
HAL Id: hal-03852052
https://hal.science/hal-03852052

Submitted on 14 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A novel pattern-based edit distance for automatic log
parsing

Maxime Raynal, Marc-Olivier Buob, Georges Quénot

To cite this version:
Maxime Raynal, Marc-Olivier Buob, Georges Quénot. A novel pattern-based edit distance for auto-
matic log parsing. 26th International Conference on Pattern Recognition (ICPR), Aug 2022, Montréal,
Canada. �10.1109/ICPR56361.2022.9956295�. �hal-03852052�

https://hal.science/hal-03852052
https://hal.archives-ouvertes.fr

A novel pattern-based edit distance for automatic
log parsing

Maxime Raynal
Nokia Bell Labs France
Univ. Grenoble Alpes

CNRS, Grenoble INP, LIG
F-38000 Grenoble, France

Marc-Olivier Buob
Nokia Bell Labs France

Georges Quénot
Univ. Grenoble Alpes

CNRS, Grenoble INP, LIG
F-38000 Grenoble, France

Abstract—This work aims at inferring a set of regular expres-
sions to parse a text file, like a system log. To this end, we propose
a novel edit distance taking advantage of the pattern matching
background. Edit distances are commonly used for fuzzy search
and in bioinformatics, and compare two strings at the character
level. By doing so, edit distances do not consider the nature of the
data conveyed by the strings. To address this problem, we propose
the following contributions. First, we propose to model strings at
the pattern level using a dedicated data structure, called pattern
automaton. Second, we design a novel edit distance, operating
at the pattern level. Third, we derive a clustering algorithm
optimized for this distance. Finally, we evaluate our proposal
through experimental validation.

I. INTRODUCTION

Unstructured data is ubiquitous, and its lack of structure
makes it difficult to analyze. As a sequel, it often ends up being
unused [1]. In practice, processing unstructured data forces to
develop dedicated parsers to convert it to a more convenient
format. This problem arises in network management especially
when analyzing system logs1 or system command outputs.
Unfortunately, developing parsers is often tedious, time con-
suming and error prone. To address this problem, we propose
to design a novel distance and a clustering algorithm to infer
the regular expressions required to parse the data.

In the details, log parsing involves three main steps.
1) Log clustering partitions lines involved in a log file so

that each group of lines conforms to a same (unknown)
template.

2) Template extraction derives for each cluster a common
“template”, e.g., regular expression, allowing to extract
the data from each line involved in this cluster.

3) Data extraction exploits the template assigned to each
cluster. It reads the input file line-by-line, extracts the
data, and converts it to the target format.

Ideally, a log parsing tool should meet the following re-
quirements.

• Scalability: the underlying algorithms must be efficient
in order to process large log files.

• Coherency: the obtained clustering must form groups of
homogeneous lines to output tractable results.

1Logs are text files, where each line usually corresponds to a timestamped
message.

• Generalizability: the automatic parser must work with as
little prior knowledge as possible (configuration settings
must be as generic as possible) and without human
intervention.

In a nutshell, our proposal takes as parameter some pre-
defined patterns allowing to capture the nature of the data
conveyed in the strings (just like Spell [2], Logmine [3] and
Drain [4]) and cluster the log accordingly. This collection of
patterns may be customized to improve the quality of the
clustering.

The main novelty provided by our approach resides in its
ability to consider every decomposition at the pattern scale.
Moreover, our approach performs well by only using universal
patterns (dates, numerical values, network addresses) and leads
to results as accurate as Drain, which is the best existing tool
according to [5].

Our proposal models each line of logs at the pattern scale
using an automata-like structure called pattern automaton
(PA). Indeed, a given string may lead to several pattern-
based decompositions2. As a sequel, choosing an arbitrary
decomposition could degrade the quality of the results, and
by design, a pattern automaton considers them all.

To compare pattern automata, we introduce a novel distance,
that computes a Levenshtein-like distance operating at the
pattern scale. From this distance, we derive a clustering
algorithm, called pattern clustering (PC), and allowing to
group homogeneous lines of log.

To sum up, the contributions of this paper are:

• a new pattern-based text similarity measure, obtained by
generalizing the Needleman-Wunsch algorithm;

• a novel pattern-based clustering algorithm taking advan-
tage of the pattern distance;

• an experimental validation of our proposal, and a com-
parison against the most relevant existing solutions.

Section II presents the related works, which includes the
theoretical background as well as works related to automatic
parsing. Section III defines the pattern automaton structure
allowing to represent text at the pattern scale. Section IV
introduces the pattern distance used to evaluate how similar

2See for example https://regex-generator.olafneumann.org

https://regex-generator.olafneumann.org

192.168.0.2 (EE) xyz
1.2.3.4 (II) abc
12/3/2004 10:12 abcd
12/6/2018 10:12 xyz
12 34 abcd
92 168 EExyz

(a) Input log file.

1.2.3.4 (II) abc
12/3/2004 10:12 abcd
12 34 abcd

192.168.0.2 (EE) xyz
12/6/2018 10:12 xyz
92 168 EExyz

(b) With character-level distance.

192.168.0.2 (EE) xyz
1.2.3.4 (II) abc

12/3/2004 10:12 abcd
12/6/2018 10:12 xyz

12 34 abcd
92 168 EExyz

(c) With pattern-level distance.

Fig. 1: Toy example illustrating the log clustering problem and the inherent limitations of character based distances.

are two pattern automata. Section V presents the pattern clus-
tering algorithm, obtained by optimizing the nearest neighbor
clustering according to our distance. Section VI evaluates the
tractability of our proposal on several public datasets and
compares it to LogMine and Drain.

II. STATE OF THE ART

This section presents the theoretical background related to
our proposal (see Section II-A), as well as automatic parsing
tools proposed in the literature (see Section II-B).

A. Edit distances on strings

Many text similarity measures have been proposed in the
literature [6]. Edit distances compare two strings according to
a set of edit operations, and count how many operations are
required to transform the first string into the other one.

The Longest Common Subsequence (LCS) only considers
character insertions and deletions [7]. [8] revisits this prob-
lem using a dedicated graph, called edit graph. [9], [10]
propose various optimizations to accelerate LCS algorithm.
The Levenshtein distance [11] considers an additional op-
eration, the character substitution. The Needleman-Wunsch
(NW) algorithm [12] can compute any edit distance involving
character deletion, insertion and substitution. These operations
may be weighted to guide how the two compared strings must
be aligned. The Smith-Waterman (SW) algorithm [13] is a
variation of the NW algorithm. While NW searches for the
best alignment for the entire sequences (global alignment),
SW searches for the best possible alignment among all the
infixes of the two input strings (local alignment).

By design, LCS, NW and SW algorithms operate at the
character level. To overcome this limitation, Jiang et al [14]
represent RNA sequences using graphs rather than strings.
This generalized edit distance captures the secondary and
tertiary structures of a RNA sequence, and thus leads to more
relevant alignments. For further details about edit distances,
we refer the reader to [15].

B. Tools related to automatic parsing

1) Generic text parsing tools: This section covers the
related works aiming at transforming unstructured text to
structured data with as few assumptions as possible.

PADS [16] is an automatic inference algorithm that converts
ad hoc data to a dedicated output format. PADS relies on
universal patterns to infer the most appropriate types and

frequency-based heuristics to infer the best structure to orga-
nize the data (e.g., using arrays, unions, enumerations, etc.).
Unfortunately, PADS is no more maintained and is quite
complicated to exploit, even for simple file formats.

FlashExtract [17] is a tool accelerating the extraction of data
from unstructured text. It can even produce a parser. Its main
limitation is that it must be guided by the user during the
whole operation.

Datamaran [18] is an unsupervised tool that performs au-
tomatic data extraction from unstructured text. It can detect
repeated sequences across multiple lines, which improves the
quality of the output data structure. Unfortunately, Datamaran
is not publicly available and relies on assumptions that may
be too restrictive for some practical use cases.

2) Specialized log parsing tools: Existing works mainly
focus on the log parsing aspect. From each cluster, one can
derive a parsing rule. A complete overview is provided in [5].
The three proposals closest to ours are listed below.

Spell [2] uses a custom clustering algorithm based on the
LCS distance.

LogMine [3] combines a nearest neighbor clustering with
a custom distance. This distance compares two lines of log
and depends on a list of patterns. Each occurrence of each
pattern in the compared lines is substituted by a dedicated
meta character. This means that the decomposition operated
by LogMine depends on the order in which the patterns are
listed. Then, the two resulting strings are compared character
by character in linear time. This distance is very quick but
assumes that the decomposition is the most appropriate one.

Finally, Drain [4] uses the same distance as LogMine, but
relies on a multi-level clustering system based on directed
graph to build accurate clusters. According to the experiments
conducted in [5], Drain is the most accurate tool.

III. PATTERN AUTOMATON

Let Σ be an alphabet. We denote the empty word by ε.
Given a word w, wj denotes the jth character of w and wj:k

the subword wj . . . wk−1. If j ≥ k, then wj:k = ε. The Kleene
star is denoted by ∗ [19]. For any language L, L+ is defined
by L+ = LL∗. A non-deterministic finite automaton (NFA) is
a tuple A = (Σ, Q, δ, q0, F) where Σ is its alphabet, Q the set
of its states, δ : Q × Σ → 2Q its transition function, q0 ∈ Q
its initial state, F ⊆ Q the set of its final states. Finally, for
n ∈ N, we denote by Nn the set {0, . . . , n}.

A pattern automaton aims at representing an arbitrary word
at the pattern level using an automaton. We call pattern any
language included in Σ+ = Σ∗\{ε}. We call pattern collection
any set P of patterns such that (

⋃
P∈P P)+ = Σ+. The pattern

collection definition means that any word can be split in one
or more non-overlapping sequences of patterns of P . Such a
sequence of patterns is called a decomposition of w.

Example 1: Consider Σ = {0, . . . ,9,A, . . . ,Z,.}. Let be
Pint = {0, . . . ,9}+, Pfloat = Pint ∪ {w.w′ | w,w′ ∈ Pint},
Phex = {0, . . . ,9,A, . . . ,F}+, Pletters = {A, . . . ,Z}+, Pdot =
{.}. Each of these languages is a pattern of Σ. Moreover,
P = {Pint, Pfloat, Phexa, Pletters, Pdot} forms a pattern collection
(relative to Σ).

Let word w be a word of Σ+ and P be a pattern collection.
Consider the NFA such that its alphabet is P , its set of states
is N|w|, its initial state is 0 and its only final state is |w|. Its
transition function δ is defined by k ∈ δ(j, P) if and only if
wj:k ∈ P , where P ∈ P . This NFA is acyclic by construction.
In this NFA, each path from 0 to |w| corresponds to a possible
decomposition of w according to P .

The pattern automaton (PA) PA(w,P) is obtained by
removing from this automaton any transition (j, k) labeled by
P if there exists a transition (j′, k′) labeled by P such that
[j, k] is strictly included in [j′, k′]. Intuitively, this discards
the occurrences of a pattern strictly included in a larger
occurrence of the same pattern. Thanks to this filtering, the
PA is always deterministic. Similarly, the automaton obtained
by flipping each arc of the PA is also deterministic. According
to the Brzozowski algorithm [20], this shows that the PA is
minimal. Thus, a PA is always deterministic and minimal.
As a consequence, two PAs having mismatching transitions
necessarily recognize different languages.

Figure 2 represents the pattern automaton of the word
4.57AB using two different patterns collections. Figure 2a
shows a character-based decomposition by using PΣ =
{{a} | a ∈ Σ}, whereas Figure 2b depicts the decomposition
obtained using the same pattern collection as in Example 1.

IV. PATTERN DISTANCE

We extend the Needleman-Wunsch [12] algorithm to pro-
cess pattern automata (see Section III). By doing so, we
compute a distance operating at the pattern scale that we
call pattern distance. This adaptation allows our edit distance
to better capture the nature of the data conveyed in the two
compared strings, as illustrated on Figure 1.

To compute the pattern distance, we adapt the notion of
edit graph introduced by [8]. Figure 3a illustrates the edit
graph obtained when comparing 4.57AB and 47XY using
the Levenshtein distance [11]. This distance computes how
many edit operations are required to transform w into w′

when considering character insertions, deletions and updates.
Each state of the edit graph corresponds to the position of
two cursors on w and w′. Each horizontal (resp. vertical)
arc corresponds to deletion (resp. insertion) of a character
from w to obtain w′ and is weighted by 1. Each diagonal arc
corresponds to replacement operations or matching character.

If a diagonal arc corresponds to a match, it is weighted
by 0 and otherwise by 1. This graph structure reflects that
the Levenshtein distance is character-based. The weight of a
shortest path from (j, j′) to (k, k′) is the minimal number
of edit operations required to transform wj:k to w′

j′,k′ . In
particular, a shortest path from (0, 0) to (w,w′) (in red on the
Figure 3a) materializes a minimal set of editing operations to
transform w into w′.

Figure 3b depicts the generalized edit graph used at the
pattern scale to process the input same input strings as
Figure 3a. The underlying edit operations are the insertion
of a word matched by a pattern of P , the deletion of a word
matched by a pattern of P and the replacement of a subword
of P ∈ P by another word of P .

By doing this generalization, one can directly apply the
Needleman-Wunsch algorithm on two PAs, and hence compare
two strings at the pattern scale according to P .

More formally, let be two words w and w′ and a pattern
collection P . From their PAs G = (Q,P, δ, 0, {|w|}) and
G′ = (Q′,P, δ′, 0, {|w′|}), we can derive a NFA (Q×Q′, (P∪
{ε})2,∆, (0, 0), {(|w|, |w′|)}), called edit graph and denoted
by E(G,G′), where:

• ∆((j, j′), (P, ε)) = (k, j′) if wj:k ∈ P (deletion);
• ∆((j, j′), (ε, P ′)) = (j, k′) if w′

j′:k′ ∈ P ′ (insertion);
• ∆((j, j′), (P, P)) = (k, k′) if wj:k ∈ P and w′

j′:k′ ∈ P
(match);

with k = δ(j, P) and k′ = δ′(j′, P). We can show that as G
and G′ are deterministic (resp. minimal), then so is E(G,G′).

The cost function must also be adapted to our pattern-
based edit operations. To quantify how “large” a language L is
relatively to Σ, we introduce the language density ρ formally
defined by ρ(L) =

∑
n∈N∗

1
2n−1 · |Ln|

|Σ|n . In particular, if L ⊆ L′,

then ρ(L) ≤ ρ(L′).
Moreover, it is worth quantifying how similar are two

subwords conforming to the same pattern and thus be based on
an edit distance. We have decided to use the LCS distance, de-
noted by dLCS. Each arc of E(G,G′) connecting a state (j, j′)
to (k, k′) labeled by (P, P ′) is weighted as follows. If the arc is
diagonal (P = P ′), it is weighted by ρ(P).dLCS(wj:k, w

′
j′:k′).

Otherwise, the arc is either horizontal (P ′ = ε) or vertical
(P = ε) and is weighted by dLCS(wj:k, w

′
j′:k′). By computing

the shortest path from (0, 0′) to (|w|, |w′|) using the Dijkstra
algorithm [21], we obtain the (non-normalized) pattern dis-
tance between w and w′ according to P . Note that if P = PΣ

(see Figure 2a), the resulting distance exactly corresponds to
dLCS/|Σ|. To normalize our distance between 0 and 1, we
divide it by |w|+ |w′| and denote it by d.

V. PATTERN-BASED CLUSTERING

This section presents various tricks to adapt and accelerate
the well-known nearest neighbor algorithm when using the
pattern distance. Section V-A shows how to optimize the near-
est neighbor primitive required by this algorithm. Section V-B
explains how to improve the clustering procedure.

0 1 2 3 4 5 64 . 5 7 A B

(a) Pattern automaton of 4.57AB at the character level (≈ string).

0 1 2 4 6

Pint, Phex

Pfloat

Pdot Pint

Phex

Pletters

(b) Pattern automaton of 4.57AB at the pattern level.

Fig. 2: Examples of pattern automata.

0 1 2 3 4

0

1

2

3

4

5

6

0,0

0,1

0,2

0,3

0,4

0,5

0,6

1,0

1,1

1,2

1,3

1,4

1,5

1,6

2,0

2,1

2,2

2,3

2,4

2,5

2,6

3,0

3,1

3,2

3,3

3,4

3,5

3,6

4,0

4,1

4,2

4,3

4,4

4,5

4,6

4 7 X Y

4

.

5

7

A

B

4,4

., ε

5, ε

7,7

A,X

B,Y

(a) Edit graph at the character level for 4.57AB and 47XY.

0 2 4

0

1

2

4

6

0,0

0,1

0,2

0,4

0,6

2,0

2,1

2,2

2,4

2,6

4,0

4,1

4,2

4,4

4,6

Pint,Phex,Pfloat
Pletters

Pint,Phex

Pfloat

Pdot

Pint

Phex

Pletters

P
float , P

float

P
letters , P

letters

(b) Edit graph at the pattern level for PA(4.57AB,P) and
PA(47XY,P), using the same definition of P as in Figure 2b.

Fig. 3: Edit graphs

A. Nearest neighbor

Finding the nearest neighbor: Given a pattern automaton G
and a set of pattern automata G, the nearest neighbor primitive
determines n(G,G) = argminG′∈G(d(G,G′)). The simplest
approach consists in computing d(G,G′) for each G′ ∈ G to
determine the nearest neighbor of G. All these distances may
be computed in parallel. One could also build the union graph,
obtained by gathering the edit graphs {E(G,G′), G′ ∈ G}, add
a source node s connected to each initial states of those edit
graphs via an ε-transition weighted by 0, and run a single
Dijkstra algorithm from s. When a final state is discovered,
it reveals the closest neighbor of G. One can build the union
graph opportunistically to save time and memory.

Finding the nearest neighbor closer than D: The sensitivity
of the nearest neighbor algorithm is calibrated by tuning a
threshold parameter D. This parameter prevents adding an
element to a cluster if its distance to the cluster’s centroid
exceeds D. We thus refine n to obtain the primitive n≤D.
If n(G,G) ≤ D, then n≤D(G,G) = n(G,G), otherwise
n(G,G) ≤ D = ⊥. n≤D is obtained by interrupting the
exploration of the Dijkstra’s algorithm if the distance from
s to the state being processed is greater than D.

B. Pattern clustering algorithm

Pre-processing: The pattern distance d(G,G′) only depends
on G and G′. Thus, if they recognize the same language
(L(G) = L(G′)), they fall in the same cluster. By discarding
duplicated PA, we accelerate the clustering procedure. As
explained in Section III, our pattern automata are minimal and
deterministic. Thus, if they have a different number of states,
then necessarily L(G) ̸= L(G′). Otherwise, we compare G
and G′ using a graph traversal algorithm to find eventual
mismatching transitions. Below, we assume without loss of
generality that G is restricted to distinct pattern automata.

The pattern clustering (PC) algorithm partitions G ac-
cording to a threshold value D. Each resulting cluster is
represented by an arbitrary element belonging to the cluster,
called representative. In our case, each cluster is represented
by its first inserted pattern automaton. We denote by C
the current set of clusters and by R the corresponding set
of representatives and initialize them to ∅. For each word
G ∈ G′, if n≤D(G,R) = ⊥ or if C = ∅, then a new cluster
{G} is added to C and is represented by G. Otherwise, G is
inserted in the cluster represented by n≤D(G,R).

To apply this algorithm to a set of words, we only need to

map each pattern automaton with its corresponding word(s).

C. Regular expression inference

This section presents a greedy algorithm inferring for each
cluster C ∈ C a regular expression able to parse any line
involved in C. Let {G1, . . . , G|C|} be the PAs of C.

We denote by µ(G) the function that extracts the shortest
path from a PA (resp. edit graph) G according to the density
ρ and builds the corresponding PA. If G is an edit graph, each
arc of the shortest path is labeled by (P, P), (P, ε) or (ε, P)
with some P ∈ P; the corresponding arc of µ(G) is labeled
by P .

• If |C| = 1, E|C| is defined by µ(G1). Its horizontal and
vertical arcs (see Section III) are flagged as optional.

• If |C| > 1, we define recursively Ei by E2 =
µ(E(G1, G2)) and Ei+1 = µ(E(Ei, Gi+1)) for all 2 ≤
i < |C|. In Ei+1, each arc is flagged as optional if and
only if it is horizontal, vertical or related to an optional
arc of Ei.

The regular expression characterizing C is obtained by con-
catenating the (possibly optional) patterns involved in E|C|.

VI. EXPERIMENTAL RESULTS

A. Setup

In this section, we compare three algorithms, namely Log-
Mine (LM) [3], Drain (DR) [4] and the pattern clustering
algorithm (PC) (see Section V). We reproduce the experiments
presented in [5]. They are based on the public LogHub
dataset [22]. It consists in 16 real log files, involving dis-
tributed systems (HDFS), super-computers (HPC), OS logs
(Linux, Mac, Windows, Android) and specific software (Prox-
ifier, Thunderbird, Apache), etc. For more details about the
Loghub dataset, we refer the reader to [23]. Compared to [5],
the experimental setup is improved as follows:

• We reproduce the experiments performed in [5] us-
ing their collection of patterns, which involves dataset-
dependant and non-trivial patterns tailored to improve the
results. Moreover, we run our experiments using the same
collection of universal patterns.

• To assess the accuracy of the evaluated algorithms, [5]
computes a custom metric, called parsing accuracy. Ac-
cording to its definition, this metric only rewards clusters
that exactly matches those expected in the ground truth. It
is highly sensitive to small variations between the ground
truth and the computed clustering. As a sequel, it may
highly penalize results that are almost perfect. That is
why we also computed the adjusted Rand index [24],
which is by design less sensitive to small variations.

• Finally, [5] summarizes each cluster by a template (i.e.,
a string with some wildcards). We merged the clusters
which have no reason to be separated.

The accuracy of LM, DR and PC are evaluated by using
two following pattern collections:

• The specific collection: it corresponds to the patterns
used by [5], specifically tailored for each dataset. These

collections are used to evaluate the performance of each
algorithm with significant prior knowledge.

• The minimal collection: it only involves universal patterns
(recognizing integers, words, hexadecimals, punctuation
marks, network addresses, etc.). We use the same minimal
collection for all the datasets. It is used to evaluate
whether an algorithm captures well the file structure with
low prior knowledge.

Each algorithm also requires a threshold value, used to cal-
ibrate the sensitivity of the clustering algorithm. We sampled
several threshold values. As in [5], we only report the best
results obtained for each dataset. Our setup (ground truth,
pattern collections, optimized threshold values) as well as
our experimental results are publicly available on [25]. Our
experiments have been realized on a 24-core AMD Ryzen
@3.9 GHz CPU and 32GB of RAM.

B. Accuracy and generalizability

Figure 4 depicts the parsing accuracy obtained for each
algorithm, each dataset and each collection. Using the min-
imal collection does not degrade significantly the results,
demonstrating a good generalizability for each algorithm.
According to [5], Drain is the most accurate algorithm among
the proposals tested in their benchmark. The parsing accuracy
is better with PC in average with both the minimal collection
(0.27 for LM, 0.53 for DR and 0.71 for PC) and the specific
collection (0.27 for LM, 0.72 for DR and 0.78 for PC).

Figure 5 reports the accuracy of each algorithm by using
the the adjusted Rand index, which is most robust than the
parsing accuracy for small variations. The differences using the
specific collections and the minimal collection are negligible.
Our approach is more accurate in terms of Adjusted Rand
Index, both with minimal collection (namely 0.767 for LM,
0.756 for DR and 0.97 for PC) and specific collection (namely
0.767 for LM, 0.917 for DR and 0.981 for PC).

The most striking result on Figures 4 and 5 concerns the
Proxifier dataset. Contrary to the other datasets, it contains
optional fields and both static and variable parts of texts.
This explains why PC outperforms DR and LM. Indeed, our
approach supports optional fields, only relies on pattern-based
considerations, and thus does not require static part of text to
perform well.

Finally, PC and LM are based on the same clustering
algorithm, but distinct distances. PC is significantly more
accurate showing the relevance to use a pattern-based distance.

C. Scalability

Figure 6 depicts the running time required to process
the Proxifier log with each algorithm. On this dataset, our
approach (PC) is roughly 10x slower than DR, but like its
competitors, the runtime grows linearly with the number of
lines. Thus, PC scales well with the size of the log file. This
important overhead is mainly due to the “distance” used in
each algorithm. Indeed, the distance used by LM and DR
runs in linear time with the length of the compared lines,
whereas the pattern distance used in PC is quadratic. Despite

A
pa

ch
e

H
D

FS
Sp

ar
k

Z
oo

ke
ep

er
T

hu
nd

er
bi

rd
B

G
L

Pr
ox

ifi
er

H
ea

lth
A

pp
A

nd
ro

id
W

in
do

w
s

H
PC

H
ad

oo
p

O
pe

nS
SH

L
in

ux
M

ac
O

pe
nS

ta
ck

A
ve

ra
ge

0

0.2

0.4

0.6

0.8

1
Pa

rs
in

g
ac

cu
ra

cy
PC DR LM

(a) Using the specific collections proposed in [5].

A
pa

ch
e

H
D

FS
Sp

ar
k

Z
oo

ke
ep

er
T

hu
nd

er
bi

rd
B

G
L

Pr
ox

ifi
er

H
ea

lth
A

pp
A

nd
ro

id
W

in
do

w
s

H
PC

H
ad

oo
p

O
pe

nS
SH

L
in

ux
M

ac
O

pe
nS

ta
ck

A
ve

ra
ge

0

0.2

0.4

0.6

0.8

1

Pa
rs

in
g

ac
cu

ra
cy

PC DR LM

(b) Using the minimal collection.

Fig. 4: Parsing accuracy results (using the best hyper parameters). The last column gathers the average on all logs.

A
pa

ch
e

H
D

FS
Sp

ar
k

Z
oo

ke
ep

er
T

hu
nd

er
bi

rd
B

G
L

Pr
ox

ifi
er

H
ea

lth
A

pp
A

nd
ro

id
W

in
do

w
s

H
PC

H
ad

oo
p

O
pe

nS
SH

L
in

ux
M

ac
O

pe
nS

ta
ck

A
ve

ra
ge

0

0.2

0.4

0.6

0.8

1

A
dj

us
te

d
R

an
d

in
de

x

PC DR LM

(a) Using the specific pattern collections proposed in [5].

A
pa

ch
e

H
D

FS
Sp

ar
k

Z
oo

ke
ep

er
T

hu
nd

er
bi

rd
B

G
L

Pr
ox

ifi
er

H
ea

lth
A

pp
A

nd
ro

id
W

in
do

w
s

H
PC

H
ad

oo
p

O
pe

nS
SH

L
in

ux
M

ac
O

pe
nS

ta
ck

A
ve

ra
ge

0

0.2

0.4

0.6

0.8

1

A
dj

us
te

d
R

an
d

in
de

x

PC DR LM

(b) Using the minimal pattern collection.
Fig. 5: Adjusted Rand index results (using the best hyper parameters). The last column gathers the average on all logs.

103 104
10−1

100

101

102

Batch size (# lines)

R
un

tim
e

(s
)

PC
DR
LM

Fig. 6: Runtime obtained by various number of lines from the
Proxifier dataset using the minimal pattern collection.

this important overhead, our approach computes clusters in a
reasonable time, which makes it usable for practical use cases.

Further experiments show that the runtime of PC is multi-
plied by a factor 4 due to the LCS computations inherent to
the weighting of the edit graphs. Unfortunately, using simpler
weights significantly degrades the accuracy and that is why
we decided to keep our cost function.

VII. CONCLUSION

This paper presents a novel pattern-based distance obtained
by extending the Needleman-Wunsch algorithm at the pattern
scale. This generalization is done by modeling strings using
automata capturing any reasonable pattern-based decomposi-
tion and revisiting the notion of edit graph. Then, we proposed
an optimized nearest neighbor algorithm built on top of our
distance. The resulting clusters are used to infer valid regular
expressions. supporting optional fields. To the best of our
knowledge, this is the first log parsing approach that infers
accurate regular expressions and supporting optional fields.
Our experiments show that our clustering algorithm runs fast
enough to be applicable for real datasets. Moreover, our results
show that even with low prior knowledge, our proposal com-
petes with the best existing approaches in terms of accuracy.
In future works, we plan to improve our regular expression
inference to detect repetitions and hence better capture the
structure of the input file.

ACKNOWLEDGMENT

This work has been partially supported by MIAI@Grenoble
Alpes, (ANR-19-P3IA-0003).

REFERENCES

[1] I. G. Terrizzano, P. M. Schwarz, M. Roth, and J. E. Colino, “Data
wrangling: The challenging yourney from the wild to the lake.” in CIDR,
2015.

[2] M. Du and F. Li, “Spell: Streaming parsing of system event logs,” in
2016 IEEE 16th International Conference on Data Mining (ICDM).
IEEE, 2016, pp. 859–864.

[3] H. Hamooni, B. Debnath, J. Xu, H. Zhang, G. Jiang, and A. Mueen,
“Logmine: Fast pattern recognition for log analytics,” in Proceedings
of the 25th ACM International on Conference on Information and
Knowledge Management, 2016, pp. 1573–1582.

[4] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing
approach with fixed depth tree,” in 2017 IEEE International Conference
on Web Services (ICWS). IEEE, 2017, pp. 33–40.

[5] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu, “Tools
and benchmarks for automated log parsing,” in 2019 IEEE/ACM 41st In-
ternational Conference on Software Engineering: Software Engineering
in Practice (ICSE-SEIP). IEEE, 2019, pp. 121–130.

[6] J. Wang and Y. Dong, “Measurement of text similarity: A survey,”
Information, vol. 11, no. 9, p. 421, 2020.

[7] D. Maier, “The complexity of some problems on subsequences and
supersequences,” Journal of the ACM (JACM), vol. 25, no. 2, pp. 322–
336, 1978.

[8] E. W. Myers, “An o(nd) difference algorithm and its variations,”
Algorithmica, vol. 1, no. 1-4, pp. 251–266, 1986.

[9] J. W. Hunt and T. G. Szymanski, “A fast algorithm for computing longest
common subsequences,” Communications of the ACM, vol. 20, no. 5,
pp. 350–353, 1977.

[10] L. Bergroth, H. Hakonen, and T. Raita, “A survey of longest common
subsequence algorithms,” in Proceedings Seventh International Sym-
posium on String Processing and Information Retrieval. SPIRE 2000.
IEEE, 2000, pp. 39–48.

[11] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” in Soviet physics doklady, vol. 10, no. 8, 1966, pp.
707–710.

[12] S. B. Needleman and C. D. Wunsch, “A general method applicable to
the search for similarities in the amino acid sequence of two proteins,”
Journal of molecular biology, vol. 48, no. 3, pp. 443–453, 1970.

[13] T. F. Smith, M. S. Waterman et al., “Identification of common molecular
subsequences,” Journal of molecular biology, vol. 147, no. 1, pp. 195–
197, 1981.

[14] T. Jiang, G. Lin, B. Ma, and K. Zhang, “A general edit distance between
rna structures,” Journal of computational biology, vol. 9, no. 2, pp. 371–
388, 2002.

[15] W. Haque, A. Aravind, and B. Reddy, “Pairwise sequence alignment
algorithms: a survey,” in Proceedings of the 2009 conference on Infor-
mation Science, Technology and Applications, 2009, pp. 96–103.

[16] K. Fisher, D. Walker, K. Q. Zhu, and P. White, “From dirt to shovels:
fully automatic tool generation from ad hoc data,” ACM SIGPLAN
Notices, vol. 43, no. 1, pp. 421–434, 2008.

[17] V. Le and S. Gulwani, “Flashextract: a framework for data extraction
by examples,” in Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2014, pp. 542–
553.

[18] Y. Gao, S. Huang, and A. Parameswaran, “Navigating the data lake
with datamaran: Automatically extracting structure from log datasets,”
in Proceedings of the 2018 International Conference on Management of
Data, 2018, pp. 943–958.

[19] K. D. Joshi, Foundations of discrete mathematics. New Age Interna-
tional, 1989.

[20] J. A. Brzozowski, “Canonical regular expressions and minimal state
graphs for definite events,” in Proc. Symposium of Mathematical Theory
of Automata, 1962, pp. 529–561.

[21] E. W. Dijkstra, A short introduction to the art of programming. Tech-
nische Hogeschool Eindhoven Eindhoven, 1971, vol. 4.

[22] S. He, J. Zhu, P. He, and M. R. Lyu, “Loghub: A large collection of
system log datasets towards automated log analytics,” arXiv preprint
arXiv:2008.06448, 2020.

[23] Loghub: A large collection of system log datasets for ai-powered log
analytics. [Online]. Available: https://github.com/logpai/loghub

[24] L. Hubert and P. Arabie, “Comparing partitions,” Journal of classifica-
tion, vol. 2, no. 1, pp. 193–218, 1985.

[25] Results repository. [Online]. Available: https://github.com/raynalm/
pattern distance

https://github.com/logpai/loghub
https://github.com/raynalm/pattern_distance
https://github.com/raynalm/pattern_distance

	Introduction
	State of the art
	Edit distances on strings
	Tools related to automatic parsing
	Generic text parsing tools
	Specialized log parsing tools

	Pattern Automaton
	Pattern distance
	Pattern-based clustering
	Nearest neighbor
	Pattern clustering algorithm
	Regular expression inference

	Experimental results
	Setup
	Accuracy and generalizability
	Scalability

	Conclusion
	References

