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Introduction

Emergence of resistant phenotypes from initially responding or partially-responding tumors has been modeled as a multi-step process in cancer [START_REF] Ramirez | Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells[END_REF][START_REF] Shaffer | Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance[END_REF] . Initially, post drug insult, only a pool of persister cellsalso called drug-tolerant persister cells (DTPs) -manage to tolerate the cancer treatment and survive. These cells constitute a reservoir of cells from which drug-resistant cells, actively growing under cancer treatment, can ultimately emerge [START_REF] Ramirez | Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells[END_REF][START_REF] Cortazar | Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis[END_REF][START_REF] Hata | Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition[END_REF] . In triple-negative breast cancer (TNBC), both genetic and transcriptomic mechanisms have been proposed to drive cancer evolution towards chemoresistance, through combined selective and adaptive modes of evolution [START_REF] Kim | Chemoresistance Evolution in Triple-Negative Breast Cancer Delineated by Single-Cell Sequencing[END_REF] . The recent identification of a multiclonal reversible drug-tolerant state post neo-adjuvant chemotherapy in patient-derived xenografts (PDX) [START_REF] Echeverria | Resistance to neoadjuvant chemotherapy in triple-negative breast cancer mediated by a reversible drugtolerant state[END_REF] suggested that the earliest steps of chemoresistance in TNBC are not driven by genetic alterations, but rather by non-genetic plasticity in multiple cancer cells. Similarly, in other cancer types, drug-tolerant states have been identified solely characterized by changes in transcriptomic and epigenomic features in response to targeted therapies or chemotherapies [START_REF] Sharma | A Chromatin-Mediated Reversible Drug-Tolerant State in Cancer Cell Subpopulations[END_REF][START_REF] Liau | Adaptive Chromatin Remodeling Drives Glioblastoma Stem Cell Plasticity and Drug Tolerance[END_REF][START_REF] Rambow | Toward Minimal Residual Disease-Directed Therapy in Melanoma[END_REF] .

Genetic history of many cancer types has been extensively modelled thanks to both bulk and singlecell approaches [START_REF] Kim | Chemoresistance Evolution in Triple-Negative Breast Cancer Delineated by Single-Cell Sequencing[END_REF][START_REF] Nik-Zainal | Landscape of somatic mutations in 560 breast cancer whole-genome sequences[END_REF] . In contrast, little is known about the epigenomic heterogeneity and dynamics of acquisition of epigenetic alterations. While recent studies have focused on the evolution of DNA methylation [START_REF] Mazor | DNA Methylation and Somatic Mutations Converge on the Cell Cycle and Define Similar Evolutionary Histories in Brain Tumors[END_REF][START_REF] Gaiti | Epigenetic evolution and lineage histories of chronic lymphocytic leukaemia[END_REF] -among the most stable epigenetic locks to gene expression -contribution to tumor evolution of more versatile epigenetic modifications has remained poorly understood. Single-cell methods to map repressive and permissive histone modifications, key players of cellular plasticity, have emerged only recently [START_REF] Grosselin | High-throughput single-cell ChIP-seq identifies heterogeneity of chromatin states in breast cancer[END_REF][START_REF] Kaya-Okur | CUT&Tag for efficient epigenomic profiling of small samples and single cells[END_REF] , enabling the study of epigenomic diversity within biological systems.

Studying cases of acquired resistance in luminal and triple-negative cancer in PDX with single-cell chromatin profiling, we had identified the first examples of epigenomic clones within tumors, solely defined by H3K27me3 landscapes [START_REF] Grosselin | High-throughput single-cell ChIP-seq identifies heterogeneity of chromatin states in breast cancer[END_REF] . We had detected resistant-like H3K27me3 landscapes in initial untreated tumors, proposing histone modifications as a molecular player of tumor evolution processes. Here, we focused on the earliest steps of cancer treatment prior to the emergence of resistant populations, to identify the initial epigenomic mechanisms driving drug tolerance. Thanks to a characterization of epigenomic and transcriptomic evolution under chemotherapy at single-cell resolution, we show that H3K27me3 epigenomes, and not H3K4me3, are a proxy of cancer cell evolution upon initial chemotherapy insult. We discovered that the persister expression program is actually in a bivalent chromatin configuration in untreated cells, and locked by H3K27me3. Tracing cell lineages together with transcriptomics, we further reveal that H3K27me3 is a key determinant of cell fate upon initial chemotherapy exposure in TNBC: depriving cells of H3K27me3 enhances the potential of each tumor cell to tolerate chemotherapy. Finally, preventing cells under chemotherapy insult to demethylate H3K27me3 residues inhibits their potential to tolerate chemotherapy, and delays tumor recurrence in vivo.

Deriving persister cells from patient tumor models. We focused on mechanisms of drug tolerance in residual TNBC, for which patients have the poorest outcome. Resistance to adjuvant chemotherapy cannot be easily studied as biopsies are not routinely performed when the disease progresses (Fig. 1a).

To circumvent these limitations, we modeled, in vivo and in vitro, phenotypes of drug-response observed in patients. In vivo, we first treated three patient-derived xenograft (PDX) models -PDX_95, PDX_39 & PDX_172 -established from patients with residual TNBC [START_REF] Grosselin | High-throughput single-cell ChIP-seq identifies heterogeneity of chromatin states in breast cancer[END_REF][START_REF] Marangoni | A New Model of Patient Tumor-Derived Breast Cancer Xenografts for Preclinical Assays[END_REF] , with Capecitabine, the standard of care for residual breast tumors (Fig. 1b, Extended Figure 1). After the first round of chemotherapy treatment, mice displayed a pathological complete response (pCR), but tumors eventually recurred ('recurrent') and mice were treated again with chemotherapy, to which tumors responded to various extents, some maintaining constant tumor volume under treatment ('resistant') (Fig. 1b). These recurrent tumors potentially arose from persister cells, surviving initial chemotherapy treatment [START_REF] Cortazar | Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis[END_REF] . We isolated persister cells by pooling the fat pad from mice with pCR (from 4 to 14, Extended Fig. 1a, 1f & 1l). To phenocopy a clinical situation of partial response, we also generated 'residual' tumors for one model (PDX_95, n=2) (Extended Fig. 1a) by administering half the dose of Capecitabine.

In vitro, we treated an initially chemosensitive TNBC cell line (MDA-MB-468), with Fluorouracil (5-FU) [START_REF] Longley | 5-fluorouracil: mechanisms of action and clinical strategies[END_REF] , the active metabolite of Capecitabine, which is not converted in vitro. We drove independently three pools of cells to chemotolerance and subsequently to chemoresistance with prolonged 5-FU treatment (>15 weeks, Fig. 1e). After 3 weeks, only few cells survived drug insult (0.01% of the initial population, Extended Fig. 2a), out of which a minority (36%) divided after 10-15 additional days (Extended Fig. 2ab); this group of cells, surviving initial chemotherapy, are referred to as 'persister' cells. Over 15 weeks, populations of resistant cells emerged, with doubling times comparable to untreated cells and an IC50 to 5-FU over 4-fold higher than untreated population (Extended Fig. 2b).

Identification of a pool of basal persister cells in vivo and in vitro.

To characterize transcriptomic evolution of untreated cells towards chemotolerance and subsequently chemoresistance, we performed single-cell RNA-seq (scRNA-seq) in both cell lines and PDX models (Fig. 1c, 1f, Extended Fig. 1 & 2). In vivo, scRNA-seq was mandatory to identify the rare human persister cells among the vast majority of stromal mouse cells. Out of the fat pad, we typically isolated hundreds of persister cells per mouse. In vivo, persister cells from different mice grouped within one or two expression clusters (Extended Fig. 1b, 1g-h & 1m-n). In vitro, diverse cell populations (res #1, 2 and 3) with distinct expression programs, originated from the pool of persister cells, all grouped within common clusters across experiments (scRNA-based clusters R2/R4, Extended Fig. 2c). In vivo and in vitro, persister cells recurrently activated a set of common pathways compared to untreated cells (Fig. 1c-f, Extended Fig. 1c-d, 1i-j, 1o-p Extended Fig. 2d-e). Originating from KRT5-expressing cancer cells, persister cells recurrently activated sets of genes further establishing basal cell identity, such as KRT14 (Fig. 1c,1f, Extended 1j & 1p). Compared to untreated cells, persister cells in vivo and in vitro also showed an activation of genes associated with the Epithelial-to-Mesenchymal Transition (EMT, Fig. 1c-f, Extended Fig. 1c-d, 1j & 1p, Extended Fig. 2d & 2f) -such as TAGLN, an actin-binding protein, previously shown to promote metastasis through EMT [START_REF] Chen | TGF-β-induced transgelin promotes bladder cancer metastasis by regulating epithelial-mesenchymal transition and invadopodia formation[END_REF] , and NNMT, characteristic of the metabolic changes that accompany EMT [START_REF] Ulanovskaya | NNMT promotes epigenetic remodeling in cancer by creating a metabolic methylation sink[END_REF][START_REF] Shaul | Dihydropyrimidine Accumulation Is Required for the Epithelial-Mesenchymal Transition[END_REF][START_REF] Liang | Nicotinamide N-methyltransferase promotes epithelial-mesenchymal transition in gastric cancer cells by activating transforming growth factor-β1 expression[END_REF] . Persister cells also activated genes involved in the TNFalpha/NF-KB pathway. Part of the persister expression program remained patient-specific: in PDX_95 and in vitro persister cells showed for example an activation of the TGF-β pathway with the expression of multiple players including ligands and receptors (Fig. 1c & 1f, SI Tables 1234).

In vivo, we showed that persister and residual tumor cells actually clustered together (Fig. 1c, cluster R4), thereby sharing common expression features, suggesting similar mechanisms of chemotolerance independent of the residual burden. Yet we detected a higher number of cells in G0/G1 within persister populations than in residual or untreated tumors (Extended Fig. 1e-k-q), a characteristic recapitulated in vitro (Extended Fig. 2g) and in line with previous reports [START_REF] Vallette | Dormant, quiescent, tolerant and persister cells: Four synonyms for the same target in cancer[END_REF][START_REF] Sharma | A Chromatin-Mediated Reversible Drug-Tolerant State in Cancer Cell Subpopulations[END_REF][START_REF] Liau | Adaptive Chromatin Remodeling Drives Glioblastoma Stem Cell Plasticity and Drug Tolerance[END_REF][START_REF] Oren | Cycling cancer persister cells arise from lineages with distinct transcriptional and metabolic programs[END_REF] . In vitro, we identified two clusters of persister cells (clusters R2 and R4), that differ by their expression of additional EMT markers such as CDH2 (Fig. 1f) and TWIST1. Early individual non-cycling persisters (day 33) solely belonged to cluster R2/CDH2-whereas dividing persisters could either belong to R2/CDH2-or R4/CDH2+ (Fig. 1f). Overall, we identified both in vivo and in vitro a reservoir of persister basal cells with EMT markers and activated NF-KB pathway. NF-KB signaling pathway and EMT associated-genes were proposed as potential drivers of chemoresistance in various tumor types, including lung [START_REF] Fischer | Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance[END_REF][START_REF] Ryan | Targeting NF-κB-mediated inflammatory pathways in cisplatin-resistant NSCLC[END_REF] , pancreatic 27 , breast [START_REF] Zeng | Inhibition of Notch1 reverses EMT and chemoresistance to cisplatin via direct downregulation of MCAM in triplenegative breast cancer cells[END_REF][START_REF] Godwin | Targeting Nuclear Factor-Kappa B to Overcome Resistance to Chemotherapy[END_REF] . Here we pinpoint NF-KB and EMT pathway activation as the earliest common molecular events at the onset of chemotolerance in TNBC, defining a common Achilles' heel to target chemotolerant cells before they phenotypically diversify.

Cell fate bias under chemotherapy.

To follow clonal evolution under therapeutic stress, we had initially introduced unique genetic barcodes in untreated MDA-MB-468 cells prior to our experiments (Extended Fig. 3a). We leveraged our previous barcoding method [START_REF] Eisele | Erythropoietin directly affects single hematopoietic stem cell differentiation after transplantation[END_REF] to allow robust detection of barcodes within scRNA-seq data (Fig. 1g), as shown by the number of cells with a detected lineage barcode (Extended Fig. 3b). In addition, we verified that barcodes frequencies detected in scRNA-seq data recapitulated those detected in bulk, confirming the sensitivity of barcode detection in scRNAseq data (Extended Fig. 3c). By combining detection of lineage barcode and expression programs at single-cell resolution, we were able to monitor clonal evolution over the course of the treatment and within each expression clusters (Fig. 1g). If non-cycling persisters (day 33) were multi-clonal (62% of unique barcodes), R6 and R8 chemoresistant clusters were constituted of few clones (3 and 4 respectively). According to bulk data (Extended Fig. 3d-e), barcode diversity in the cell population decreased with time both under 5-FU and DMSO exposure. Across experiments and time points, the fraction of unique barcodes within the CDH2-/R2 persister cluster was significantly higher than in CDH2+/R4 cluster (average of 41% versus 8% unique barcode, p=1.6e-2, Fig. 1g), demonstrating that if the drug-tolerant state is multi-clonal, only rare persister cells switch to the CDH2+ state.

To test if the lineages that persist were selected within the untreated population, we next compared barcode frequencies between the starting population and the 5-FU or DMSO-treated cells using additional bulk experiments (Experiment #3, Extended Fig. 3d-g). If surviving cells had no particular predisposition then they should resemble a random draw of the initial untreated population (day 0, Extended Fig. 3f). In contrast to DMSO-treated cells, barcode frequencies of the 5-FU treated cell deviated from this random scenario (Extended Fig. 3g, r=0.68 and r=0.29 respectively), indicating that a fraction of lineages present in the untreated population have a predisposition to tolerate chemotherapy. Using our single-cell barcoding dataset, we were able to identify within the untreated populations, future persisters (n=143, for which the lineage barcode is found both in persisters and untreated cells) and compare them to 'non-persisting' cells (n=201, Extended Fig. 3 h-j). The only transcriptomic differences between those two cell populations were the over-expression of S100A2, a calcium binding protein, and LDHB, a lactate dehydrogenase, in future persister cells, prior to treatment. These results suggest that a difference in the metabolism of cells could be an indicator of their potential for persistence.

Dynamics of genomic and epigenomic features.

To hamper the chemo-driven clonal evolution of cancer cells, we next investigated the molecular basis of such rapid phenotypic evolution. Using wholeexome sequencing (Extended Fig. 4a), we first analyzed mutations, copy-number alterations (CNA) and related mutational signatures acquired by persister and resistant cell populations since the onset of 5-FU treatment. We could not identify any recurrent mutations across experiments (Extended Fig. 4b), or any CNA (amplifications or homozygous deletions) or recurrent mutations affecting known driver genes of breast cancer in any population [START_REF] Nik-Zainal | Landscape of somatic mutations in 560 breast cancer whole-genome sequences[END_REF] . Only a minor fraction of mutations found in persister cells were attributed to 5-FU exposure (mutational signature 17 [START_REF] Christensen | 5-Fluorouracil treatment induces characteristic T>G mutations in human cancer[END_REF] ) in contrast to resistant cell populations where over 50% of acquired mutations are associated to 5-FU (p<10 -10 , Extended Fig. 4c). These results indicated that chemo-related mutations are acquired over a timeframe that is not compatible with the rapid phenotypic evolution seen in persister cells. Finally, computing cancer cell fractions for each mutation, we confirmed that persister populations are extensively multi-clonal (Extended Fig. 4d), in line with the lineage barcoding results.

We next investigated changes in epigenomes during chemotherapy treatment. Using single-cell profiling (scChIP-seq), we observed that H3K27me3 epigenomes faithfully captured the evolution of cell states with chemotherapy (Fig. 2a, Extended Fig. 5a and SI Table 4). Persister cells shared a common H3K27me3 epigenome (cluster E1, Fig. 2b, Extended Fig. 5b), in contrast to resistant cells split in clusters E1 and E3. In comparison to untreated cells, cells from cluster E1 showed recurrent redistribution of H3K27me3 methylation, the highest changes (|log2FC|>2 and adjusted p-value<10 -1 ) occurring specifically at transcription start sites (TSS) and gene bodies (Fig. 2c) and corresponding to a loss of H3K27me3 enrichment (75 regions with log2FC<-2, and 2 regions with log2FC>2). This depletion was associated with the highest changes in gene expression observed by scRNA-seq (Fig. 2d and Extended Fig. 5c) and to the transcriptional de-repression of 22% of persister genes -defined as genes overexpressed in persister versus untreated cells -such as TGFB1, FOXQ1, a transcription factor driving EMT (Fig. 2e, SI Table 4). These epigenomic changes were not necessarily kept in resistant cell populations (Extended Fig. 5d), suggesting the existence of transient epigenomic features in persister cells.

In the untreated cells, two epigenomic subclones (E2 & E4 clusters, Fig. 2b) were recurrently identified indicative of an epigenomic heterogeneity in this population (n=3 experiments). In contrast to cells from cluster E4 (median correlation score r=-0.34), a fraction of cells within cluster E2 shared epigenomic similarities with cells from E1 (Fig. 2f, 49/381 cells over r=0. 20, p<2.2e-16). Yet these similarities did not affect persister genes (Extended Fig. 5e), and cells remained discernible from the pool of persister cells (no cells from E2 with r score over median r in E1, p<2.2e-16). This suggests that cells from E2 could fuel the persister population when exposed to chemotherapy, with the need of chemo-induced chromatin changes to achieve tolerance. In addition, we also detected rare cells with a persister epigenomic signature, but in only one of our three experiments (60/976 cells -Extended Fig. 5b), suggesting that spontaneous transition to H3K27me3 drug-tolerant state rarely occurs in the absence of chemotherapy.

Persister expression program is locked by H3K27me3. To test whether H3K27me3 enrichment was the lock to the persister expression program in untreated cells, we treated cancer cells with the EZH2 inhibitor (EZH2i-1) UNC1999 32 , to deplete H3K27me3 from cells, in the absence of chemotherapy.

EZH2i-1 treatment phenocopied drug-tolerant state to chemotherapy as expression fold-changes induced by EZH2i-1 were specifically correlated to those induced by chemotherapy exposure at early time points in persister cells (Fig. 2g, Extended Fig. 5f, r=0.71 versus r=0.31 with changes in resistant cells). Furthermore, we observed that EZH2i-1 was sufficient to lead to the activation of 62% of persister genes with depletion of H3K27me3 upon 5-FU treatment (23/37 genes), suggesting that H3K27me3 was the sole lock to their activation (Fig. 2h and Extended Fig. 5g). EZH2i-1 was also sufficient to lead to the over-expression of 60% of persister genes independently of any H3K27me3 enrichment in untreated cells (78/131 genes), such as KRT14, suggesting that these genes might be targets of H3K27me3-regulated persister genes. To further test this hypothesis, we explored the existence of potential 'master' transcription factors (TFs) within the persister genes. Using CheA3 33 , we identified three transcription factors, FOXQ1, FOSL1 and N2RF2, that respectively target 34%, 42% and 29% of the persister genes (Extended Fig. 5h-i). All 3 are H3K27me3-regulated persister genes, with a loss of H3K27me3 upon 5-FU (Extended Fig. 5j) and re-expressed by EZH2i-1 treatment, proposing H3K27me3-regulated TF as potential drivers of the persister expression program.

Priming of the persister expression program.

As we observed H3K27me3 changes upon 5-FU treatment precisely at TSS, we further explored the evolution of chromatin modifications at TSS, focusing on H3K4me3, a permissive histone mark shown to accumulate over TSS with active transcription. In contrast to single-cell H3K27me3 epigenomes which were sufficient to separate cell states along treatment (Fig 2a), individual H3K4me3 epigenomes of untreated and persister cells were indiscernible (Fig. 3a-b). Sparse H3K4me3 enrichment was already observed in untreated cells at the TSS of persister genes (p<10 -15 , compared to a set of non-expressed genes, Extended Fig. 6a-b). In individual persister cells, H3K4me3 enrichment was significantly more synchronous at the TSS of persister genes with more persister genes simultaneously marked by H3K4me3 in the same cell than in untreated cells (p=4.0e-2, Extended Fig. 6c-d). Based on these results, we reasoned that in untreated cells H3K4me3 and H3K27me3 could either accumulate on the same TSS but in different cells, or H3K4me3 could accumulate together with H3K27me3 in a subset of cells on the same TSS.

To test whether H3K4me3 could co-exist with H3K27me3 in the same individual cells prior to chemotherapy exposure, we performed successive immunoprecipitation of H3K27me3 with H3K4me3 (or vice-versa) or H3K27me3 (or H3K4me3) with isotype control (IgG) on mono-nucleosome chromatin.

In MDA-MB-468 cells, we detected n=1,547 transcription start sites significantly enriched in DNA immunoprecipitated with both H3K27me3 and H3K4me3, compared to the control (H3K27me3/IgG) precipitated fraction (peak-ratio>0.15, q-value<10 -3 , Extended Fig. 6e-h). We found that bivalent chromatin in untreated cells was detected at TSS of genes associated to mammary stem cell and EMT pathways, as well as various developmental pathways (e.g Hedgehog pathway, Extended Fig. 6h-i). The majority of H3K27me3-regulated persister genes (26 out of 37), including the 3 candidate master TFs, were found in a bivalent chromatin configuration in the untreated cell population (e.g TGF-β1, FOXQ1, FOSL1, Fig. 3b-c, Extended Fig. 6d and SI Table 4). We next studied bivalent chromatin landscapes in additional TNBC cell lines (HCC38 & BT20, Extended Fig. 6i), in our 3 PDX models and n=9 patient samples -3 of which correspond to the tumors used for PDX derivation (Patient_95, Patient_39 & Patient_172) (Fig. 3d-f, Extended Fig. 7h). We confirm the existence of bivalent programs in all patient tumors, and show that paired PDX models faithfully recapitulate bivalency of patient samples (Extended Figure 7a-f). Bivalent chromatin is also found at genes implicated in EMT and mammary stem cell identity, and developmental pathways (Fig. 3f, Extended Fig. 7h) and at candidate master TFs of the persister programs -FOXQ1, KLF4 or TFCP2L1 -(Fig. 3d-e, Extended Fig. 7g). With a continuum of epigenomic datasets, from patients to PDX, we demonstrate that cancer cells display a set of bivalent TSS, which could lead to the rapid activation of an entire persister expression program upon therapeutic stress.

Depriving cells of H3K27me3 enhances chemotolerance.

To further test if H3K27me3 was a lock to the emergence of persister cells under chemotherapy exposure, we next depleted H3K27me3 from epigenomes prior to chemotherapy treatment in three TNBC cell lines (MDA-MB-468, BT20 and HCC38, Extended Fig. 8). Using EZH2i-1, in addition to an inactive isomer (UNC2400 [START_REF] Chagraoui | SCL/TAL1 cooperates with Polycomb RYBP-PRC1 to suppress alternative lineages in blood-fated cells[END_REF] ) and a second EZH2i (GSK126 [START_REF] Göllner | Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia[END_REF] referred to as EZH2i-2), we showed that erasing H3K27me3 -without perturbing EZH2 protein levels -increased the number of persister cells with both EZH2 inhibitors, while the inactive isomer had no effect (Fig. 4a, Extended Fig. 8). By comparing bulk lineage barcode frequencies across conditions, we further demonstrated that EZH2 inhibitors were actually affecting cell fate under chemotherapy exposure, by rescuing the biased lineage frequency induced by 5-FU treatment (Fig. 4b, Extended Fig. 8c). We observed that co-treatment with EZH2i-1 and EZH2i-2 increased correlation scores between lineage frequencies in 5-FU and DMSO treated population, whereas co-treatment with the inactive isomer had no effect on lineage frequencies (Fig. 4b, Extended Fig. 8c). Performing combined single-cell transcriptomics and lineage tracing as in Figure 1, we then compared the fraction of unique barcodes across expression clusters under 5-FU exposure with or without EZH2i-1, termed "EZH2i-1 persister" and "persister" respectively (Fig. 4c-e). We observed that co-treating cells with EZH2i-1 significantly increased the fraction of unique lineage barcodes in CDH2+ persister populations, identified in Figure 1 (R3 cluster, p<10 -4 and over 2 fold-increase, Fig. 4e). Altogether, our results showed that H3K27me3 depletion with EZH2 inhibitors rescued the biased lineage frequency observed under chemotherapy treatment, and enabled a wider variety of cells to switch to the CDH2+ drugtolerant state. Overall, depleting H3K27me3 from untreated cells not only launched a persister-like expression program, but it also enhanced the potential of each cancer cell to tolerate chemotherapy.

Preventing H3K27me3 demethylation inhibits chemotolerance. Finally, we tested our ability to inhibit the emergence of persister cells by preventing the depletion of H3K27me3 under chemotherapy exposure using a KDM6A/B -"Lysine demethylase 6A/B" inhibitor (KDM6A/Bi -GSK-J4 36 ) simultaneously to chemotherapy. We tested in vitro and in vivo the ability of GSK-J4 to reduce the pool of persister cells upon chemotherapy exposure, reasoning that a reduced number of persister cells would increase the delay to recurrence. In vitro, in opposition to EZH2i, co-treatment with KDM6A/Bi led to a decrease in the number of persisters at day 21 and further completely abolished the growth of persister cells under 5-FU at day 60, whereas it had no effect on untreated cancer cells (Fig. 5a, Extended Fig. 9a-c). Interestingly, administrating KDM6i once persister cells have emerged, rather than in combination to chemotherapy, is inefficient (Fig. 5b, Extended Fig. 9d), demonstrating that the switch from untreated to drug-tolerant state, rather than the drug-tolerant state itself, was sensitive to KDM6i. These results were confirmed in two additional TNBC cell lines, BT20 and HCC38 (Extended Fig. 9e-f). In vivo, our objective was to test the potential of KDM6i to limit the emergence of persister cells, when administered simultaneously to chemotherapy. We compared the disease-free survival time of mice treated with Capecitabine alone (n=25) or in combination with KDM6i (n=25). The administration of KDM6i did not inhibit tumor progression in absence of chemotherapy nor was toxic for the mice (Fig. 5c). However administered in combination to chemotherapy, it significantly increased the delay to recurrence (Fig. 5d, p=4.0e-2) in comparison to chemotherapy alone. Our in vitro and in vivo results together suggest that a fraction of cancer cells could need to actively demethylate H3K27me3 residues to tolerate chemotherapy. These results are consistent with a mechanism where persister genes would be repressed by H3K27me3 in untreated cells, and primed with stochastic H3K4me3 in a subset of cells, with the loss of H3K27me3 unlocking the transition to tolerance.

Discussion

In conclusion, our study shows that H3K27me3 landscapes are determinants of cell fate upon chemotherapy exposure in TNBC. We demonstrate that, prior to treatment, cells display bivalent chromatin landscapes priming the persister expression program with H3K4me3 and H3K27me3. In other words, genes are ready to be activated with H3K4me3, but are repressed with H3K27me3 that remains the lock to the activation of the persister expression program. Using EZH2 inhibitors and lineage tracing strategies, we further demonstrate that, depleting H3K27me3 from the genome rescues the cell fate bias normally observed upon chemotherapy insult; cells have an equal probability of surviving initial chemotherapy insult. Persister cells could be cells without H3K27me3 or the one releasing the H3K27me3 lock, or a mixture of both phenomena as shown here: co-treating cells with a H3K27me3 demethylase inhibitor together with 5-FU, we reduced, but not totally abrogated the number of persister cells. We propose that combining chemotherapy with histone demethylase inhibitors at the onset of chemotherapy exposure will delay recurrence by decreasing the pool of persister cells. Several studies had started to interrogate which epigenetic modifiers could regulate expression programs of persister or resistant cells [START_REF] Liau | Adaptive Chromatin Remodeling Drives Glioblastoma Stem Cell Plasticity and Drug Tolerance[END_REF][START_REF] Göllner | Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia[END_REF][START_REF] Vinogradova | An inhibitor of KDM5 demethylases reduces survival of drug-tolerant cancer cells[END_REF][START_REF] Hinohara | KDM5 Histone Demethylase Activity Links Cellular Transcriptomic Heterogeneity to Therapeutic Resistance[END_REF] . Here, we show that even prior to treatment, the epigenome is already a key player, with a priming of the persister program. Our findings highlight how chromatin landscapes can shape the potential of cancer cells for chemotolerance. EZH2i were also recently shown to lead to MHC Class I upregulation in cancer cells, thereby showing beneficial immunotherapeutic effects [START_REF] Burr | An Evolutionarily Conserved Function of Polycomb Silences the MHC Class I Antigen Presentation Pathway and Enables Immune Evasion in Cancer[END_REF][START_REF] Mahadevan | Intrinsic immunogenicity of small cell lung carcinoma revealed by its cellular plasticity[END_REF] . If such cell plasticity represents a therapeutic opportunity, our results also show that EZH2i could also lead, in some contexts, to the activation of a set of genes driving drug-persistence.

Isolated examples of bivalent promoters had been found in tumor cells [START_REF] Hahn | Loss of the Polycomb Mark from Bivalent Promoters Leads to Activation of Cancer-Promoting Genes in Colorectal Tumors[END_REF][START_REF] Chaffer | Poised Chromatin at the ZEB1 Promoter Enables Breast Cancer Cell Plasticity and Enhances Tumorigenicity[END_REF] , here we exhaustively map bivalent promoters genome-wide, revealing epigenomic priming of mammary stem cell genes and signaling pathways of known resistance pathways in TNBC [START_REF] Nedeljković | Mechanisms of Chemotherapy Resistance in Triple-Negative Breast Cancer-How We Can Rise to the Challenge[END_REF] , including Hedgehog, WNT, TGF-β, ATPbinding cassette drug transporters pathways. Such epigenomic priming is reminiscent of developmental bivalency priming mechanisms [START_REF] Bernstein | A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells[END_REF] found in stem cells prior to differentiation and appears key for the rapid activation of the genes upon therapeutic stress. Remains to be understood, how only a minority of bivalent genes are targeted by gene reactivation upon chemotherapy exposure -which could be associated to the nature of the treatment itself -and whether such priming mechanisms could be shared across cancer types. Determining the precise addressing mechanisms that target H3K27me3 and H3K4me3 writers and readers to TSS of cancer-type bivalent genes under therapeutic stress, will be instrumental in the future to identify dedicated co-factors which could serve as therapeutic targets to further limit the emergence of persister cells.

Methods

Experimental approaches:

Patient samples and PDX models. Patient samples used in this study (n=9) originated from patient treated at Institut Curie with residual triple-negative breast cancers post-neoadjuvant chemotherapy, who gave informed consent for the profiling. In this study, we used three xenograft models generated from three different residual triple-negative breast cancers post-neoadjuvant chemotherapy (HBCx95 called PDX_95, HBCx39 called PDX_39 and HBCx172 called PDX_172 in the manuscript, see Extended Table2) established previously at Curie Institute with informed consent from the patient [START_REF] Cottu | Acquired Resistance to Endocrine Treatments Is Associated with Tumor-Specific Molecular Changes in Patient-Derived Luminal Breast Cancer Xenografts[END_REF][START_REF] Marangoni | Capecitabine Efficacy Is Correlated with TYMP and RB1 Expression in PDX Established from Triple-Negative Breast Cancers[END_REF] . Female Swiss nude mice were purchased from Charles River Laboratories and maintained under specificpathogen-free conditions. Mouse care and housing were in accordance with institutional guidelines and the rules of the French Ethics Committee (project authorization no. 02163.02). Fig. 1b: Five mice were not treated and kept as controls (termed "untreated") and twenty-seven mice were treated orally with Capecitabine (Xeloda; Roche Laboratories) at a dose of 540 mg/kg, 5 d/week for 6 to 14 weeks. Relative tumor volumes (mm3) were measured as described previously [START_REF] Marangoni | A New Model of Patient Tumor-Derived Breast Cancer Xenografts for Preclinical Assays[END_REF] . Eight mice were sacrificed after the first round of chemotherapy to study "residual" tumors (2 mice) or "persister" (6 mice) human tumor cells. Seven mice with "recurrent" tumors (tumor volume between 200 and 600 mm3) were treated with a second round of Capecitabine to which they responded or not. "Resistant" refers to a tumor which maintains a constant volume under this second round of treatment.

Extended Fig. 1f: Three mice were not treated and kept as controls (termed "untreated") and fourteen mice were treated orally with Capecitabine at a dose of 540 mg/kg, 5 d/week for 7 weeks and sacrificed to study "persister" human tumor cells.

Extended Fig. 1l: Six mice were not treated and kept as controls (termed "untreated") and four mice were treated orally with Capecitabine for 7 weeks and sacrificed to study "persister" human tumor cells. F6627) alone or in combination with KDM6A/Bi or EZH2i for indicated days. For EZH2i, cells were pretreated with UNC1999, UNC2400 or GSK126 for 10 days before the addition of 5-FU for an additional 21 days (Figure 4 and Extended Figure 8).

Colony forming assay. TBNC cells were plated in 6 multi-well plates at a density of 200,000 cells per well and treated with the indicated drugs for 60 days (MDA-MB-468, Fig. 5a/b and Extended Fig. 9b) or 56 days (BT20) or 50 days (HCC38) (Extended Fig. 9). Cultures were incubated in humidified 37 °C incubators with an atmosphere of 5% CO2 in air, and treated plates were monitored for growth using a microscope. At the time of maximum foci formation, colony formation was evaluated after a staining with 0.5% Crystal Violet (Sigma, ref: C3886). MDA-MB-468 untreated and chemoresistant cells were plated in 96 multi-well plates at a density of 10,000 cells per well and treated with increased concentration of 5-FU (1μM to 0.5M) for 72h. Cell cytotoxicity was assayed with XTT kit (Sigma, Ref: 11465015001) and IC50 was calculated as the concentration of 5-FU that is required to obtain 50% of cell viability (Extended Fig. 2b).

Cells were classified as 'persister', 'growing persister' or 'resistant' based on a combination of 2 biological markers : (i) doubling time under 5-FU, (ii) IC50 to 5-FU (Extended Figure 2b, Fig. 1e): -'persister' correspond to non-dividing cells (infinite doubling time) or cells dividing with a doubling time significantly higher than resistant cells under 5-FU -'resistant' correspond to cells with a doubling time comparable to untreated cells and a significant higher IC 50 to 5-FU compared to untreated cells It should be noted that due to low number of persister cells (0.01% of initial population), we could not measure the IC50 to 5-FU. Western blotting. In Extended Fig. 8b Lentivirus packaging and cell transduction. Lentivirus was produced by transfecting the barcode plasmids pRRL-CMV-GFP-BCv2AscI and p8.9-QV and pVSVG into HEK293T cells as previously From the isolated genomic DNA, barcodes are amplified with three nested PCR steps as decribed in [START_REF] Eisele | Erythropoietin directly affects single hematopoietic stem cell differentiation after transplantation[END_REF] (see Extended Table 1 for primer sequence). In short, after a first specific PCR for the common region of the lineage barcodes, the amplified material was prepared for sequencing by addition of the illumina sequencing adaptaters and indexing and purification.

Sequencing was done in order to obtain 50 reads, on average, per barcoded cell.

Bulk ChIP-seq. ChIP experiments were performed as previously described [START_REF] Grosselin | High-throughput single-cell ChIP-seq identifies heterogeneity of chromatin states in breast cancer[END_REF] mode. For MDA-MB-468, we verified that the two ways (H3K27me3->H3K4me3 and H3K4me3->H3K27me3) yielded similar results. We found a significant overlap of the 1,547 and 2,490 bivalent genes obtained with the two ways (p=2.2e-16, Ext. Fig. 6g) and found that the enriched pathways were strongly correlated (Pearson's r = 0.81, Ext. Fig. 6h). 

CUT&Tag on frozen

Computational approaches:

Single-cell RNA-seq analysis. The scRNA-seq sequencing files were preprocessed using the cellRanger pipeline. For PDX samples, files were aligned against hg19 and mm10 genomes and only cells with a majority of human reads were retained for the analysis. For the MDA-MB-468 human cell line, sequences were aligned against the hg38 genome only. Cells with less than 3,000 cells for MDA-MB-468 or 2,500 for PDX or more than 8,000 detected genes, or more than 100,000 reads were filtered out, as well as cells with a percent of mitochondrial reads greater than 15% or a percentage of spike in greater than 5%. Normalization, dimensionality reduction and Louvain clustering was done using monocle3 (v0.2.2) [START_REF] Trapnell | The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells[END_REF] keeping the first 50 Principal Components (PC). Cell cycle was determined for each cell using Seurat (v3.1.5) [START_REF] Stuart | Comprehensive Integration of Single-Cell Data[END_REF] . For MDA-MB-468 datasets, we removed from subsequent analysis clusters with less than 0.5% of the total cells (150 cells ) (clusters R1, R5, R7, R9, R11 and R12). Differentially expressed genes were obtained by comparing raw gene expression values using edgeR GLM statistical model [START_REF] Mccarthy | Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation[END_REF] . For the PDX model, persister cells were compared to cells from the untreated tumor; for MDA-MB468 cells, cells from cluster R2 (persister cells) were compared to cells from cluster R10 (untreated population). Genes were considered significantly overexpressed if the fold change was higher than 3 and the adjusted p-value less than 0.01. For MDA-MB-468 samples, as the number of cells was high, a subset of 500 cells per cluster was subsampled from each cluster for the differential analysis and downstream steps. Intra-cluster correlation scores were calculated using Pearson's correlation score, with a random subsampling of n=500 cells per cluster.

Single-cell lineage barcode extraction from 10X datasets.

To detect the lentiviral inserted barcodes in the 10x sequencing data we used custom R scripts. To avoid running scripts on all reads we: 1. used samtools to extract all unmapped reads from the 10x output bam file, 2. used awk to take reads with either a 3' or 5' 20bp match to the constant flanking region of the barcode allowing one mismatch, 3.

retained only reads with both a 10x cell barcode and 10x UMI. We then located the 20bp match to one of the constant flanking regions allowing one mismatch (but filtered out reads where a mismatch was in the first or last base to ensure the barcode is at the expected position). We then further required a 4bp exact match on the other side of the barcode, and then extracted the 20bp viral barcode, read name, 10x cell barcode and 10x UMI.

To assign one viral barcode to each 10x cell barcode, we determined a consensus viral barcode for each UMI. For each position in the barcode we returned the most frequently observed base and the proportion of reads supporting this consensus. Barcodes associated with a 10x CB-UMI pair were filtered if the proportion of reads supporting a position was ≤ 0.5 at ≥ 3 positions. Next, one viral barcode for each 10x cell barcode was taken as a consensus across all remaining CB-UMI pairs for each 10x cell barcode. We took the most frequently observed base for each position and the barcode was filtered if the proportion of UMIs supporting a position is ≤ 0.5 at ≥ 3 positions. Finally, we checked whether the viral barcodes were in our barcode library and excluded them if not. UMAPs were colored according to lineage identity, for cells each color corresponding to a unique viral barcode. For comparison with bulk datasets, pseudo-bulk barcode frequencies were computed and normalized to 10,000 total barcodes/sample, as for bulk.

Bulk barcode pre-processing. The analysis pipeline was performed as previously published [START_REF] Perié | The Branching Point in Erythro-Myeloid Differentiation[END_REF] . In brief, using R-3.4.0 (R Development Core Team (2019) http://www.R-project.org), raw reads were first filtered for perfect to the input index-and common-sequences using XCALIBR (https://github.com/NKI-GCF/xcalibr) and filtered against the barcode reference list. Correlation between technical (PCR) replicates (Extended Fig. 3j) was used as quality control: samples were then normalized and filtered for a Spearman correlation between replicates higher than 0.6 and barcodes present in only one of the two replicates were set to zero. The mean of the replicates was used for downstream analysis.

Bulk and single-cell lineage barcode analysis. All barcode frequencies were transformed with asinh.

Shannon indexes to assess barcode diversity were computed as described previously [START_REF] Jost | Entropy and diversity[END_REF] . Normalized frequencies from bulk and single-cell datasets were clustered using hierarchical clustering based on Spearman correlation and Ward method. Frequencies across time points and conditions were compared with a Spearman correlation coefficient and associated p-value. To test whether barcode frequencies within DMSO and 5-FU treated cells correspond to a random sampling of the initial untreated population, we used proportionate sampling PPS to simulate an in silico barcode frequency vector from a consensus barcode frequency vector of the initial population -obtained from n=6 drawings -and compared simulated and observed frequencies as above. For single-cell datasets, we computed the fraction of unique barcodes as the number of unique detected barcodes over the total number of detected barcodes, for a given cluster or cell population.

Bulk ChIP-seq analysis and consensus peak annotations. Raw sequencing files were mapped in singleend mode using bowtie with options '-k 1 -m 1' http://broadinstitute.github.io/picard/). In order to define a consensus annotation specific to our MDA-MB-468 model, peaks were first called on each of all bulk MDA-MB-468 samples, both DMSO and 5-FU treated, against their respective inputs using Zerone 57 with a confidence of 95% and window size of 1,000bp for H3K27me3 mark and 500bp for H3K4me3 mark. Peaks were further merged together when closer than 10,000bp. For H3K4me3 this defined the consensus peak annotation with a total of 29,714 peaks. For H3K27me3, peaks were further filtered to refine annotation: (i) only keeping peaks having signal in at least two samples and (ii) removing small peaks (< 2,000bp) with overestimated signal due to window size normalization. A total of 9,568 consensus peaks were found for H3K27me3 landscapes in 5-FU and DMSO treated cells, defining the H3K27me3 consensus peak annotation. For all experiments and annotations, only cells with a coverage over 1,000 reads were kept for downstream analysis, see Extended Table 3 for sample and cell numbers. In order to exclude from the subsequent analysis known copy number variation (CNV) regions between samples, CNV regions previously identified using ChromHMM 61 on the input of bulk experiment of MDA-MB-468 samples were used by ChromSCape as regions to exclude from the analysis. Coverage tracks of metacells for scChIP-seq were obtained by aggregating the signal of single-cells into cumulative signals in each cluster. We define a group of cells as being more 'synchronous' regarding a set of genes (e.g. persister genes) if they have a significantly higher number of genes with H3K4me3 signal, according to a Wilcoxon non-parametric rank test.

Single-cell

Single-cell

Differential analysis of H3K27me3 chromatin landscapes genome-wide. These analyses were done using consensus peak annotations, to assess for genome-wide changes without a priori on gene annotation. For each scChIP-seq datasets, for each cluster (E1, E2, E4), pseudo-bulk samples were generated by summing up reads from individual cells provided there were more than 50 cells in the sample in the given cluster. Pseudo-bulk scChIPseq signals are normalized by the total number of reads for all cells of the corresponding population ('persister' or 'untreated'). For each loci, both pseudo-bulk tracks are shown at the same magnification, with the same range for the y-axis to enable comparison between pseudo-bulk tracks.

We performed two differential analysis based on counts within the consensus peak annotation: (i) one to define the specific chromatin changes in persister cells versus untreated cells (Fig. 2c-d, Extended Fig. 5e), where we compared pseudo-bulks and bulks of persister cells to pseudo-bulks and bulks of untreated cells, and (ii) one to compare chromatin landscapes of subpopulations within the untreated populations (Extended Fig. 5e). For (i), as persister cells grouped within one cluster, we combined n=2 pseudo-bulks to n=4 bulk matrices from biological replicates to perform differential analysis using Limma package [START_REF] Ritchie | limma powers differential expression analyses for RNA-sequencing and microarray studies[END_REF] . Peaks with a log2FC over 1 and under -1 and an adjusted p-value below 0.1 were considered significantly enriched or depleted of H3K27me3 in persister cells. For Fig. 2c, we used a generic hg38 genome gene/TSS annotation that classifies regions into categories, e.g. gene TSS, intergenic or enhancer regions. For each category we test whether this category is significantly more prevalent in differentially enriched peaks between persister and untreated states versus in all peaks.

The 'enrichment' metric is the log2(number of differential peaks in the category/total number of peaks in that category). Fisher's exact test was used to compare the localization of depleted H3K27me3 peaks in respect to gene annotation.

Epigenomics and transcriptome data comparison.

To integrate epigenomic and trancriptome data (SI_Table 4, Fig. 3c), for each gene we combined both TSS-based and peak-based differential analysis (considering peaks closer than 1kbp to the TSS) with the same thresholds as above. We represented this integration as a donut plot (Fig. 3c), taking into consideration all persister genes n=168 and adding independently, for each, information on H3K27me3 status upon 5-FU treatment (depleted in TSS or nearby peak, or unchanged), on bivalent status in untreated cells (see related section for thresholds) and on presence in the top 100 of CheA3 predicted TFs (see below).

Gene regulatory networks.

In order to test whether persister genes are co-regulated by master regulators, we ran CHeA3 33 data mining algorithm (from TF-target interaction based on multiple sources, e.g. ENCODE, GTEx co-expression, ReMap ChIP-seq, EnrichR, ARCHS4 co-expression and ChIPseq from the literature) to find TFs with regulons enriched in persister genes in vitro and in PDXs. In order to create a background control to assess the quality of the ranking score given by CHeA3, we ran ChEA3 for 1000 random gene sets, expressed in our scRNA-seq data and of the same size. The inverse of the ChEA3 score of the top ranking 100 TF regulons enriched in our persister genes were significantly greater than for the random background gene sets for all models (one-sided T-test p.values with respectively for MDA-MB-468, PDX_95, PDX_39 and PDX_172: 2.2e-16, 5.8e-08, 6.9e-3 & 6.9e-05).

Chromatin indexing analysis.

The bulk chromatin indexing sequencing files were first demultiplexed by matching the first 8 bases of #Read 2 without any mismatches to the 8-bp long index of each sample from a pool of 5 samples. The same demultiplexing was done for the corresponding inputs. Afterwards, mapping and demultiplexing was done as in bulk ChIP-seq (see above). Relative total amounts of immunoprecipitated DNA were determined as the ratio of the number of reads in the IP by the number of reads in the corresponding input for each sample within the pool. Coverage tracks were normalized with this ratio.

Sequential ChIP-seq analysis. Fastq files for primary (ChIP) and secondary (ChIP-reChIP) immunoprecipitation were processed as for bulk ChIP-seq (see above). For the MDA-MB-468 cell line, sequential ChIP-seq was processed with H3K27me3 as primary ChIP then H3K4me3 as secondary ChIP or vice versa. For other in vitro models and PDXs only the latter H3K4me3 -> H3K27me3 way was kept as peaks were more easily identifiable in the secondary ChIP profiles. IgG secondary ChIP was used as a negative control.

For the H3K27me3 -> H3K4me3 reChIP datasets, peaks were called on the secondary ChIP (H3K4me3 or IgG) with MACS2 63 using the primary H3K27me3 signal as control and with parameters 'macs2 callpeak --call-summits -p 0.1 --nomodel --extsize 300'. Summits closer to each other by 1,000 bp were merged using Bedtools [START_REF] Quinlan | The Swiss-Army Tool for Genome Feature Analysis[END_REF] . Only peaks overlapping both the TSS annotation and the H3K27me3 consensus peak annotation obtained from ChIP-seq experiments (see above) were kept to focus on TSS chromatin landscapes. A ratio and associated p-value for each peak was calculated as follows:

(i) Reads were counted within the 2kbp region around the peak summit ("peak") as well as in the 20kbp region around peak ("locus") in each ChIP-reChIP. A ratio of "peak" / "locus" was calculated in order to control for the relative increase in signal in this region (presence of a peak).

(ii) Reads were counted in the 2kbp region around the summits ("peak") as well as in the 500kbp region around peak ("area") in the primary ChIP and the ChIP-reChIP to create a contingency table.

A Fisher exact test was performed on the contingency table to reject the null hypothesis that the number of reads in "peaks" compared to reads in "area" is greater in the ChIP-reChIP than in the primary ChIP. P-values were adjusted for multiple testing using the Benjamini-Hochberg procedure [START_REF] Benjamini | Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing[END_REF] .

In order to choose adequate thresholds for adjusted p-value and "peak"/"locus", we calculated the number of false positives for p-values ranging from 0.1 to 0.001 and ratios ranging from 10 to 25% (Extended Fig. 6f), using H3K27me3/IgG ChIP and ChIP-reChIP as a negative control. An adjusted pvalue threshold of 0.001 and peak ratio threshold of 15% was chosen to minimize false positives peaks and resulted in 1,266 bivalent peaks covering 1,547 TSS.

For the H3K4me3 -> H3K27me3 reChIP datasets, peaks were first called on primary ChIP using MACS2 without control with parameters '--call-summits -p 0.01 --nomodel --extsize 300'. The number of reads in the region 2.5kbp upstream and downstream of each peak were counted in the primary and secondary ChIP. Reads were normalized by total library size. First, the ratio between secondary and primary ChIP were calculated for each peak and then the odd-ratio between each TSS and it's 60 closest neighbours were calculated from the ratios. In order for a TSS to be considered bivalent, the odd ratio of a given peak compared to the 60 closest neighbour peaks must be greater than 4. Then, A

Fisher exact test was performed on the contingency table to reject the null hypothesis that the number of reads in secondary compared to reads in primary ChIP is greater in the given peak than in it's 60 neighbor peaks. P-values were adjusted for multiple testing using the Benjamini-Hochberg procedure [START_REF] Benjamini | Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing[END_REF] . In order to choose adequate thresholds for adjusted p-value and "peak"/"locus", we calculated the number of false positives for p-values ranging from 0.001 to 1e-30, using H3K4me3/IgG ChIP and ChIP-reChIP as a negative control. Adjusted p-value thresholds were always lower than 0.001 and were defined so that we obtained the greatest number of bivalent peaks in the H3K4me3/H3K27me3 experiment compared to the H3K4me3/IgG negative control.

The comparative coverage tracks were generated by calculating the log2 ratio of secondary ChIP versus primary ChIP using Deeptools bamCompare and then smoothed. For each loci, H3K27me3/H3K4me3 and H3K27me3/IgG or H3K4me3/H3K27me3 and H3K4me3/IgG tracks are shown at the same magnification and with the same range for the y-axis for comparison between tracks.

Bulk CUT&TAG of patient tumors to assess bivalency. Fastq files for H3K27me3 and H3K4me3 were processed as for bulk ChIP-seq (see above). For each sample, reads were counted on the TSS annotation and normalized using log2 RPKM. Then, only the top 15% most covered TSS were kept for H3K4me3 and H3K27me3. Bivalent TSS were taken as the intersection of these highly covered TSS.

Gene set analysis.

For all gene set analysis, we applied hypergeometric tests to identify gene sets enriched within significantly overexpressed genes (scRNA), genes devoid of H3K27me3 (scChIP-seq) or bivalent genes (Sequential ChIP-seq, bulk Cut&Tag) from MSigDB v5 database [START_REF] Subramanian | Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles[END_REF] , correcting for multiple testing with the Benjamini-Hochberg procedure. Gene sets with an adjusted p-value below 0.1 were considered significantly enriched. The gene background universe for hypergeometric testing was the entire set of expressed genes for scRNA or the 32,937 genes present in Gencode for scChIP-seq or bivalent gene lists. The tests were performed on all lists, but we display only the relevant following lists: 'c2_curated' related to breast (searching for 'MAMMARY' or 'BREAST'), 'c2_curated' related to 'KEGG', 'c5_GO'and 'c7_hallmark', filtering out genetic-event related lists (containing 'AMPLICON').

When displaying gene set analysis of multiple samples, we first selected gene sets significantly enriched in 3/3 of PDXs or in vitro samples or at least 7/9 samples for human tumors. Then, gene sets were ranked by the average adjusted p-values, and only the top 5 gene sets of each category were displayed. The dotplots representing pathway enrichment across multiple samples were done using clusteRprofileR [START_REF] Yu | clusterProfiler: an R package for comparing biological themes among gene clusters[END_REF] . The gene ratio stands for the fraction of genes belonging to each pathway. For the PDX and in vitro experiments, the -log10 adjusted p-value of the main models are displayed, respectively PDX_95 and MDA-MB-468. In order to calculate the significativity of overlaps when we compared multiple set of pathways, we used the Exact Test of Multi-set intersections [START_REF] Wang | Efficient Test and Visualization of Multi-Set Intersections[END_REF] .

Whole Exome Sequencing data analysis. The WES sequencing files were mapped using bwa-mem [START_REF] Li | Fast and accurate short read alignment with Burrows-Wheeler transform[END_REF] to the human genome (hg19). Reads falling in the targeted regions were then filtered based on their mapping quality and PCR duplicates were removed. Local Indel Realignment and Base Score Recalibration was applied to deduplicated reads using GATK [START_REF] Depristo | A framework for variation discovery and genotyping using next-generation DNA sequencing data[END_REF] . Somatic variants were called with Mutect2 71 using early passage 16 (p16) and a series of patient blood samples as reference (referred as "blood", see Extended Fig. 4a). At this step, only mutations labeled as 'PASS' or 't_lod_fstar' were kept and additional filters were applied based on http://best-practices-for-processing-htsdata.readthedocs.io/en/latest/mutect2_pitfalls.html. Using p16 as the "normal" sample allowed to directly obtain somatic variants acquired after treatment or not to 5-FU, but we hypothesized that some germline variants might be wrongly called somatic variants so we filtered out variants that were reported in ExAC Non Finnish European database, effectively removing 231 variants possibly germline.

For MDA-MB-468 persisters & resistant samples, mutations also present in one of the untreated samples were removed. Mutations occurring in a breast cancer driver gene list from [START_REF] Nik-Zainal | Landscape of somatic mutations in 560 breast cancer whole-genome sequences[END_REF] was used to annotate mutations falling in driver genes.

GAP [START_REF] Popova | Genome Alteration Print (GAP): a tool to visualize and mine complex cancer genomic profiles obtained by SNP arrays[END_REF] was used to calculate with precision absolute copy number and B allele frequencies (BAF) taking depth of coverage and allele frequency from a set of known germline variants from the 73 as inputs, and using "blood" as normal sample. Palimpsest 74 was then used to calculate the Cancer Cell Fraction (CCF) of each mutation in each sample, i.e. the proportion of cells in the population bearing the mutation, correcting by purity, BAF and absolute copy number of the segment. Then mutations were classified in either 'subclonal' or 'clonal' depending on their CCF. Finally, de novo mutational signatures were obtained from the mutations context and matched to a set of known signatures from COSMIC v2 (https://cancer.sanger.ac.uk/cosmic/signatures_v2) that were observed in breast cancer (i.e. signatures 1, 2, 3, 8, 13, 17, 18, 20, 26 & 30).

Extended legends

Extended Figure 1 Extended Table 1: Summary of all models and technologies. Details of the models, samples, technologies used as well as the output of each experiment.

Extended Table 2 H3K27me3: Log2FC=-2.9 q.value=3.2e-5 Expression: Log2FC=2.04 q.value=3.8e-57 

  Our results that depletion of H3K27me3 with EZH2 inhibitors -at the onset of treatment -enhances chemotolerance leaves open questions regarding the role of H3K27me3 landscapes in cancer evolution, and the usage of EZH2i in cancer treatment. Depending on the context and the timing of administration, EZH2i might have drastically different effects, and such subtleties should be carefully considered before therapy combination. In contrast to our observations at the onset of treatment, TNBC cancer cells with long-term acquired chemo-resistance have been shown to display DNA hypomethylation and large H3K27me3 over transposable elements, hence a vulnerability to EZH2i 39 .

Fig. 5c :

 5c Fig. 5c: Five mice were treated intraperitoneally with DMSO, five mice were treated intraperitoneally with GSK-J4 alone at a dose of 50mg/kg, 5d/week for 25 days. Twenty-five mice were treated orally with Capecitabine at a dose of 540 mg/kg, 5 d/week for 36 days and twenty-five mice were co-treated with Capecitabine and GSK-J4 for 36 days. Tumor volumes (mm3) were measured to follow recurrence. Fig. 5d: Disease-free survival was defined as the number of days between the observation of a complete response (relative tumor volume RTV compared to volume at onset of treatment < 0.2) after the first round of Capecitabine treatment, and the appearance of a recurrent tumor (RTV > 3). Statistical analysis was performed using a log-rank test. Before downstream analysis (scChIP-seq, scRNA-seq or sequential ChIP-seq), control and treated tumors were digested for 2h at 37°C with a cocktail of Collagenase I (Roche, Ref: 11088793001) and Hyaluronidase (Sigma-Aldrich, Ref: H3506). Cells were then individualized at 37°C using a cocktail of 0.25% Trypsin-Versen (Thermo Fisher Scientific, Ref: 15040-033), Dispase II (Sigma-Aldrich, Ref: D4693) and DNase I (Roche, Ref: 11284932001) as described previously 48 . Then, eBioscience red blood cell lysis buffer (Thermo Fisher Scientific, Ref: 00-4333-57) was added to the cell suspension to remove red blood cells. To increase the viability of the final cell suspension, dead cells were removed using the Dead Cell Removal Kit (Miltenyi Biotec, Ref:130-090-101).

  Cell proliferation, doubling time and IC50. MDA-MB-468, HCC38 and BT20 cells were stained with Trypan Blue (Invitrogen, Ref: T10282) exclusion test, and counted using a Countess automated cell counter (Invitrogen, Ref: C10228) at indicated time of treatment (Fig. 4a and Extended Fig.8a/d/f). Doubling time (Extended Fig.2b) was calculated using this formula: "DoublingTime = duration * log(2)/(log(Final Concentration)-log(Initial Concentration))"For untreated condition and resistant condition, cell numbers were evaluated on cell population during 10 days (n=3). For persister condition, cells were counted manually under the microscope at day 13 and day 30 of treatment. Doubling time of 5-FU dividing persister cells was studied from single cell to confluent colony by assaying cell number every 4 days during 27 days (n= 9 single cells).

For

  Extended Fig. 9d cells were treated with 5-FU at 5uM and indicated concentrations of GSK-J4 or GSK-J5 (D-5 indicated 5 days pre-treatment with GSK-J4 or GSK-J5 before 5-FU treatment (D0), D0 indicated co-treatment 5-FU and GSK-J4 or GSK-J5, D10 and D30 indicated that treatment with GSK-J4 or GSK-J5 started 10 days or 30 days respectively after the onset of 5-FU treatment (D0). The number of persister cells were counted manually under the microscope at day 42 (n=3). The GraphPad PRISM 9 was used for statistics and the results represent the mean ± sd of three independent experiments. Statistical analysis was performed using the Bonferroni test for multiple comparisons between samples (Fig. 4a, Extended Fig. 8a/d/f, Extended Fig. 9b/d and Extended Fig.2b-right) or one-tailed Mann-Whitney test for the comparison between two conditions (Extended Fig. 2bleft).

described 30 .

 30 MDA-MB-468 cells from ATCC were infected at passage 11 with lentivirus produced from the barcode library (pRRL-CMV-GFP-BCv2AscI) which includes 18206 different barcodes of 20bp of a random stretch, at a low multiplicity of infection (MOI 0.1) to minimize the number of cells marked by multiple barcodes. Three weeks after transduction, cells were sorted for GFP expression to select cells with barcode insertion, and used for drug treatment. Single-cell RNA-seq. For each single cell suspension (DMSO-D0-#1, 5-FU-D33-#1, 5-FU-D214-#1, 5-FU-D67-#2, 5-FU-D171-#2, 5-FU-D50-#3, 5-FU-D77-#3 and 5-FU-D202-#3) or PDX dissociated cells (PDX_95, PDX_39 or PDX_172, untreated and persister cells), approximately 3,000 cells were loaded on a Chromium Single Cell Controller Instrument (Chromium Single Cell 3ʹv3, 10X Genomics, Ref: PN-1000075) according to the manufacturer's instructions. Samples and libraries were prepared according to the manufacturer's instructions. Libraries were sequenced on a NovaSeq 6000 (Illumina) in PE 28-8-91 with a coverage of 50,000 reads/cell. Bulk lineage barcode library preparation and sequencing. Lineage barcodes are recovered by isolating genomic DNA from cells of interest (NucleoSpin Tissue, Mini kit for DNA from cells and tissue, Macherey Nagel, Ref: 740952.50).

  on 3x10 6 MDA-MB-468 cells (DMSO-D67-#2, DMSO-D77-#3, DMSO-D113-#4, 5-FU-D67-#2, 5-FU-D77-#3, 5-FU-D113-#4) using an anti-H3K27me3 antibody (Cell Signaling Technology, Ref: 9733 -C36B11). Sequencing libraries were prepared using the NEBNext Ultra II DNA Library Prep Kit (NEB, Ref: E7645S) according to the manufacturer's instructions. Libraries were sequenced on a NovaSeq 6000 (Illumina) in SE50 mode. Single-cell ChIP-seq. Cells (DMSO-D60-#1, DMSO-D77-#3, DMSO-D131-#5, 5-FU-D33-#1, 5-FU-D67-#2, 5-FU-D171-#2, 5-FU-D147-#3, 5-FU-D131-#6) were labeled by 15 min incubation with 1 μM CFSE (CellTrace CFSE, ThermoFisher Scientific, Ref: C34554

  chromatin samples (DMSO, 5-FU, UNC, 5-FU + UNC, GSK-J4) were pooled, each containing a different 8-bp barcode, to perform anti-H3K27me3 ChIP (Cell Signaling, Ref: 9733 -C36B11) on 250,000 cells in total in each pool. ChIP and DNA amplification was carried out as for scChIP-seq[START_REF] Grosselin | High-throughput single-cell ChIP-seq identifies heterogeneity of chromatin states in breast cancer[END_REF] and a sequencing library was produced for both IP and input pools and sequenced on NovaSeq 6000 (Illumina) in PE100 mode.Sequential ChIP-seq. Primary ChIP experiments were performed as described previously[START_REF] Grosselin | High-throughput single-cell ChIP-seq identifies heterogeneity of chromatin states in breast cancer[END_REF] on 10x 10 6 untreated MDA-MB-468, BT20 or HCC38 cells or untreated PDX_95, PDX_39 or PDX_172 tumor dissociated cells using the anti-H3K27me3 antibody (Cell Signaling, Ref: 9733 -C36B11 -MDA-MB-468) or anti-H3K4me3 antibody (Cell Signaling, Ref: 9751-C42D8 -MDA-MB-468-bis, BT20, HCC38 and PDX models). After washes, samples were eluted twice at 37°C for 15 min under agitation in an elution buffer (50mM Tris-Hcl pH8, 5mM EDTA, 20mM DTT, 1% SDS) as in. Samples were diluted 10 times to decrease SDS and DTT concentration. 10% of the eluted chromatin was kept as primary ChIP.Secondary ChIP, re-ChIP, was performed overnight on the rest of the primary immuno-precipitated chromatin using an anti-H3K4me3 antibody (MDA-MB-468) or anti-H3K27me3 (MDA-MB-468-bis, BT20, HCC38 and PDX models) or using an anti-IgG antibody (Cell signaling, Ref: 3900 -all samples) as a control, to determine the background level of the re-ChIP experiment. After washes, samples were eluted twice at 65°C for 15 min under agitation in 0.1M NaHCO3 and 1% SDS as in[START_REF] Desvoyes | Sequential ChIP Protocol for Profiling Bivalent Epigenetic Modifications (ReChIP)[END_REF] . After reverse crosslinking and DNA clean-up, 3 to 15 ng of immunoprecipitated DNA were used to prepare the sequencing libraries using the NEBNext Ultra II DNA Library Prep Kit (NEB, Ref: E7645S) according to the manufacturer's instructions. Libraries were sequenced on a NovaSeq 6000 (Illumina) in SE100

  Whole exome sequencing. Genomic DNA from samples (DMSO-D0, DMSO-D147-#3, DMSO-D171-#5, DMSO-D131-#6, 5-FU-D67-#2, 5-FU-D153-#2, 5-FU-D50-#3, 5-FU-D147-#3, 5-FU-D171-#5 and 5-FU-D131-#6) were extracted with NucleoSpin Tissue, Mini kit for DNA from cells and tissue (Macherey Nagel, Ref: 740952.50) and sequenced on a NovaSeq 6000 (Illumina) with a 100X depth.

  ChIP-seq read processing. The single-cell ChIP-seq sequencing files were preprocessed using our single-cell ChIP-seq dedicated pipeline (https://github.com/vallotlab/scChIPseq_DataEngineering). Each #Read 2 was first splitted into a cell barcode sequence composed of the first 79 nucleotides and the last 22 nucleotides corresponding to genomic DNA. Full #Read 1 and genomic DNA of #Read 2 were mapped in paired-end mode to hg38 whole genome using STAR (v2.6.0c) with parameters '--alignEndsType EndToEnd -outFilterMultimapScoreRange 2 -winAnchorMultimapNmax 1000 -alignIntronMax 1 -peOverlapNbasesMin 10 --alignMatesGapMax 450' for PDX model and against hg38 only for MDA-MB-468 cell line, by keeping only reads having no more than one reportable alignments and 2 mismatches. For each barcode (i.e cell), reads with identical #Read 1 starting sites were marked as duplicates, probably emerging from reverse-transcription or PCR duplicates. #Read 1 sequences paired with unmapped #Read 2, and falling within the same 50bp-window, were further stacked into one read, as possibly originating from PCR duplicates or from the same nucleosome. For H3K27me3 and H3K4me3 experiments in MDA-MB-468 cells, reads were counted according to two annotations: (i) within consensus peak annotation (used in Fig. 2a-d, 2f, Extended Fig. 5b,e), and (ii) within a TSS-based annotation (used in Fig. 2e,g, 3a-b, Extended Fig. 5j, 6a-d), comprising 52,138 regions of 10kbp centered around TSS of all transcripts of protein coding and lncRNAs from Gencode v34 59 . For PDX untreated tumors, H3K27me3 and H3K4me3 experiments, reads were counted according to TSS-based annotation.

  ChIP-seq filtering, dimensionality reduction and clustering. QC filtering, dimensionality reduction, and clustering were done using ChromSCape 60 , (https://github.com/vallotlab/ChromSCape) with default parameters for H3K4me3 datasets, resulting 1,345 cells with signal over 4,983 TSS. For H3K27me3 datasets, minimum coverage was increased to 3,000 reads/cell and for each sample the number of cells was randomly downsampled at 500 cells per sample to ensure equal contribution of each datasets to dimensionality reduction. The resulting matrix contains 3,576 cells with signal over 8,858 peaks.

:Extended Figure 2 ::Extended Figure 8 : 1 Extended Figure 9 :

 2819 In vivo models of chemotolerance in TNBC. a. Graph of the relative tumor volumes over time (days) for PDX_95 for eight mice treated with a first round of Capecitabine. b. (Left) UMAP representation of scRNA-seq datasets, colored according to expression clusters. (Right) Histogram of the frequency of each expression cluster in the indicated samples. c. Barplot displaying the top 5 pathways activated in persister cells. d. UMAP representation of scRNA-seq datasets, colored according to log2 expression signals for persister genes, log2FC and adjusted p-values are indicated above the graph. e. Histogram of the proportion of cells in the different cell cycle phases based on expression of cell cycle in the scRNA-seq datasets. Proportions in each sample were compared to untreated sample using Fisher exact test, p-values are indicated. f. Graph of the relative tumor volumes over time (days) for PDX_39 for fourteen mice treated with Capecitabine and three untreated mice. g. UMAP representation of scRNA-seq datasets, colored according to sample ID. h. UMAP representation of scRNA-seq datasets, colored according to expression clusters. i. Barplot displaying the top 5 pathways activated in persister cells. j. UMAP representation of scRNA-seq datasets, colored according to log2 expression signals for persister genes, log2FC and adjusted p-values are indicated above the graph. k. Histogram of the proportion of cells in the different cell cycle phases based on expression of cell cycle in the scRNA-seq datasets. Proportions in persister sample were compared to untreated sample using Fisher exact test, p-value are indicated. l. Graph of the relative tumor volumes over time (days) for PDX_172 for four mice treated with Capecitabine and six untreated mice. m. UMAP representation of scRNA-seq datasets, colored according to sample ID. n. UMAP representation of scRNA-seq datasets, colored according to expression clusters. o. Barplot displaying the top 5 pathways activated in persister cells. p. UMAP representation of scRNA-seq datasets, colored according to log2 expression signals for persister genes, log2FC and adjusted p-values are indicated above the graph. q. Histogram of the proportion of cells in the different cell cycle phases based on expression of cell cycle in the scRNA-seq datasets. Proportions in persister sample were compared to untreated sample using Fisher exact test, p-value are indicated. In vitro model of chemotolerance in TNBC. All the experiments were performed in MDA-MB-468 cells. a. (Left) Histogram representing the percentage of the untreated population that tolerates 5-FU. (Right) Histogram representation of the percentage of persister cells that can proliferate actively under chemotherapy treatment. b. (Left) Histogram representation of the 5-FU IC50 of untreated and chemoresistant populations. (Right) Histogram representation of the doubling time (in days) of MDA-MB-468 untreated, persister and resistant cells. (n=3, Mean ± sd, Anova Bonferroni's multiple comparisons test). c. (Left) UMAP representation of scRNA-seq datasets, colored according to expression cluster membership. (Right) Histogram representing the frequency of each cluster in the indicated samples. d. Barplot displaying the top 5 pathways activated in MM468 persister cells. e. Dot plot representing -log10(q-value) of gene enrichment studies in PDX_95 versus MDA-MB-468 (MM468). Linear regression, associated correlation score and p-value are indicated. f. UMAP plot representing scRNA-seq datasets, points are colored according to log2 gene expression signals for differentially expressed genes between persister cells from cluster R2 and untreated cells from cluster R10, log2FC and adjusted p-values are indicated above the graph. g. Histogram of the proportion of cells in the different cell cycle phases based on expression of cell cycle in the scRNA-seq datasets. For each experiment, proportions in each sample were compared to the corresponding DMSO sample using Fisher exact test, p-value are indicated. c2_curated KEGG and c5_GO annotations. Color of the dot corresponds to adjusted p-values and the size of the dot corresponds to the gene ratio. Modulation of chemotolerance to 5-FU with EZH2i in vitro. a. Histogram representing the number of MDA-MB-468 cells pretreated or not with EZH2i-1 (UNC1999) and after treatment over 21 days with 5-FU (n=3, Mean ± sd, p-value correspond to Anova Bonferroni's multiple comparisons test). b. Representative images of immunoblotting of MDA-MB-468 cells treated for 21 days with DMSO or indicated EZH2 inhibitors. EZH2, Tubulin and H3K27me3 are represented. c. Clustering of samples according to lineage barcode frequencies, detected by bulk analysis, using Pearson's correlation score. MDA-MB-468 were co-treated with DMSO or 5-FU and EZH2i-1 for 21 days (Up) or pretreated with indicated EZH2i ("EZH2i-1": UNC1999, inactive EZH2i-1: "UNC2400" or EZH2i-2: "GSK126") for 10 days and then co-treated with DMSO or 5-FU for 21 days (Down). d/f. Histogram representing the number of BT20 (d) or HCC38 (f) cells pretreated with EZH2i inhibitors and after treatment over 21 days with 5-FU (n=3, Mean ± sd, p-value correspond to Anova Bonferroni's multiple comparisons test). e/g. Representative images of immunoblotting of BT20 (e) or HCC38 (g) cells treated for 21 days with DMSO or indicated EZH2 inhibitors. EZH2, Tubulin and H3K27me3 are represented. For gel source data, see Supplementary Figure Modulation of chemotolerance to 5-FU with KDM6i in vitro. a. Projection of MDA-MB-468 cells treated with GSK-J4 onto the UMAP scH3K27me3 space. b. Histogram representing the number of MDA-MB-468 cells after treatment over 21 days with DMSO or 5-FU alone or in combination with KDM6i (GSK-J4) (n=3, Mean ± sd, p-value correspond to Anova Bonferroni's multiple comparisons test). c. Colony-forming assay of MDA-MB-468 treated over 60 days with DMSO or 5-FU alone or co-treated with GSK-J4 inactive isomer (GSK-J5). d. Histogram representing the number of MDA-MB-468 cells after treatment over 50 days with DMSO or 5-FU alone or co-treatment with KDM6A/Bi (GSKJ-4) or its inactive isomer (GSK-J5) added at the indicated days (n=3, Mean ± sd, p-value correspond to Anova Bonferroni's multiple comparisons test). e/f. Colony-forming assay of BT20 (e) or HCC38 (f) cells co-treated with DMSO or 5-FU and indicated concentrations of KDM6i (GSKJ-4) or its inactive isomer (GSK-J5). The data correspond to 1 of 3 biological replicates.
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 31 Figure 1: Identification of a pool of basal persister cells in TNBC in vivo and in vitro. a. Schematic representation of the standard of care for TNBC patients and the generation of patient-derived xenograft models. b. Graph of the relative tumor volumes (RTV) over time (days).Colored growth curves correspond to tumors which have been further studied by scRNA-seq. Black arrows indicate the start of the second round of Capecitabine treatment for the corresponding mice. c. (Up) Phenotypes and cell numbers are indicated, with the number of mice used to collect samples in brackets. (Down) UMAP representation of PDX scRNA-seq datasets, colored according to sample of origin (first panel -cluster ID are indicated) or log2 gene expression signal for differentially expressed genes between persister cells and untreated tumor cells (remaining panels), log2FC and adjusted p-values are indicated above the graph. d. (Left) Venn diagram displaying the intersection of pathways activated in persister cells from the 3 PDX models, among MSigDB c2_curated Breast/Mammary and c7_Hallmark pathways. P-value associated with the intersection is indicated below (exact test of multi-set intersections) (Right) Barplot displaying the top 5 pathways -for each category -activated in persister cells. x-axis corresponds to -log10 adjusted p-values for the model PDX_95. e. Graph representation of the cell proliferation of triple negative breast cancer cell line MDA-MB-468 (MM468) treated with 5-FU (green for persister cells, and orange lines for resistant cells) or with DMSO (untreated -grey lines). f. (Up) Schematic view of the experimental design. Experiment number and corresponding passage of cells at D0 are indicated. (Down) UMAP representation of MDA-MB-468 cells scRNA-seq datasets, colored according to the sample of origin (first panel -cluster ID are indicated) or log2 gene expression signal for differentially expressed genes between persister cells (cluster R2) and untreated cells (cluster R10, KRT14 and TGFB1 panels) or for a differentially expressed gene between the two persisters clusters, i.e. clusters R4 vs R2 (CDH2 panel). Untreated population (in grey) corresponds to DMSO-D0-#1. g. (Left) UMAP representation of scRNA-seq as in 1f, restricted to cells with detected lineage barcode. Cells are colored according to lineage barcode and cluster membership is indicated (Extended Fig. 2c). R1, R2 correspond to RNA-inferred clusters. (Right) Scatter plot of the lineage barcode diversity detected in the scRNA-seq data across clusters and samples. Colors correspond to sample ID as in 1f. (Means are indicated for persister clusters R2 & R4. two-tailed Mann-Whitney test).
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 234 Figure 2: H3K27me3 represses the persister expression program prior to chemotherapy exposure. All experiments were performed in MDA-MB-468 cells. a. UMAP representation of scChIP-seq H3K27me3 datasets, cells are colored according to the sample of origin. Persister and resistant samples correspond to 5-FU-treated cells, days of treatment are indicated. b. Same as in a. with cells colored according to cluster membership. E1, E2 correspond to epigenomic-based clusters. c. Enrichment of H3K27me3 significantly depleted peaks in persister cells compared to all peaks across various gene annotation categories (see Methods). Full bars indicate adjusted p-value<1.0e-2. Empty bars indicate non-significant adjusted p-values. "PC" indicates protein coding genes. d. Repartition of H3K27me3 depleted peaks within log2 expression fold-changes quantiles from scRNA-seq experiments. e. Cumulative scH3K27me3 profiles over TGFB1 and FOXQ1 in untreated and persister cells (D33). Log2FC and adjusted p-value correspond to differential analysis of cells from cluster E1 versus cells from clusters E2 + E4. f. Violin plot representation of the cell-to-cell inter-correlation scores between cells from clusters E1, E2 or E4 and cells from E1. Pearson's correlation scores were compared using a two-tailed Mann-Whitney test, p-value are indicated above plots. g. Dot plot representing log2 expression fold-change induced by 5-FU or EZH2i-1 at D33 versus D0. Pearson's correlation scores and associated p-value are indicated. h. Bulk H3K27me3 chromatin profiles for TGFB1 and FOXQ1 in cells treated with DMSO, 5-FU or EZH2i-1 at D33.

FOSL1

  

  /e/g, DMSO-and EZH2i-treated cells were lysed at 95°C for 10 minutes in Laemmli buffer (50 mM Tris-HCl [pH 6.8], 2% SDS, 5% glycerol, 2 mM DTT, 2.5 mM EDTA,

	2.5 mM EGTA, 4 mM Sodium Orthovanadate, 20 mM Sodium Fluoride, protease inhibitors,
	phosphatase inhibitors) and proteins concentrations were measured using a Pierce BCA protein Assay
	Kit (Thermo Fisher Scientific, Ref: 23225/23227). 10 µg of proteins were then separated on a 4-15%
	Mini-PROTEAN TGX Stain-Free Gel (Bio-Rad, Ref: 4568085) at 160V. After transfer, the membrane was
	blocked for 1 h at room temperature in PBS pH 7.4 containing 0.1% Tween-20 and 1% milk (Regilait).
	Incubation anti-H3K27me3 (Dilution: 1:2000, Cell Signaling, Ref: 9733) or EZH2 (Dilution: 1:2000, Cell
	Signaling, Ref: 5246) or Tubulin (Dilution: 1:1000 , Thermo Fisher Scientific, Ref: 31460) primary
	antibodies diluted in PBS pH 7.4, 0.1% Tween-20 were performed at 4°C overnight. Following 2h
	incubation at room temperature with an anti-rabbit or mouse peroxidase-conjugated secondary

antibody (Dilution: 1:10000, Thermo Fisher Scientific, Ref: 31460 or Ref: 31430) diluted in PBS pH 7.4, 0.1% Tween-20, antibody-specific labeling bands were revealed (Bio-Rad, ChemiDoc MP) using a SuperSignal West Pico PLUS Chemiluminescent Substrate (Thermo Fisher Scientific, Ref: 34579).

  ). Cells were then resuspended in PBS supplemented with 30% Percoll, 0.1% Pluronic F68, 25 mM Hepes pH 7.4 and 50 mM NaCl. Cell encapsulation, bead encapsulation and 1:1 droplet fusion was performed as previously described[START_REF] Grosselin | High-throughput single-cell ChIP-seq identifies heterogeneity of chromatin states in breast cancer[END_REF] , see Extended Table1for the sequence of bead barcodes. Immunoprecipitation with H3K27me3 antibody (Cell signaling, Ref: 9733 -C36B11) or H3K4me3 antibody (Cell signaling, Ref: 9751-C42D8), DNA amplification and library were performed as in[START_REF] Grosselin | High-throughput single-cell ChIP-seq identifies heterogeneity of chromatin states in breast cancer[END_REF] . Libraries were sequenced on a NovaSeq 6000 (Illumina) in PE100, with 4 dark cycles on Read 2, with a coverage of 100,000 reads/cell.

	Quantitative chromatin profiling with chromatin indexing. Chromatin isolation, indexing,
	immunoprecipitation and library preparation was adapted from 49 . Briefly, 50,000 MDA-MB-468 were
	lysed and digested with MNase for 20min at 37°C in the following buffer: 46mM Tris-HCl pH 7.4,
	0.154M NaCl, 0.1% Triton, 0.1% NaDoc, 4.65mM CaCl2, 0.47x Protease Inhibitor Cocktail (Roche, Ref:
	11873580001) and 0.

09u/uL MNase (Thermo Scientific, Ref: EN0181). Fragmented nucleosomes were then ligated for at least 24h at 16°C to double-stranded barcoded adapters containing 8bp barcodes to combine samples: Pac1-T7-Read2-8bpBarcode-linker-Pac1 (Extended Table

1

). Next, 5 indexed

  tumor samples. CUT&Tag was performed as in Kaya-Okur et al. with minor modifications on 50,000 to 100,000 nuclei with 1:50 antibody (Cell Signaling Antibodies : Anti-H3K27me3, Ref: 9733-C36B11, Anti-H3K4me3, Ref: 9751-C42D8)[START_REF] Kaya-Okur | CUT&Tag for efficient epigenomic profiling of small samples and single cells[END_REF][START_REF] Bartosovic | Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues[END_REF] . All washes were performed in a volume of 500µL and all centrifugations were done using a swinging bucket centrifuge at 1300g,

	4min, at 4°C for nuclei preparation and 600g, 8min, 4°C for subsequent steps. Nuclei were extracted
	and permeabilized from 10-20mg frozen tumor tissues by incubating samples 10min on ice in 6mL ice-
	cold NE1 buffer (20mM HEPES pH7.2, KCl 10mM, spermidine 0.5mM, glycerol 20%, BSA 1%, NP-40 1%,
	digitonin 0.01%, proteases inhibitor 1x) after mechanical dissociation. Following antibody incubation
	and tagmentation, samples were incubated for 1h at 55°C with max speed agitation with 3uL SDS10%
	and 2,5uL 20mg/mL proteinase K. After DNA extraction (Qiagen, Ref: 139046 MaXtract High density),
	PCR amplification (with 17 cycles, 20s at 63°C combined annealing/extension step) of the sequencing
	libraries was performed and profiles were checked on the Agilent TapeStation using High-sensitivity
	D1000 reagents. CUT&Tag libraries were sequenced on a NovaSeq 6000 (Illumina) in PE50 mode.
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Data and code availability

All sequencing files were deposited to GEO under a private repository GSE164716. All statistical analysis was performed in R (v4.1) using custom R scripts. Codes for data analysis are available at the following repositories https://github.com/vallotlab/ChemoPersistance and https://github.com/TeamPerie/lentiviral_barcode_detection_in10X_data/.

Heatmap representation of the targets within persister genes of the three TF identified by ChEA3 that are part of the persister genes. Blue color stands for target genes while white means the gene is not a target. i. Mean rank of TF enrichment in persister genes obtained by ChEA3 for FOXQ1, FOSL1 and NF2F2 in persister genes (red line) compared to the average mean rank in 100 sets of randomly picked genes (green curve). The rank of indicated TFs is calculated using the ChEA3 score on a total of 1632 TFs. j. Cumulative scH3K27me3 and scH3K4me3 enrichment profiles over FOSL1 and NR2F2 in untreated and persister MDA-MB-468 cells (D33 -H3K27me3 and D60 -H3K4me3). Log2FC for H3K27me3 and scRNA are indicated for the comparison of persister and untreated populations.

Extended Figure 6: Analysis of H3K4me3 and H3K4me3/H3K27me3 enrichment in untreated cells. a.

Heatmap representation of single-cell H3K4me3 enrichment at H3K27me3-regulated persister genes, non-expressed protein coding genes and housekeeping genes in untreated cells (D0) and persister cells (D60). b. Violin plots representing the distribution of percentage of cells with H3K4me3 signal across H3K27me3-regulated persister genes, non-expressed protein coding genes and housekeeping genes. (5-FU treated cells)
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