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1. Introduction 

It is estimated that up to a quarter of the world's population depends on karstic aquifers of 

mostly limestone nature, for water supply (Ford and Williams, 2013). Fracture (or conduit) 

networks are generally considered the dominant flow and transport pathways in limestone 

media, because limestone matrix permeability and porosity are low, and secondary permeability 

is high (Florea and Wicks, 2001). Water and contaminants travel at much greater speeds within 

the fracture networks compared with the surrounding porous limestone matrix (Li et al., 2008), 

which renders limestone aquifers highly vulnerable to contamination (Morales et al., 2007). In 

the past three decades, numerous studies have provided insights into flow dynamics and 

transport mechanisms in limestone fractured systems. These studies have mostly concluded that 

accurate simulation of water and contaminant movement in fractured limestone is complicated 

by the uncertainty of characterizing fracture properties (Qian et al., 2005). This uncertainty 

stems from the high spatial variability of fracture properties, and the lack of direct 

measurements methods (Wang et al., 2017). 

Breakthrough curves (BTCs), obtained from dye or salt tracer tests, are useful for the estimation 

of model parameters (Jørgensen et al., 2004; Helmke et al., 2005) and/or the characterization 

of fracture properties (Goldscheider and Drew, 2014; Zhao et al., 2017). The approach often 

consists of employing an inverse method based on optimization or inference processes, to fit 

observed and model-simulated BTCs. Various fracture parameters, such as effective porosity, 

aperture, length, roughness, density, and network patterns can affect the shape of BTCs 

(Mohammadi et al., 2019), and thus could be estimated from them. BTCs can also be employed 

for estimating contaminant transport parameters in fractured media, such as dispersivity, 

retardation and degradation, as well as the characterization of conduit-matrix interactions 

(Goldscheider et al., 2008). Key inverse methods in this context include gradient-based 

minimization (e.g. Abdelaziz and Merkel, 2015; Hawkins et al., 2020) and sample-based 
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Bayesian inference such as Markov chain Monte Carlo (MCMC) (e.g. Somogyvári et al., 2017; 

Zhou et al., 2021).  

However, estimating fracture parameters from BTCs is not a straightforward task (Hartmann et 

al., 2014). On the one hand, the operation is prone to common inverse modeling challenges 

such as conceptual model uncertainty, instability, ill-posedness, non-convergence, non-unique 

and non-optimal solutions (Wang et al., 2017; Rajabi et al., 2018). On the other hand, BTCs 

may exhibit asymmetry with long tails (Massei et al., 2006; Labat and Mangin, 2015; Fiori and 

Becker, 2015) or multiple peaks due to factors such as the strong heterogeneity of limestone 

aquifers, the presence of pools along main fractures and multiple flow paths (Hauns et al., 2001; 

Wang et al., 2020). Capturing such complicated BTCs has proven problematic, which affects 

the choice of the modeling approach (Field and Leji, 2012). Partitioning models are often used 

to simulate such BTCs, but these models require a large number of parameters (Zoghbi and 

Basha, 2020). Bearing in mind that not all parameters are of equal importance with respect to 

sensitivities of BTCs, determining the most significant factors so as to limit the number of 

parameters is necessary (Li et al., 2019). 

Different approaches have been explored for fracture parameter estimation from BTCs. Most 

previous studies in this context are based on ‘hypothetical’ examples (e.g. Somogyvári et al., 

2017; Zhou et al., 2021). This is a key shortcoming, as hypothetical examples often lack the 

complexity of real-world problems, and are limited to what the chosen numerical modeling 

approach can reproduce. Moreover, the true values of fracture parameters are often not known 

at the field-scale, thus rendering method validation using field-scale data often impractical. As 

a consequence, bench-scale laboratory experiments under controlled conditions are important 

for testing the validity of these inversion methods (Pastore, 2018). The fact that there are few 

laboratory-based studies in this context can be mainly attributed to the difficulty of the 

experimental process, as laboratory models must reflect a reduction in the scale of the physical 
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parameters and dimensions while maintaining similar forces (Zhang et al., 2016), the latter often 

being represented by Reynolds, Froude and Peclet dimensionless numbers for flow and solute 

transport in fractured media (Palmer 1999; Florea and Wicks, 2001).  

Among the reported laboratory-scale studies, most have focused on the understanding of BTCs 

and the relevant flow and transport processes. Examples include the study of scale effects on 

BTCs by Hauns et al. (2001), interaction and mass transfer between a single conduit and its 

bounding porous medium by Li (2004), sequestration mechanisms including the exchange of 

water and solute between conduits and porous matrix by Li et al. (2008), empirical models of 

water hydraulic head under different hydrological conditions by Zhang et al. (2016), and the effect 

of variations in hydraulic gradient and conduit systems on BTCs by Mohammadi et al. (2019). In 

these and other similar studies, analyzing flow and solute transport within a single or a two-

fracture system often forms the basis for studying complex fracture networks (Liu et al 2021).  

The estimation of limestone fracture parameters using laboratory-scale models for method 

analysis and validation often relies upon single or dual pipes made of silicon or PVC to model 

the fractured medium (Field and Leji, 2012; Zhao et al., 2019; Wang et al., 2020). These studies 

use nonlinear least-squares estimation or the MCMC method for the estimation of fracture 

parameters. 

Realistic laboratory experiments have been conducted by Jørgensen et al. (2004) for bromide 

transport through undisturbed soil columns containing a high number of macropores (fractures 

and biopores). In this study, the measured BCTs were used to assess the suitability of different 

modeling approaches for the simulation of flow and transport in clayey till. Likewise, Helmke 

et al. (2005) compared different modeling approaches to simulate solute transport through 

fractures in a laboratory column of till. Their results showed that the different modeling 

approaches employed could satisfactory reproduce the observed BTCs, which suggests that 

more elaborate models do not necessarily render more accurate results.  
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The simplest way for modeling flow and transport in fractured-porous media is based on the 

equivalent porous medium (EPM) approach in which the fractured porous medium is replaced 

by an equivalent porous medium with the same hydraulic conductivity (Helmke et al., 2005). 

However, the most common models for the simulation of flow and transport in fractured porous 

media are the discrete fracture and double porosity models (Jørgensen et al., 2004 ; Helmke et 

al., 2005; Nikan et al., 2020). Some sophisticated variants also exist such as the triple continuum 

models (Wu et al., 2004), the multi-rate mass transfer models (Guo et al., 2020) or the fractal 

mobile/immobile models (Nikan et al., 2020). 

The mobile/immobile (MIM) model is based on the dual porosity approach and considers the 

fractures as the mobile region and the matrix as the immobile region. Advection and dispersion 

occur exclusively in the mobile region, and the immobile region is a sink that stores the solute. 

The exchange between the mobile and the immobile regions is often ruled by a first-order (FO) 

mass transfer coefficient approach (Coats and Smith 1964). The resulting model has been 

widely used for flow and transport in fractured porous media because of its simplicity compared 

to discrete fracture models. Indeed, the latter require that the location, shape, orientation, size, 

aperture, and hydraulic and solute transport properties of each fracture to be explicitly specified 

as model inputs.  

The objective of the present work is threefold. First, we aim at developing a novel experimental 

setup for the study of transport through limestone fractures using salt tracer BTCs. The 

proposed bench-scale setup includes multiple fractures, and is based on real limestone beams. 

These features are novel compared to previous work. Second, we validate and analyze the 

results of an inverse method using laboratory-scale data obtained under controlled conditions. 

Third, we investigate the degree to which three transport models can reproduce the experimental 

results under different (slow, medium, and fast) flow conditions. The first transport model, 

named ADE, is based on the EPM approach and corresponds to the linear advection dispersion 
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equation. The second model, named FOMIM (first-order mobile-immobile), is based on the 

MIM approach relying upon a linear first-order transfer function between mobile and immobile 

zones. For its part, the third model, named NLMIM (non-linear mobile-immobile), uses a 

nonlinear transfer function between the fractures and the matrix.  

The structure of the paper is as follows. In Section 2 we describe the experimental setup, and 

then briefly explain the three transport models. Section 2 also includes a description of the 

inverse method employed. Then, the experimental BTCs and the simulation results of the BTCs 

are presented and analyzed in Section 3. The paper is complemented in Section 4 by a review 

of our main findings and prospects for future research. 

2. Materials and Methods 

2.1. Laboratory Experiment 

A fractured porous medium is constructed at the laboratory scale using a column of inner 

diameter 6cd cm  and length 15cL cm  filled with glass beads and small parallelepiped-

shaped limestone beams. The limestone used for the experiment is mainly composed of 

dolomite (CaMg(CO3)2). The porous medium is composed of silicon dioxide beads (SiLibeads 

Glass beads Type S N°4503, Sigmund Lindner) of 0.75 to 1.00 mm in diameter with a bulk 

density of 
31510kg m . Small parallelepiped-shaped limestone beams of 1 cm2 section and 4 

to 5 cm length are placed inside the porous medium as shown in Fig. 1a.  

The column shell (Fig. 1b) is a Plexiglas tube with the top and bottom end-plate assemblies 

held together with 3 threaded rods. Each end-plate assembly has one access port in its center, 

with a diameter 6mmpd   and a perforated plate to support the porous medium and distribute 

the flow over the entire column section. At the top and bottom end plates, two electrical 

conductivity (EC) meters were used to continuously record (at 10 s time steps) the inlet and 

outlet concentrations. The two EC meters were calibrated against standard solutions, which 
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allows for accurate (and reproducible) measurements of the EC. The injected aqueous solution 

is made of deionized water supplemented with sodium chloride (NaCl) at 2g/l. This mixture 

allows for obtaining a solution with a significant sensitivity of EC to the concentration, while 

density variations remain negligible. The column is mounted vertically with flow from bottom 

to top assured by a peristaltic pump. The flow rate was regularly controlled by weighing the 

cumulative outflow. 

 

 
 

Figure 1. The laboratory experiment setup: (a) Plexiglas flow cell (inner diameter 6cmcd   and 

length 15cmcL  ) used for the column experiment with glass beads of 1 mm diameter and limestone 

beams of 1 cm2 section and 4 to 5 cm length, and (b) the column shell with the top and bottom end-

plate assemblies. 

Three experiments were performed under fast, medium, and slow flow velocities through the 

column corresponding to injected flow rates of inQ = 20.0, 2.0, and 0.2 ml/min, respectively. 

Each experiment was repeated three times. 

2.2. Mathematical Models 

Three models are investigated to simulate transport through the column. The first model 

assumes an EPM, thus the transport through the column can be ruled by the following linear 

ADE: 

dc = 6 cm 

L
c 

=
 1

5
 c

m
 

(a) (b) 
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 
C C

D UC
t z z z

    
  

    
  (1) 

where C [-] is the non-dimensional (normalized) concentration, L mD U d   [L2T-1] is the 

dispersion coefficient, U  [LT-1] is the fluid velocity, md  is the molecular diffusion coefficient 

assigned a small value of 5×10-10 m2/s (as a common value in the literature), and L  [L] is the 

dispersivity coefficient. 

The second transport model FOMIM is based on the MIM approach and assumes a first-order 

mass transfer between the fractures and the matrix: 

 

 

0m im m
m

im
m im

C C C
UC D

t t z z z

C
C C

t


     
    

      

  

 

  (2) 

where mC  and imC  stand for the (normalized) concentrations in the mobile and immobile 

phases, respectively,   [T-1] is the first-order mass transfer coefficient between the fractures 

and the matrix (Coats and Smith 1964). It is worth noting that the coefficient   can be 

dependent on the mean flow velocity, as shown in Brissaud et al. (1978) and Herr et al. (1989). 

The third transport model uses the MIM approach but assumes a nonlinear transfer function 

between the mobile and the immobile continuums as: 

 
2

1

im

m

C

t C








 
  (3) 

where  [T-1] and  [-] are parameters of the nonlinear transfer function. 

For the three transport models, initial conditions correspond to a zero solute concentration 

inside the column. The lower boundary  0z   corresponds to a Dirichlet condition with the 
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normalized concentration fixed to one during solute injection, and to zero during clean water 

injection. The upper boundary condition  z L  corresponds to a null concentration gradient. 

2.3. Numerical Solutions 

The transport equation for both models is solved using the Discontinuous Galerkin (DG) 

method. Usually, transport at small scales under pressure gradients (e.g., laboratory-scale 

experiments) is advection-dominated, making the differential transport equations to become 

hyperbolic (Godlewski and Raviart, 1996). Those are characterized by moving sharp fronts that 

classical numerical methods (such as finite element or finite volume methods) fail to capture, 

with the result of solutions plagued by non-physical oscillations and/or numerical diffusion 

(Huyakorn and Pinder, 1983). For its part, the DG method leads to a robust and accurate 

numerical scheme for problems involving sharp fronts (Tu and Aliabadi, 2005). The DG 

method yields a highly-resolved scheme, which maintains the local mass conservation of finite 

volume (FV) methods but also allows for high-order approximations (Kirby, 2000). When 

applied to hyperbolic systems, the DG method is clearly superior to finite element methods 

(Siegel et al, 1997; Arnold et al., 2002).  

The transport equation is solved with the explicit upwind DG scheme. The stability of the 

scheme, is ensured by the use of a suitable slope limiter to damp out the spurious oscillations 

produced close to discontinuities or strong gradients of the approximate solution (Younes et al., 

2010). The obtained scheme is “total variation diminishing” and stable for Courant-Friedrichs-

Lewy (CFL) numbers equal or less than 0.5. 

We use a linear discontinuous approximation of the concentration at each element. The degrees-

of-freedom are the mean and the first spatial derivative of the concentration inside each element. 

This choice allows for an easy and efficient combination between the DG method for advection 

and the FV method for dispersion without resorting to any operator splitting (Younes and 

Ackerer, 2008). For the nonlinear transport problem (model NLMIM), a Newton–Raphson 
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algorithm is employed with a precision of 10-7. The time step length is managed using the 

Richardson extrapolation, that is an adaptive time-stepping procedure based on the posteriori 

error estimate (Fahs et al., 2008). 

2.4. Bayesian Parameter Inference and Model Selection 

The vector of observations mesy  consists of the outflow EC measured at different times, for the 

three (fast, medium, and slow) experiments assembled within the same “synthetic” transport 

scenario of successive mass transfer at diverse velocities. All the parameters of the ADE model 

of Eq. (1), the FOMIM transport model of Eq. (2) and the NLMIM model of Eq. (3) are assumed 

unknowns, and sought by inverse modeling. In the case of the ADE transport model, the vector 

of unknown parameters is  1 2 3, , , LU U U ξ  where 1 2,U U  and 3U  are the fluid velocity for 

the fast, medium and slow flow rate experiments, respectively, and L  is the dispersivity, 

assumed to be independent of the fluid velocities in all three experiments. Initially, the 

parameters of the  model are assumed uniformly distributed over the large intervals reported in 

the second and third columns of Table 1. 

Regarding the FOMIM transport model, the coefficient   is considered as varying with the 

fluid velocity in the column (Herr et al., 1989), thus resulting in three sought coefficients (one 

per transport experiment). The vector of unknowns becomes  1 2 3 1 2 3, , , , , , LU U U    ξ . 

For the last NLMIM transport model, two cases are investigated. In the first case, the vector of 

unknown parameters is  1 2 3, , , , , LU U U   ξ  where   and   are the transfer coefficients, 

assumed to be similar for all three experiments. In the second case, the coefficient   is 

considered as varying with the fluid velocity in the column, thus resulting in a vector of 

unknowns as  1 2 3 1 2 3, , , , , , , LU U U     ξ . 

The parameters are estimated via a Bayesian approach combining the prior parameter 

information with the observations to determine the posterior probability distribution functions 
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(PDFs) of model parameters. We rely upon the Markov chain Monte Carlo technique (MCMC) 

which has also been widely used by several authors in Hydrogeology (e.g. Rajabi and Ataie-

Ashtiani, 2016; Moreira et al., 2016; Younes et al., 2016; Linde et al., 2017; Wang et al. 2020). 

MCMC generates random sequences of parameter sets, which converge asymptotically toward 

the target distribution. The statistical measures (e.g., mean and standard deviation) from the 

obtained distributions can then be used to estimate the mean parameter values and their 

confidence intervals to characterize parameter uncertainty. Using the Bayes theorem, the 

posterior density function of the parameters conditioned onto observations is as follows 

(Gelman et al., 1995): 

     | mes mesp p p ξ y y ξ ξ  (4) 

in which  mesp y ξ  is the likelihood function measuring how well the model outputs are in 

agreement with the observations mesy , and  ξp  is the prior PDF of ξ , which encapsulates any 

prior knowledge about the unknown parameters. 

In this work, the prior distributions for all parameters are assumed independent from one 

another and uniform. Further, large prior intervals are chosen for all parameters due to lack of 

knowledge of model parameter values. Error measurements of the output concentrations are 

assumed to be normally and independently distributed with zero mean and standard deviation 

equal to 0.02C   (for normalized concentrations bounded between 0 and 1). 

Setting the calibration problem in a Bayesian framework yields the following posterior PDF: 

 
 
22

C CN

mes C

C

SS
p | exp




 

  
 

ξ
ξ y  (5) 

where         
2

1

CN k k

C mes modk
SS C C


 ξ ξ  is the sum of the squares of differences between the 

observed and predicted concentrations,
 k

mesC  is the observed and 
 k

modC  is the predicted output 
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concentrations at time 
kt , and CN , is the overall number of observed concentrations for the 

three experiments.  

The MCMC sampler generates a new candidate 
i

ξ  from a proposal distribution  1i iq 
ξ ξ , 

which only depends on the previous accepted candidate. The new candidate can be accepted or 

rejected depending on the Hasting ratio H :   

   
   

1

1 1
1

i i i

mes

H i i i

mes

p | q
min ,

p | q




 

 
 
 
 

ξ y ξ ξ

ξ y ξ ξ
 (6) 

In this work, we use the DREAM(ZS) MCMC sampler (Vrugt et al., 2003) with three parallel 

chains. The results are considered stationary if the chains are not auto-correlated and if the 

Gelman and Ruban (1992) criterion is verified  1.2statR  . The set of parameters 

corresponding to the Maximum a Posteriori (MAP) value is then defined as: 

  MAP

mesarg max p |


ξ ξ y   (7) 

The Bayesian information criterion (BIC), used for the selection of the best model is defined as 

(Schwarz, 1978):  

    ln | lnMAP

mes CBIC p ξ y +K N 2  (8) 

where K is the total number of estimated parameters and  MAP

mesp |ξ y  is the parameter density 

function evaluated at the MAP estimate (Schöniger et al., 2014). Since each error has a non-

correlated (with the others) normal distribution:  , CN  20 , it follows that (Zhu et al., 2009): 

 
  mod

| exp
C

mes MAP
N

i iMAP

mes
i

CC

C C
p ξ y

 

 
   
 
  

ξ
2

2
1

1

22
 (9) 
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3. Results and Discussion 

3.1. Experimental BTCs 

The measured breakthrough curves at the outlet are depicted in Fig. 2 for the various 

experiments. Each of the fast (Fig. 2a), medium (Fig. 2b), and slow (Fig. 2c) flow rate 

experiment has been repeated three times. The results of Fig. 2 show a very good reproducibility 

of the experiments (repeating three times the same experiment results in almost similar 

breakthrough curves). It is worth noting that the breakthrough curves in Fig. 2 show a 

significant tail for the slow flow rate experiment (Fig. 2c). The tail is moderate with the medium 

flow experiment (Fig. 2b) and almost inexistent with the fast flow rate experiment (Fig. 2a).  
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Fig. 2. Breakthrough curves for fast (a), medium (b), and slow (c) flow rates through the column, each 

of the experiments repeated three times. 
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3.2. Parameter Estimation for the ADE Model  

For the ADE model, the MCMC sampler reaches convergence after 15,000 model runs. The 

results of Bayesian inversion are illustrated in Fig. 3. The diagonal plots show the posterior 

parameter distributions, whereas the off-diagonal plots display the pairwise correlations within 

the MCMC samples. Given the round-shaped patch delineated by pairwise correlations, there 

is almost no correlation between the four parameters, and all parameters show bell-shaped 

posterior distributions in the diagonal plots of Fig. 3.  

 

 

Fig. 3. MCMC solution for the ADE model. The diagonal plots represent the posterior distribution of 

the parameters. The off-diagonal scatterplots represent the correlations in the MCMC draws. 
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Table 1. Prior intervals, estimated mean values and confidence intervals (CIs) for the parameters of 

the ADE model. 

 Prior intervals Estimations 

Parameter Lower bound Upper bound Mean 
Standard 

deviation 

95% Confidence 

Interval 

1U  [cm/s] 0.03 0.1 0.0352 1.1 10-4 (0.0350-0.0354) 

2U  [cm/s] 0.003 0.01 0.0039 1.23 10-5 (0.00385-0.00390) 

3U  [cm/s] 0.0003 0.001 4.42 10-4 1.56 10-6 (0.000439-0.000445) 

L  [cm] 0.0 3.0 1.13 0.017 (1.096-1.163) 

 

The results of the Bayesian calibration (transport parameters in Table 1) show that the four 

parameters are well-estimated with narrow confidence intervals. Fig. 4 depicts the measured 

output concentrations as well as the calibrated concentrations and the predictive uncertainty. In 

this figure, the green region represents the total predictive uncertainty which accounts for both 

the parametric uncertainty and measurement errors. Fig. 4a shows that the first experiment with 

the fast flow rate is well reproduced by the ADE model. Nevertheless, discrepancies between 

simulated and observed output concentrations can be observed for the second experiment (Fig. 

4b). These discrepancies increase especially for the last experiment (Fig. 4c) dealing with the 

slow flow rate, with noticeable errors mainly in the leaching phase. The tails observed on the 

measured breakthrough curves for the medium- and slow-velocity experiments cannot be 

reproduced by the ADE transport model. The sum of the squared differences between the 

observed and predicted concentrations using parameters corresponding to the MAP and the BIC 

values are given in the Table 2.   
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Table 2. The total number of estimated parameters (K), the squared differences between the observed 

and predicted (using parameters of MAP) concentrations, and BIC for the ADE, FOMIM and NLMIM 

models. 

Modeling Approach K   mod
CN

mes MAP

i i

i

C C


 ξ
2

1

 BIC 

ADE 4 6.12 9173.96 

FOMIM (variable  ) 7 5.66 8044.77 

NLMIM-Scenario 1 6 3.59 2862.83 

NLMIM– Scenario 2 

(variable  ) 
8 0.6162 -4557.80 
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Fig. 4. Observed concentrations (dots), calibrated solution corresponding to the MAP (lines), and 

predictive uncertainty (grey band) with the ADE model for the fast (a), medium (b), and slow (c) flow 

rate experiments. 
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3.3 Parameter Estimation for the FOMIM Model  

The FOMIM includes a mobile and an immobile phases with a linear transfer function between 

phases. Three transfer coefficients  are calibrated corresponding to the fast, medium and slow 

flow rate experiments. The three transfer coefficients have prior uniform distributions over 

large intervals (between 0 and 100, see Table 3).  

Table 3. Prior intervals, estimated mean values and confidence intervals (CIs) for the parameters of 

the FOMIM model. 

 Prior intervals Estimations 

Parameters Lower bound Upper bound Mean 
Standard 

deviation 
95% Confidence Interval 

1U  [cm/s] 0.03 0.1 7.24 10-2 2.14 10-4 (7.19 10-2 – 7.28 10-2) 

2U  [cm/s] 0.003 0.01 8.0 10-3 2.51 10-5 (7.94 10-3 – 8.05 10-3) 

3U  [cm/s] 0.0003 0.001 8.73 10-4 4.13 10-6 (8.6 10-4 – 8.81 10-4) 

1 [s-1] 0.0 100.0 56.59 25.33 (7 – 100) 

1 [s-1] 0.0 100.0 48.12 29.48 (0 – 100) 

1 [s-1] 0.0 100.0 1.68 10-4 7.8 10-6 (1.52 10-4 – 1.83 10-4) 

L  [cm] 0.0 3.0 0.87 0.015 (0.84 – 0.90) 

 

The MCMC sampler reaches convergence after approximately 20,000 model runs. Fig. 5 shows 

the posterior parameter distributions and the pairwise correlations in the MCMC sample. 
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Fig. 5. MCMC solution for the FOMIM model. The diagonal plots represent the posterior distribution 

of the parameters. The off-diagonal scatterplots represent the correlations in the MCMC draws. 

 

The results of Fig. 5 show that there is no correlation between the seven parameters. Further, 

five parameters are well estimated corresponding to the three velocities, the dispersion 

coefficient and the last transfer coefficient (that of the slow flow rate experiment). All these 

five parameters have bell-shaped posterior distributions in the diagonal plots of Fig. 5. The 

posterior distributions of the transfer coefficients corresponding to the fast and medium flow 

rate experiments given in the diagonal plots of Fig. 5 show almost uniform distributions. The 

results of the Bayesian calibration given in Table 3 show that the three velocities are estimated 

with small confidence intervals, although the mean estimated values are significantly different 

from the estimated values using the ADE model (Table 1). The posterior confidence intervals 

of the transfer coefficients of the fast and medium flow rate experiments are almost similar to 

their prior intervals. This shows that these two parameters are insensitive (they have almost no 

influence on the BTCs). The transfer coefficient of the slow flow rate experiment is very 
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sensitive since it’s posterior interval is strongly reduced compared to the prior interval and as a 

consequence, the parameter is well identified. 

 

 

 

Fig. 6. Observed concentrations (dots), calibrated solution corresponding to the MAP (lines), and 

predictive uncertainty (grey band) with the FOMIM model for the fast (a), medium (b), and slow (c) 

flow rate experiments. 
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Compared to the ADE model, the sum of the squares of differences between the observed and 

predicted concentrations for the three experiments with the FOMIM model reduces by only 8% 

and the BIC by only 12% (Table 1). The measured breakthrough curves as well as the calibrated 

concentrations and the predictive uncertainty obtained with the FOMIM model are depicted in 

Fig. 6. The results of the fast and slow flow rate experiments are similar to those of the ADE 

model in Fig. 4. A satisfactory fitting is obtained for the fast flow rate experiment (Fig. 6a), 

whereas, the BTC of the medium flow rate experiment (Fig.6b) is less well reproduced, 

especially the tail of the curve. For the slow flow rate experiment, compared to the ADE model, 

the FOMIM model allows to better reproduce the tail of the measured BTC. However it fails to 

well reproduce the first sharp front. As a consequence, the overall fitting of this experiment is 

not satisfactory and Fig. 6c shows strong discrepancies between measured and observed BTCs.  

3.3 Parameter Estimation for the NLMIM Model  

The nonlinear model includes an immobile phase and two associated transfer parameters (  

and  , see Eq. 3) in addition to the single mobile phase of the linear model. The transfer 

parameters are a priori assumed uniformly distributed over the large intervals (between 0 and 

50, see Table 4). Two scenarios are investigated. In the first, the transfer coefficient   is 

assumed constant for the three flow rate experiments, whereas in the second scenario,   may 

depend on the mean flow velocity (as for the parameter   with the FOMIM model). 

In the case considering that the transfer parameter should be constant, irrespective of the 

velocity in the mobile phase, the MCMC sampler reaches convergence after approximately 

25,000 model runs. Fig. 7 shows the posterior parameter distributions and the pairwise 

correlations in the MCMC sample. All parameters show almost bell-shaped posterior 

distributions. Moderate correlations are observed between the three velocities: between 1U  and 

2U  ( 0.93r  ), between 1U  and 3U  ( 0.91r  ) and, between 2U  and 3U  ( 0.91r  ). The 
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parameter   has small correlations to 1U  ( 0.83r   ), 2U  ( 0.82r   ), 3U  ( 0.82r   ) and 

to   ( 0.83r  ). 

 

 

Fig. 7. MCMC solution for the NLMIM model. The diagonal plots represent the posterior distribution 

of the parameters. The off-diagonal scatterplots represent the correlations in the MCMC draws. 

 

The results of the Bayesian calibration given in Table 4 show that the six parameters are well 

estimated with narrow confidence intervals. Fig. 8 shows measured breakthrough curves 

compared with calibrated concentrations, and the predictive uncertainty obtained with the 

NLMIM model.  
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Table 4. Prior intervals and estimated mean values and confidence intervals (CIs) for the parameters 

of the NLMIM model. 

 Prior intervals Estimations 

Parameters Lower bound Upper bound Mean 
Standard 

deviation 
95% Confidence Interval 

1U  [cm/s] 0.03 0.1 4.59 10-2 4.08 10-4 (4.51 10-2 – 4.67 10-2) 

2U  [cm/s] 0.003 0.01 4.93 10-3 4.17 10-5 (4.85 10-3 – 5.02 10-3) 

3U  [cm/s] 0.0003 0.001 5.48 10-4 4.59 10-6 (5.39 10-4 – 5.57 10-4) 

 [s-1] 0.0 50.0 2.77 8.4 10-2 (2.61 – 2.94) 

 [-] 0.0 50.0 7.17 4.15 10-1 (6.36 – 7.99) 

  [cm] 0.0 3.0 1.21 1.62 10-2 (1.18 – 1.24) 

 

In Fig. 8b, the second experiment with the medium flow rate is very well reproduced by the 

numerical model, with a tail of the breakthrough curve well reproduced by the NLMIM model 

compared with rough results from the ADE and FOMIM models (see Fig. 4b and Fig. 6b). 

However, the first experiment, with the fast flow rate (Fig. 8a), is not as well reproduced as by 

the ADE model (Fig. 4a) because the NLMIM model generates a short concentration tail not 

observed on the measured concentrations. In opposition, the third experiment with the slow 

flow rate (Fig. 8c) is better reproduced by the NLMIM model than the ADE and FOMIM 

models (Fig. 4c and Fig. 6c). Nevertheless, the tail of the simulated breakthrough in Fig. 8c is 

spread enough over time, but there is not enough mass to mimic the high concentration values 

observed in the experimental breakthrough curve. With a NLMIM model correctly simulating 

medium velocity breakthroughs, overestimating late concentration values at high fluid velocity, 

and underestimating late concentrations at small velocity, the model is still performing better 

than the ADE and FOMIM models. The feature is exemplified by the squared differences 

between the observed and predicted concentrations at the MAP; compared to the ADE model, 

it is reduced by 40%, and the BIC is significantly decreased from 9173 to 2862 (Table 2). 
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Fig. 8. Observed concentrations (dots), calibrated solution corresponding to the MAP (lines), and 

predictive uncertainty (grey band) with the NLMIM model for the fast (a), medium (b), and slow (c) 

flow rate experiments. 
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3.4. Parameter Estimation for the NLMIM Model with Variable Coefficient  

In this case, the coefficient   is assumed to vary according to the fluid velocity in the column. 

The nonlinear model is therefore calibrated using three transfer coefficients 1 , 2  and 3  

respectively attributed to the fast, medium, and slow flow rate experiments. The three 

coefficients have prior uniform distributions over the same large interval [0-50]. 

With additional parameters, the MCMC sampler requires more model runs to reach the 

convergence, here approximately 40,000 runs. Fig. 9 shows the posterior parameter 

distributions and the pairwise correlations obtained with the converged MCMC samples. All 

parameters show almost bell-shaped posterior distributions (Fig. 9). Moderate correlations are 

observed between 1U  and 1  ( 0.75r  ), 3U  and   ( 0.81r   ), and 2 , and   ( 0.76r  ).  

The results of the Bayesian calibration given in Table 5 show that the eight parameters are well 

estimated with narrow confidence intervals. Fig. 10 shows that the calibrated model correctly 

fits data from the measured breakthrough curves for the three velocities investigated by the 

experiments, with uncertainties on simulations (gray areas in Fig. 10) tightly bounding the 

observed concentration breakthroughs. The overall quality of the estimation has been 

significantly improved, with a squared difference between the observed and predicted 

concentrations at the MAP 6 times smaller than that of the previous nonlinear model with fixed

 . The BIC is also significantly reduced from 2862 to -4557 (Table 2). 
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Fig. 9. Observed concentrations (symbols), calibrated solution corresponding to the MAP (lines), and 

predictive uncertainty (grey band) with the NLMIM model and variable coefficients   for the three 

experiments. 

Table 5. Prior intervals and estimated mean values and confidence intervals (CIs) for the parameters 

of the NLMIM model with variable coefficients . 

 Prior intervals Estimations 

Parameters Lower bound Upper bound Mean 
Standard 

deviation 
95% Confidence Interval 

1U  [cm/s] 0.03 0.1 3.63 10-2 1.69 10-4 (3.6 10-2 – 3.67 10-2) 

2U  [cm/s] 0.003 0.01 4.81 10-3 3.19 10-5 (4.74 10-3 – 4.87 10-3) 

3U  [cm/s] 0.0003 0.001 1.01 10-5 2.2 10-5 (9.68 10-4 – 1.05 10-3) 

1  [s-1] 0.0 50.0 2.23 10-1 4.64 10-2 (1.32 10-1 – 3.14 10-1) 

2 [s-1] 0.0 50.0 2.77 1.08 10-1 (2.56 – 2.98) 

3 [s-1] 0.0 50.0 14.7 3.81 10-1 (13.9– 15.4) 

 [-] 9.11 4.39 10-1 9.11  4.39 10-1 (8.25 – 9.97) 

  [cm] 0.0 3.0 1.0 1.49 10-2 (0.97 – 1.03) 
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Fig. 10. Observed concentrations (dots), calibrated solution corresponding to the MAP (lines), and 

predictive uncertainty (grey band) with the NLMIM model and variable coefficients   for the fast 

(a), medium (b), and slow (c) flow rate experiments. 
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4. Summary and Conclusions  

Simulation of transport through fractured porous media is challenging since most of water and 

contaminant travel through the fractures whose properties (such as location, shape, orientation, 

size and aperture) are generally unknown. In this work, we conducted laboratory experiments 

with a novel setup in which a column filled with glass beads and parallelepiped-shaped 

limestone beams was used to reconstruct a medium with multiple small fractures (at the scale 

of a hand-size rock sample). Three lab-scale experiments were conducted to investigate saline 

tracer BTCs in the case of fast, medium, and slow flow rates through the fractured medium. 

Three transport models have been investigated for the inversion of the measured BTCs. The 

first transport model (ADE) corresponds to the linear advection dispersion equation. The second 

model (FOMIM), is based on the mobile/immobile approach and uses a linear first-order 

transfer function between mobile and immobile zones, whereas the third model (NLMIM), uses 

a nonlinear transfer function between the fractures and the matrix. 

Inversion of the three transport models is performed using Bayesian MCMC inference. Key 

findings of the current study can be summarized as follows: 

1. The proposed multi-fracture experimental setup can produce asymmetric BTCs that are 

consistent with past field- and lab-scale studies.  

2. All the unknown parameters of the ADE model can be well-estimated with narrow 

confidence intervals. With respect to state estimation, the ADE model can reproduce 

with fair precision the BTC obtained under fast flow conditions but fails to reproduce 

the tails of the BTCs observed with the medium and slow flow rate experiments.  

3. The FOMIN model improves the tailing of the BTCs but significant discrepancies 

remain between simulated and measured concentrations. The first-order transfer 

coefficients of the fast and medium flow rate experiment are insensitive and cannot be 
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estimated from the BTCs contrarily to the transfer coefficient of the slow flow rate 

experiment which is well identified. 

4. The NLMIM model with a constant (kinetic) coefficient   has better performance in 

simulating the medium flow BTC, but performs worse for the fast flow conditions as it 

overestimates the concentration values characterizing the tail of the BTC.  

5. The nonlinear model with a velocity-dependent   coefficient is the only model 

correctly capturing the experimental BTCs under all three conditions of fast, medium, 

and slow flow rates. All its parameters are well estimated with narrow confidence 

intervals. 

The experimental results presented in this paper could be used to validate and analyze other 

inversion and data assimilation methods applicable to fracture parameter estimation. Future 

studies may consider sequential Bayesian filtering and smoothing methods, which have been 

less considered in this context. The proposed experimental setup can serve as a basic platform 

to investigate less-explored phenomena related to transport in limestone fractures, such as non-

aqueous phase and colloid transport.  
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