y
n and

lim infnX
n ≤ lim infn Y

n.

Definition 3.10. We say that the topology O of the stochastic Riesz space F
satisfies the VLS condition (Vanishing Limit Supremum) if, for any sequence
(Xn)n≥1 of F that converges to 0 in O, there exists a subsequence (Xnk)k≥1
such that lim supkX

nk = 0.

The property VLS is satisfied for the stochastic Riesz space F = L0(R,FT )
equipped with a complete stochastic basis (Ω, (Ft)t∈[0,T ],P) and the topol-
ogy O of convergence in topology. Indeed, it is possible to extract from any
sequence that is convergent in probability a subsequence which converges
almost surely.

Proposition 3.11. Suppose that the topology satisfies the VLS condition. If
a sequence (Xn)n≥1 of elements in F converges to X, with respect to T +

t ,
then there exists subsequence (Xnk)k≥1 such that

X � lim inf
k

(Xnk).

Proof. Recall that a sequence (Xn)n∈N of elements in F converges to X
with respect to T +

t if and only if ess supFt
(X − Xn)+ converges to 0 in

O. By the VLS condition, there exists a subsequence (Xnk)k≥1 such that
lim supk ess supFt

(X − Xnk)+ = 0. As X − Xnk � ess supFt
(X − Xnk)+,

we then deduce that the inequality lim infk[X − ess supFt
(X − Xnk)+] �

lim infk(X
nk) holds. As

lim inf
k

[X − ess supFt
(X −Xnk)+] = X + lim inf

k
[− ess supFt

(X −Xnk)+],

= X − lim sup
k

ess supFt
(X −Xnk)+,

= X,
10



the conclusion follows.

For any converging sequence X = (Xn)n≥1 of F with respect to T +
t , we

denote by Lt(X) the set of all limits with respect to T +
t .

Example 3.12. Suppose that the VLS condition holds. Let C ∈ F . Consider
the sequence X = (Xn)n≥1 such that Xn = C for every n ≥ 1. If Z ∈ Lt(X),
Z ≤ C, by Proposition 3.11. On the other hand, assume that Z ∈ (−∞, C].
It follows that 0 ≤ (Z −Xn)+ ≤ (C −Xn)+ = 0 hence (Xn)n≥1 converges to
Z in T +

t . We finally deduce that Lt(X) = (−∞, C].

Definition 3.13. A subset E ⊂ F is said to be Ft-decomposable, t ≤ T , if,
for each ξ, η ∈ E and each component It in It, the element Itξ + (1 − It)η
belongs to E.

Proposition 3.14. Let X = (Xn)n≥1 be a sequence in F that converges with
respect to T +

t . The set of all possible limits Lt(X) is Ft-decomposable.

Proof. Let ξ, η ∈ Lt(X) and It ∈ It. We have ξ � Xn+αnt and η � Xn+βnt ,
for all n ≥ 1, where αnt , β

n
t ∈ F+

t converge to 0 in O, as n → ∞. By
Assumption A, we deduce that the sequence X = (Xn)n≥1 also satisfies
γ � Xn + γnt where γ = Itξ + (1 − It)η and γnt = Itα

n
t + (1 − It)βnt . By the

statements 3) and 4) of Definition 2.10, we get that γnt ∈ R+
t converges to 0

in O. Therefore, γ ∈ Lt(X) and the conclusion follows.

Proposition 3.15. For any T +
t -convergent sequence X = (Xn)n of F , if

L1, L2 ∈ Lt(X), then L1 ∨ L2 ∈ Lt(X).

Proof. We have L1 � Xn + αnt and L2 � Xn + βnt , for all n ≥ 1, where
αnt , β

n
t ∈ F+

t converge to 0 in O, as n → ∞. Therefore, L1 � Xn + γnt and
L2 � Xn + γnt where γnt = αnt + βnt . It follows that L1 ∨L2 � Xn + γnt for all
n ≥ 1. By the statement 4) of Definition 2.10, γnt ∈ F+

t converges to 0 in O,
as n→∞. We deduce that L1 ∨ L2 ∈ Lt(X).

Lemma 3.16. Let X = (Xn)n≥1 be a sequence of elements in F such that
X and −X are T +

t -convergent. Then ξ = ess supFT
(Lt(X)) exists in F .

Proof. For every Z ∈ Lt(X), there exists a sequence (αnt )n≥1 such that
we have Z � Xn + αnt and αnt ∈ F+

t converge to 0 in O, as n → ∞.
By the statement 5) of Definition 2.10, there exists αt ∈ F+

t that domi-
nates the sequence (αnt )n≥1. Moreover, the sequence (Xn)n≥1 is dominated
by ess supFT

((|Xn|)n≥1) ∈ F , see Corollary 3.8. Therefore, we deduce that
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Z � αt + ess supFT
((|Xn|)n≥1) for all Z ∈ Lt(X). This shows that Lt(X) is

FT -bounded. As F is Dedekind complete, the conclusion follows.

Consider the constant sequence X = (Xn)n of F such that Xn = C ∈ F
for every n ≥ 1. Then ess supFT

(Lt(X)) = C ∈ Lt(X).

Proposition 3.17. Suppose that the VLS condition holds. Let X = (Xn)n≥1
be a sequence of elements in F such that X and −X are T +

t -convergent. Let
us consider ξ(t) = ess supFT

(Lt(X)) ∈ F , which exists by Lemma 3.16. There
exists a subsequence (Xnk)k≥1 such that

lim inf
n

Xn � ξ(t) � lim inf
k

(Xnk).

Proof. By Proposition 3.11, we have ξ(t) � lim infkX
nk for a subsequence

(Xnk)k≥1. We show that ξ(t) � lim infnX
n. For any n ≥ 1, let us define the

sequence Zn = ess infFT
{Xk : k ≥ n}. By Corollary 3.8, Zn ∈ F as F is

Dedekind complete. Since Zn � Xk for any k ≥ n, we have (Zn −Xk)+ = 0
and we deduce that Zn ∈ Lt(X). So Zn ≤ ξ(t), for all n ≥ 1. We conclude
that lim infnX

n ≤ ξ(t).

4. Financial market models derived from stochastic Riesz spaces

A financial market model is defined by a stochastic Riesz space F = (F ,R)
as defined in Section 2. We suppose that the VLS condition is satisfied.
Moreover, we consider a stochastic price process (St)t∈[0,T ], T > 0, which is,
by definition, a family of the time t elements St of a vector space S. For
each t ∈ [0, T ], St is interpreted as the collection of all prices at time t of the
risky assets in the financial market. An investment strategy on the interval
[t, T ], t ∈ [0, T ], is any stochastic process (θu)u∈[t,T ], which is, by definition, a
family of the time u ≥ t elements θu of a vector space Q. For each u ∈ [t, T ],
θu is interpreted as the quantities invested at time u in the risky assets of
the financial market. In finance, such strategies are supposed to satisfy some
self-financing condition, see [18].

We suppose that there exists a left linear operator 〈θ, S〉 between the
elements θ ∈ Q and S ∈ S with values in F . For simplicity, we denote it by
θS = 〈θ, S〉 ∈ F and we interpret it as a product between the quantities θ
and the prices S.

12



Definition 4.1. An investment strategy θ = (θu)u∈[t,T ], t ∈ [0, T ], is said
adapted to the stochastic structure of F (adapted in short) if the liquidation
value at time u ≥ t, given by Vu(θ) = θuSu ∈ F satisfies Vu(θ) ∈ Fu, for all
u ≥ t.

The definition above needs to be understood as follows. At time u ≥ t, Su
is observable and the financial position θu is chosen by the manager in terms
of the available information on the market. Then, Vu(θ) is the portfolio value,
which is Fu-measurable, i.e. observable at time u.

Example 4.2. In the classical theory of financial mathematics, the market
is defined by a complete right-continuous stochastic basis (Ω, (Ft)t∈[0,T ],P).
Then, if the market is composed of d ≥ 1 risky assets, Q = S = L0(Rd,FT )
is the set of all Rd-valued FT -random variables. Moreover, it is supposed
that Sit > 0, i = 1, · · · , d, a.s., St is Ft-measurable and any strategy θt is also
Ft-measurable. A discrete-time strategy θ satisfies by definition θt = θi−1
for any t ∈ (ti−1, ti], i = 1, · · · , n, where the n + 1 discrete dates satisfy
t0 = 0 < t1 < · · · < tn = T and θi−1 is Fti−1

-measurable (i.e. fixed at time
ti−1), for any i = 1, · · · , n.

A discrete-time strategy as defined above is said self-financing if the liqui-
dation value V = V (θ) given by Definition 4.1 satisfies ∆Vti = θi−1∆Sti for
all i = 1, · · · , n, with the general notation ∆Vti = Vti−Vti−1

. This is the case
for discrete-time financial models of the literature, provided that there is no
transaction costs and the prices are discounted.

The value at time T of a discrete-time portfolio V = V (θ) starting from
the initial capital V0 at time 0 is then given by

VT = x+
n∑
i=1

θi−1∆Sti . (4.4)

Of course, we may extend this definition to any strategy only defined on
some interval [t, T ] with the initial capital Vt at time t.

The challenge in mathematical finance is to extend the concept of self-
financing strategy, as presented in the example above, in continuous time. It
is done by the mean of the Ito stochastic calculus, see [15], and more gener-
ally for semi-martingales price processes S, see [23]. In that case, a portfolio
process is a stochastic integral in continuous-time, generalizing (4.4). More-
over, these stochastic integrals are limit in some sense (in L2 with the Ito
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calculus) of discrete-time portfolio processes. Here, we propose to follow this
general idea in the context of the stochastic Riesz space (F ,R) that defines
our financial model. This means that we consider elementary portfolio pro-
cesses, that we call discrete-time portfolio processes as in the classical theory,
and we aim to construct continuous-time portfolio processes as limits of such
discrete-time portfolio processes.

In the following, we denote by Vdt,T ⊆ FT the given set of all terminal
values of discrete-time portfolios defined on the interval [t, T ], starting with
the zero initial capital at time t ∈ [0, T ]. We suppose that Vdt,T is a convex
set containing 0, which is Ft-decomposable. The terminal value Wt,T of an
elementary portfolio defined on the interval [t, T ], starting with the initial
capital Vt at time t, is then Wt,T = Vt+Vt,T where Vt,T ∈ Vdt,T . By assumption,
any Vt,T ∈ Vdt,T is of the form Vt,T = θTST for some so-called discrete-time
strategy θ = (θu)u∈[t,T ] such that Vt,u = θuSu ∈ Fu, for all u ∈ [t, T ]. In the
following, we shall also use the integral notation

V θ
t,u =

∫ u

t

θrdSr = θuSu ∈ Fu, u ∈ [t, T ], (4.5)

which is derived from the self-financing property satisfied in the classical
financial models of the literature. The set Vdt,T may be interpreted as the
portfolio terminal values we may obtain when following a piece-wise constant
strategy, see the discrete-time models in [[14], Section 2].

5. Super-hedging prices and no-arbitrage condition AIP in
discrete-time

In the following, we consider the financial model of Section 4 with the same
notations and assumptions. In finance, a contingent claim or payoff is a ter-
minal wealth WT ∈ F = FT that must be delivered at some maturity date
T > 0 to the holder of some financial contract. For instance, WT = (ST−K)+

is the payoff of the so-called European Call option of underlying asset price
S and strike K > 0. The European Call option contract corresponds to the
possibility to buy the risky asset at price K instead of ST . Clearly, it is in-
teresting to exercice it if and only if ST ≥ K so that the profit is (ST −K)+.

Definition 5.1. A contingent claim WT ∈ F is said to be super-hedgeable in
discrete-time at time t if there exists a so-called super-hedging price pt ∈ Ft
and Vt,T = Vt,T (θ) ∈ Vdt,T such that pt + Vt,T � WT .
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Note that the portfolio processes of our model take their values in F which
is equipped with the partial order �. For two terminal wealths W 1

T ,W
2
T ∈ F ,

we may interpret the inequality W 1
T � W 2

T as if W 2
T is preferred to W 1

T . In
that case, � designates the preferences of a given financial manager. There
is also a second possible interpretation. In the models with transaction costs,
see [[14], Section 3], W 1

T � W 2
T if it is possible to change the financial position

W 2
T into W 1

T by paying some transaction costs. We refer the readers to [11]
and [12], for random partial orders especially designed for financial models
with frictions. Here, the inequality pt + Vt,T � WT needs to be understood
according to the second approach. The super-hedging price pt ∈ Ft is the
capital that the option contract seller asks at time t to the buyer so that
he/she may initiate a portfolio strategy θ that generates the portfolio process
Vt,· = Vt,·(θ) whose terminal value is sufficient (for the option seller) to deliver
the payoff hT to the buyer.

The set of all super-hedgeable claims from discrete-time strategies, with
zero initial endowment at time t, is then given by

Adt,T =
{
Vt,T − εT , Vt,T ∈ Vdt,T , εT ∈ F+

T

}
.

We denote by Pdt,T (WT ) the set of all super-hedging prices pt ∈ Ft at time
t ∈ [0, T ] for the contingent claim WT in discrete-time, as in Definition 5.1.
The infimum super-hedging price is then defined as

Pd∗t,T (WT ) := ess infFt(Pdt (WT )), t ∈ [0, T ].

Notice that we do not necessary have Pd∗t,T (WT ) ∈ Ft. In particular, Pd∗t,T (WT )
is not necessary a super-hedging price. We also adopt the following notations
Pdt,T := Pdt,T (0) and Pd∗t,T = Pd∗t,T (0).

Proposition 5.2. We have Pdt,T =
(
−Adt,T

)
∩ Ft and

Pdt,T =
{

ess supFt
(−Vt,T ) : Vt,T ∈ Vdt,T

}
+ F+

t .

Proof. It suffices to observe that pt is a price for 0 if and only if there exists
Vt,T ∈ Vdt,T such that pt + Vt,T � 0, i.e, pt � −Vt,T which is equivalent
to pt � ess supFt

(−Vt,T ). In particular, −pt � Vt,T hence −pt ∈ Adt,T . The
conclusion follows.

We introduce the notion of absence of instantaneous profit, as in [4], [1].
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Definition 5.3 (AIP). An instantaneous profit in discrete-time at time t < T
is the possibility to super-replicate the zero contingent claim from a discrete-
time negative price, i.e. if there exists pt,T ∈ Pdt,T ∩F−t . On the contrary, we
say that the Absence of Instantaneous Profit (AIP ) holds if, for any t ≤ T ,

Pdt,T ∩ F−t = Adt,T ∩ F+
t = {0}. (5.6)

We obtain the following result.

Lemma 5.4. The AIP condition holds in discrete-time if and only if, for
any t ≤ T and for all Vt,T ∈ Vdt,T , we have ess infFt(Vt,T ) � 0.

Proof. AIP holds at time t if and only if Pdt,T ⊂ F+
t . By Proposition 5.2, this

is equivalent to ess supFt
(−Vt,T ) � 0, i.e. ess infFt(Vt,T ) � 0, ∀Vt,T ∈ Vdt,T , by

the statement 2) of Proposition 2.7.

6. Super-hedging prices and no-arbitrage condition AIP in
continuous-time

We still consider the financial model of Section 4 both with the definitions
from Section 5 that we shall adapt immediately to the continuous-time setting
we introduce. In the following, we denote by Vct,T ⊆ FT the set of all terminal
values of continuous-time portfolios defined on the interval [t, T ], starting
with the zero initial capital at time t ∈ [0, T ]. By definition, V c

t,T ∈ Vct,T
if there exists a T +

t -convergent sequence V d
t,T = (V d,n

t,T )n≥1 ∈ Vdt,T such that

V c
t,T ∈ Lt(V d

t,T ). We observe that Vdt,T ⊆ Vct,T . To see it, it suffices to consider
constant sequences constructed from discrete-time strategies.

The financial interpretation of a continuous-time portfolio V c
t,T ∈ Vct,T is

the following: It is possible to reach the value V c
t,T from above, in limit, from

a sequence of discrete-time portfolios. This is a direct consequence of the
definition of the T +

t -convergence.

Definitions 5.1 and 5.3 are easily adapted to the continuous-time case if
we replace Vdt,T by Vct,T . Then, we observe that Proposition 5.2 is still valid
in continuous time as well as Lemma 5.4. We now propose to show that the
AIP conditions, respectively in discrete and continuous time, are equivalent:

Theorem 6.1. The AIP conditions are equivalent in discrete and continuous
time.
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Proof. It suffices to prove that AIP holds in continuous time if it holds in
discrete time. By Lemma 5.4, we have ess infFt(Vt,T ) � 0 for all Vt,T ∈ Vdt,T .

We have to show the same for V c
t,T ∈ Vct,T . By definition, V c

t,T � V d,n
t,T +αnt for

all n ≥ 1, where αnt ∈ F+
t converges to 0 in O and V d,n

t,T ∈ Vdt,T . As αnt is Ft-
measurable, we deduce that ess infFt V

c
t,T � ess infFt V

d,n
t,T + αnt � αnt . As, we

suppose that the VLS condition holds, we have ess infFt V
c
t,T � αnk

t by AIP,
for a subsequence (αnk

t )k≥1 such that lim supk α
nk
t = 0. By (2.3), we know

that ess infFt V
c
t,T = ess infFT

ess infFt V
c
t,T . So, ess infFt V

c
t,T � lim supk α

nk
t

and we conclude that ess infFt V
c
t,T � 0. The conclusion follows.

We now compare the super-hedging prices in continuous and discrete time.
To do so, for any payoffWT ∈ F , we use the notations Pct,T (WT ) and Pc∗t,T (WT )
for the continuous-time super-hedging prices, analogs of the discrete-time
prices Pdt,T (WT ) and Pd∗t,T (WT ).

Theorem 6.2. Let WT ∈ F be a payoff. For any t ∈ [0, T ], we have
Pdt,T (WT ) ⊆ Pct,T (WT ) and Pc∗t,T (WT ) = Pd∗t,T (WT ).

Proof. Since Vdt,T ⊆ Vct,T for t ∈ [0, T ], Pdt,T (WT ) ⊆ Pct,T (WT ) for any payoff
WT ∈ F and, finally, Pc∗t,T (WT ) � Pd∗t,T (WT ). Moreover, if pct ∈ Pct,T (WT ),

then pct + V c
t,T � WT for some V c

t,T ∈ Vct,T . By definition, V c
t,T � V d,n

t,T + αnt
where the sequence (V d,n

t,T )n≥1 belong to Vdt,T and αnt ∈ F+
t tends to 0 in O, as

n→∞. We deduce that pct+V
d,n
t,T +αnt � WT so that pct+α

n
t ∈ Pdt,T (WT ) for all

n ≥ 1. Therefore, pct+α
n
t � Pd∗t,T (WT ). By the VLS condition, we may assume

w.l.o.g. that lim supn α
n
t = 0 so that we finally conclude that pct � Pd∗t,T (WT ).

As pct is arbitrarily chosen, we conclude that Pc∗t,T (WT ) � Pd∗t,T (WT ) and the
conclusion follows.

7. Stochastic integrals in continuous-time

We consider the financial model as considered in Section 6. Recall that each
V d
t,T ∈ Vdt,T may be seen as a stochastic integral as in (4.5), i.e. generated by a

discrete-time strategy θ on [t, T ]. In this section, we provide a way to extend
such a stochastic integral in continuous time on [t, T ].

Definition 7.1. Let t ∈ [0, T ]. A continuous-time strategy θc on [t, T ] is a
sequence θc = (θn)n≥1 of discrete-time strategies θn, n ≥ 1, such that the

sequence V d
t,T (θn) =

∫ T
t
θnudSu, n ≥ 1, is T +

t -convergent. We then define the
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stochastic integral of θc with respect to S as:∫ T

t

θcudSu := ess supFT
Lt(θc), Lt(θc) := Lt

((∫ T

t

θnudSu

)
n≥1

)
(7.7)

The continuous-time stochastic integral
∫ T
t
θcudSu above may be also inter-

preted as a continuous-time portfolio terminal value. In that case, we define
the set of all attainable claims as the family V̄ct,T of all V̄ c

t,T ∈ F such that

V̄ c
t,T �

∫ T
t
θcudSu for some continuous-time strategy θc on [t, T ]. We easily see

that Vct,T ⊆ V̄ct,T so that we have enlarged the set of all possible continuous-
time portfolio processes.

Note that, in the classical setting of stochastic calculus, see [23] or [15], a

continuous-time stochastic integral I =
∫ T
0
θtdSt is the limit of discrete-time

integrals In =
∫ T
0
θnt dS

t with respect to the topology of convergence in prob-
ability and −In converges also to −I. By Proposition 3.17, we then deduce
that I =

∫ T
0
θtdS

t coincides with the integral as constructed in Definition
7.1. This means that our stochastic integral is an extension of the usual one.

In the following, we suppose that the family of discrete-time strategies
generating the discrete-time portfolios Vdt,T is a convex cone. By Proposition
3.6, we deduce that the family of continuous-time strategies generating the
continuous-time portfolios V̄ct,T is also a convex cone. Moreover, we suppose
that the conditional operator ess supFT

satisfy the following properties:

Condition H: If α ∈ R+, then ess supFT
(αD) = α ess supFT

(D) for any
D ⊆ F .

In Proposition 8.1 of Appendix, we give some conditions on (F ,R) such
that Condition H holds.

Definition 7.2. Let t ∈ [0, T ]. The integral operator θ 7→
∫ T
t
θudSu is Ft

upper linear in discrete time (resp. in continuous time) if∫ T

t

(θ1u + αtθ
2
u)dSu �

∫ T

t

θ1udSu + αt

∫ T

t

θ2udSu, (7.8)

for any discrete-time (resp. continuous-time) strategies θ1, θ2 and αt ∈ R+
t .

Similarly, we may define the lower linearity by replacing � by � in the
inequality above. Then, an operator is Ft linear if it is both lower and upper
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linear. Note that the inequality (7.8) means that the portfolio terminal value∫ T
t

(θ1u+αtθ
2
u)dSu is greater than the combination of the two isolated portfolio

terminal values
∫ T
t
θiu1dSu, i = 1, 2. This is an interesting property in finance,

meaning that we improve the terminal wealth by diversification. Note that
the strict equality is generally not satisfied in finance if there are transaction
costs.

We observe that an Ft upper linear operator is strictly Ft positively ho-
mogeneous in the sense that the inequality (7.8) is an equality for θ1 = 0,
any θ2, and any αt ∈ R+

t which is invertible in R+
t , i.e. αtα

−1
t = α−1t αt = 1

for some α−1t ∈ R+
t .

Proposition 7.3. Suppose that Condition H holds. If the integral operator
θ 7→

∫ T
t
θudSu is Ft upper linear in discrete time, then it is Ft upper-linear

in continuous time.

Proof. Let θc,i = (θn,i)n≥1, i = 1, 2, be two continuous-time strategies where
θn,i are discrete-time strategies. By definition, (V d

t,T (θni))n≥1, i = 1, 2, are
T +
t -convergent sequences. Note that (V d

t,T (αtθ
n2))n≥1 = (αtV

d
t,T (θn2))n≥1 is

also T +
t -convergent by Proposition 3.6 when αt ∈ R+

t . Using the the upper
linearity assumption for the discrete-time strategies and the statements 3)
and 4) of Definition 2.10, we get that Lt(θc,1) +αtLt(θc,2) ⊆ Lt(θc,1 +αtθ

c,2).

It follows that ξ1 +αtξ
2 ≤

∫ T
t

(θc,1u + αtθ
c,2
u ) dSu for any ξi ∈ Lt(θc,i), i = 1, 2.

Using Condition H, and considering the essential supremum knowing FT
over all ξ1 and ξ2, successively, we then deduce that∫ T

t

θc,1u dSu + αt

∫ T

t

θc,2u dSu ≤
∫ T

t

(
θc,1u + αtθ

c,2
u

)
dSu.

The conclusion follows.

Through the stochastic integrals as defined in Definition 7.1, we have en-
larged the class of continuous-time portfolio processes. Some problems are
open: no-arbitrage characterizations, super-hedging problems, as it is done
in the usual setting of stochastic finance.

8. Appendix

The property α = (α∧ 1)(α∨ 1) that we require in the following proposition
holds in the setting of the Riesz spaces which are f-algebras, as shown in De
Pagter’s thesis, see [7].
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Proposition 8.1. Suppose that there exists an inner product αβ ∈ R+

between elements of α, β ∈ R+ and suppose that, any α ∈ R+ such that
α � 1 is invertible in α ∈ R+. Moreover, suppose that any α ∈ R+ satisfies
α = (α ∧ 1)(α ∨ 1). Then, for any family D ⊆ F , we have

ess supFT
(αD) = α ess supFT

(D).

Proof. Since D � ess supFT
(D), we get that αD � α ess supFT

(D) hence

ess supFT
(αD) � α ess supFT

(D). (8.9)

1rst case: α � 1

By (8.9), we also have

ess supFT
((1− α)D) � (1− α) ess supFT

(D). (8.10)

Adding this inequality (8.10) to (8.9), we get that

ess supFT
(αD) + ess supFT

((1− α)D) � ess supFT
(D).

As ess supFT
(αD) + ess supFT

((1− α)D) � αd + (1 − α)d for all d ∈ D, we
finally deduce that D � ess supFT

(αD) + ess supFT
((1− α)D) hence

ess supFT
(D) � ess supFT

(αD) + ess supFT
((1− α)D) � ess supFT

(D). (8.11)

By antisymmetry, we get that

ess supFT
(αD) + ess supFT

((1− α)D) = ess supFT
(D).

Using (8.10) and (8.9), we deduce that necessarily (8.10) and (8.9) are equal-
ities.

2nd case: α � 1

By assumption, α is invertible hence (8.9) may be applied to α−1 and α
so that we deduce that (8.9) is an equality.

General case

By assumption, α = (α ∧ 1)(α ∨ 1). Therefore, applying successively the
first and the second case, we deduce that

ess supFT
(αD) = ess supFT

((α ∧ 1)(α ∨ 1)D) = (α ∧ 1) ess supFT
((α ∨ 1)D)

= (α ∧ 1)(α ∨ 1) ess supFT
D = α ess supFT

D.

The conclusion follows.
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