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ANNEALED LOCAL LIMIT THEOREM FOR SINAI’S RANDOM WALK IN

RANDOM ENVIRONMENT

ALEXIS DEVULDER

Abstract. We consider Sinai’s random walk in random environment (Sn)n∈N. We prove a local
limit theorem for (Sn)n∈N under the annealed law P. As a consequence, we get an equivalent
for the annealed probability P(Sn = zn) as n goes to infinity, when zn = O

(
(logn)2

)
. To this

aim, we develop a path decomposition for the potential of Sinai’s walk, that is, for some random
walks with i.i.d. increments. The proof also relies on renewal theory, a coupling argument, a
very careful analysis of the environments and trajectories of Sinai’s walk satisfying Sn = zn,
and on precise estimates for random walks conditioned to stay positive or nonnegative.
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1. Introduction and statement of the main results

1.1. Presentation of the model. We consider a collection ω := (ωx)x∈Z of i.i.d. random
variables, taking values in the interval ]0, 1[, with joint law P. A realization of ω is called an
environment. A random walk (Sk)k∈N in the environment ω is defined as follows. Conditionally
on ω, (Sk)k∈N is a Markov chain starting at S0 = 0 and such that for every k ∈ N := {0, 1, 2, . . . },
x ∈ Z and y ∈ Z,

Pω
(
Sk+1 = y|Sk = x

)
=

 ωx if y = x+ 1,
1− ωx if y = x− 1,
0 otherwise.

(1)

We call Pω the quenched law, and S := (Sk)k is a random walk in random environment (RWRE).
The annealed law is defined as follows:

P[·] :=

∫
Pω[·]P(dω).

Notice that P is not Markovian. The expectations with respect to P, Pω and P are denoted
respectively by E, Eω and E.

One dimensional RWRE have many unusual properties, and have attracted much interest from
mathematicians and physicists. For applications in physics and in biology, see e.g. Cocco et
al. [17], Hughes [47] and more recently the introduction of Padash et al. [55]. Also, (one
dimensional) RWRE are used to define or study some other mathematical models, see e.g.
Kochler [49] (chapter 3) for random walks in oriented lattices with random environments, Zindy
[66] for random walks in random environments with random scenery. Aurzada et al. [6] for
branching processes in random environments, and Devulder [22] for branching random walks
in random environments. We refer to Révész [56] and Zeitouni [65] for a general account on
results on RWRE proved before 2005. For a statistical point of view, see e.g. Diel et al. [26]
and references therein.
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We assume that there exists ε0 ∈]0, 1/2[ such that

P[ε0 ≤ ω0 ≤ 1− ε0] = 1. (2)

This classical condition is known as the ellipticity condition. We introduce ρx := 1−ωx
ωx

, x ∈ Z.

Solomon [62] proved that (Sk)k is recurrent for almost every environment ω if

E[log ρ0] = 0, (3)

and transient for almost every ω otherwise. Throughout the paper, log denotes the natural
logarithm. We only consider the recurrent case (3) in the present paper. Also, in order to avoid
the degenerate case of simple random walks, we assume that

σ :=
(
E
[
(log ρ0)2

])1/2
> 0. (4)

The asymptotic behaviour of S in the very delicate recurrent case was first analyzed in a cel-
ebrated paper of Sinai [61]. Indeed, Sinai [61] showed that under Hypotheses (2), (3) and (4),
Sn is localized at time n, with large annealed probability, in the neighborhood of some random
quantity b′logn, which depends only on the environment. More precisely, he proved that for every
ε > 0,

P
[
|Sn − b′logn| ≤ ε(log n)2

]
→n→+∞ 1.

He also proved that σ2b′logn/(log n)2 converges in law, as n → +∞, to some random variable
b∞, which is non degenerate and non gaussian. As a consequence, Sinai obtained the following
convergence in law under the annealed law P:

σ2

(log n)2
Sn →n→+∞ b∞.

It was proved independently by Kesten [48] and Golosov [40] that P[b∞ ∈ dx] = ϕ∞(x)dx, where

ϕ∞(x) :=
2

π

∞∑
k=0

(−1)k

2k + 1
exp

(
− (2k + 1)2π2

8
|x|
)
, x ∈ R. (5)

This very slow movement of (Sk)k∈N, of order (log n)2 instead of
√
n for simple random walks, is

due to the presence of some traps which slow down the walk. Due to this result proved by Sinai,
a random walk in random environment (Sk)k∈N satisfying Hypotheses (2), (3) and (4) is often
called a Sinai walk. Some other unusual properties of Sinai’s walk are proved e.g. in Dembo et
al. [20], Gantert et al. [35], [37], Hu et al. [45], [46] and Shi [58]. See also Shi [59] for a general
account about Sinai’s walk before 2001.

1.2. Main results. Throughout the paper, for sequences (dn) and (mn) with mn 6= 0 for large
n, we write dn ∼n→+∞ mn if dn/mn → 1 as n → +∞, dn = o(mn) if dn/mn → 0 as n → +∞,
and dn = O(mn) if lim supn→+∞ |dn/mn| <∞.

Our main result is the following local limit theorem for Sinai’s walk (Sn)n∈N under the annealed
law P:

Theorem 1.1. Assume (2), (3) and (4). As n→ +∞,

sup
z∈(2Z+n)

∣∣∣∣P(Sn = z
)
− 2σ2

(log n)2
ϕ∞

(
σ2z

(log n)2

)∣∣∣∣ = o

(
1

(log n)2

)
,

where 2Z + n denotes the set of integers having the same parity as n.

Notice that S := (Sk)k∈N only makes ±1 jumps and starts from 0 under P, so P(Sn = z) = 0 if
n and z have different parity. Since ϕ∞ > 0 and is continuous on R, we get in particular:
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Corollary 1.2. Assume (2), (3) and (4). Let (zn)n∈N be a sequence of integers such that
zn = O

(
(log n)2

)
as n → +∞, and such that zn and n have the same parity for every n ∈ N.

Then,

P
(
Sn = zn

)
∼n→+∞

2σ2

(log n)2
ϕ∞

(
σ2zn

(log n)2

)
.

Also
∑∞

k=0
(−1)k

2k+1 = arctan(1) = π/4, hence ϕ∞(0) = 1/2, so this leads to:

Corollary 1.3. Assume (2), (3) and (4). We have,

P
(
S2n = 0

)
∼n→+∞

σ2

(log n)2
,

and more generally P(S2n = 2x) ∼n→+∞
σ2

(logn)2
for every fixed x ∈ Z since ϕ∞ is continuous

on R. Also, for every fixed x ∈ Z,

P
(
S2n = 2

⌊
(x/2)(log n)2

⌋)
∼n→+∞

2σ2ϕ∞(σ2x)

(log n)2
,

where for y ∈ R, byc denotes the integer part of y.

In order to prove Theorem 1.1, we introduce in Section 2 (see (19)) a random quantity bh,
h > 0, depending only on the environment. It is defined differently from the localization point
b′h introduced by Sinai, but plays a similar role. Our bh is defined in terms of left h-extrema,
which are also introduced in Section 2 (see Definition 2.1). In order to prove our Theorem 1.1,
we first prove a local limit theorem for bh:

Theorem 1.4. We have as h→ +∞,

sup
x∈Z

∣∣∣∣P(bh = x
)
− σ2

h2
ϕ∞

(
σ2x

h2

)∣∣∣∣ = o

(
1

h2

)
.

Even though Theorem 1.4 looks, at first sight, very similar to Theorem 1.1, Theorem 1.1 is
not a direct consequence of Theorem 1.4, because, loosely speaking, the event {Sn = z} can be
decomposed into a union of events {Sn = z} ∩ {blogn = y}, and we will see that each one has a
non-negligible probability for y ”close” to z. Also, estimating the annealed probabilities of these
events for y close to z, as well as proving that such probabilities are negligible for y ”far” from
z, is not immediate, since we have to decompose each of these events into many different cases,
corresponding to different kinds of environments and trajectories.

The probability P(Sn = zn) for Sinai’s walk seems to have been first studied in a physics
paper in 1985 by Nauenberg [53], by heuristic arguments in some particular cases and numerical
simulations. However the function he obtained instead of our ϕ∞ is x 7→ (C/2) exp(−C|x|) for
some C > 0, which is not correct. This function was also claimed in Nauenberg [53] to be the

density of the limit law of σ2

(logn)2
Sn, and Kesten [48] already noticed that this is not the correct

function, although ϕ∞(x) is equivalent to some exponential as x→ +∞.

There have been many papers dealing with local limit theorems for different models of ran-
dom walks in random environments recently. For example, Dolgopyat and Goldsheid [27], [28],
Leskela and Stenlund [52] and Berger et al. [8] prove local limit theorems for transient RWRE
respectively on Z and on a strip, both in the diffusive regime, on Z with only 0 or 1 jumps, and
for some ballistic multidimensional RWRE. See also Dolgopyat et al. [29] for diffusive recurrent
RWRE on a strip, Takenami [63] for random walks on periodic environments, Chiarini et al. [16]
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for some diffusions in random environment, and Andres et al. [5] for the random conductance
model. We refer to the first two sections of Dolgopyat et al. [28] for a recent review of this
subject. However, the previously cited papers consider transient or diffusive random walks or
diffusions, whereas we consider Sinai’s walk which is recurrent and subdiffusive. Also, we obtain
probabilities of order (log n)−2 with a non gaussian limit law, instead of n−1/2 with a gaussian
limit law in their cases. Therefore, to the extent of our knowledge, our Theorem 1.1 is the first
local limit theorem for (recurrent) subdiffusive RWRE.

Also, a similar local limit theorem for the quenched probability, replacing P by Pω, does not
hold. Indeed, Pω(Sn = 0) almost surely takes very small values compared to (log n)−2 as
n → +∞, since for η ∈]0, 1[, P-almost surely Pω(Sn = 0) = O

(
exp(−(log n)1−η)

)
as n → +∞

(see Devulder et al. [24], last inequality of page 6). See also Gantert et al. ([34], Theorem 1.1)
for previous results, Comets et al. ([19], Theorem 2.1 and Corollary 2.1) for estimates for a
related model in continuous time, and Gantert et al. [36] for transient RWRE. So, contrarily
to some of the previously cited papers on local limit theorems for RWRE, our annealed local
limit theorem, Theorem 1.1, cannot be the consequence of a corresponding quenched local limit
theorem.

We also mention that some estimates of P(Sn = zn) when zn is large, more precisely when
n = O(zn), are given by Comets et al. [18]. For an overview of the vast literature about large
deviations for RWRE, see e.g. Gantert et al. [38] and more recently Buraczewski et al. [13].

Finally, we think that the tools and technics developed in the present paper, in particular the
ones of Section 2, will be useful for future research projects, including [23], which will study the
rates of convergence in Sinai and Golosov localization theorems for Sinai’s walk.

Acknowledgement: I am thankful to Yueyun Hu for asking, after a talk in a conference in
Landela (France) in 2016, if I could give an estimate of P(S2n = 0) as n → +∞, which made
me aware that this question was still open. I also thank Françoise Pène for organizing this
conference. Part of this work was done during a six months sabbatical ”délégation CNRS”.

1.3. Organization of the proof and of the paper. In Section 2, we recall the definition and
use of the potential V . We also define left and right h-extrema for V , for h > 0. This allows
us to introduce two path decompositions of the potential V , one with left h-extrema and one
with right h-extrema. We can then define our localization point bh. We describe the law of the
potential V between two consecutive left (or right) h-extrema xi and xi+1 when 0 /∈ [xi, xi+1],
which uses in particular the law of V or −V conditioned to stay positive, or nonnegative, up to
some hitting time (see Theorem 2.3). The law of V between the two left h-extrema surrounding
0 is given by a renewal theorem (see Theorem 2.5), and some independence is provided by
Theorem 2.4. A first application of this renewal theorem is that we can give a simple formula
for the law of bh, that is, for P(bh = x), x ∈ Z (in Lemma 2.6), which is an important tool in
the proof of Theorem 1.4.

Section 3 is devoted to the proof of Theorem 1.4.

In Section 4, we first define an event E
(n)
C (z), depending only on the environment and on z. On

this event, we use a coupling argument, which helps us approximate the quenched probability
Pω(Sn = z) by ν̂n(z), where ν̂n is an invariant probability measure. This enables us to give

an upper bound for the annealed probability that Sn = z on E
(n)
C (z) (see Proposition 4.8),

giving the main contribution in the upper bound of Theorem 1.1. To this aim, loosely speaking,

we express the expectation of ν̂n(z) on each event {blogn = k + z} ∩ E(n)
C (z) with quantities

depending only on the laws of the potential V between consecutive left or right (log n)-extrema;
summing this over k makes appear, after some inequalities and computations using the tools
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developed in Section 2, a formula equal to P(blogn = z) by Lemma 2.6. We conclude by applying
Theorem 1.4.

In Section 5, we prove that the environments and trajectories such that Sn = z which were not
considered in Section 4 have a negligible annealed probability. This covers many different cases,
which often combine conditions on both environments and trajectories of (Sk)k. For example,
z can be far from blogn, or the origin 0 can be very close to the maximum of the potential
between two valleys (defined before (20)), or some of the valleys around the origin can have a
height just slightly larger than log n, or the central valley of height at least log n can include one
or several subvalleys of height slightly less than log n. The potentials for some of these cases
are represented in Figures 6 page 43, 7 page 50, 8 page 59 and 9 page 61. In this section, we
prove that all these cases, and some others, with Sn = z have a negligible annealed probability
(compared to (log n)−2). Combining this with the previous subsection, we get (uniformly on z)
an upper bound of P(Sn = z), which completes the proof of the upper bound in Theorem 1.1.
Even if this section mainly consider negligible events, it is maybe the most delicate of the paper.

Section 6 is devoted to the proof of the lower bound in Theorem 1.1, that is, we give (uniformly
on z) a minoration of P(Sn = z). The proof is divided into three cases, depending on z being
negative and far from 0, positive and far from 0, or z being close to 0. This uses results of all
the other sections.

Finally, Section 7 is devoted to some important technical lemmas and their proofs. These lemmas
mainly deal with the potential V , and with V conditioned to stay positive or nonnegative.

Outlines or sketches of proofs of several lemmas or theorems are also provided throughout the
paper.

2. Potential, path decomposition and renewal theorem

2.1. Definition and applications of the potential. The potential (V (x), x ∈ Z), which was
first introduced by Sinai [61], is an important quantity which depends only on the environment
ω. It is defined as follows:

V (x) :=


∑x

i=1 log 1−ωi
ωi

if x > 0,

0 if x = 0,

−
∑0

i=x+1 log 1−ωi
ωi

if x < 0.

(6)

We denote by P xω the quenched probability for the RWRE (Sk)k starting at x ∈ Z instead of 0,
and by Exω the expectation with respect to P xω . Also, let

τ(y) := inf{k ≥ 0 : Sk = y}, τ∗(y) := inf{k ≥ 1 : Sk = y}, y ∈ Z,
where by convention, inf ∅ = +∞. In words, τ(y) (resp. τ∗(y)) is the hitting time of (resp.
return time to) the site y by the RWRE (Sk)k. We also define for x ∈ Z and y ∈ Z,

τ(x, y) := inf{k ∈ N : Sτ(x)+k = y}.
We now recall some classical estimates, which explain why the potential is very useful. These
formulas will be used throughout the paper. First, we have (see e.g. [65, (2.1.4)],

P bω[τ(c) < τ(a)] =

( b−1∑
j=a

eV (j)

)( c−1∑
j=a

eV (j)

)−1

, a < b < c. (7)

Furthermore (see e.g. [21] Lem. 2.2 coming from Zeitouni [65] p. 250), if g < h < i,

Ehω[τ(g)∧τ(i)] ≤
i−1∑
k=h

k∑
`=g

exp[V (k)− V (`)]

ω`
≤ ε−1

0 (i−g)2 exp

[
max

g≤`≤k≤i−1,k≥h
(V (k)− V (`))

]
, (8)
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where we used ellipticity (2) in the last inequality and with x ∧ y := min(x, y). For symmetry
reasons, we also have

Ebω[τ(a) ∧ τ(c)] ≤ ε−1
0 (c− a)2 exp

[
max

a≤`≤k≤c−1, `≤b−1

(
V (`)− V (k)

)]
, a < b < c . (9)

Moreover, we have (see Golosov [39], Lemma 7, proved for a RWRE on N but still true for a
RWRE on Z),

P bω[τ(c) < k] ≤ k exp

(
min

`∈[b,c−1]
V (`)− V (c− 1)

)
, b < c . (10)

Also by symmetry, we get (similarly as in Shi and Zindy [60], eq. (2.5) but with some slight
differences for the values of `)

P bω[τ(a) < k] ≤ k exp

(
min

`∈[a,b−1]
V (`)− V (a)

)
, a < b . (11)

Moreover, we have by Devulder et al. ([24], Lemma 4.10), if a 6= b,

∀k ∈ N, P bω[τ(a) = k] ≤ P bω[τ(a) < τ∗(b)]. (12)

Finally, we recall that, given ω, the Markov chain S is an electrical network where, for every
x ∈ Z, the conductance of the unoriented bond (x, x + 1) is C(x,x+1) = e−V (x) (in the sense of
Doyle and Snell [30]) (see also Levin et al. [51]). In particular, its reversible measure µω (unique
up to a multiplication by a constant) is given by

µω(x) := e−V (x) + e−V (x−1), z ∈ Z, (13)

where, for the sake of simplicity, we write µω(x) instead of µω({x}). For any process Y , we
define

TY (A) := inf{x ≥ 0, Y (x) ∈ A}, A ⊂ R, (14)

T ∗Y (A) := inf{x > 0, Y (x) ∈ A}, A ⊂ R. (15)

We sometimes write TY (a) := TY ([a,+∞[) when a > 0 and TY (a) := TY (]−∞, a]) when a < 0.
Due to the ellipticity (2), we have

∀x ∈ Z,
∣∣V (x)− V (x− 1)

∣∣ ≤ log

(
1− ε0

ε0

)
=: C0. (16)

In particular, thanks to (3) and (16), the following fact follows from the optimal stopping theorem
applied to the martingale (V (k), k ≥ 0) at time TV ([z,+∞[) ∧ TV (]−∞, x]:

y − x
z − x+ C0

≤ Py
[
TV ([z,+∞[) < TV (]−∞, x])

]
≤ y − x+ C0

z − x+ C0
, x < y < z, (17)

where Py denotes the law of V starting from y instead of 0. Moreover, these inequalities remain
valid if we replace ]−∞, x] and/or [z,+∞[ by the corresponding open interval ]−∞, x[ and/or
]z,+∞[. Also, there exist constants c1 > 0 and c∗1 > 0 such that (see e.g. Lemma 7.4),

P[TV (h) < T ∗V (R−)] ∼h→+∞ c∗1h
−1, P[TV (h) < TV (R∗−)] ∼h→+∞ c1h

−1. (18)

2.2. Definition and properties of left and right h-extrema. The point of view of h-
extrema has been used recently in some papers for RWRE or diffusions in a random potential,
either to prove localization results, see e.g. [3], [11], [24] and [33], or to use localization tech-
niques, see e.g. [4], [15], [21] and [19] (where they are called eh-stable points).

However, these studies use h-extrema of a (maybe drifted) two-sided Brownian motion W , and
sometimes transfer results about W to the potential V by Komlòs, Major and Tusnády strong
approximation theorem [50]. This is not precise enough to prove our theorems, so we introduce
and study variants of h-extrema directly for our potential V .
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Let h > 0, and v be a function from Z to R. Following Neveu and Pitman [54], we say that y is
an h-minimum for v if there exist integers α < y < β such that v(y) = min[α,β] v, v(α) ≥ v(y)+h
and v(β) ≥ v(y) + h. We say that y is an h-maximum for v if it is an h-minimum for −v. In
both cases, we say that y is an h-extremum for v.

One of the main differences with h-extrema of Brownian motion is that unfortunately, in the
general case, h-maxima and h-minima for V do not necessarily alternate. For this reason, we
introduce the following definitions (see Figure 1).

Definition 2.1. Let h > 0 and v be a function from Z to R. We say that y ∈ Z is a left
h-minimum (resp. right h-minimum) for v if there exist α < y < β such that

• min[α,y−1] v > v(y) (resp ≥),

• min[y+1,β] v ≥ v(y) (resp. >),

• v(α) ≥ v(y) + h,

• v(β) ≥ v(y) + h.

We say that y is a left h-maximum (resp. right h-maximum) for v if it is a left h-minimum
(resp. right h-minimum) for −v. In both cases, we say that y is a left h-extremum (resp. right
h-extremum) for v.

With these definitions, left h-minima and left h-maxima for v alternate, and similarly right
h-minima and right h-maxima for v alternate. The elementary proof is given in Lemma 7.7.
Also, between two consecutive left h-maxima y1 and y2, more precisely in [y1, y2[∩Z, there are
one or several h-minima, among which the smallest one is the only left h-minimum, which is y1,
and the largest one is the only right h-minimum, which we will not use in the present paper.

x−1(V, h)

x0(V, h) = bh

0

h

V (k)

x1(V, h)

≥ h

≥ h ≥ h

≥ h

x∗
3(V, h)

x2(V, h)

x3(V, h) k

left and right h-minimum

≥ h
x∗
0(V, h)

left and right h-maximum

x∗
1(V, h)

x∗
−1(V, h) = x−1(V, h) x∗

2(V, h) = x2(V, h)

Figure 1. Schema of the potential V with left h-extrema xi(V, h) (defined before (19))
and right h-extrema x∗i (V, h) (defined before (46)).

Left and right h-extrema of V have the disadvantage of not being stopping times. However, we
will see that they allow a very simple definition of the localization point bh (see (19) below, which
can be compared e.g. to (54)), that they have nice independence properties, that the properties
of the law of trajectories of V between consecutive left or right h-extrema are convenient, and
that we can use renewal theory, which enables for example to prove very useful formulas such
as the law of bh (see Lemma 2.6).
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We now focus on left h-extrema. Let V be the set of functions v from Z to R, such that
lim inf±∞ v = −∞ and lim sup±∞ v = +∞. If v ∈ V and h > 0, then the set of left h-
minima of v is unbounded from above and below, and so is the set of left h-maxima of v.
Consequently, for v ∈ V for every h > 0, the set of left h-extrema of v can be denoted by
{xk(v, h), k ∈ Z}, such that k 7→ xk(v, h) is strictly increasing and x0(v, h) ≤ 0 < x1(v, h). And
also, limk→±∞ xk(v, h) = ±∞. Notice that due to our hypotheses (3) and (4), V ∈ V almost
surely.

Similarly as in the continuous case (see Cheliotis [14]), we can now define for h > 0,

bh :=

{
x0(V, h) if x0(V, h) is a left h-minimum for V,
x1(V, h) otherwise.

(19)

As already mentioned, the definition of the localization point b′h given by Sinai [61] is not the
same.

Similarly as in the continuous case for h-slopes, we introduce for each function v ∈ V and for
each i ∈ Z and h > 0 the left h-slope Ti(v, h) := (v(j) − v[xi(v, h)], xi(v, h) ≤ j ≤ xi+1(v, h)).
Its height and its excess height are defined respectively as

H[Ti(v, h)] :=
∣∣v[xi+1(v, h)]− v[xi(v, h)]

∣∣ ≥ h, e[Ti(v, h)] = H[Ti(v, h)]− h ≥ 0.

If xi(v, h) is a left h-minimum (resp. maximum), then Ti(v, h) is a nonnegative (resp. non-
positive) function, it is said to be an upward slope (resp. a downward slope) and its maxi-
mum (resp. minimum) is attained at xi+1(v, h), with sup[xi(v,h),xi+1(v,h)[ v < v[xi+1(v, h)] (resp.

inf [xi(v,h),xi+1(v,h)[ v > v[xi+1(v, h)] ).

Similarly, if yi and yi+1 are two consecutive right h-extrema of v, we say that (v(j)−v(yi), yi ≤
j ≤ yi+1) is a right h-slope of v (see Subsection 2.6 for some properties of right h-slopes and
extrema). More generally, we call a slope each T=(T (j), α ≤ j ≤ β) ∈ Rβ−α+1, with α ∈ Z,
β ∈ Z∩]α,+∞[, such that either T (α) = 0 = min[α,β]∩Z T < max[α,β]∩Z T = T (β) or T (β) =
min[α,β]∩Z T < max[α,β]∩Z T = T (α) = 0. Also, for each slope T = (T (j), α ≤ j ≤ β), we
define its length `(T ) := β − α, its height H(T ) = |T (β) − T (α)|, and the translated slope
θ(T ) := (T (j + α), 0 ≤ j ≤ β − α).

We call valleys of height at least h of V the intervals [xi(V, h), xi+2(V, h)], i ∈ Z, such that
xi(V, h) and xi+2(V, h) are (consecutive) left h-maxima. The bottom of such a valley is the left
h-minimum xi+1(V, h). If its bottom is bh, that is, if bh = xi+1(V, h), then it is called the central
valley of height at least h of V .

Knowing, for some h > 0, θ[Ti(V, h)] for each i ∈ Z∗ and (θ[T0(V, h)], x0(V, h)) allows us to
reconstitute totally the process V since V (0) = 0. The two following subsections will provide
their laws and independence properties.

2.3. Definition and law of T ↑V,h and T ↓V,h. Let h > 0. We define by induction the following

notation. Let τ
(V )
0 (h) := 0 and for i ≥ 0 (see Figure 2),

τ
(V )
2i+1(h) := min

{
k ≥ τ (V )

2i (h), V (k)−min
[τ

(V )
2i (h),k]

V ≥ h
}
, (20)

m
(V )
2i+1(h) := min

{
k ≥ τ (V )

2i (h), V (k) = min
[τ

(V )
2i (h),τ

(V )
2i+1(h)]

V
}
, (21)

τ
(V )
2i+2(h) := min

{
k ≥ τ (V )

2i+1(h), max
[τ

(V )
2i+1(h),k]

V − V (k) ≥ h
}
, (22)

m
(V )
2i+2(h) := min

{
k ≥ τ (V )

2i+1(h), V (k) = max
[τ

(V )
2i+1(h),τ

(V )
2i+2(h)]

V
}
. (23)
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Notice that that τ
(V )
i (h) < ∞ P-a.s. for i ≥ 0 since V ∈ V P-a.s. due to (3) and (4), and that

the τ
(V )
i (h), i ≥ 0, are stopping times for the natural filtration of (V (`), ` ≥ 0).

0

V (k)

τ
(V )
1 (h)

h

h

k

m
(V )
1 (h)

m
(V )
2 (h)

h τ
(V )
2 (h)

τ
(V )
3 (h)

m
(V )
3 (h)

m
(V )
4 (h)

j

T ↑
V,h(j)

0

0
xT ↓

V,h(x)

ℓ
(
T ↑
V,h

)
ℓ
(
T ↓
V,h

)
h

τ
(V )
4 (h)

m
(V )∗
1 (h)

m
(V )∗
2 (h)

Figure 2. Schema of the potential V with the τ
(V )
i (h), m

(V )
i (h), T ↑V,h, T ↓V,h and m

(V )∗
i (h)

(defined between (20) and (23), in Definition 2.2 and before (47)).

Let
⊔

denote the disjoint union. Notice that, with a slight abuse of notation, each translated

(left h-) slope T = (T (0), T (1), . . . , T (`(T ))) belongs to R`(T )+1. So, we can consider our

translated slopes (and T ↑V,h and T ↓V,h defined below) as random variables taking values into⊔
t∈N∗ Rt, equipped with the σ-algebra {

⊔
t∈N∗ At : ∀t ∈ N∗, At ∈ B(Rt)}, where B(Rt) is the

Borel σ-algebra of Rt. The following notations are useful to express the law of left h-slopes in
the next subsection:

Definition 2.2. Let h > 0. We introduce (see Figure 2),

T ↑V,h :=
(
V
[
m

(V )
1 (h) + x

]
− V

[
m

(V )
1 (h)

]
, 0 ≤ x ≤ m(V )

2 (h)−m(V )
1 (h)

)
,

T ↓V,h :=
(
V
[
m

(V )
2 (h) + x

]
− V

[
m

(V )
2 (h)

]
, 0 ≤ x ≤ m(V )

3 (h)−m(V )
2 (h)

)
.

In particular, `
(
T ↑V,h

)
= m

(V )
2 (h) −m(V )

1 (h) and `
(
T ↓V,h

)
= m

(V )
3 (h) −m(V )

2 (h). We sometimes

write T ↑V and T ↓V instead of T ↑V,h and T ↓V,h to simplify the notation when no confusion is possible

for the value of h. The laws of T ↑V,h and T ↓V,h are given in the following theorem.

Theorem 2.3. Assume (2), (3) and (4). Let h > 0.

(i) The process T ↑V,h up to its first hitting time TT ↑V,h
([h,+∞[) of [h,+∞[, that is,

(
T ↑V,h(k),

0 ≤ k ≤ TT ↑V,h
([h,+∞[)

)
, is equal in law to

(
V (k), 0 ≤ k ≤ TV ([h,+∞[)

)
conditioned

on {TV ([h,+∞[) < TV (] − ∞, 0[)}. Moreover, it is independent of
(
T ↑V,h

(
TT ↑V,h

([h,+∞[) +

k
)
− T ↑V,h

(
TT ↑V,h

([h,+∞[)
)
, 0 ≤ k ≤ `

(
T ↑V,h

)
− TT ↑V,h

([h,+∞[)
)
, which has the same law as

(V (k), 0 ≤ k ≤ M ]
h), with M ]

h := min{k ∈ N, V (k) = max[0,τ̃1(h)] V }, where τ̃1(h) := min{k ∈
N, max[0,k] V − V (k) ≥ h}.

(ii) T ↑−V,h =law −T ↓V,h and T ↓−V,h =law −T ↑V,h.
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(iii) Also, E
(
`
(
T ↑V,h

))
<∞ and E

(
`
(
T ↓V,h

))
<∞.

Before proving Theorem 2.3, we introduce some notation. For a slope (T (i), 0 ≤ i ≤ `(T ))
(recall that T (0) = 0), we define the slope

ζ(T ) :=
(
T [`(T )− i]− T [`(T )], 0 ≤ i ≤ `(T )

)
, (24)

with ζ ◦ ζ being identity (since T (0) = 0 when T is a slope).

Proof of Theorem 2.3: Let h > 0. Applying ([25], Proposition 5.2, (ii)),
(
V
[
m

(V )
1 (h) + x

]
−

V
[
m

(V )
1 (h)

]
, 0 ≤ x ≤ τ

(V )
1 (h) − m(V )

1 (h)
)
, is equal in law to

(
V (k), 0 ≤ k ≤ TV ([h,+∞[)

)
conditioned on {TV ([h,+∞[) < TV (] −∞, 0[}, which proves the first part of (i). The second

one follows from the strong Markov property applied to (V (k), k ≥ 0) at stopping time τ
(V )
1 (h),

which is equal to m
(V )
1 (h) + TT ↑V,h

([h,+∞[).

We now prove some more general results, which will also be useful later. Due to Lemma 7.8, the

m
(V )
2i+1(h), i ≥ 1, are left h-minima, the m

(V )
2i+2(h), i ≥ 0, are left h-maxima, and the m

(V )
i (h),

i ≥ 2, are the only left h-extrema in
[
τ

(V )
1 (h),+∞

[
. However, m

(V )
1 (h) is not necessarily a left

h-minimum, depending on the values taken by (V (k), k ≤ 0).

For k ≥ 1, let θ̂
(`)
k,h(V ) := θ̂

(`)
k,h :=

(
V
(
m

(V )
k (h)−x

)
−V

(
m

(V )
k (h)

)
, 0 ≤ x ≤ m(V )

k (h)−τ (V )
k−1(h)

)
and

θ̂
(r)
k,h(V ) := θ̂

(r)
k,h :=

(
V
(
m

(V )
k (h) + x

)
− V

(
m

(V )
k (h)

)
, 0 ≤ x ≤ τ

(V )
k (h) −m(V )

k (h)
)
. According to

([25], Proposition 5.2, (i)), the processes θ̂
(`)
1,h(V ) and θ̂

(r)
1,h(V ) are independent. Also, θ̂

(`)
2,h(V ) =

−θ̂(`)
1,h

(
V
(
τ

(V )
1 (h)

)
− V

(
τ

(V )
1 (h) + .

))
and θ̂

(r)
2,h(V ) = −θ̂(r)

1,h

(
V
(
τ

(V )
1 (h)

)
− V

(
τ

(V )
1 (h) + .

))
, so it

follows from the previous result and from the strong Markov property applied at stopping time

τ
(V )
1 (h) that θ̂

(`)
2,h(V ) and θ̂

(r)
2,h(V ) are independent and more precisely that all the trajectories

θ̂
(`)
k,h(V ) and θ̂

(r)
k,h(V ), k ∈ {1, 2}, are independent. Applying the same procedure by induction,

with the strong Markov property applied successively at stopping times τ
(V )
k (h), k ≥ 1, proves

that all the trajectories θ̂
(`)
k,h and θ̂

(r)
k,h, k ≥ 1, are independent.

In what follows we will ”glue” trajectories. For two trajectories (f(i), a ≤ i ≤ b) and (g(i), c ≤
i ≤ d), by gluing g to the right of f , we mean defining a new function j : {a, . . . , b+ d− c} → R
such that

j(i) = Glue(f, g)(i) :=

{
f(i) if a ≤ i ≤ b,
f(b) + g(i− b+ c)− g(c) if b ≤ i ≤ b+ d− c. (25)

Thanks to the previous paragraph, the trajectories

θ̂
(V )
k,h :=

(
V
(
x+m

(V )
k (h)

)
− V

(
m

(V )
k (h)

)
, 0 ≤ x ≤ m(V )

k+1(h)−m(V )
k (h)

)
, k ∈ N∗ (26)

are independent, since the k-th one is obtained by gluing θ̂
(r)
k,h and, to its right,

(
V
(
τ

(V )
k (h) +

x
)
− V

(
τ

(V )
k (h)

)
, 0 ≤ x ≤ m

(V )
k+1(h) − τ (V )

k (h)
)

= ζ
(
θ̂

(`)
k+1,h

)
(with ζ defined in (24)), that is,

θ̂
(V )
k,h = Glue

[
θ̂

(r)
k,h, ζ

(
θ̂

(`)
k+1,h

)]
.

Also by the strong Markov property applied at stopping time τ
(V )
2k (h), θ̂

(`)
2k+i,h(V ) =law θ̂

(`)
i,h(V )

and θ̂
(r)
2k+i,h(V ) =law θ̂

(r)
i,h (V ) for every k ≥ 1 and i ∈ {1, 2}. Consequently, using the previ-

ous paragraph, θ̂
(V )
2k+1,h = Glue

[
θ̂

(r)
2k+1,h, ζ

(
θ̂

(`)
2k+2,h

)]
=law Glue

[
θ̂

(r)
1,h, ζ

(
θ̂

(`)
2,h

)]
= θ̂

(V )
1,h = T ↑V,h and

θ̂
(V )
2k+2,h = Glue

[
θ̂

(r)
2k+2,h, ζ

(
θ̂

(`)
2k+3,h

)]
=law Glue

[
θ̂

(r)
2,h, ζ

(
θ̂

(`)
3,h

)]
= θ̂

(V )
2,h = T ↓V,h for every k ∈ N.
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Finally, by the strong Markov property applied at time τ
(−V )
1 (h),

(
θ̂

(`)
2,h(−V ), θ̂

(r)
2,h(−V )

)
is equal

in law to
(
− θ̂(`)

1,h(V ),−θ̂(r)
1,h(V )

)
. Similarly,

(
θ̂

(`)
3,h(−V ), θ̂

(r)
3,h(−V )

)
=law

(
− θ̂(`)

2,h(V ),−θ̂(r)
2,h(V )

)
.

As a consequence, T ↓−V,h = Glue
[
θ̂

(r)
2,h(−V ), ζ

(
θ̂

(`)
3,h(−V )

)]
=law Glue

[
− θ̂(r)

1,h(V ), ζ
(
− θ̂(`)

2,h(V )
)]

= −Glue
[
θ̂

(r)
1,h(V ), ζ

(
θ̂

(`)
2,h(V )

)]
= −T ↑V,h. Also, applying this to −V instead of V gives T ↑−V,h =law

−T ↓V,h, which ends the proof of (ii).

We now prove (iii). Due to (3) and (4), there exist a > 0 such that P[V (1) ≥ a] =: b > 0. Let

d := bh/ac + 1. Now, notice that τ
(V )
1 (h) ≤ d(Nd + 1), where Nd := min{i ∈ N, ∀0 ≤ k ≤

d, V (id + k) − V (id) ≥ ak}. Hence, E
(
τ

(V )
1 (h)

)
≤ d(E(Nd) + 1) < ∞ since Nd is a geometric

r.v. with parameter P[∀0 ≤ k ≤ d, V (k) ≥ ak] ≥ bd > 0. Using the strong Markov property, we

get similarly E
(
τ

(V )
2 (h) − τ (V )

1 (h)
)
< ∞. Consequently, E

(
`
(
T ↑V,h

))
= E

(
m

(V )
2 (h) −m(V )

1 (h)
)
≤

E
(
τ

(V )
2 (h)

)
< ∞. Finally, applying this to −V , we get E

[
`
(
T ↓V,h

)]
= E

[
`
(
T ↑−V,h

)]
< ∞, since

T ↑−V,h =law −T ↓V,h by (ii). This proves (iii). �

2.4. Independence and law of translated left h-slopes via renewal theory. Notice that

the law of V may be nonsymmetric, so T ↑V,h and −T ↓V,h =law T ↑−V,h may have a different law,

contrarily to what happens for Brownian motion (imagine for example that the jumps of V
belong to [−2,−1] ∪ [4, 5]).

The following theorem is proved simultaneously as the next one. It says that for h > 0, roughly
speaking, conditionally on the central left h-slope T0(V, h) being upward (or being downward),
the translated left h-slopes θ[Ti(V, h)], i ∈ Z∗, are independent and are independent of the (non
translated) central left h-slope T0(V, h), and that the translated left h-slopes θ[Ti(V, h)], i ∈ Z∗,
have the same law as T ↑V,h (under P) for the upward ones (ie the ones with i ∈ (2Z)− {0} when

T0(V, h) is upward, the ones for i ∈ (2Z + 1) when T0(V, h) is downward) and the same law as

T ↓V,h (under P) for the downward ones (the other ones).

We denote by L
(
T ↑V,h

) (
resp. L

(
T ↓V,h

))
the law of T ↑V,h

(
resp. T ↓V,h

)
under P.

Theorem 2.4. Let h > 0. (i) Conditionally on
{
V (x1(V, h)) > V (x0(V, h))

}
(i.e. on the central

left h-slope T0(V, h) being upward), the θ[T2i+1(V, h)], i ∈ Z have the law L
(
T ↓V,h

)
whereas the

θ[T2i(V, h)], i ∈ Z∗ have the law L
(
T ↑V,h

)
, and (θ[T0(V, h)], x0(V, h), x1(V, h)), θ[Ti(V, h)], i ∈ Z∗

are independent.

(ii) Conditionally on
{
V (x1(V, h)) < V (x0(V, h))

}
(i.e. on the central left h-slope T0(V, h) being

downward), the θ[T2i+1(V, h)], i ∈ Z have the law L
(
T ↑V,h

)
, whereas the θ[T2i(V, h)], i ∈ Z∗ have

the law L
(
T ↓V,h

)
, and (θ[T0(V, h)], x0(V, h), x1(V, h)), θ[Ti(V, h)], i ∈ Z∗ are independent.

However the law of the central left h-slope T0(V, h) is different. It is provided by the following
renewal theorem.

Theorem 2.5. Let h > 0, ∆0 ⊂ Z and ∆1 ⊂ Z. For A ∈ {
⊔
t∈N∗ At : ∀t ∈ N∗, At ∈ B(Rt+)}

(so that the only slopes in A are upward slopes), we have

P[θ(T0(V, h)) ∈ A, x0(V, h) ∈ ∆0, x1(V, h) ∈ ∆1]

=
E
[
]
{

0 ≤ i < `(T ↑V,h), (−i) ∈ ∆0, (`(T ↑V,h)− i) ∈ ∆1

}
1{T ↑V,h∈A}

]
E[`(T ↑V,h) + `(T ↓V,h)]

. (27)
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Moreover if A ∈ {
⊔
t∈N∗ At : ∀t ∈ N∗, At ∈ B(Rt−)} (so that the only slopes in A are downward

slopes), then

P[θ(T0(V, h)) ∈ A, x0(V, h) ∈ ∆0, x1(V, h) ∈ ∆1]

=
E
[
]
{

0 ≤ i < `
(
T ↓V,h

)
, (−i) ∈ ∆0,

(
`
(
T ↓V,h

)
− i
)
∈ ∆1

}
1{T ↓V,h∈A}

]
E
[
`
(
T ↑V,h

)
+ `
(
T ↓V,h

)] . (28)

Finally, for all nonnegative function, ϕ :
⊔
t∈N∗ Rt → [0,+∞[, measurable with respect to the

σ-algebra {
⊔
t∈N∗ At : ∀t ∈ N∗, At ∈ B(Rt)},

E
[
ϕ
[
θ(T0(V, h))

]
1{x0(V,h)∈∆0}1{x1(V,h)∈∆1}

]
=

E
[
]
{

0 ≤ i < `
(
T ↑V,h

)
, (−i) ∈ ∆0,

(
`
(
T ↑V,h

)
− i
)
∈ ∆1

}
ϕ
(
T ↑V,h

)]
E[`(T ↑V,h) + `(T ↓V,h)]

+
E
[
]
{

0 ≤ i < `
(
T ↓V,h

)
, (−i) ∈ ∆0,

(
`
(
T ↓V,h

)
− i
)
∈ ∆1

}
ϕ
(
T ↓V,h

)]
E
[
`
(
T ↑V,h

)
+ `
(
T ↓V,h

)] . (29)

Proof of Theorems 2.4 and 2.5: Let h > 0, ∆0 ⊂ Z, ∆1 ⊂ Z, q ≤ 0 ≤ r, and Bi ∈
{
⊔
t∈N∗ At : ∀t ∈ N∗, At ∈ B(Rt)} =: G, for q ≤ i ≤ r. We first assume that B0 ∈ {

⊔
t∈N∗ At :

∀t ∈ N∗, At ∈ B(Rt+)}, so that B0 contains only upward slopes.

For t ∈ Z and v ∈ V , let, loosely speaking, T0(t, v, h) be the left h-slope around t for v, that is,
the left h-slope whose of v domain contains t, and denote its domain as [x0(t, v, h), x1(t, v, h)].
More precisely and more generally, for j ∈ Z, we define Tj(t, v, h) = Ti+j(v, h) if and only
if xi(v, h) ≤ t < xi+1(v, h), and for this unique i, xj(t, v, h) := xi+j(v, h) for j ∈ Z (recall
that the notations xi+j , Ti+j are defined before and after (19)). We also introduce V−t(k) :=
V (k − t)− V (−t) for t ∈ Z and k ∈ Z. Hence, for t ∈ N,

P

({
x0(V, h) ∈ ∆0, x1(V, h) ∈ ∆1

}
∩

r⋂
i=q

{
θ[Ti(V, h)] ∈ Bi

})
(30)

= P

({
(x0(t, V−t, h)− t) ∈ ∆0, (x1(t, V−t, h)− t) ∈ ∆1

}
∩

r⋂
i=q

{
θ[Ti(t, V−t, h)] ∈ Bi

})
= P[EB(t)]

= P
[
EB(t), m

(V )
−q+3(h) ≤ t

]
+ P

[
EB(t), m

(V )
−q+3(h) > t

]
, (31)

where EB(t) := {(x0(t, V, h)−t) ∈ ∆0, (x1(t, V, h)−t) ∈ ∆1}∩∩ri=q
{
θ[Ti(t, V, h)] ∈ Bi

}
, because

xj(V, h) = xj(t, V−t, h)− t for j ∈ Z, θ[Ti(V, h)] = θ[Ti(t, V−t, h)] for i ∈ Z, and V−t has the same
law as V .

Let (Yk)k∈Z be a sequence of independent left h-slopes, such that Y2k =law T ↑V,h and Y2k+1 =law

T ↓V,h for every k ∈ Z. We glue sequentially (see (25)) Y0, Y1, . . . , Yk, . . . to get a process (Y (i), i ∈
N), starting from 0 (i.e. Y (i) = Y0(i) for 0 ≤ i ≤ `(Y0)). This process (Y (i), i ∈ N) has the same

law as
(
V
[
m

(V )
1 (h) + x

]
− V

[
m

(V )
1 (h)

]
, x ≥ 0

)
. Indeed, this last process can be obtained from

gluing θ̂
(V )
1,h , θ̂

(V )
2,h , . . . , θ̂

(V )
k,h , . . . (see (26)), which are independent and such that θ̂

(V )
k,h =law Yk−1,

k ∈ N∗ by definition of the Yk and the law of the θ̂
(V )
k,h (see after (26)). We also glue sequentially

the Yk, k < 0 in the same way to the left of (Y (i), i ∈ N), so that Yk is followed by Yk+1,
k ∈ Z. The resulting process is denoted by (Y (i), i ∈ Z), with Y (0) = 0. Notice that
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x0(Y, h) = 0, for i ∈ N∗. We also have xi(Y, h) = `(Y0) + · · ·+ `(Yi−1), and for i ∈ Z∗−, we have
xi(Y, h) = −`(Y−1)− · · · − `(Yi).

We can assume without loss of generality that q ∈ (−2N∗), so Tq(V, h) is an upward slope when

θ(T0(V, h)) ∈ B0. Using, in the second equality, the fact that
(
V
(
x+m

(V )
3 (h)

)
−V

(
m

(V )
3 (h)

)
, x ≥

0
)

has the same law as (Y (x), x ≥ 0) (see (26) and below), and is independent of
(
V (x), x ≤

m
(V )
3 (h)

)
(see the paragraph before (25)), we have for t ∈ N,

P
[
EB(t), m

(V )
−q+3(h) ≤ t

]
=

t∑
y=0

P
[
EB(t), m

(V )
3 (h) = y, m

(V )
−q+3(h) ≤ t

]
=

t∑
y=0

P
[
m

(V )
3 (h) = y

]
hB(t− y) (32)

where hB(p) := P
[
ẼB(p) ∩ {`(Y0) + · · · + `(Y−q−1) ≤ p}

]
, with ẼB(p) := {

(
x0(p, Y, h) − p

)
∈

∆0,
(
x1(p, Y, h) − p

)
∈ ∆1} ∩ ∩ri=q

{
θ
[
Ti(p, Y, h)

]
∈ Bi

}
, p ∈ N. Indeed, on

{
m

(V )
−q+3(h) ≤ t

}
,

we have x0(t, V, h) ≥ m
(V )
−q+3(h) thanks to Lemma 7.8, thus xq(t, V, h) ≥ m

(V )
3 (h), so EB(t)

depends only on
(
V
(
x + m

(V )
3 (h)

)
− V

(
m

(V )
3 (h)

)
, x ≥ 0

)
=: (Y ′(x), x ≥ 0), with xi(t, V, h) =

xi(t−y, Y ′, h)+y and θ[Ti(t, V, h)] = θ[Ti(t−y, Y ′, h)] for i ≥ q on
{
m

(V )
3 (h) = y

}
and Y ′ =law Y .

We want to prove that hB(p) has a limit as p→ +∞. For p ∈ N, let

a′p := P

[{
(`(Y0) + · · ·+ `(Y−q−1)− p) ∈ ∆0,

(
`(Y0) + · · ·+ `(Y−q)− p

)
∈ ∆1

}
∩
{

0 ≤ p− `(Y0)− · · · − `(Y−q−1) < `(Y−q)
}
∩

r⋂
i=q

{Yi−q ∈ Bi}
]
.

We have for p ∈ N, since q ∈ (−2N∗),
hB(p)

= P
[
ẼB(p), `(Y0) + · · ·+ `(Y−q−1) ≤ p < `(Y0) + · · ·+ `(Y−q−1) + `(Y−q)

]
(33)

+P
[
ẼB(p), `(Y0) + · · ·+ `(Y−q) ≤ p < `(Y0) + · · ·+ `(Y−q) + `(Y−q+1)

]
(34)

+

p∑
y=0

P
[
`(Y0) + `(Y1) = y, ẼB(p), `(Y2) + · · ·+ `(Y−q+1) ≤ p− y

]
(35)

= a′p + 0 +

p∑
y=0

P
[
`(Y0) + `(Y1) = y

]
P
[
ẼB(p− y), `(Y0) + · · ·+ `(Y−q−1) ≤ p− y

]
= a′p +

p∑
y=0

P
[
`(Y0) + `(Y1) = y

]
hB(p− y).

Indeed in the probability in line (33), the image by θ of the slope T0(p, Y, h) containing p is Y−q
and the 0 in the second equality comes from the fact that on the set inside the probability of line
(34), θ

[
T0(p, Y, h)

]
= Y−q+1 is a downward slope, whereas B0 contains only upward slopes, and in

the sets appearing in (35), there exists j ≥ 0 such that xi(p−y, Y, h)
]

= `(Y2)+· · ·+`(Y−q+1+j+i)

and θ
[
Ti(p− y, Y, h)

]
= Y−q+2+j+i for i ≥ q and (Y0, Y1) is independent of (Yi+2, i ≥ 0), which

has the same law as (Yi, i ≥ 0).

So, hB(p) is solution of the discrete time renewal equation hp = a′p +
∑p

k=0 fkhp−k, p ∈ N,

with hp = hB(p) and fk = P
[
`(Y0) + `(Y1) = k

]
. Notice that a′p ≥ 0, p ∈ N and

∑∞
p=0 a

′
p ≤
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E
[
`(Y0) + · · ·+ `(Y−q)

]
+ a0 ≤ (|q|+ 1)E

[
`
(
T ↑V,h

)
+ `
(
T ↓V,h

)]
+ 1 <∞ by our Theorem 2.3 (iii).

So, Theorem 2.2 of Barbu and Limnios [7] with its notation Xn = `(Y2n−2) + `(Y2n−1) > 0,
n ≥ 1 so that fk = P[X1 = k] and un :=

∑n
m=0 P[X1 + · · ·+Xm = n] =

∑n
m=0 P[`(Y0) + `(Y1) +

· · ·+ `(Y2m−2) + `(Y2m−1) = n] with X1 + · · ·+X0 = 0 by convention, give us that this renewal
equation has a unique solution, which is

hB(p) = hp = (u ∗ a′)p =

p∑
k=0

up−ka
′
k, p ∈ N.

Let n1 ∈ N∗ and n2 ∈ N∗ be such that P[TV (h) = n1 | TV (h) < TV (R∗−)] =: c2 > 0 and
P[`(Y1) = n2] =: c3 > 0 and let c4 := P[TV (−h) < TV (]0,∞[)] > 0 due to (3) and (4). Hence,

using the law of T ↑V,h (see Theorem 2.3 (i)), P[`(Y0) = n1] = P
[
`
(
T ↑V,h

)
= n1

]
≥ c2c4 > 0.

Also, P[`(Y0) = n1 + 1] ≥ c2P[V (1) > 0]c4 > 0. Thus, P[`(Y0) + `(Y1) = n1 + n2] > 0 and
P[`(Y0)+`(Y1) = n1 +n2 +1] > 0, and then the renewal chain (X1 + · · ·+Xn)n is aperiodic. It is

also recurrent since X1 <∞ a.s., e.g. because E(X1) = E
[
`
(
T ↑V,,h

)
+ `
(
T ↓V,h

)]
<∞ by Theorem

2.3 (iii). So by the renewal theorem (see e.g. Barbu and Limnios [7], Theorem 2.6), we have

up →p→+∞ 1/E(X1) = 1/E
[
`
(
T ↑V,h

)
+ `
(
T ↓V,h

)]
. Moreover since this renewal chain is recurrent

and aperiodic and
∑∞

p=0 |a′p| < ∞, we have by the key renewal theorem (see e.g. Barbu and

Limnios [7], Theorem 2.7),

hB(p) = hp =

p∑
k=0

up−ka
′
k →p→+∞

1

E[`(T ↑V,h) + `(T ↓V,h)]

∞∑
p=0

a′p. (36)

Also, let Ak0,...,kr−q :=
{
p ∈ N, (k0 + · · ·+ k−q−1 − p) ∈ ∆0,

(
k0 + · · ·+ k−q − p

)
∈ ∆1

}
∩
{

0 ≤
p− k0 − · · · − k−q−1 < k−q

}
for (k0, . . . , kr−q) ∈ Nr−q+1. We have,

∞∑
p=0

a′p

=
∞∑
p=0

∑
(k0,...,kr−q)∈Nr−q+1

P

[ r−q⋂
j=0

{
`(Yj) = kj

}
∩ {Yj ∈ Bj+q} ∩ {p ∈ Ak0,...,kr−q}

]

=
∑

(k0,...,kr−q)∈Nr−q+1

( r−q∏
j=0

P
[{
`(Yj) = kj

}
∩ {Yj ∈ Bj+q}

]) ∞∑
p=0

1Ak0,...,kr−q (p)

=
∑

(k0,...,kr−q)∈Nr−q+1

( ∏
0≤j≤r−q, j 6=−q

P
[{
`(Yj) = kj

}
∩ {Yj ∈ Bj+q}

])

×E
(

1{`(Y−q)=k−q , Y−q∈B0}

∞∑
p=0

1Ak0,...,kr−q (p)

)

=
∑

(k0,...,kr−q)∈Nr−q+1

( ∏
0≤j≤r−q, j 6=−q

P
[{
`(Yj) = kj

}
∩ {Yj ∈ Bj+q}

])

×E
(

1{`(Y−q)=k−q , Y−q∈B0}]{0 ≤ m < `(Y−q), (−m) ∈ ∆0, (`(Y−q)−m) ∈ ∆1}
)

=

( ∏
0≤j≤r−q, j 6=−q

P
[
Yj ∈ Bj+q

])



16 ALEXIS DEVULDER

×E
(

1{Y−q∈B0}]{0 ≤ m < `(Y−q), (−m) ∈ ∆0, (`(Y−q)−m) ∈ ∆1}
)
. (37)

Now, notice that by definition of (Yk)k∈Z and since q ∈ (−2N∗), the product in (37) is equal to( ∏
q≤i≤r, i6=0, i∈(2Z)

P
[
T ↑V,h ∈ Bi

])
×
( ∏
q≤i≤r, i∈(2Z+1)

P
[
T ↓V,h ∈ Bi

])
. (38)

The second probability in (31) is less than P
[
m

(V )
−q+3(h) > t

]
and then it goes to 0 as t → +∞

since m
(V )
−q+3(h) < τ

(V )
−q+3(h) <∞ a.s. since V ∈ V a.s.

Combining this with (32), letting t → +∞ and applying the dominated convergence theorem
gives (30) = limp→+∞ hB(p) (since this limit exists by (36)). This, together with (36), (37), and
(38) leads to

(30) =

( ∏
q≤i≤r, i6=0, i∈(2Z)

P
[
T ↑V,h ∈ Bi

])
×
( ∏
q≤i≤r, i∈(2Z+1)

P
[
T ↓V,h ∈ Bi

])

× E

(
1{Y−q∈B0}

E[`(T ↑V,h) + `(T ↓V,h)]
]{0 ≤ m < `(Y−q), (−m) ∈ ∆0, (`(Y−q)−m) ∈ ∆1}

)
. (39)

Moreover, taking (only here) all the Bi equal to
⊔
t∈N∗ Rt, except B0 in (39), we get

P
(
x0(V, h) ∈ ∆0, x1(V, h) ∈ ∆1, θ[T0(V, h)] ∈ B0

)
=

E
(
1{T ↑V,h∈B0}]{0 ≤ m < `(T ↑V,h), (−m) ∈ ∆0, (`(T ↑V,h)−m) ∈ ∆1}

)
E[`(T ↑V,h) + `(T ↓V,h)]

, (40)

since Y−q has the same law as T ↑V,h because q ∈ (2Z). This proves (27). Consequently, (39)

becomes

(30) =

( ∏
q≤i≤r, i6=0, i∈(2Z)

P
[
T ↑V,h ∈ Bi

])
×
( ∏
q≤i≤r, i∈(2Z+1)

P
[
T ↓V,h ∈ Bi

])
× P

({
x0(V, h) ∈ ∆0, x1(V, h) ∈ ∆1

}
∩
{
θ[T0(V, h)] ∈ B0

})
. (41)

This proves Theorem 2.4 (i).

We now prove (28) and Theorem 2.4 (ii). We assume that B0 ∈ {
⊔
t∈N∗ At : ∀t ∈ N∗, At ∈

B(Rt−)}, so that B0 contains only downward slopes. Notice that xi(−V, h) = xi(V, h) and
θ[Ti(−V, h)] = −θ[Ti(V, h)] for i ∈ Z. Then, −B0 = {−f, f ∈ B0} ∈ {

⊔
t∈N∗ At : ∀t ∈ N∗, At ∈

B(Rt+)}, and for each q ≤ i ≤ r, θ(Ti(V, h)) ∈ Bi iff θ(Ti(−V, h)) ∈ (−Bi), for which we can
apply (41) and (40) as follows. We get,

P

({
x0(V, h) ∈ ∆0, x1(V, h) ∈ ∆1

}
∩

r⋂
i=q

{
θ[Ti(V, h)] ∈ Bi

})
(42)

= P

({
x0(−V, h) ∈ ∆0, x1(−V, h) ∈ ∆1

}
∩

r⋂
i=q

{
θ[Ti(−V, h)] ∈ (−Bi)

})

=

( ∏
q≤i≤r, i6=0, i∈(2Z)

P
[
T ↑−V,h ∈ (−Bi)

])
×
( ∏
q≤i≤r, i∈(2Z+1)

P
[
T ↓−V,h ∈ (−Bi)

])

×
E
(
1{T ↑−V,h∈(−B0)}]{0 ≤ m < `(T ↑−V,h), (−m) ∈ ∆0, (`(T ↑−V,h)−m) ∈ ∆1}

)
E[`(T ↑−V,h) + `(T ↓−V,h)]

,
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=

( ∏
q≤i≤r, i6=0, i∈(2Z)

P
[
T ↓V,h ∈ Bi

])
×
( ∏
q≤i≤r, i∈(2Z+1)

P
[
T ↑V,h ∈ Bi

])

×
E
(
1{T ↓V,h∈B0}]{0 ≤ m < `(T ↓V,h), (−m) ∈ ∆0, (`(T ↓V,h)−m) ∈ ∆1}

)
E[`(T ↑V,h) + `(T ↓V,h)]

,

since T ↑−V,h =law −T ↓V,h and E
[
`
(
T ↑−V,h

)
+ `
(
T ↓−V,h

)]
= E

[
`
(
T ↓V,h

)
+ `
(
T ↑V,h

)]
by Theorem 2.3 (ii).

Taking all the Bi, i 6= 0, equal to
⊔
t∈N∗ Rt, this proves (28). This, in turn, proves that

(42) =

( ∏
q≤i≤r, i6=0, i∈(2Z)

P
[
T ↓V,h ∈ Bi

])
×
( ∏
q≤i≤r, i∈(2Z+1)

P
[
T ↑V,h ∈ Bi

])
×P
(
x0(V, h) ∈ ∆0, x1(V, h) ∈ ∆1, θ[T0(V, h)] ∈ B0

)
,

which proves Theorem 2.4 (ii).

In order to prove (29), we first show that (29) is true for ϕ = 1A for any A ∈ {
⊔
t∈N∗ At : ∀t ∈

N∗, At ∈ B(Rt)} = G. To this aim, let A ∈ G. We introduce S± :=
⊔
t∈N∗ Rt±. Applying (27) to

A ∩ S+ (resp. (28) to A ∩ S−) proves (29) for ϕ = 1A∩S+ (resp. ϕ = 1A∩S−), since the second

(resp. first) expectation in (29) is 0 when for ϕ = 1A∩S+ (resp. ϕ = 1A∩S−), because T ↓V,h /∈ S+

(resp. T ↑V,h /∈ S−). Also, (29) is true for ϕ = 1A∩(S+∪S−)c since every term is equal to 0 in (29)

in this case, since when θ[T0(V, h)] is a downward (resp. upward) slope, it belongs to S− (resp.

S+) and T ↓V,h ∈ S− (resp. T ↑V,h ∈ S+). Hence, adding (29) in the three previous cases proves

that (29) is true for ϕ = 1A, for every A ∈ G.

Then by linearity, (29) is true for every simple function
∑p

i=1 αi1Bi for p ≥ 1, αi ≥ 0 and Bi ∈ G,
1 ≤ i ≤ p. Finally, (29) is true for any nonnegative G-measurable function by the monotone
convergence theorem, since every nonnegative G-measurable function is the pointwise limit of a
nondecreasing sequence of nonnegative simple G-measurable functions. �

2.5. A simple expression for P(bh = x). A first application of our renewal Theorem 2.5 is
the following lemma, which contains key formulas to prove Theorem 1.4 and study the main
contribution in Theorem 1.1 (see e.g. (129), (214) and (220)).

Lemma 2.6. For h > 0,

∀x ≥ 0, P(bh = x) =
P
[
`
(
T ↓V,h

)
≥ x

]
E
[
`
(
T ↑V,h

)
+ `
(
T ↓V,h

)] , (43)

∀x ≤ 0, P(bh = x) =
P
[
`
(
T ↑V,h

)
> −x

]
E
[
`
(
T ↑V,h

)
+ `
(
T ↓V,h

)] . (44)

Proof: Let h > 0 and x ∈ Z. If x > 0, applying Theorem 2.5 eq. (28), with A =
⊔∞
i=1 Ri−,

∆1 = {x} and ∆0 = −N,

P(bh = x) = P[bh = x, x1(V, h) = bh > 0] = P

[
x1(V, h) = x, θ(T0(V, h)) ∈

∞⊔
i=1

Ri−
]

=
E
(
]
{

0 ≤ i < `
(
T ↓V,h

)
, `
(
T ↓V,h

)
− i = x

})
E
[
`
(
T ↑V,h

)
+ `
(
T ↓V,h

)] =
P
[
`
(
T ↓V,h

)
≥ x

]
E
[
`
(
T ↑V,h

)
+ `
(
T ↓V,h

)] .
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Similarly if x ≤ 0, applying Theorem 2.5 eq. (27) with A =
⊔∞
i=1 Ri+, ∆0 = {x} and ∆1 = N∗,

P(bh = x) =
E
(
]
{

0 ≤ i < `
(
T ↑V,h

)
, i = −x

})
E
[
`
(
T ↑V,h

)
+ `
(
T ↓V,h

)] =
P
[
`
(
T ↑V,h

)
> −x

]
E
[
`
(
T ↑V,h

)
+ `
(
T ↓V,h

)] .
In particular,

P(bh = 0) =
P
[
`
(
T ↑V,h

)
> 0
]

E
[
`
(
T ↑V,h

)
+ `
(
T ↓V,h

)] =
1

E
[
`
(
T ↑V,h

)
+ `
(
T ↓V,h

)] =
P
[
`
(
T ↓V,h

)
≥ 0
]

E
[
`
(
T ↑V,h

)
+ `
(
T ↓V,h

)] , (45)

so both formulas of Lemma 2.6 are true for x = 0. �

2.6. About right h-extrema and right h-slopes. We have detailed in the previous subsec-
tions, for h > 0, a path decomposition of the potential V , which we cut into different trajectories,
called left h-slopes, between random times which are the left h-extrema. We have also given the
laws and independence properties of these left h-slopes, in particular in Theorems 2.3, 2.4 and
2.5.

We now focus on right h-extrema and provide a similar path decomposition of V with right
h-slopes and right h-extrema. Similarly as for left h-minima, for v ∈ V , for every h > 0, the
set of right h-extrema of v can be denoted by {x∗k(v, h), k ∈ Z}, such that k 7→ x∗k(v, h) is
strictly increasing and x∗0(v, h) < 0 ≤ x∗1(v, h) (see Figure (1)), the first inequality being strict
and second one being large, contrarily to inequalities for left h-extrema xi(v, h), i ∈ Z, in order
to get relation (46) below. Also, we prove below that the right h-extrema of v can be obtained
from the left h-extrema of v−(.) := v−(.) := v(−.) (and in particular, V −(.) := V−(.) := V (−.);
both notations V − and V− will be used throughout the paper, depending on which one is more
convenient). More precisely, we have:

Lemma 2.7. Let v ∈ V . For h > 0,

∀i ∈ Z, x∗i (v, h) = −x1−i(v
−, h). (46)

Proof: Let v ∈ V and h > 0. First, notice that, applying Definition 2.1, −xj(v−, h) is a right h-
extremum for v for each j ∈ Z, so {−xj(v−, h), j ∈ Z} ⊂ {x∗i (v, h), i ∈ Z}. Similarly, for i ∈ Z,
−x∗i (v, h) is a left h-extremum for v−, so {x∗i (v, h), i ∈ Z} ⊂ {−xj(v−, h), j ∈ Z}, thus these
two sets are equal. Moreover, (x∗i (v, h))i∈Z and (−x−j(v−, h))j∈Z are two strictly increasing
sequences, taking the same values, so there exists k ∈ Z such that x∗i (v, h) = −xk−i(v−, h) for
every i ∈ Z. Since x∗0(v, h) < 0 ≤ x∗1(v, h) and −x1(v−, h) < 0 ≤ −x0(v−, h), we have k = 1,
which proves the lemma. �

Let h > 0. Similarly as for left h-extrema, for v ∈ V , we introduce for each i ∈ Z the right h-slope
T ∗i (v, h) := (v(j)−v[x∗i (V, h)], x∗i (v, h) ≤ j ≤ x∗i+1(v, h)). If x∗i (v, h) is a right h-minimum (resp.
maximum), then θ[T ∗i (v, h)] is strictly positive (resp. strictly negative) on {1, . . . , `(T ∗i (v, h))}.
and its maximum (resp. minimum) is attained at `(T ∗i (v, h)). The notation with a star for x∗i
and T ∗i corresponds to this fact that the translated slopes θ[T ∗i (v, h)] are non-zero except at the
origin.

Using the previous definition of τ
(V )
i (h) (see around (20)), we define for i ≥ 0 (see Figure 2, in

which m
(V )∗
3 (h) = m

(V )
3 (h) and m

(V )∗
4 (h) = m

(V )
4 (h)),

m
(V )∗
2i+1(h) := max

{
k ∈

[
τ

(V )
2i (h), τ

(V )
2i+1(h)

]
∩ N, V (k) = min

[τ
(V )
2i (h),τ

(V )
2i+1(h)]

V
}
,

m
(V )∗
2i+2(h) := max

{
k ∈

[
τ

(V )
2i+1(h), τ

(V )
2i+2(h)

]
∩ N, V (k) = max

[τ
(V )
2i+1(h),τ

(V )
2i+2(h)]

V
}
.
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Also, similarly as in Definition 2.2, we introduce for h > 0,

T ↑∗V,h :=
(
V
[
m

(V )∗
1 (h) + x

]
− V

[
m

(V )∗
1 (h)

]
, 0 ≤ x ≤ m(V )∗

2 (h)−m(V )∗
1 (h)

)
, (47)

T ↓∗V,h :=
(
V
[
m

(V )∗
2 (h) + x

]
− V

[
m

(V )∗
2 (h)

]
, 0 ≤ x ≤ m(V )∗

3 (h)−m(V )∗
2 (h)

)
. (48)

Recall TV and T ∗V from (14) and (15). The following proposition is similar to ([25], Proposition

5.2) with m
(V )∗
1 (h) instead of m

(V )
1 (h). The other main difference is that in (ii), we condition

by {TV ([h,+∞[) < T ∗V (]−∞, 0])}, closed at 0, instead of {TV ([h,+∞[) < TV (]−∞, 0[)}. Since

we did not find this lemma in the literature (in which our stopping time τ
(V )
1 (h) is generally

replaced by a deterministic time, see e.g. [9]), we give a detailed proof.

Proposition 2.8. Let h > 0. Let V be a random walk given as in (6) by a sequence of partial
sums of i.i.d. r.v. log ρi, i ∈ Z, such that P[log ρ0 > 0] > 0 and P[log ρ0 < 0] > 0 (this result
does not require Hypotheses (2), (3) or (4)). If moreover lim infx→+∞ V (x) = −∞ a.s., then

(i) The processes
(
V
[
m

(V )∗
1 (h)−k

]
−V

[
m

(V )∗
1 (h)

]
, 0 ≤ k ≤ m(V )∗

1 (h)
)

and
(
V
[
m

(V )∗
1 (h) +k

]
−

V
[
m

(V )∗
1 (h)

]
, 0 ≤ k ≤ τ (V )

1 (h)−m(V )∗
1 (h)

)
are independent.

(ii) The process
(
V
[
m

(V )∗
1 (h) + k

]
− V

[
m

(V )∗
1 (h)

]
, 0 ≤ k ≤ τ (V )

1 (h)−m(V )∗
1 (h)

)
is equal in law

to
(
V (k), 0 ≤ k ≤ TV ([h,+∞[)

)
conditioned on {TV ([h,+∞[) < T ∗V (]−∞, 0])}.

Proof: We fix h > 0, and consider V satisfying the hypotheses. Let ψ1 and ψ2 be two nonnega-
tive functions,

⊔
t∈N∗ Rt → [0,+∞[, measurable with respect to the σ-algebra {

⊔
t∈N∗ At : ∀t ∈

N∗, At ∈ B(Rt)}. To simplify the notation, we set m∗1 := m
(V )∗
1 (h) and τ∗1 := τ

(V )
1 (h).

We now define by induction, e.g. as in Enriquez et al. [31] and [32], the weak descending ladder
epochs for V as

e0 := 0, ei := inf{k > ei−1 : V (k) ≤ V (ei−1)}, i ≥ 1, (49)

with ei < ∞ a.s. for each i ≥ 1 since lim infx→+∞ V (x) = −∞. In particular, the excursions
(V (k + ei) − V (ei), 0 ≤ k ≤ ei+1 − ei), i ≥ 0 are i.i.d. by the Strong Markov property. Also,
the height Hi of the excursion [ei, ei+1] is defined as

Hi := max
ei≤k≤ei+1

[V (k)− V (ei)], i ≥ 0. (50)

Notice in particular that m∗1 = eL, where L := min{` ≥ 0, H` ≥ h} < ∞ a.s. Hence, summing
over the values of L, we get

E
[
ψ1

(
V (m∗1 − k)− V (m∗1), 0 ≤ k ≤ m∗1

)
ψ2

(
V (m∗1 + k)− V (m∗1), 0 ≤ k ≤ τ∗1 −m∗1

)]
=

∞∑
`=0

E
[
ψ1

(
V
(
e` − k

)
− V

(
e`
)
, 0 ≤ k ≤ e`

)
1∩`−1

i=0{Hi<h}
1{H`≥h}

× ψ2

(
V
(
e` + k

)
− V

(
e`
)
, 0 ≤ k ≤ TV (·+e`)−V (e`)([h,+∞[)

)]
= Π1Π2,

due to the strong Markov property at stopping time e`, where, applying it again on the second
equality,

Π1 :=
∞∑
`=0

E
[
ψ1

(
V
(
e` − k

)
− V

(
e`
)
, 0 ≤ k ≤ e`

)
1∩`−1

i=0{Hi<h}
]
P[H` ≥ h]

=

∞∑
`=0

E
[
ψ1

(
V
(
e` − k

)
− V

(
e`
)
, 0 ≤ k ≤ e`

)
1{L=`}

]



20 ALEXIS DEVULDER

= E
[
ψ1

(
V (m∗1 − k)− V (m∗1), 0 ≤ k ≤ m∗1

)]
and, since P[H` ≥ h] = P[TV ([h,+∞[) < T ∗V (]−∞, 0])],

Π2 := E
[
ψ2

(
V (k), 0 ≤ k ≤ TV ([h,+∞[)) | TV ([h,+∞[) < T ∗V (]−∞, 0])

]
.

Since this is true for all ψ1 and ψ2, this proves the proposition. �

As a consequence, we get

Theorem 2.9. Assume (2), (3) and (4). Let h > 0.

(i) The process T ↑∗V,h up to its first hitting time TT ↑∗V,h
([h,+∞[) of [h,+∞[, that is,

(
T ↑∗V,h(k),

0 ≤ k ≤ TT ↑∗V,h
([h,+∞[)

)
, is equal in law to

(
V (k), 0 ≤ k ≤ TV ([h,+∞[)

)
conditioned on

{TV ([h,+∞[) < T ∗V (] − ∞, 0])}. Moreover, it is independent of
(
T ↑∗V,h

(
TT ↑∗V,h

([h,+∞[) + k
)
−

T ↑∗V,h
(
TT ↑∗V,h

([h,+∞[)
)
, 0 ≤ k ≤ `

(
T ↑∗V,h

)
− TT ↑∗V,h([h,+∞[)

)
, which has the same law as

(
V (k), 0 ≤

k ≤ M̃ ]
h

)
, with M̃ ]

h := max{0 ≤ k ≤ τ̃1(h), V (k) = max[0,τ̃1(h)] V }, where τ̃1(h) := min{k ≥
0, max[0,k] V − V (k) ≥ h}.

(ii) T ↑∗−V,h =law −T ↓∗V,h and T ↓∗−V,h =law −T ↑∗V,h.

(iii) Also, E
(
`
(
T ↑∗V,h

))
<∞ and E

(
`
(
T ↓∗V,h

))
<∞.

Proof: The proof of this theorem is the same as the proof of Theorem 2.3, with Proposition

2.8, T ↑∗V,h, m
(V )∗
i (h) and right extrema instead of ([25], Proposition 5.2), T ↑V,h, m

(V )
i (h) and left

extrema respectively. �

The following lemma says that ζ, defined in (24), transforms translated left (resp. right) h-
slopes for V into right (resp. left) ones for V − (see Lemma 2.10 below), and upward ones into
downward ones.

Lemma 2.10. For i ∈ Z, ζ[θ(Ti(V, h)))] = θ[T ∗−i(V
−, h)].

Proof: Recall that x∗k(V, h) = −x1−k(V
−, h) for k ∈ Z by Lemma 2.7. Hence for i ∈ Z,

ζ[θ(Ti(V, h)))] = ζ
[(
V [xi(V, h) + j]− V [xi(V, h)], 0 ≤ j ≤ xi+1(V, h)− xi(V, h)

)]
= (V −[−xi+1(V, h) + j]− V −[−xi+1(V, h)], 0 ≤ j ≤ xi+1(V, h)− xi(V, h))

=
(
V −[x∗−i(V

−, h) + j]− V −[x∗−i(V
−, h)], 0 ≤ j ≤ −x∗−i(V −, h)) + x∗1−i(V

−, h))
)

= θ[T ∗−i(V
−, h)]. (51)

This proves the lemma.

As a consequence, we get the following result.

Theorem 2.11. Theorems 2.4 and 2.5 remain valid if we replace ”left” and each xk(V, h),

Tk(V, h), T ↑V,h and T ↓V,h respectively by ”right”, x∗k(V, h), T ∗k (V, h), T ↑∗V,h and T ↓∗V,h, and < and ≤
respectively by ≤ and < in Theorem 2.5.

Proof: Indeed, their proofs remain valid if we make these replacements and also replace m
(V )
k (h)

by m
(V )∗
k (h), k ∈ Z, and Tj(t, V, h) by T ∗j (t, V, h) = T ∗i+j(V, h) if x∗i (V, h) < t ≤ x∗i+1(V, h), and

for this unique i, x∗j (t, V, h) := x∗i+j(V, h) for j ∈ Z, and as a consequence, replace < and ≤
respectively by ≤ and < throughout the proof. �
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The following proposition, combined with some other results such as Theorem 2.9, will be useful
to obtain the law of V on the left of xi(V, h) (for i ∈ Z) conditionally on bh ≤ 0 or bh > 0, in
view of Theorems 2.4 and 2.5.

Proposition 2.12. Let h > 0. Then, (i) ζ
(
T ↑V,h

)
=law T ↓∗V −,h and (ii) ζ

(
T ↓V,h

)
=law T ↑∗V −,h.

Proof: We denote by L
(
T ↓∗
V −,h

)
the law of T ↓∗

V −,h under P. Conditionally on {V [x0(V, h)] <

V [x1(V, h)]} = {V −[x∗1(V −, h)] < V −[x∗0(V −, h)]} (thanks to (46)), θ[T2(V, h)] has the law

L
(
T ↑V,h

)
by Theorem 2.4 (i), whereas θ[T ∗−2(V −, h)] has the law L

(
T ↓∗
V −,h

)
by the version of

Theorem 2.4 (ii) with stars (see Theorem 2.11) applied to V −. This and (51) prove our (i).
Applying the same arguments to θ[T1(V, h)] and θ[T ∗−1(V −, h)] proves (ii). �

2.7. Relation with another localization point. In this subsection, we recall another way

to define a localization point denoted by b
(K)
h , and we prove that b

(K]
h is equal to bh (defined

in (19)) with large probability. The localization point b
(K)
h is useful because we will apply the

previous result of Kesten ([48], Thm 1.2) to the limit law of b
(K)
h /h2 (in the proof of Theorem

1.4, see after (66)), whereas our bh is convenient e.g. due to Lemma 2.6 and to the law of the
potential near bh (by Theorems 2.3, 2.4, and 2.5).

To this aim, we define for any process (Z(k), k ≥ 0), similarly as in Hu ([44] from eq. (2.1) to
eq. (2.6)) but for processes indexed by N,

Z(t) := sup
0≤k≤t

Z(k), Z(t) := inf
0≤k≤t

Z(k), Z](t) := sup
0≤s≤t

(
Z(s)− Z(s)

)
t ≥ 0,

dZ(h) := inf{t ≥ 0, Z](t) ≥ h}, h > 0. (52)

Also, with V−(k) := V (−k) for k ≥ 0 as before, we introduce (see Figure 3)

b+V (h) := inf{0 ≤ u ≤ dV (h), V (u) = V (dV (h))}, h > 0,

b−V (h) := sup{0 ≤ u ≤ dV−(h), V−(u) = V−(dV−(h))}, h > 0. (53)

The sup instead of inf in the last line will be necessary so that in some cases, −b−V (h) is a left
h-minimum for V instead of a right one (as in Figure 3). Finally, we introduce

b
(K)
h :=

{
b+V (h) if V [dV (h)] < V−[dV−(h)],
−b−V (h) otherwise.

(54)

Let (W (x), x ∈ R) be a two-sided Brownian motion, and W− := (W (−x), x ≥ 0). As in Hu

([44] eq. (2.6)), for w = W or w = σW , we define b
(K,w)
h by the same formula as in (54), the

previous notations of this Subsection 2.7 being the same, with V replaced by w, and the inf and
sup being taken for real numbers instead of integers. As already stated by Hu

(
[44] after eq.

(2.6), his b(1) being a.s. equal to our b
(K,W )
1 since the sup in (53) is a.s. a inf when V is replaced

by W
)
, the density of b

(K,W )
1 is ϕ∞, defined in (5). Indeed, it is easy to check that b

(K,W )
1 is a.s.

equal to the r.v. L of Kesten ([48], as expressed in the statement of his Lemma 2.1), which has
density ϕ∞ by ([48], Thm 1.2).

For some choices of P, we have P
[
bh 6= b

(K)
h

]
> 0 for some h > 0. Indeed, for example, if

P[V (1) = z] > 0 for every z ∈ {−2,−1, 0, 1, 2}, we have for h ∈ N∗, with non zero probability,
V (−1) = V (0) = V (1) = 0, with V (k) = k−1 for 1 ≤ k ≤ h+1, V (k) = |k|−1 for −h ≤ k ≤ −1

and V (−h− 1) = h + 1, and so b
(K)
h = b+V (h) = 0 whereas bh = −1 6= b

(K)
h . However, we prove

that b
(K)
h = bh with large probability. More precisely, we have:
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Lemma 2.13. There exists a constant c5 > 0 such that, for large h,

P
[
b
(K)
h 6= bh

]
≤ c5h

−1.

This lemma will be useful to prove Lemma 2.14 and Theorem 1.4. Moreover, we think it will
also be necessary in a work in progress [23].

Proof of Lemma 2.13: Let h > 0. First case: we assume that

max
[
V [b+V (h)], V [b+V (h)] + h

]
≤ V−[dV−(h)]− 2C0. (55)

Let c−(h) := sup{k ≤ 0, V (k) = V−[dV−(h)]} (which may be −dV−(h) or not). First, by

V (k)

h

h

k0−dV−(h) c−(h)

V−[dV−(h)]

−b−V (h)

V−(dV−(h))

V [b+V (h)]

≥ 2C0

b+V (h)

dV (h)

V [b+V (h)] + h

Figure 3. Schema of the potential V for the first case of the proof of Lemma 2.13 when
V [b+V (h)] < V [b+V (h)] + h.

definition of b+V (h), we have V [b+V (h)] = min[b+V (h),dV (h)] V . Also for the same reason, V [b+V (h)] <

min[0,b+V (h)−1] V , with min ∅ = +∞ by convention, and since −dV−(h) ≤ c−(h) ≤ 0, we have

min[c−(h),0] V ≥ V (c−(h))−h−C0 = V−[dV−(h)]−h−C0 > V [b+V (h)] first by definition of dV−(h)

and ellipticity, then by definition of c−(h) followed by (55). So, min[c−(h),b+V (h)−1] V > V [b+V (h)].

Moreover, by definition, V [dV (h)] ≥ V [b+V (h)]+h. Finally, V [c−(h)] = V−[dV−(h)] ≥ V [b+V (h)]+h

first by definition, then by (55). Consequently, b+V (h) is a left h-minimum.

Assume that there exists a left h-extremum in [0, b+V (h)− 1]. Since b+V (h) is a left h-minimum,
and left h-maxima and minima for V alternate by Lemma 7.7, there would be at least one left
h-maximum in this interval, which we denote by α ∈ [0, b+V (h)[. Now, denote by γ the largest
left h-minimum such that γ < α, so that [γ, α] is (the support of) an upward left h-slope of V .
In particular,

V (γ) ≤ V (α)− h and γ < α. (56)

Assume that 0 ≤ γ. So, γ ∈ [0, α], hence V (γ) ≥ inf [0,α] V = V (α), and then using (56),

V ](α) ≥ V (α)− V (α) ≥ V (α)− V (γ) ≥ h.
By definition (52) of dV , this would give dV (h) ≤ α, which contradicts α < b+V (h) ≤ dV (h).

Hence we would have γ < 0 ≤ α. Using first the fact that [γ, α] is an upward left h-slope, then
α ∈ [0, b+V (h)] and finally (55) would give

sup[γ,α] V ≤ V (α) ≤ V [b+V (h)] < V−[dV−(h)] = V [c−(h)].
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So c−(h) /∈ [γ, α] and since c−(h) ≤ 0 ≤ α by definition, this gives c−(h) < γ < 0. Using
ellipticity (16), then (55), we get

V [c−(h) + 1] ≥ V [c−(h)]− C0 = V−[dV−(h)]− C0 ≥ V [b+V (h)] + C0.

Thus, using (56) in the second inequality,

V [c−(h) + 1]− V (γ) ≥ V [b+V (h)] + C0 − V (γ) ≥ V [b+V (h)] + C0 + h− V (α) ≥ C0 + h,

since V [b+V (h)] ≥ V (α) because α ∈ [0, b+V (h)]. So, V−(|c−(h)| − 1)− V−(|γ|) > h with 0 < |γ| ≤
|c−(h)| − 1, which gives dV−(h) ≤ |c−(h)| − 1 < |c−(h)| ≤ dV−(h), which is not possible.

Hence there is no left h-extremum in [0, b+V (h) − 1]. Since b+V (h) is a left h-minimum, this

gives x1(V, h) = b+V (h) if b+V (h) 6= 0 and x0(V, h) = b+V (h) if b+V (h) = 0, and by definition

(19) of bh, it follows that bh = b+V (h). Since V [dV (h)] ≤ max
[
V [b+V (h)],max[b+V (h),dV (h)] V

]
≤

max
[
V [b+V (h)], V [b+V (h)]+h+C0

]
< V−[dV−(h)] by ellipticity and (55), we also have b

(K)
h = b+V (h)

by (54). Hence, bh = b
(K)
h when (55) holds.

Second case: we assume that

max
[
V−[b−V (h)], V−[b−V (h)] + h

]
≤ V [dV (h)]− 2C0. (57)

This case is nearly the symmetric of the previous one, the only asymmetry being the sup in (53)
(which is necessary for −b−V (h) to be a left h-minimum instead of a right one). So we prove

similarly as in the first case that bh = −b−V (h) = b
(K)
h when (57) holds.

Third step: Consequently, if bh 6= b
(K)
h then neither (55) nor (57) hold, and so

V−[dV−(h)]− 2C0 < max
[
V [b+V (h)], V [b+V (h)] + h

]
≤ V [dV (h)]

< max
[
V−[b−V (h)], V−[b−V (h)] + h

]
+ 2C0 ≤ V−[dV−(h)] + 2C0,

where we first used the negation of (55), then the definitions of dV (h) and b+V (h), then the

negation of (57) and finally the definitions of dV−(h) and b−V (h). In view of these inequalities,
we define

E1 :=
{
−2C0 < max

[
V [b+V (h)], V [b+V (h)] + h

]
− V−[dV−(h)] < 2C0

}
,

E2 :=
{
V [b+V (h)] + h < V [b+V (h)]

}
,

so that P
[
bh 6= b

(K)
h

]
≤ P[E1].

First, notice that on E1 ∩ E2, writing here β := V−[dV−(h)] to simplify the notation, we have

β − 2C0 < V [b+V (h)] < β + 2C0, and so V [b+V (h)] < β + 2C0 − h thanks to E2. Hence, TV ([β −
2C0,+∞[) ≤ b+V (h) and V [. + TV ([β − 2C0,+∞[)] hits V [b+V (h)] ∈] − ∞, β + 2C0 − h] before
[β + 2C0,+∞[. Thus, since V− is independent of (V (x), x ≥ 0), the strong Markov property,
and then (17) lead to, if h > 4C0,

P[E1 ∩ E2 | V−]

≤ E
(
PTV ([y−2C0,+∞[)[TV (]−∞, y + 2C0 − h]) < TV ([y + 2C0,+∞[)]|y=β | V−

)
≤ 5C0(h+ C0)−1.

Consequently, P[E1 ∩ E2] ≤ 6C0h
−1 for large h.

Similarly, notice that on E1 ∩ Ec2, once more with the notation β := V−[dV−(h)], we have

β − 2C0 < V [b+V (h)] + h < β + 2C0. So, TV (]−∞, β + 2C0− h]) ≤ b+V (h). Also, min[0,dV (h)] V =

V [b+V (h)] > β−2C0−h and V [dV (h)] ≥ V [b+V (h)]+h > β−2C0, thus V [.+TV (]−∞, β+2C0−h])
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hits [β − 2C0,+∞[ before ]−∞, β − 2C0 − h]. Hence as previously, since V− is independent of
(V (x), x ≥ 0), by the strong Markov property, and then by (17), if h > 4C0,

P[E1 ∩ Ec2 | V−]

≤ E
(
PTV (]−∞,y+2C0−h])[TV ([y − 2C0,+∞[) < TV (]−∞, y − 2C0 − h])]y=β | V−

)
≤ 5C0(h+ C0)−1.

Consequently, P[E1 ∩ Ec2] ≤ 6C0h
−1 for large h. Finally, P

[
bh 6= b

(K)
h

]
≤ P[E1] ≤ 12C0h

−1 for
large h, which proves the lemma. �

Lemma 2.14. There exists a constant c6 > 0 such that

P
[
bh > 0

]
→h→+∞ 1/2, P

[
bh = 0

]
∼h→+∞ c6h

−2.

Proof: For the equivalent, observe that by (19), bh = 0 if and only if 0 is a left h-minimum for
V , that is if and only if V and V (−.) =: V−(.) hit [h,+∞[ before going back to ]−∞, 0] for V−,
and before hitting ]−∞, 0[ for (V (k), k ≥ 0). So by independence of (V (k), k ≥ 0) and V− and
(18) (or (235)),

P
[
bh = 0

]
= P

[
TV−([h,+∞[) < T ∗V−(]−∞, 0])

]
P
[
TV ([h,+∞[) < TV (]−∞, 0[)

]
∼h→+∞ c6h

−2 (58)

with c6 > 0 being the product of c∗1 (for the law of V−) and of c1 (for the law of V ) with the
notation of (18) (and (235)). This proves the second claim in Lemma 2.14. Notice that this
constant c6 depends on the law of ω0, that is, c6 depends on P.

For the first limit of the lemma, notice that P[bh > 0] = P
[
b
(K)
h > 0

]
+ O(1/h) as h → +∞ by

Lemma 2.13, so we just have to prove that P
[
b
(K)
h > 0

]
→h→+∞ 1/2. We now consider a two

sided Brownian motion (W (x), x ∈ R), and consider W−(x) := W (−x) for x ≥ 0, and define
W , W−, dW , dW− , as explained after (54). By (54), we have for h > 0,

P
[
b
(K)
h > 0

]
= P

[
V [dV (h)] < V−[dV−(h)], b+V (h) 6= 0

]
= P

[
V [dV (h)] < V−[dV−(h)]

]
+O(1/h) (59)

since P
[
b+V (h) = 0

]
= P

[
TV ([h,+∞[) < TV (]−∞, 0[)

]
= O(1/h) as h→ +∞ similarly as in (58).

By the theorem of Donsker, the limit of the probability in (59) as h→ +∞ is P
[
σW [dσW (1)] <

σW−[dσW−(1)]
]
, which is 1/2 by symmetry and because P

[
σW [dσW (1)] = σW−[dσW−(1)]

]
= 0

since the r.v. σW [dσW (1)] and σW−[dσW−(1)] are independent and have a density (by Hu [44]

Lemma 2.1 and by scaling). Hence P
[
b
(K)
h > 0

]
→h→+∞ 1/2 and so P

[
bh > 0

]
→h→+∞ 1/2. �

Lemma 2.15. There exists a constant c7 := (2c6)−1 > 0 such that

E[`(T ↑V,h)] ∼h→+∞ E[`(T ↓V,h)] ∼h→+∞ c7h
2.

Proof: Applying (45), and Theorem 2.5, using (27) with A = S+ =
⊔∞
t=1 Rt+, ∆1 = N∗ and

∆0 = −N, we have, since bh ≤ 0 if and only if θ(T0(V, h)) ∈ S+ by (19),

P(bh = 0) =
1

E[`(T ↑V,h) + `(T ↓V,h)]
, P(bh ≤ 0) =

E
[
`(T ↑V,h)

]
E[`(T ↑V,h) + `(T ↓V,h)]

.

Consequently, E
[
`(T ↑V,h)

]
= P(bh≤0)

P(bh=0) ∼h→+∞ h2/(2c6) by Lemma 2.14. Similarly, we obtain

E
[
`(T ↓V,h)

]
= P(bh>0)

P(bh=0) ∼h→+∞ h2/(2c6), which proves the lemma. �
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2.8. An inequality for the excess height of left h-slopes.

Lemma 2.16. There exists a constant c8 > 0 such that, for large h,

∀i ∈ Z, ∀C0 < ∆ < h, P
(
e[Ti(V, h)] ≤ ∆|bh ≤ 0

)
≤ c8

∆

h
. (60)

This remains true if bh ≤ 0 is replaced by bh > 0.

Proof: Let h > 0 and C0 < ∆ < h. Applying Theorem 2.4 (i) since {V (x1(V, h)) >
V (x0(V, h))} = {bh ≤ 0}, then Theorem 2.3 (i), and then (17), we have for i 6= 0, since
C0 < ∆ < h,

P
(
e[T2i(V, h)] ≤ ∆|bh ≤ 0

)
= P

(
H[θ(T2i(V, h))]− h ≤ ∆|bh ≤ 0

)
= P

(
H
(
T ↑V,h

)
− h ≤ ∆

)
≤ P

(
TV (−h+ ∆) ≤ τ̃1(h) < TV (]∆,+∞[)

)
≤ ∆ + C0

h+ C0
≤ 2∆

h
. (61)

Similarly, applying Theorem 2.4 (i), then T ↓V,h =law −T ↑−V,h by Theorem 2.3 (ii),

P
(
e[T2i+1(V, h)] ≤ ∆|bh ≤ 0

)
= P

(
H
(
T ↓V,h

)
− h ≤ ∆

)
= P

(
H
(
T ↑−V,h

)
− h ≤ ∆

)
≤ 2∆

h

similarly as before for i ∈ Z and C0 < ∆ < h. This proves (60) for i 6= 0.

The proof is similar when conditioning by bh > 0, applying Theorem 2.4 (ii) instead of (i).

We now consider the case i = 0. We have, by Theorem 2.5 eq. (27) applied with ∆0 = ∆1 = Z,

P
(
e[T0(V, h)] ≤ ∆|V (x1(V, h)) > V (x0(V, h))

)
=

E
[
`(T ↑V,h)1{H(T ↑V,h)−h≤∆}

]
E[`(T ↑V,h) + `(T ↓V,h)]P

[
V (x1(V, h)) > V (x0(V, h))

] . (62)

Notice by Theorem 2.3 (i) and since H(T ↑V,h) = T ↑V,h
[
`
(
T ↑V,h

)]
, TT ↑V,h

([h,+∞[) ≤ `(T ↑V,h) and

∆− h < 0, and finally by (17),

E
[
TT ↑V,h

([h,+∞[)1{H(T ↑V,h)−h≤∆}
]

≤ E
[
TT ↑V,h

([h,+∞[)1{H(T ↑V,h)−T ↑V,h(T
T ↑
V,h

([h,+∞[))≤∆}
]

= E
[
TT ↑V,h

([h,+∞[)
]
P
[
H(T ↑V,h)− T ↑V,h(TT ↑V,h

([h,+∞[)) ≤ ∆
]

≤ E
[
`
(
T ↑V,h)

]
P
(
TV (−h+ ∆) < TV (]∆,+∞[)

)
≤ E

[
`
(
T ↑V,h)

]
2∆h−1. (63)

Finally, once more by Theorem 2.3 (i) with its notation,

E
[(
`(T ↑V,h)− TT ↑V,h([h,+∞[)

)
1{H(T ↑V,h)−h≤∆}

]
≤ E

[
M ]
h1{τ̃1(h)<TV (]∆,+∞[)}

]
≤ E

[
τ̃1(h)1{τ̃1(h)<TV (]∆,+∞[)}

]
. (64)

Notice that X̂k := (V (k))2 − σ2k, k ∈ N is a martingale for the filtration FV,k := σ(V (1), . . . ,
V (k)), k ∈ N. Moreover, the stopping time τ̃1(h) ∧ TV (]∆,+∞[) has finite expectation, since

E[τ̃1(h) ∧ TV (]∆,+∞[)] ≤ E[τ̃1(h)] = E
[
τ

(V )
2 (h) − τ (V )

1 (h)
]
≤ E[`(T ↑V,h) + `(T ↓V,h)] < ∞ by (20),

(22), Definition 2.2 (see also Figure 2) and Theorem 2.3 (iii). Also, for every k ∈ N,

E
[∣∣X̂k+1 − X̂k

∣∣ | FV,k] = E
[∣∣(V (k + 1))2 − (V (k))2 − σ2

∣∣ | FV,k] ≤ 2C0(∆ + h+ C0) + σ2
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a.s. on {k < τ̃1(h)∧TV (]∆,+∞[)}, since V (k) and V (k+ 1) belong to [−h−C0,∆ +C0] on this
event and |V (k + 1)− V (k)| ≤ C0. Hence by the optimal stopping time theorem (see e.g. [41],

(9) p. 492), we have E
[
X̂τ̃1(h)∧TV (]∆,+∞[)] = E

[
X̂0

]
= 0. This gives

E
[(

[V (τ̃1(h))]2 − σ2τ̃1(h)
)
1{τ̃1(h)<TV (]∆,+∞[)}

]
+ E

[
X̂TV (]∆,+∞[)1{τ̃1(h)>TV (]∆,+∞[)}] = 0,

since τ̃1(h) 6= TV (]∆,+∞[) a.s. Consequently, using X̂k ≤ (V (k))2 and ellipticity (16),

σ2E
[
τ̃1(h)1{τ̃1(h)<TV (]∆,+∞[)}

]
= E

[
[V (τ̃1(h))]21{τ̃1(h)<TV (]∆,+∞[)}] + E

[
X̂TV (]∆,+∞[)1{τ̃1(h)>TV (]∆,+∞[)}]

≤ (h+ C0)2P[TV (−h+ ∆) < TV (]∆,+∞[)] + (∆ + C0)2

≤ (h+ C0)22∆h−1 + (∆ + C0)2,

as before since C0 < ∆ < h. This and (64) give for large h for every ∆ ∈]C0, h[,

E
[(
`(T ↑V,h)− TT ↑V,h([h,+∞[)

)
1{H(T ↑V,h)−h≤∆}

]
≤ σ−2(3∆h+ 3∆h).

This together with (63) gives

E
[
`(T ↑V,h)1{H(T ↑V,h)−h≤∆}

]
≤ 6σ−2∆h+ E

[
`
(
T ↑V,h)

]
2∆h−1. (65)

Moreover, P
[
V (x1(V, h)) > V (x0(V, h))

]
= P(bh ≤ 0) → 1/2 as h → +∞ by Lemma 2.14, so

(62), (65) and Lemma 2.15 give for large h for every ∆ ∈]C0, h[,

P
(
e[T0(V, h)] ≤ ∆|bh ≤ 0

)
≤ 6σ−2∆h

2c7h2.1/3
+ 5

∆

h
≤ c8

∆

h

with c8 := 9σ−2/c7 + 5. The proof is similar if we replace bh ≤ 0 by bh > 0, using Theorem 2.5

eq. (28) instead of eq. (27) and since T ↓V,h =law −T ↑−V,h by Theorem 2.3 (ii). This proves (60)

in the case i = 0, which ends the proof of the lemma. �

3. Proof of Theorem 1.4

The proof relies mainly on the expression of P(bh = x) provided by Lemma 2.6, the monotonicity
of x 7→ P(bh = x) on N and −N due to Lemma 2.6, the uniform continuity of ϕ∞, Donsker’s
theorem, Kesten [48]’s result and some estimates on the laws of left h-slopes. The proof is
divided into three steps, depending on whether x is far from 0, close to 0, or in between.

Proof of Theorem 1.4: Let 0 < ε < 1/2.

First step: Notice that by Lemma 2.6 and Markov inequality, for h > 0,

∀x > 0, P(bh = x) =
P
[
`
(
T ↓V,h

)
≥ x

]
E
[
`
(
T ↑V,h

)
+ `
(
T ↓V,h

)] ≤ E
[
`
(
T ↓V,h

)]
xE
[
`
(
T ↑V,h

)
+ `
(
T ↓V,h

)] ≤ 1

x

and similarly P(bh = x) ≤ 1
|x| for all x < 0. Moreover, limx→±∞ ϕ∞(x) = 0, so we can fix some

A > 0 such that, for every h > 0, for all x ∈ Z such that |x| > Ah2, we have∣∣∣∣P(bh = x
)
− σ2

h2
ϕ∞

(
σ2x

h2

)∣∣∣∣ ≤ P
(
bh = x

)
+
σ2

h2
ϕ∞

(
σ2x

h2

)
≤ 1

|x|
+
σ2

h2
sup
|y|≥Aσ2

ϕ∞(y)

≤ 1

h2

(
1

A
+ σ2 sup

|y|≥Aσ2

ϕ∞(y)

)
≤ ε

h2
. (66)

Second step: By Donsker’s theorem, b
(K)
h /h2 converges in law as h→ +∞ under P to b

(K,σW )
1

(defined after (54)), which has the same law as σ−2b
(K,W )
1 by scaling. Also, the law of b

(K,W )
1 is
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ϕ∞(x)dx by Kesten [48] as explained after our (54). Also, P
[
bh 6= b

(K)
h

]
→h→+∞ 0 by Lemma

2.13, so σ2bh/h
2 converges in law under P to ϕ∞(x)dx as h→ +∞.

Since ϕ∞ is continuous on R and limx→±∞ ϕ∞(x) = 0, ϕ∞ is uniformly continuous on R. Hence,
there exists η > 0 such that

∀x ∈ R, ∀y ∈ R, |x− y| ≤ η ⇒ |ϕ∞(x)− ϕ∞(y)| < ε, (67)

and we can choose η > 0 small enough so that 5ησ−2 ≤ A, 5c−1
7 exp[−90−1η−1] ≤ εσ2 and

3
√

5η ≤ 1, where c7 > 0 is a constant introduced in Lemma 2.15. We can now fix N0 ∈ N such
that [−A,A] ⊂ [−N0ησ

−2, N0ησ
−2]. Since σ2bh/h

2 converges in law under P to ϕ∞(x)dx as
h→ +∞, for all j ∈ {−N0 − 3, . . . , N0 + 3},

P
(
σ2bh/h

2 ∈ [jη, (j + 1)η[
)
→h→+∞

∫ (j+1)η

jη
ϕ∞(u)du.

Hence there exists h0 > 0 such that ησ−2h2
0 > 2, 1 ≤ [(1 − ε)−1 − 1]ησ−2h2

0, 1 ≤ [1 − (1 +
ε)−1]ησ−2h2

0 and

∀h ≥ h0,∀j ∈ {−N0 − 3, . . . , N0 + 3},
∣∣∣∣P(σ2bh

h2
∈ [jη, (j + 1)η[

)
−
∫ (j+1)η

jη
ϕ∞(u)du

∣∣∣∣ ≤ ηε.
This, combined with (67), gives for all j ∈ {−N0 − 3, . . . , N0 + 3},
∀h ≥ h0, η[ϕ∞(jη)− ε]− ηε ≤ P

(
σ2bh/h

2 ∈ [jη, (j + 1)η[
)
≤ η[ϕ∞(jη) + ε] + ηε. (68)

We consider h ≥ h0. Due to Lemma 2.6, x 7→ P(bh = x) is nonincreasing on N, and nondecreasing
on −N. Hence, for 0 ≤ j ≤ N0 + 3,

P
(
σ2bh/h

2 ∈ [jη, (j + 1)η[
)

=
∑

i∈[jησ−2h2,(j+1)ησ−2h2[∩N

P(bh = i)

≤ (1− ε)−1ησ−2h2P
(
bh =

⌊
jησ−2h2

⌋)
,

due to the second inequality defining h0. This and (68) give for such j,

P
(
bh =

⌊
jησ−2h2

⌋)
≥ η[ϕ∞(jη)− ε]− ηε

(1− ε)−1ησ−2h2
= σ2[ϕ∞(jη)− 2ε]h−2(1− ε)

≥ σ2[ϕ∞(jη)− 3ε]h−2, (69)

since ϕ∞(u) ∈ [0, 2/π] for all u ∈ R. Similarly for such j,

P
(
σ2bh/h

2 ∈ [jη, (j + 1)η[
)
≥
[
ησ−2h2 − 1

]
P
(
bh =

⌊
(j + 1)ησ−2h2

⌋)
.

This and (68) give, using the third inequality in the definition of h0,

P
(
bh =

⌊
(j + 1)ησ−2h2

⌋)
≤ η[ϕ∞(jη) + ε] + ηε

(1 + ε)−1ησ−2h2
= (1 + ε)σ2[ϕ∞(jη) + 2ε]h−2

≤ σ2[ϕ∞(jη) + 4ε]h−2, (70)

since 0 < ε < 1/2 and ϕ∞(u) ∈ [0, 2/π] for all u ∈ R.

Now, let j ∈ {2, . . . , N0} and x ∈ N such that jησ−2h2 ≤ x < (j + 1)ησ−2h2. We have since
P(bh = .) is nonincreasing on N and x ≤ b(j + 1)ησ−2h2c, then by (69) and finally by (67),

P(bh = x) ≥ P(bh = b(j + 1)ησ−2h2c) ≥ σ2[ϕ∞((j + 1)η)− 3ε]h−2

≥ σ2
[
ϕ∞
(
xσ2h−2

)
− 4ε

]
h−2.

Similarly, using (70) applied to j − 1 ≥ 1 instead of (69), followed by (67),

P(bh = x) ≤ P(bh = bjησ−2h2c)
≤ σ2[ϕ∞((j − 1)η) + 4ε]h−2 ≤ σ2

[
ϕ∞
(
xσ2h−2

)
+ 6ε

]
h−2.
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Since this is true for all h ≥ h0, every j ∈ {2, . . . , N0} and for every x ∈ N such that jησ−2h2 ≤
x < (j + 1)ησ−2h2 for such j, and A ≤ N0ησ

−2, this gives

∀h ≥ h0, max
x∈[2ησ−2h2,Ah2]∩Z

∣∣P(bh = x)− ϕ∞
(
xσ2h−2

)
σ2h−2

∣∣ ≤ 6εσ2h−2. (71)

We get similarly

∀h ≥ h0, max
x∈[−Ah2,−2ησ−2h2]∩Z

∣∣P(bh = x)− ϕ∞
(
xσ2h−2

)
σ2h−2

∣∣ ≤ 6εσ2h−2. (72)

Third step: Now, for −5ησ−2h2 ≤ x ≤ 0, we have by (44) and (45),∣∣P(bh = x)− P(bh = 0)
∣∣ =

P
[
`
(
T ↑V,h

)
≤ −x

]
E
[
`
(
T ↑V,h

)
+ `
(
T ↓V,h

)] ≤ P
[
`
(
T ↑V,h

)
≤ 5ησ−2h2

]
c7h2

(73)

(uniformly) for all −5ησ−2h2 ≤ x ≤ 0 for large h, since E
[
`
(
T ↑V,h

)]
∼h→+∞ E

[
`
(
T ↓V,h

)]
∼h→+∞

c7h
2 by Lemma 2.15.

We know from Theorem 2.3 (i) that up to its first hitting time of [h,+∞[), T ↑V,h has the same

law as (V (k), 0 ≤ k ≤ TV ([h,+∞[) conditioned by {TV ([h,+∞[) < TV (] −∞, 0[)}. Thus for
α > 0, applying the strong Markov property in the last equality, and ellipticity (16) in the last
line (for h large enough so that C0 < h/6),

P
[
`
(
T ↑V,h

)
≤ αh2

]
≤ P

[
TT ↑V,h

([h,+∞[)− TT ↑V,h([h/2,+∞[) ≤ αh2
]

=
P
[
TV ([h,+∞[)− TV ([h/2,+∞[) ≤ αh2, TV ([h,+∞[) < TV (]−∞, 0[)

]
P
[
TV ([h,+∞[) < TV (]−∞, 0[)

]
=

E
[
1{TV ([h/2,+∞[)<TV (]−∞,0[)}P

V (TV ([h/2,+∞[))
[
TV ([h,+∞[) ≤ (αh2) ∧ TV (]−∞, 0[)

]]
P
[
TV ([h,+∞[) < TV (]−∞, 0[)

]
≤

P
[
TV ([h/2,+∞[) < TV (]−∞, 0[)

]
P
[
TV ([h,+∞[) < TV (]−∞, 0[)

] P
[
TV ([h/3,+∞[) ≤ αh2

]
.

Using P
[
TV ([h,+∞[) < TV (]−∞, 0[)

]
∼h→+∞ c1h

−1 (see (18)) and Donsker’s theorem, the last
line is equivalent, as h→ +∞, to

2P
[
TσW ([1/3,+∞[)) ≤ α

]
= 2P

[
sup
[0,α]

(σW ) ≥ 1/3
]

= 2P
[
σ|W (α)| ≥ 1/3

]
= 2P

[
|W (1)| ≥ (3σ

√
α)−1

]
≤ 4 exp[−(3σ

√
α)−2/2]

if 3σ
√
α ≤ 1, where (W (x), x ∈ R) is a two-sided Brownian motion as before. Since 3

√
5η ≤ 1,

this and (73) give for large h,

max
−5ησ−2h2≤x≤0

∣∣P(bh = x)− P(bh = 0)
∣∣ ≤ 5c−1

7 h−2 exp
[
−
(
3
√

5η
)−2

/2
]
≤ εσ2h−2

by the second inequality after (67). Since we have a similar result for 0 ≤ x ≤ 5ησ−2h2, using

(43) instead of (44) and e.g. `
(
T ↓V,h

)
=law `

(
T ↑−V,h

)
(see Theorem 2.3 (ii)), there exists h1 > h0

such that
∀h ≥ h1, max

−5ησ−2h2≤x≤5ησ−2h2

∣∣P(bh = x)− P(bh = 0)
∣∣ ≤ εσ2h−2. (74)

We already know, from (69), that ∀h ≥ h1 ≥ h0,P(bh = 0) ≥ σ2[ϕ∞(0) − 3ε]h−2. Moreover,
using (74), (71) and then (67),

P(bh = 0) ≤ P(bh = b4ησ−2h2c) + εσ2h−2 ≤ [φ∞(b4ησ−2h2cσ2h−2) + 7ε]σ2h−2

≤ [φ∞(0) + 11ε]σ2h−2
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for h ≥ h1. So,

∀h ≥ h1,
∣∣P(bh = 0)− σ2ϕ∞(0)h−2

∣∣ ≤ 11εσ2h−2. (75)

Finally, once more by (67),
∣∣ϕ∞(xσ2h−2

)
− ϕ∞(0)

∣∣ ≤ 5ε for x ∈ Z such that |x| ≤ 5ησ−2h2.
This, combined with (74) and (75) and the triangular inequality yields to

∀h ≥ h1, max
x∈[−5ησ−2h2,5ησ−2h2]∩Z

∣∣P(bh = x)− ϕ∞
(
xσ2h−2

)
σ2h−2

∣∣ ≤ 17εσ2h−2. (76)

This, together with (71) and (72) leads to

∀h ≥ h1, max
x∈[−Ah2,Ah2]∩Z

∣∣P(bh = x)− ϕ∞
(
xσ2h−2

)
σ2h−2

∣∣ ≤ 17εσ2h−2. (77)

This, combined with (66), proves Theorem 1.4. �

4. Coupling argument when blogn is close to z

In this section, we use a coupling argument, in order to approximate the quenched probability
Pω[Sn = z] by the invariant probability measure at z of a RWRE reflected inside the central
valley of the potential. In order to make this approximation, we require some conditions, mainly
for the environment.

4.1. An inequality related to hitting times of (Sk)k. Before dealing with the coupling
argument, we prove a useful inequality about hitting times. This lemma is in the same spirit as
([24], Lemma 4.7), but is more general. We will use this lemma with different values of ξ1. See
Figure 4 for the schema of the potential V under the hypotheses of this lemma.

Lemma 4.1. Assume (2). Let ξ1 > 0, ξ2 > 0 and α > 0. There exists ĥ2 = ĥ2(ξ1, ξ2) > 1

such that, for almost every environment ω, for every a < b < c and h ≥ ĥ2 such that (i)
V (b) = max[a,c] V , (ii) maxb≤`≤k≤c−1

(
V (k)− V (`)

)
≤ h− ξ1 log h, (iii) maxa≤`≤k≤b−1

(
V (`)−

V (k)
)
≤ h− ξ1 log h and (iv) |c− a| ≤ 2hα, and for every a ≤ x ≤ c, we have

P xω
[
τ(a) ∧ τ(c) ≥ ξ2e

h
]
≤ 24ξ−1

2 ε−2
0 h2α−ξ1+8 + 4ε−1

0 hα−8, (78)

and is, in particular, uniformly less than h−4 for all h ≥ ĥ2 if α = 3 and ξ1 > 19.

Proof: We cannot apply directly (8) or (9) to Eω[τ(a) ∧ τ(c)], because the max(. . . ) which
appear in these inequalities can be much too large, since they can be respectively nearly as large

as V (b)−V (a) or V (b)−V (c), which can be much larger than our h. Consider ĥ2 > 1 such that

h − (ξ1 − 8) log h > 0 for every h ≥ ĥ2. We fix h ≥ ĥ2, and assume that the hypotheses of the
lemma are satisfied for this h. We define (see Figure 4), with x ∨ y := max(x, y),

A− := a ∨
(

max{y ≤ b, V (b)− V (y) ≥ h− (ξ1 − 8) log h}
)
,

A+ := c ∧
(

min{y ≥ b, V (b)− V (y) ≥ h− (ξ1 − 8) log h}
)
.

First case: we assume that a ≤ x ≤ A−. We start with the sub-case a < x ≤ A−, which
implies that A− = max{. . . } 6= a in the definition of A−. Then, by Markov inequality, (9) and
Hypotheses (iii) and (iv),

P xω [τ(a) ∧ τ(b) ≥ ξ2e
h/2] ≤ 2ξ−1

2 e−hε−1
0 (b− a)2 exp

[
max

a≤`≤k≤b−1

(
V (`)− V (k)

)]
≤ 8ξ−1

2 e−hε−1
0 h2α exp(h− ξ1 log h) = 8ξ−1

2 ε−1
0 h2α−ξ1 . (79)

Also, notice that since a < A− < b, using Hypothesis (iii),

max
[a,A−]

V ≤ V (A−) + max
a≤`≤k≤b−1

(
V (`)− V (k)

)
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0

V (k)

h− (ξ1 − 8) log h

a

k

b

c = A+

A−

≤ h− ξ1 log h

≤ h− ξ1 log h
≤ h− ξ1 log h

≤ a+ 2hα

Figure 4. Schema of the potential V for Lemma 4.1 between a and c when c = A+.

≤ V (b)− (h− (ξ1 − 8) log h) + (h− ξ1 log h) ≤ V (b)− 8 log h. (80)

Hence using (7), a < x ≤ A− < b, then Hypothesis (iv), ellipticity (2) and (80),

P xω [τ(b) < τ(a)] ≤ (x− a) exp[max[a,x−1] V − V (b− 1)] ≤ 2hαε−1
0 h−8.

Consequently, this and (79) lead to

P xω [τ(a) ∧ τ(c) ≥ ξ2e
h/2]

≤ P xω [τ(b) < τ(a)] + P xω [τ(a) ∧ τ(c) ≥ ξ2e
h/2, τ(a) < τ(b) < τ(c)]

≤ 2ε−1
0 hα−8 + P xω [τ(a) ∧ τ(b) ≥ ξ2e

h/2] ≤ 2ε−1
0 hα−8 + 8ξ−1

2 ε−1
0 h2α−ξ1 . (81)

This remains true if x = a, whether a = A− or a 6= A−, and so for every a ≤ x ≤ A−. This
already proves (78) in this case.

Second case: we now assume that A+ ≤ x ≤ c. This case is similar as the first one, so we get
by symmetry, using (ii) instead of (iii) and (8) instead of (9),

P xω [τ(a) ∧ τ(c) ≥ ξ2e
h/2] ≤ 2ε−1

0 hα−8 + 8ξ−1
2 ε−1

0 h2α−ξ1 . (82)

This already proves (78) in the this case.

Third case: We now assume that A− < x < A+. Using Markov inequality, (8) and Hypothesis
(iv) and a ≤ A− < A+ ≤ c ≤ a + 2hα in the first line, then max[A−,A+] V = V (b) (due to

Hypothesis (i) and b ∈ [A−, A+] ⊂ [a, c]) and min[A−,A+] V ≥ V (b)− (h− (ξ1−8) log h)− log ε−1
0

(by definition of A± and ellipticity (16)), we have

P xω [τ(A−) ∧ τ(A+) ≥ ξ2e
h/2] ≤ 2ξ−1

2 e−hε−1
0 (2hα)2 exp

[
max

[A−,A+]
V − min

[A−,A+]
V
]

≤ 8ξ−1
2 e−hε−1

0 h2α exp
[
h− (ξ1 − 8) log h+ log ε−1

0

]
= 8ξ−1

2 ε−2
0 h2α−ξ1+8.

Consequently, we have by the strong Markov property applied at time τ(A−) ∧ τ(A+),

P xω
[
τ(a) ∧ τ(c) ≥ ξ2e

h
]
≤ P xω

[
τ(A−) ∧ τ(A+) ≥ ξ2e

h/2
]

+ PA
−

ω

[
τ(a) ∧ τ(c) ≥ ξ2e

h/2
]

+PA
+

ω

[
τ(a) ∧ τ(c) ≥ ξ2e

h/2
]
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≤ 8ξ−1
2 ε−2

0 h2α−ξ1+8 + 2
(
2ε−1

0 hα−8 + 8ξ−1
2 ε−1

0 h2α−ξ1)
≤ 24ξ−1

2 ε−2
0 h2α−ξ1+8 + 4ε−1

0 hα−8

by (81) and (82) applied respectively at A− and A+. This proves (78) in this third case, so

(78) is proved in every case for every h larger than some constant ĥ2 > 1. Finally, when α = 3
and ξ1 > 19, we have 24ξ−1

2 ε−2
0 h2α−ξ1+8 + 4ε−1

0 hα−8 ≤ (24ξ−1
2 ε−2

0 + 4ε−1
0 )h−5 which is o(h−4) as

h → +∞, so, up to a change of ĥ2, the right hand side of (78) is less than h−4 for all h > ĥ2,
which ends the proof of the lemma. �

4.2. Some events useful for the coupling argument. In order to evaluate the probability
P(Sn = z), we decompose the event {Sn = z} into smaller ones, and to this aim we introduce
some conditions on the environment ω. First, we fix C1 > 20, C2 > 9, and δ1 ∈]0, 2/3[. For
n ≥ 3, we introduce

hn := log n− C1 log2 n, h̃n := hn − C1 log2 n, Γn :=
⌊
(log n)4/3+δ1

⌋
,

where for x > 1, log2 x := log log x. We also fix an integer n3 ≥ 3 such that, for all n ≥ n3,

log2 n > C0 + 1, log n > max
[
2ε−1

0 , ĥ2(2C1, 1/10), ĥ2(C1, 1/10), ĥ2(2C1, 1), p5

]
, hn −C1 log2 n >

max{3C0 + 10 log2 n, (log n)/2 + (2C1 + C2 + 2) log2 n}, (log2 n)6 ≤ log n, n ≥ (log n)C1+4 and

Γn ≥ p4, with p4 and p5 defined in Proposition 7.3 and ĥ2 in Lemma 4.1. We also define for
n ≥ n3 and z ∈ Z,

E
(n)
− := {blogn ≤ 0} = {blogn = x0(V, log n)}, (83)

E
(n)
+ := {blogn > 0} = {blogn = x1(V, log n)} =

(
E

(n)
−
)c
,

E
(n)
3 := ∩10

i=−10

{
H[Ti(V, hn − C1 log2 n)] ≥ log n+ C2 log2 n

}
,

E
(n)
4 (z) := {V (z)− V (blogn) ≥ 5 log2 n}

∪
(
E

(n)
− ∩

{
max

[blogn,0]
V < V [x1(V, log n)]− 9 log2 n

})
∪
(
E

(n)
+ ∩

{
max

[0,blogn]
V < V [x0(V, log n)]− 9 log2 n

})
,

E
(n)
5 :=

{
− (log n)2+δ1 ≤ x−12(V, log n) ≤ x12(V, log n) ≤ (log n)2+δ1

}
,

E
(n)
6 :=

{
max{V (blogn + i)− V (blogn), |i| ≤ Γn} < log n

}
,

E
(n)
7 (z) := {|blogn − z| ≤ Γn}. (84)

Finally, let

E
(n)
C (z) := E

(n)
3 ∩ E(n)

4 (z) ∩ E(n)
5 ∩ E(n)

6 ∩ E(n)
7 (z). (85)

Remark 4.2. For ω ∈ E(n)
3 , for every −9 ≤ i ≤ 10, H(Ti−1(V, hn − C1 log2 n)) ≥ log n and

H(Ti(V, hn − C1 log2 n)) ≥ log n, so xi(V, hn − C1 log2 n) is also a left (log n)-extremum. So,
xi(V, log n) = xi(V, hn−C1 log2 n) for every −9 ≤ i ≤ 10, and as a consequence, H[Ti(V, log n)] =
H[Ti(V, hn − C1 log2 n)] for every −9 ≤ i ≤ 9.

The previous events depend only on the environment ω and on z. They are useful for the

coupling argument used in this section. More precisely, we saw in Remark 4.2 that E
(n)
3 ensures

that xi(V, hn − C1 log2 n) = xi(V, log n) for |i| ≤ 9, and as a consequence, there is no subvalley
of height slightly less than log n in the (log n)-central valley (defined after (87)), so (Sk)k is
not trapped a long time in such subvalleys, which helps (Sk)k to go quickly to blogn with large
quenched probability.
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Also, E
(n)
4 (z) is useful to prove a technical lemma, Lemma 4.6. E

(n)
5 says that the |xi(V, log n)|

are quite small, which will often be useful in applying inequalities such as (7), . . . , (11) to prove

that some events are negligible. Finally, E
(n)
6 and E

(n)
7 (z) will imply in particular that z is inside

the (log n)-central valley (see (107)).

We will use, in the proof of Theorem 1.1, left h-extrema of V for three different values of h. In

particular, left (log n)-extrema are useful to define blogn, left h̃n-extrema are useful e.g. to use

E
(n)
3 as explained previously, and the proof of Lemma 5.9 uses left h-extrema with two different

values strictly less than logn, which are hn and h̃n; left hn-extrema are used in Lemma 5.11 (in

view of (164) and Lemma 5.10), whereas left h̃n-extrema are also used in Lemma 5.13 and in
the proof of the lower bound of Theorem 1.1 (see Section 6).

In the rest of the paper, the ni, 3 ≤ i ≤ 19, denote some integers with ni ≤ ni+1 for 3 ≤ i ≤ 18,
which are useful to get the uniformity in Theorem 1.1 (n3 being defined before (83)).

4.3. Definition of the coupling. We fix an integer n ≥ n3, z ∈ Z, and an environment ω ∈
E

(n)
C (z). In all the remaining of Section 4, we set xi := xi(V, log n), i ∈ Z (defined before (19)),

to simplify the notation. Notice that, since ω ∈ E(n)
3 , xi = xi(V, log n) = xi(V, hn − C1 log2 n)

for every −9 ≤ i ≤ 10 by Remark 4.2. We also introduce

b̂(n) := 2bblogn/2c+ 12N+1(n), (86)

which belongs to {blogn − 1, blogn, blogn + 1} and has the same parity as n. We define

M− :=

{
x−1 if blogn ≤ 0,
x0 if blogn > 0,

M+ :=

{
x1 if blogn ≤ 0,
x2 if blogn > 0.

(87)

Since blogn = x0 when blogn ≤ 0 and blogn = x1 when blogn > 0, M− and M+ are the two
left (logn)-maxima surrounding blogn, respectively on its left and on its right. For this reason,
[M−,M+] is called the (log n)-central valley (see Figure 5); also 0 ∈ [M−,M+].

x1 = M+0

V (k)

x−1 = M− x2 = b1 x3 = M1

log n+ C2 log2 n

x0 = blogn ≈ b̂(n)

k

log n+ C2 log2 nblogn + Γn
blogn − Γn

log n

hn

L̂+L̂− z

Figure 5. Schema of the potential V for ω ∈ E(n)
C (z) in the case blogn ≤ 0.

Similarly as in Brox [12] and Andreoletti et al. [3] for diffusions in a random environment, and
as in Devulder et al. [24] and [25] for RWRE, but with some adaptations, we use a coupling
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between S = (Sk)k
(
under P

b̂(n)
ω

)
and a reflected RWRE Ŝ defined below. To this aim, we

define, for fixed n,
(
ω̂x
)
x∈Z as follows:

ω̂M− := 1, ω̂x := ωx if x /∈ {M−,M+}, ω̂M+ := 0.

We can now introduce, for fixed ω and n, a random walk Ŝ :=
(
Ŝk
)
k∈N in the environment

ω̂ :=
(
ω̂x
)
M−≤x≤M+ , starting from y ∈ [M−,M+], and denote its law by P yω̂ . So, Ŝ satisfies (1)

with ω and S replaced respectively by ω̂ and Ŝ. In words, Ŝ is a random walk in the environment
ω, starting from y ∈ [M−,M+], and reflected at M− and M+. We also define the measure µ̂n
on Z by

µ̂n(M−) := e−V (M−), µ̂n(M+) := e−V (M+−1),

µ̂n(x) := e−V (x) + e−V (x−1), M− < x < M+, (88)

and µ̂n(x) := 0 for x /∈ [M−,M+] (where µ̂n(x) denotes µ̂n({x}) for simplicity).

Observe that for fixed n and ω, µ̂n(.)/µ̂n(Z) is an invariant probability measure for Ŝ.

Consequently, similarly as in ([25] eq. (55)), for every fixed n and ω, the measure ν̂n defined by

ν̂(x) := ν̂n(x) :=

{
µ̂n(x)12Z(x)/µ̂n(2Z) if n ∈ (2N),
µ̂n(x)12Z+1(x)/µ̂n(2Z + 1) if n ∈ (2N + 1),

x ∈ Z, (89)

is an invariant probability measure for
(
Ŝ2k

)
k∈N. This means that P ν̂ω̂

(
Ŝ2k = x

)
= ν̂(x) for all

x ∈ Z and k ∈ N, where P ν̂ω̂
(
.
)

:=
∑

y∈Z ν̂(y)P yω̂(.). Observe that ω̂, Ŝ, µ̂n, ν̂n and some other

notation of this subsection defined below, depend on M− and M+ and so on n and ω, but we
often do not write the subscript n in the following to simplify the notation.

We now have all the ingredients to build, for fixed n and ω, our coupling Qω of S and Ŝ as
follows and similarly as in ([25] around eq. (56)):

Qω
(
Ŝ ∈ .

)
= P ν̂ω̂

(
Ŝ ∈ .

)
, Qω

(
S ∈ .

)
= P b̂(n)

ω

(
S ∈ .

)
, (90)

so that under Qω, the two Markov chains Ŝ and S move independently until

τ
Ŝ=S

:= inf
{
` ≥ 0, Ŝ` = S`

}
,

which is their first meeting time, then Ŝk = Sk for all τ
Ŝ=S
≤ k < τexit, where

τexit := inf
{
` > τ

Ŝ=S
, S` /∈ [M−,M+]

}
is the first exit time of S from the central valley [M−,M+] after the meeting time τ

Ŝ=S
, and

then Ŝ and S move independently again after τexit.

4.4. Approximation of the quenched probability measure. The next step is to prove that,

under Qω, Ŝ and S meet quickly, and more precisely that τ
Ŝ=S
≤ n/10 with large probability.

For this purpose, we define, for n ≥ n3, in view of E
(n)
3 ,

L̂− := max{k ≤ blogn, V (k)− V (blogn) ≥ hn}, (91)

L̂+ := min{k ≥ blogn, V (k)− V (blogn) ≥ hn}. (92)

Loosely speaking, L̂− and L̂+ are useful because V
(
L̂±
)
− V (blogn) is approximatively hn and

then is quite lower than log n, so L̂− and L̂+ will be hit quickly by S under Qω (see Lemma 4.3

below), but V
(
L̂±
)
−V (blogn) is also chosen quite large because the invariant measure ν̂ outside

of
[
L̂−, L̂+

]
needs to be small (see Lemma 4.4). We introduce the notation u ∨ v := max(u, v).

We prove the three following lemmas, which are uniform on z since they do not depend on z.
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Lemma 4.3. We have, with τ(.) denoting the hitting times by S as before,

∀n ≥ n3, ∀ω ∈ E(n)
3 ∩ E(n)

5 , Qω
[
τ
(
L̂−
)
∨ τ
(
L̂+
)
> n/10

]
≤ (log n)−3.

Proof: Assume that n ≥ n3 and ω ∈ E(n)
3 ∩E

(n)
5 . Since V (M±)−V (blogn) ≥ log n+C2 log2 n >

hn +C0 ≥ V
(
L̂+
)
− V (blogn) by E

(n)
3 (see also Remark 4.2) and using ellipticity (16), and since

hn > 0 by definition of n3, we have blogn < L̂+ < M+. Moreover,

max
M−≤`≤k≤L̂+,k≥b̂(n)

[V (k)− V (`)] ≤ max
[̂b(n),L̂+]

V − min
[M−,L̂+]

V ≤ V
(
L̂+
)
− V

(
blogn

)
≤ hn + log(ε−1

0 )

by ellipticity, i.e. by (16), and because [M−,M+] is the (log n)-central valley, its bottom be-

ing blogn. Consequently, using (8) and Markov’s inequality since M− < b̂(n) < L̂+ because

V
(
M−

)
> V

(
L̂+
)
≥ V

(
blogn

)
+ hn ≥ V

(
blogn

)
+ 3C0 > V

(
b̂(n)

)
, then

[
M−, L̂+

]
⊂ [x−1, x2[⊂

[−(log n)3, (log n)3[ because ω ∈ E(n)
5 and δ1 ∈]0, 2/3[, this leads to

P b̂(n)
ω

[
τ(M−) ∧ τ

(
L̂+
)
> n/10

]
≤ 10n−1ε−1

0 (2(log n)3)2ε−1
0 ehn

= 40ε−2
0 (log n)6−C1 ≤ (log n)−3/4,

since n ≥ n3 and C1 > 20. Moreover, applying (7), then ω ∈ E(n)
5 and the definition of L̂+ and

finally using V (M±)− V (blogn) ≥ log n+ C2 log2 n on E
(n)
3 as before,

P b̂(n)
ω

[
τ(M−) < τ

(
L̂+
)]
≤

[
L̂+ − b̂(n)

]
exp

[
max

[̂b(n),L̂+−1]
V − V (M−)

]
≤ 2(log n)3 exp

[
V (blogn) + hn − (V (blogn) + log n)

]
≤ 2(log n)3−C1 ≤ (log n)−3/4,

since n ≥ n3 and C1 > 20. As a consequence, using (90),

Qω
[
τ
(
L̂+
)
> n/10

]
= P b̂(n)

ω

[
τ
(
L̂+
)
> n/10

]
≤ P b̂(n)

ω

[
τ(M−) < τ

(
L̂+
)]

+ P b̂(n)
ω

[
τ(M−) ∧ τ

(
L̂+
)
> n/10

]
≤ (log n)−3/2. (93)

We prove similarly that Qω
[
τ
(
L̂−
)
> n/10

]
≤ (log n)−3/2 for all n ≥ n3 and ω ∈ E(n)

3 ∩ E(n)
5 ,

using (9) instead of (8). This, together with (93), proves Lemma 4.3. �

We now prove that the invariant measure outside
]
L̂−, L̂+

[
is small for n ≥ n3.

Lemma 4.4. We have,

∀n ≥ n3, ∀ω ∈ E(n)
3 ∩ E(n)

5 , ν̂
([
M−, L̂−

])
+ ν̂
([
L̂+,M+

])
≤ (log n)−4. (94)

Proof: Let n ≥ n3 and ω ∈ E(n)
3 ∩ E(n)

5 . As explained in Remark 4.2, due to E
(n)
3 , xi(V, hn −

C1 log2 n) = xi(V, log n) = xi for every i ∈ {−1, 0, 1, 2}. So when blogn ≤ 0, there is no left
(hn −C1 log2 n)-extremum in ]x0(V, hn −C1 log2 n), x1(V, hn −C1 log2 n)[=]x0, x1[=]blogn,M

+[.
Similarly, when blogn > 0, there is no left (hn − C1 log2 n)-extremum in ]x1, x2[=]blogn,M

+[.

We first prove that
min

[L̂+,M+]
V ≥ V (blogn) + C1 log2 n. (95)

Assume that min
[L̂+,M+]

V < V (blogn) + C1 log2 n, and let u ∈
[
L̂+,M+

]
be such that V (u) =

min
[L̂+,M+]

V , and y := min{` ∈ [blogn, u], V (`) = max[blogn,u] V }, so y ≥ L̂+. Notice that
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V (y) ≥ V
(
L̂+
)
≥ V (blogn) + hn and V (y) ≥ V (blogn) + hn ≥ V (u)− C1 log2 n+ hn, so y would

be a left (hn − C1 log2 n)-maximum for V . Since blogn < y < u ≤ M+, this contradicts the
remark before (95). So, (95) is true. We prove similarly that

min
[M−,L̂−]

V ≥ V (blogn) + C1 log2 n. (96)

We have by (95) and since ω ∈ E(n)
5 and µ̂n(2Z) = µ̂n(2Z + 1) =

∑M+−1
i=M− e

−V (i) ≥ e−V (blogn),

ν̂
([
L̂+,M+

])
≤

[
M+ − L̂+ + 1

]
max

x∈[L̂+,M+]

(
e−V (x) + e−V (x−1)

)
eV (blogn)

≤ 3(log n)3
(
1 + ε−1

0

)
(log n)−C1 ≤ (log n)−4/2 (97)

since n ≥ n3 and C1 > 20, and where we used −V (x − 1) ≤ −V (x) + log(ε−1
0 ), x ∈ Z by (16).

We prove similarly that ν̂
([
M−, L̂−

])
≤ (log n)−4/2 for all n ≥ n3 and ω ∈ E(n)

3 ∩ E(n)
5 thanks

to (96). This, together with (97) proves (94). �

We can now prove that, with large enough probability, the coupling (i.e. Ŝ = S) occurs quickly,
and lasts at least until time n.

Lemma 4.5. We have,

∀n ≥ n3, ∀ω ∈ E(n)
3 ∩ E(n)

5 , Qω
[
τ
Ŝ=S

> n/10
]
≤ 2(log n)−3, (98)

and

∀n ≥ n3, ∀ω ∈ E(n)
3 , Qω

[
τexit ≤ n

]
≤ (log n)−3. (99)

Proof: Let n ≥ n3, and ω ∈ E(n)
3 ∩ E(n)

5 . We have by Lemma 4.3,

Qω
[
τ
Ŝ=S

> n/10
]

≤ Qω
[
τ
(
L̂−
)
∨ τ
(
L̂+
)
< τ

Ŝ=S

]
+Qω

[
τ
(
L̂−
)
∨ τ
(
L̂+
)
> n/10

]
≤ Qω

[
τ
(
L̂−
)
< τ

Ŝ=S
, Ŝ0 < b̂(n)

]
+Qω

[
τ
(
L̂+
)
< τ

Ŝ=S
, Ŝ0 ≥ b̂(n)

]
+ (log n)−3.

Now, observe that a.s. under Qω, S0 = b̂(n) by (90) and has the same parity as n by (86), and

Ŝ0 also has the same parity as n by (90) and (89). Hence the process
(
Ŝk − Sk

)
k∈N starts at(

Ŝ0 − b̂(n)
)
∈ (2Z), and it only makes jumps belonging to {−2, 0, 2}, so up to time τ

Ŝ=S
− 1 it

is < 0 (resp. > 0) on
{
Ŝ0 < b̂(n)

} (
resp. on

{
Ŝ0 > b̂(n)

})
, and in particular at time τ

(
L̂−
)

on{
τ
(
L̂−
)
< τ

Ŝ=S
, Ŝ0 < b̂(n)

} (
resp. at time τ

(
L̂+
)

on
{
τ
(
L̂+
)
< τ

Ŝ=S
, Ŝ0 > b̂(n)

}
=
{
τ
(
L̂+
)
<

τ
Ŝ=S

, Ŝ0 ≥ b̂(n)
}

; for the last equality, notice that τ
Ŝ=S

= 0 on
{
Ŝ0 = b̂(n)

} )
. So,

Qω
[
τ
Ŝ=S

> n/10
]

≤ Qω
[
τ
(
L̂−
)
< τ

Ŝ=S
, Ŝ

τ(L̂−)
< L̂−

]
+Qω

[
τ
(
L̂+
)
< τ

Ŝ=S
, Ŝ

τ(L̂+)
> L̂+

]
+ (log n)−3

≤ Qω
[
τ
(
L̂−
)
< τ

Ŝ=S
, Ŝ

2bτ(L̂−)/2c ≤ L̂
−]+Qω

[
τ
(
L̂+
)
< τ

Ŝ=S
, Ŝ

2bτ(L̂+)/2c ≥ L̂
+
]

+(log n)−3

≤ ν̂
([
M−, L̂−

])
+ ν̂
([
L̂+,M+

])
+ (log n)−3. (100)

Indeed, the last inequality is a consequence of the fact that Qω
(
Ŝ2k = x

)
= P ν̂ω̂

(
Ŝ2k = x

)
= ν̂(x)

for all x ∈ Z and all (deterministic) k ∈ N (see (90) and the explanations after (89)), and from

the independence of Ŝ with S (and its hitting times τ(.)) up to time τ
Ŝ=S

. Hence, (100) together
with Lemma 4.4 prove (98).
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Finally, (90), followed by (10) and (11) give for every n ≥ n3 and ω ∈ E(n)
3 ,

Qω
[
τexit ≤ n

]
≤ Qω[τ(M−) ∧ τ(M+) ≤ n] = P b̂(n)

ω [τ(M−) ∧ τ(M+) ≤ n]

≤ P b̂(n)
ω [τ(M−) ≤ n] + P b̂(n)

ω [τ(M+) ≤ n]

≤ 2(n+ 1)ε−2
0 exp[−(log n+ C2 log2 n)] ≤ 4ε−2

0 (log n)−C2 ≤ (log n)−3, (101)

since min[M−,blogn] V = min[blogn,M+] V = V (blogn), V (M±) − V (blogn) ≥ log n + C2 log2 n on

E
(n)
3 , |blogn − b̂(n)| ≤ 1, |V (u) − V (u − 1)| ≤ log(ε−1

0 ) for u ∈ Z by (16), log n > 2ε−1
0 since

n ≥ n3 ≥ 3, and C2 > 9. This proves (99). �

Also, the following lemma will be useful to prove Lemma 4.7 (see (110)).

Lemma 4.6. We have,

∀n ≥ n3, ∀z ∈ Z, ∀ω ∈ E(n)
3 ∩E(n)

4 (z)∩E(n)
5 , ν̂n(z)Pω

[
τ (̂b(n)) ≥ n/10

]
≤ (log n)−3. (102)

Proof: Let n ≥ n3, z ∈ Z and ω ∈ E(n)
3 ∩E(n)

4 (z)∩E(n)
5 . We treat separately the three different

cases defining E
(n)
4 (z).

First case: if in addition ω ∈ {V (z)− V (blogn) ≥ 5 log2 n}, we have by ellipticity,

ν̂n(z) ≤
(
e−V (z) + e−V (z−1)

)
eV (blogn) ≤ (1 + ε−1

0 )e−[V (z)−V (blogn)] ≤ 2ε−1
0 (log n)−5 ≤ (log n)−3

since n ≥ n3, which proves (102) in this case.

Second case: if ω ∈ E(n)
− ∩

{
max[blogn,0] V < V (x1) − 9 log2 n

}
, we have blogn = x0 ≤ 0 and

either b̂(n) = 1, or −(log n)3 − 1 ≤ b̂(n) ≤ 0 < x1 < x2 since ω ∈ E(n)
5 and

∣∣̂b(n) − blogn

∣∣ ≤ 1.

We start with this second sub-case b̂(n) ≤ 0. We have by (7),

Pω
[
τ(x2) < τ

(
b̂(n)

)]
≤

(∣∣̂b(n)
∣∣+ 1

)
exp

[
max

[̂b(n),0]
V − V (x1)

]
≤ 2(log n)3 exp

[
− 9 log2 n+ log ε−1

0

]
≤ (log n)−4 (103)

by ellipticity since
∣∣̂b(n)− blogn

∣∣ ≤ 1 and because n ≥ n3 so log n ≥ 2ε−1
0 ≥ 2.

Also, by Lemma 4.1 applied with ξ1 = 2C1 > 19, ξ2 = 1/10, α = 3, a = b̂(n) ≤ 0 < b =

x1 < c = x2, h = log n > ĥ2(2C1, 1/10) because n ≥ n3, and x = 0, since its hypothesis
(i) is satisfied because blogn ≤ 0 and so x1 is a left (log n)-maximum, and there is no left

(h− ξ1 log h) = (hn − C1 log2 n)-extremum in ]x1, x2[ nor in ]x0, x1[ by E
(n)
3 (as explained after

(94) since x0, x1 and x2 are consecutive left (hn−C1 log2 n)-extrema) and so hypotheses (ii) and
(iii) of this lemma are satisfied (e.g. if (ii) was not satisfied, there would be a left (hn−C1 log2 n)-

maximum in ]x1, x2[), and hypothesis (iv) is satisfied with α = 3 thanks to E
(n)
5 and δ1 < 1,

so

∀ω ∈ E(n)
3 ∩E(n)

5 , (blogn ≤ 0 and b̂(n) ≤ 0)⇒ Pω
[
τ
(
b̂(n)

)
∧ τ(x2) ≥ n/10

]
≤ (log n)−4. (104)

This and (103) lead to Pω
[
τ
(
b̂(n)

)
≥ n/10

]
≤ 2(log n)−4 ≤ (log n)−3 for every ω of this second

subcase since n ≥ n3.

We now turn to the other subcase, that is, we assume that b̂(n) = 1. Then, blogn = x0 = 0 since

ω ∈ E(n)
− and

∣∣̂b(n)− blogn

∣∣ ≤ 1. In this subcase we have, using (7), Markov inequality and (8)
in the second inequality,

Pω
[
τ
(
b̂(n)

)
≥ n/10

]
= Pω

[
τ(1) ≥ n/10

]
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≤ Pω
[
τ(x−1) < τ(1)

]
+ Pω

[
τ(x−1) ∧ τ(1) ≥ n/10

]
≤ exp[V (x0)− V (x−1)] + 10n−1ε−1

0 (1− x−1)2 exp[V (0)−min[x−1,0] V ]

≤ n−1 + 40ε−1
0 n−1(log n)6 ≤ (log n)−4 (105)

for every ω of this subcase since n ≥ n3, H[T0(V, log n)] = V (x−1) − V (x0) ≥ log n, |x−1| ≤
(log n)3 since ω ∈ E

(n)
5 and min[x−1,0] V = min[x−1,x0] V = V (x0) = V (0) = 0. So, (102) is

proved in this second case (whenever b̂(n) = 1 or not), since ν̂n(z) ≤ 1, for all n ≥ n3, z ∈ Z
and ω ∈ E(n)

− ∩
{

max[blogn,0] V < V (x1)− 9 log2 n
}
∩ E(n)

3 ∩ E(n)
5 .

Third case: finally, the proof is similar when ω ∈ E(n)
+ ∩

{
max[0,blogn] V < V (x0) − 9 log2 n

}
with x−1 instead of x2 and x1 exchanged with x0, which ends the proof of the lemma. �

We now have all the ingredients to approximate the quenched probability Pω(Sn = z) by the

invariant probability measure ν̂n(z) for ω ∈ E
(n)
C (z) (defined in (85)), uniformly for n ≥ n3

(recall that Pω(Sn = z) and ν̂n(z) are equal to 0 if z and n do not have the same parity by (89)).

Lemma 4.7. We have,

∀n ≥ n3, ∀z ∈ Z, ∀ω ∈ E(n)
C (z),

∣∣Pω(Sn = z)− ν̂n(z)
∣∣ ≤ 5(log n)−3. (106)

Proof: Let n ≥ n3, z ∈ Z and ω ∈ E
(n)
C (z). For u ∈ Z, we define Vu = V +

u and V −u by

Vu(.) := V (u + .) − V (u) and V ±u (.) := V (u ± .) − V (u). Since ω ∈ E(n)
6 , TV ±blogn

(log n) > Γn.

Also, |blogn − z| ≤ Γn because ω ∈ E(n)
7 (z), so (M± being defined in (87)),

z ≤ blogn + Γn < blogn + TV +
blogn

(log n) ≤M+. (107)

Thus z < M+, and similarly, z > M−, and so z ∈]M−,M+[.

Observe that for k ∈ [n/10, n] ∩ (2N),

P b̂(n)
ω [Sk = z] = Qω[Sk = z] ≥ Qω

[
Sk = z, τ

Ŝ=S
≤ n/10 ≤ k ≤ n < τexit

]
= Qω

[
Ŝk = z, τ

Ŝ=S
≤ n/10 ≤ k ≤ n < τexit

]
≥ Qω

[
Ŝk = z

]
−Qω

[
τ
Ŝ=S

> n/10
]
−Qω

[
τexit ≤ n

]
≥ ν̂(z)− 3(log n)−3, (108)

where we used (90) in the first equality, Sk = Ŝk for k ∈
[
τ
Ŝ=S

, τexit

[
in the second one, and

Qω
[
Ŝk = x

]
= P ν̂ω̂

[
Ŝk = x

]
= ν̂(x) for all x ∈ Z since k is even (see (90) and the remark after

(89)), and Lemma 4.5 in the last line since n ≥ n3 and ω ∈ E(n)
C (z).

Similarly, for every k ∈ [n/10, n] ∩ (2N),

P b̂(n)
ω [Sk = z] ≤Qω

[
Sk = z, τ

Ŝ=S
≤ n/10, τexit > n

]
+Qω

[
τ
Ŝ=S

> n/10
]

+Qω
[
τexit ≤ n

]
≤Qω

[
Ŝk = z

]
+ 3(log n)−3 = ν̂(z) + 3(log n)−3. (109)

We have, applying the strong Markov property in the second line,

Pω[Sn = z] ≥ Pω
[
Sn = z, τ

(
b̂(n)

)
< n/10

]
= Eω

[
1{τ (̂b(n))<n/10}P

b̂(n)
ω [Sk = z]|k=n−τ (̂b(n))

]
≥ Eω

[
1{τ (̂b(n))<n/10}

(
ν̂(z)− 3(log n)−3

)]
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≥ ν̂(z)− ν̂(z)Pω
[
τ (̂b(n)) ≥ n/10

]
− 3(log n)−3

≥ ν̂(z)− 4(log n)−3 (110)

where we used (108) in the second inequality since
(
n − τ

(
b̂(n)

))
∈ [9n/10, n] ∩ (2N) because

b̂(n), and then τ
(
b̂(n)

)
, has the same parity as n by (86), and Lemma 4.6 in the last inequality,

since n ≥ n3 and ω ∈ E(n)
C .

Similarly, using (109) instead of (108), we get

Pω
[
Sn = z, τ

(
b̂(n)

)
< n/10

]
≤ Eω

[
1{τ (̂b(n))<n/10}

(
ν̂(z) + 3(log n)−3

)]
≤ ν̂(z) + 3(log n)−3. (111)

We now assume that blogn ≤ 0, and so blogn = x0 and M+ = x1. Also, we have once more

Pω
[
τ
(
b̂(n)

)
∧ τ(x2) ≥ n/10

]
≤ (log n)−4. (112)

Indeed this is proved in (104) when b̂(n) 6= 1 since n ≥ n3, whereas when b̂(n) = 1, the left hand

side of (112) is equal to Pω
[
τ
(
b̂(n)

)
≥ n/10

]
, which is ≤ (log n)−4 by (105) since b̂(n) = 1 < x2

in this case.

Moreover for 0 ≤ k ≤ n, using z < M+ = x1 < x2 (see (107)), we have by (11) and ellipticity
(16), and since V (x1) − min[x1,x2] V = H[T1(V, log n)] = H[T1(V, hn − C1 log2 n)] ≥ log n +

C2 log2 n because ω ∈ E(n)
3 (see also Remark 4.2),

P x2ω (Sk = z) ≤ P x2ω [τ(x1) < k] ≤ n exp[−H(T1[V, log n)] + log ε−1
0 ]

≤ ε−1
0 (log n)−C2 ≤ (log n)−3

since C2 > 9 and log n > ε−1
0 because n ≥ n3. Hence by the strong Markov property,

Pω
[
Sn = z, τ(x2) < n/10

]
= Eω

[
1{τ(x2)<n/10}P

x2
ω (Sk = z)|k=n−τ(x2)

]
≤ (log n)−3. (113)

Finally, (111), (112) and (113) give

Pω(Sn = z) ≤ Pω
[
τ
(
b̂(n)

)
∧ τ(x2) ≥ n/10

]
+ Pω

[
Sn = z, τ

(
b̂(n)

)
< n/10

]
+Pω

[
Sn = z, τ(x2) < n/10

]
(114)

≤ ν̂(z) + 5(log n)−3. (115)

We prove similarly this inequality Pω(Sn = z) ≤ ν̂(z) + 5(log n)−3 by symmetry when blogn > 0,
exchanging x0 and x1 and replacing x2 by x−1 in (112) and (113) since z > M− = x0 > x−1 in
this case, and using (10) instead of (11).

Combining this with (115) and (110) proves (106). �

4.5. Upper bound of the annealed probability: main contribution. The aim of this
subsection is to give an upper bound of the annealed probability of {Sn = z} on the event for

which we used the coupling, that is, on E
(n)
C (z). More precisely, we prove the following estimate.

Proposition 4.8. We have, under the hypotheses of Theorem 1.1, as n→ +∞,

sup
z∈(2Z+n)

[
P
(
Sn = z, E

(n)
C (z)

)
− 2σ2

(log n)2
ϕ∞

(
σ2z

(log n)2

)]
≤ o
(
(log n)−2

)
. (116)
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The strategy of the proof is to use Lemma 4.7 to dominate P
(
Sn = z, E

(n)
C (z)

)
by some quantity

expressed in terms of left (log n)-slopes Ti(V, log n) for −1 ≤ i ≤ 1 (see e.g. (121), (122), (124)

and (125)), then use our Theorems 2.4 and 2.5 to obtain an expression with T ↑V,logn and T ↓V,logn,

then Lemma 2.6 to make appear the quantity P
(
blogn = z+

n

)
for some z+

n ≈ z, which, in turn,
can be approximated by the expression with ϕ∞ in (116) thanks to Theorem 1.4.

Proof: We assume that the hypotheses of Theorem 1.1 are satisfied. Let n ≥ n3 and z ∈ (2Z+n).

Using Lemma 4.7 in the last line, E
(n)
C (z) being defined in (85), we have

P
(
Sn = z, E

(n)
C (z)

)
=

Γn∑
k=−Γn

E
[
1
E

(n)
C (z)∩{blogn=z+k}Pω(Sn = z)

]
= f1(n, z) +

Γn∑
k=−Γn

J0(k, n, z), (117)

where |f1(n, z)| ≤ 5(log n)−3 and (writing E
(n)
i (z) instead of E

(n)
i even for i 6= 3 for simplicity),

J0(k, n, z) := E
[
1
E

(n)
C (z)∩{blogn=z+k}ν̂n(z)

]
= E

[
1∩6i=3E

(n)
i (z)∩{blogn=z+k}ν̂n(z)

]
. (118)

Notice that, using (107) and in the remark below, we have if ω ∈ E(n)
C (z)∩ {blogn = z+ k} with

|k| ≤ Γn (M± being defined in (87)),

M− < z = blogn − k < M+. (119)

Hence, we have on E
(n)
C (z) ∩ {blogn = z + k} with |k| ≤ Γn, using the definitions of ν̂n and µ̂n

(see (89) and (88)),

ν̂n(z) =
µ̂n(z)

µ̂n(2Z + 12N+1(n))
=

µ̂n(blogn − k)∑M+−1
i=M− e

−V (i)
=
e−V (blogn−k) + e−V (blogn−k−1)∑M+−1

i=M− e
−V (i)

since z and n have the same parity, and µ̂n(2Z) = µ̂n(2Z + 1) =
∑M+−1

i=M− e
−V (i), and where we

used the definition (88) of µ̂n on ]M−,M+[ and (119) in the last equality.

Now, we define for j ∈ {0, 1},

J±2 (k, n, z, j) := E

[
1
E

(n)
± ∩{blogn=z+k}∩E(n)

6

e−V (blogn−k−j)∑M+−1
i=M− e

−V (i)

]
. (120)

Notice that for k ∈ Z such that |k| ≤ Γn, if k ≤ −z then {blogn = z + k} ⊂ {blogn ≤ 0} = E
(n)
− ,

so J0(k, n, z) ≤ J−2 (k, n, z, 0)+J−2 (k, n, z, 1), whereas if k > −z, then {blogn = z+k} ⊂ {blogn >

0} = E
(n)
+ , so J0(k, n, z) ≤ J+

2 (k, n, z, 0) + J+
2 (k, n, z, 1). So we have, thanks to (117),

P
(
Sn = z, E

(n)
C (z)

)
≤ J3(n, z, 0) + J3(n, z, 1) + 5(log n)−3, (121)

where for j ∈ {0, 1},

J3(n, z, j) :=

Γn∑
k=−Γn

[
J−2 (k, n, z, j)1{k+z≤0} + J+

2 (k, n, z, j)1{k+z>0}

]
. (122)

We first consider k ≤ −z, with |k| ≤ Γn. Hence on {blogn = z + k}, we have blogn ≤ 0, so

ω ∈ E
(n)
− , thus M− = x−1, blogn = x0 and M+ = x1 (recall that xi = xi(V, log n), i ∈ Z
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in this section). So for j ∈ {0, 1}, recalling that for u ∈ Z, Vu(.) := V (u + .) − V (u), and
V −u (.) := V (u− .)− V (u), we have

J−2 (k, n, z, j) = E

[
1
E

(n)
− ∩{x0=z+k}∩E(n)

6

e−V (x0−k−j)∑x1−1
i=x−1

e−V (i)

]

= E

[
1{

Vx0 (x1−x0)≥logn, TVx0
(logn)>Γn, TV−x0

(logn)>Γn
} e−Vx0 (−k−j)1{x0=z+k}∑x1−x0−1

i=x−1−x0 e
−Vx0 (i)

]
. (123)

Notice that (Vx0(i), 0 ≤ i ≤ x1 − x0) = θ(T0(V, log n)) and that (V −x0(i), 0 ≤ i ≤ x0 − x−1) =
(V (x0 − i) − V (x0), 0 ≤ i ≤ x0 − x−1) = (Vx−1(x0 − x−1 − i) − Vx−1(x0 − x−1), 0 ≤ i ≤
x0 − x−1) = ζ[θ(T−1(V, log n))], with ζ defined in (24). Also, on the event in (123), |k| ≤ Γn
implies that −k − j ≤ Γn + 1 ≤ TVx0 (log n) ≤ x1 − x0 = `[θ(T0(V, log n))], and similarly

k+ j ≤ x0− x−1 = `[ζ(θ(T−1(V, log n)))]. Hence, with the following notation for slopes v and t,

ϕv(t) := 1{t(`(t))≥logn, Tt(logn)∧Tv(logn)>Γn}
e−t(−k−j)1{k+j≤0} + e−v(k+j)1{k+j>0}∑`(v)

i=1 e
−v(i) +

∑`(t)−1
i=0 e−t(i)

, (124)

in which we do not write the dependency on n, k, j to simplify the notations, we have for our
fixed n, k and j since |k| ≤ Γn,

J−2 (k, n, z, j) = E
[
ϕζ[θ(T−1(V,logn))][θ(T0(V, log n))]1{x0=z+k}

]
. (125)

In the rest of this section, all the slopes considered, such as T ↑V,h, T ↓V,h, T ↑∗V−,h, etc, are with

h = log n, and we remove this subscript h to simplify the notation. That is, T ↑V denotes T ↑V,logn,

T ↓V denotes T ↓V,logn, etc. Due to Theorem 2.4 (i), conditionally on E
(n)
− , ζ[θ(T−1(V, log n))] is

independent of (θ[T0(V, log n)], x0) and has the same law as ζ(T ↓V ) (under P) and so as T ↑∗V− by

Proposition 2.12. Hence, we get, since ϕv[θ(T0(V, log n))]1
E

(n)
+

= 0 for any v,

J−2 (k, n, z, j) = E
[
E
(
ϕv[θ(T0(V, log n))]1{x0=z+k}

)
|v=T ↑∗V−

]
.

Thus, applying the (renewal) Theorem 2.5 eq. (29) with h = log n, ϕ = ϕv, ∆0 = {z + k},
∆1 = Z (notice that ϕv(t) = 0 if t is a downward slope whereas 1{t(`(t))≥logn} = 1 when t is an

upward (log n)-slope), we get, T ↑V and T ↑∗V− being here independent,

J−2 (k, n, z, j) = E

[E(]{0 ≤ i < `
(
T ↑V
)
, −i = z + k}ϕv

(
T ↑V
))
|v=T ↑∗V−

E
[
`
(
T ↑V
)

+ `
(
T ↓V
)] ]

= E

(
1{

T
T ↑
V

(logn)∧T
T ↑∗
V−

(logn)>Γn
}

e−T
↑
V (−(k+j))1{k+j≤0} + e

−T ↑∗V− (k+j)
1{k+j>0}∑`(T ↑∗V− )

i=1 e
−T ↑∗V− (i)

+
∑`(T ↑V )−1

i=0 e−T
↑
V (i)

1{−z−k<`(T ↑V )}

E
[
`
(
T ↑V
)

+ `
(
T ↓V
)]), (126)

where we used ]{0 ≤ i < `
(
T ↑V
)
, −i = z + k} = 1{−z−k<`(T ↑V )} when z + k ≤ 0.

We now assume that k > −z, with |k| ≤ Γn. We have blogn > 0 on {blogn = z + k}, and so

ω ∈ E(n)
+ , thus blogn = x1, M− = x0 and M+ = x2. So by (120), for j ∈ {0, 1},

J+
2 (k, n, z, j) = E

[
1{

Vx1 (x0−x1)≥logn, x1=z+k, TVx1
(logn)∧T

V−x1
(logn)>Γn

} e−Vx1 (−k−j)∑x2−x1−1
i=x0−x1 e

−Vx1 (i)

]
.
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Notice that (Vx1(i), 0 ≤ i ≤ x2 − x1) = θ(T1(V, log n)) and that (Vx1(−i), 0 ≤ i ≤ x1 − x0) =
(V (x1 − i)− V (x1), 0 ≤ i ≤ x1 − x0) = ζ[θ(T0(V, log n))]. Hence, with

ϕ+
v (t) := 1{t(`(t))≥logn, Tt(logn)∧Tv(logn)>Γn}

e−v(−k−j)1{k+j≤0} + e−t(k+j)1{k+j>0}∑`(t)
i=1 e

−t(i) +
∑`(v)−1

i=0 e−v(i)
,

in which we do not write the dependency on n, k, j to simplify the notations, we have

J+
2 (k, n, z, j) = E

[
ϕ+
θ[T1(V,logn)][ζ(θ(T0(V, log n)))]1{x1=z+k}

]
.

Since due to Theorem 2.4 (ii), conditionally on E
(n)
+ , θ(T1(V, log n)) has the law L

(
T ↑V
)
, and is

independent of (θ(T0(V, log n)), x1), we have,

J+
2 (k, n, z, j) = E

[
E
(
ϕ+
v [ζ(θ(T0(V, log n)))]1{x1=z+k}

)
|v=T ↑V

]
,

since ϕ+
v [ζ(θ(T0(V, log n)))]1

E
(n)
−

= 0 for any v. Thus, applying the (renewal) Theorem 2.5 with

h = log n, ϕ = ϕ+
v ◦ ζ, ∆0 = Z, ∆1 = {z + k} (we use once more that ϕ+

v ◦ ζ(t) = 0 when t is a
(translated) upward slope, since in this case ζ(t) is a downward slope), we get

J+
2 (k, n, z, j) = E

[
E
(
]{0 ≤ i < `

(
T ↓V
)
, `
(
T ↓V
)
− i = z + k}ϕ+

v ◦ ζ
(
T ↓V
))
|v=T ↑V

E
[
`
(
T ↑V
)

+ `
(
T ↓V
)] ]

.

Recall that, by Proposition 2.12 (ii), ζ(T ↓V ) =law T ↑∗V− . Hence, T ↑V and T ↑∗V− being independent,

and using `
(
T ↓V
)

= `
(
ζ
(
T ↓V
))

, we get

J+
2 (k, n, z, j) = E

(
1{

T
T ↑∗
V−

(logn)>Γn
}1{

T
T ↑
V

(logn)>Γn
}

e−T
↑
V (−(k+j))1{k+j≤0} + e

−T ↑∗V− (k+j)
1{k+j>0}∑`(T ↑∗V− )

i=1 e
−T ↑∗V− (i)

+
∑`(T ↑V )−1

i=0 e−T
↑
V (i)

1{z+k≤`(T ↑∗V− )}

E
[
`
(
T ↑V
)

+ `
(
T ↓V
)]), (127)

where we used ]{0 ≤ i < `
(
T ↓V
)
, `
(
T ↓V
)
− i = z+k} = 1{z+k≤`(T ↓V )} which becomes 1{z+k≤`(T ↑∗V− )}

since z + k > 0 and 1{t(`(t))≥logn} = 1 for t = ζ
(
T ↓V
)
. Notice that the only difference between

this formula and (126) is that 1{−z−k<`(T ↑V )} is replaced by 1{z+k≤`(T ↑∗V− )}.

We now define

z+
n :=

 z + Γn if z ≤ −Γn,
0 if − Γn < z ≤ Γn,
z − Γn if z > Γn,

ψk
(
T ↑V , T

↑∗
V−
, z
)

:=


1{−z−k<`(T ↑V )} if z ≤ −Γn,

1{0<`(T ↑V )} if − Γn < z ≤ Γn,

1{z+k≤`(T ↑∗V− )} if z > Γn.

Notice that in the case z ≤ −Γn, we have z + k ≤ 0 for every k in the sum in (122), so, using
(126), we have for each j ∈ {0, 1} (the inequality being an equality in this first case z ≤ −Γn),

J3(n, z, j) ≤ E

(
1{

T
T ↑
V

(logn)>Γn
}1{

T
T ↑
∗

V−
(logn)>Γn

}
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∑Γn
k=−Γn

(
e−T

↑
V (−(k+j))1{k+j≤0} + e

−T ↑∗V− (k+j)
1{k+j>0}

)
ψk
(
T ↑V , T

↑∗
V−
, z
)

(∑`(T ↑V )−1
i=0 e−T

↑
V (i) +

∑`(T ↑∗V− )

i=1 e
−T ↑∗V− (i)

)
E
[
`
(
T ↑V
)

+ `
(
T ↓V
)]

)
. (128)

When z > Γn, we have z+k > 0 for every k in the sum in (122). So, combining (122) and (127),
inequality (128) remains true in this case (and is actually an equality in this second case).

Finally, assume that −Γn < z ≤ Γn. In this case, notice that the quantity 1{−z−k<`(T ↑V )} which

appears in (126) for k+z ≤ 0, and the quantity 1{z+k≤`(T ↑∗V− )} which appears in (127) for k+z > 0

are both dominated by 1 = 1{0<`(T ↑V )} = ψk
(
T ↑V , T

↑∗
V−
, z
)
P-a.s., so J−2 (k, n, z, j) and J+

2 (k, n, z, j)

are dominated by the same formula. So for j ∈ {0, 1}, (128) also remains true in this case. So,
(128) holds for every z ∈ Z and every j ∈ {0, 1}.

Now, we notice that for every −Γn ≤ k ≤ Γn, we have ψk
(
T ↑V , T

↑∗
V−
, z
)

= 1{−z−k<`(T ↑V )} ≤

1{−z−Γn<`(T ↑V )} = 1{−z+n<`(T ↑V )} when z ≤ −Γn, also ψk
(
T ↑V , T

↑∗
V−
, z
)

= 1{−z+n<`(T ↑V )} when −Γn <

z ≤ Γn, whereas ψk
(
T ↑V , T

↑∗
V−
, z
)

= 1{z+k≤`(T ↑∗V− )} ≤ 1{z−Γn≤`(T ↑∗V− )} = 1{z+n≤`(T ↑∗V− )} when z > Γn.

Hence, (128) leads to, for every j ∈ {0, 1}, n ≥ n3 and z ∈ (2Z + n), as explained below,

J3(n, z, j) ≤
P
[
− z+

n < `
(
T ↑V
)]

E
[
`
(
T ↑V
)

+ `
(
T ↓V
)]1{z≤Γn} +

P
[
z+
n ≤ `(T

↑∗
V−

)
]

E
[
`
(
T ↑V
)

+ `
(
T ↓V
)]1{z>Γn} = P

(
blogn = z+

n

)
. (129)

Indeed, we first used Γn + 1 ≤ TT ↑V
(log n) ≤ `(T ↑V ) and similarly Γn + 1 ≤ `(T ↑∗V−), so that∑Γn

k=−Γn
(· · · + . . . ) ≤

(∑`(T ↑V )−1
i=0 · · · +

∑`(T ↑∗V− )

i=1 . . .
)

in (128) to get the (first) inequality. Then,

to get the following equality, we used eq. (44) of Lemma 2.6 when z ≤ Γn, and `
(
T ↑∗V−

)
=law

`
(
ζ
(
T ↓V
))

= `
(
T ↓V
)

by Proposition 2.12 (ii) and eq. (43) of Lemma 2.6 when z > Γn.

Now, let ε > 0. By Theorem 1.4, there exists n4 ≥ n3 such that, for every j ∈ {0, 1}, n ≥ n4

and z ∈ (2Z + n),

J3(n, z, j) ≤ P
(
blogn = z+

n

)
≤ σ2

(log n)2
ϕ∞

(
σ2z+

n

(log n)2

)
+ ε(log n)−2.

Now, recall that ϕ∞ is uniformly continuous on R since ϕ∞ is continuous on R and lim±∞ ϕ∞ =
0. Also, supz∈Z |σ2z+

n (log n)−2 − σ2z(log n)−2| → 0 as n → +∞ because δ1 < 2/3. Thus, there
exists n5 ≥ n4 such that for all n ≥ n5, supz∈Z |ϕ∞(σ2z+

n (log n)−2)−ϕ∞(σ2z(log n)−2)| ≤ σ−2ε.
Hence,

∀n ≥ n5, ∀z ∈ (2Z + n),∀j ∈ {0, 1}, J3(n, z, j) ≤ σ2

(log n)2
ϕ∞

(
σ2z

(log n)2

)
+

2ε

(log n)2
. (130)

Finally, (121) and (130) lead to, for all n ≥ n5,

∀z ∈ (2Z + n), P
(
Sn = z, E

(n)
C (z)

)
≤ 2σ2

(log n)2
ϕ∞

(
σ2z

(log n)2

)
+

4ε

(log n)2
+

5

(log n)3
.

This gives (116), which proves the proposition. �

5. Proving that some environments or trajectories are negligible

The aim of this section is to prove that supz∈Z P
(
Sn = z,

(
E

(n)
C (z)

)c)
is negligible compared

to (log n)−2 as n → +∞ (recall E
(n)
C (z) from (85)). To this aim we give upper bounds of the
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probabilities of different events, most of them depending both on the environment and on the
walk, except the event considered in Lemma 5.1.

5.1. Contribution of
(
E

(n)
4 (z)

)c
. As a warm up, we start with following estimate.

Lemma 5.1. There exists c9 > 0 such that

∀n ≥ n5, ∀z ∈ Z, P
[(
E

(n)
4 (z)

)c ∩ E(n)
3 ∩ E(n)

6 ∩ E(n)
7 (z)

]
≤ c9(log2 n)3(log n)−3.

Proof: Let n ≥ n5 and z ∈ Z. We introduce

E
(n)
8 (z) :=

(
E

(n)
4 (z)

)c ∩ E(n)
3 ∩ E(n)

6 ∩ E(n)
7 (z), E

(n)
8,±(z) := E

(n)
± ∩ E

(n)
8 (z).

We first assume that ω ∈ E
(n)
8,−(z) (see Figure 6). Hence, ω ∈ E

(n)
− ∩

(
E

(n)
4 (z)

)c
, so blogn =

x0(V, log n),

V (z)− V (blogn) < 5 log2 n (131)

and

max
[blogn,0]

V ≥ V [x1(V, log n)]− 9 log2 n = V (blogn) +H[T0(V, log n)]− 9 log2 n

≥ V (blogn) + log n+ (C2 − 9) log2 n > V (blogn) + log n, (132)

since H[T0(V, log n)] = H[T0(V, hn − C1 log2 n)] ≥ log n + C2 log2 n by Remark 4.2 because

ω ∈ E(n)
3 , and where we used C2 > 9.

0

V (k)

k

x2blogn

≥ logn+ C2 log2 n

≥ logn+ C2 log2 n

z

< 5 log2 n

9 log2 n

x1

log n− 5 log2 n

log n

z + TV +
z
(log n− 5 log2 n)

blogn + TV +
blog n

(log n)

blogn + Γn

log n

TV↑y (− log n)

10 log2 n

TV↑y (10 log2 n)

argmax[z,0]V TV (y)

y

Figure 6. Schema of the potential V on ω ∈ E
(n)
8,−(z), with xi = xi(V, log n) and

y = max[z,0] V .

Also, ω ∈ E(n)
6 ∩ E(n)

7 (z), so as in (107), using (132) in the last inequality,

blogn − TV −blogn
(log n) < z < blogn + TV +

blogn

(log n) ≤ 0, (133)

where for x ∈ Z, V ±x (k) = V (x± k)− V (x), k ∈ N, as before. This and (132) also lead to

max
[z,0]

V = max
[blogn,0]

V ≥ V [x1(V, log n)]− 9 log2 n. (134)
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We now introduce, for y ≥ 0, V↑y(k) := V [k + TV (y)]− V [TV (y)], k ∈ N, and

E
(n)
9,±(z) :=

{
TV ±z (log n− 5 log2 n) < TV ±z (−5 log2 n)

}
,

E
(n)
10 (y) :=

{
TV↑y(− log n) < TV↑y(10 log2 n)

}
,

where log n − 5 log2 n > hn > 0 since n ≥ n5 ≥ n3 and C1 > 20. Due to (131) and (133) and

since blogn is a left (log n)-minimum, we have ω ∈ E(n)
9,−(z) ∩ E(n)

9,+(z).

Also, notice that, using (134), V [x1(V, log n)] = max[0,x2(V,logn)] V = max[blogn,x2(V,logn)] V ≥
max[blogn,0] V = max[z,0] V and H[T1(V, log n)] = H[T1(V, hn − C1 log2 n)] ≥ log n + C2 log2 n

with C2 > 9 (by Remark 4.2 since ω ∈ E(n)
3 ). So, after hitting

[
max[z,0] V,+∞

[
, the potential

(V (u), u ≥ 0) cannot take values larger than V [x1(V, log n)] ≤ max[z,0] V + 9 log2 n (see (134))
before going (down) to x2(V, log n) with V [x2(V, log n)] = V [x1(V, log n)] − H[T1(V, log n)] ≤
V [x1(V, log n)] − log n − C2 log2 n ≤ max[z,0] V − log n by (134) and since C2 > 9. Hence,

ω ∈ E(n)
10

(
max[z,0] V

)
.

Finally, z + TV +
z

(log n− 5 log2 n) ≤ blogn + TV +
blogn

(log n) ≤ 0 by (131) and (133), and E
(n)
9,−(z)∩

E
(n)
9,+(z) ∩ {z + TV +

z
(log n − 5 log2 n) ≤ 0} depend only on V − = (V (k), k ≤ 0). Hence, condi-

tioning by V − to get the third line, using (17) for the forth, the independence of V −z and V +
z

and C0 < log2 n since n ≥ n5 ≥ n3 for the fifth, and once more (17) for the sixth, we get for
every n ≥ n5 and z ∈ Z,

P
[
E

(n)
8,−(z)

]
≤ P

[
E

(n)
9,−(z) ∩ E(n)

9,+(z) ∩
{
z + TV +

z
(log n− 5 log2 n) ≤ 0

}
∩ E(n)

10

(
max[z,0] V

)]
= E

[
1
E

(n)
9,−(z)∩E(n)

9,+(z)∩{z+T
V+
z

(logn−5 log2 n)≤0}P
(
E

(n)
10

(
max[z,0] V

)
|V −

)]
≤ E

[
1
E

(n)
9,−(z)∩E(n)

9,+(z)
(10 log2 n+ C0)(log n+ 10 log2 n+ C0)−1

]
≤ P

[
E

(n)
9,−(z)

]
P
[
E

(n)
9,+(z)

]
(11 log2 n)(log n)−1

≤ (6 log2 n)2(11 log2 n)(log n)−3. (135)

We show similarly that P
[
E

(n)
8,+(z)

]
≤ 396(log2 n)3(log n)−3 for every n ≥ n5 and z ∈ Z. This,

combined with (135), ends the proof of the lemma. �

5.2. Case when blogn is far from z without subvalleys or small valleys. In this subsection,
we prove that the event constituted by environments and trajectories such that blogn is far from

z and Sn = z while E
(n)
3 ∩ E(n)

5 holds is negligible. More precisely, we prove the following
proposition.

Proposition 5.2. There exist c10 > 0 and n6 ≥ n5 such that, for all n ≥ n6,

∀z ∈ Z, P
(
Sn = z, |z − blogn| > Γn, E

(n)
3 , E

(n)
5

)
≤ c10(log n)−2−δ1/2. (136)

Before giving a complete proof, we first introduce the different cases considered.

Organisation of the proof: We consider separately the case τ(blogn) ≤ n (see Lemma 5.3) and
the case τ(blogn) > n (see Lemmas 5.4, 5.5 and 5.6) since in this second case, we prove (see (150))

that with large enough probability, τ [x2(V, log n)] ≤ n on E
(n)
− and similarly τ [x−1(V, log n)] ≤ n

on E
(n)
+ . So in the first case τ(blogn) ≤ n, S goes before time n to the bottom blogn of the central
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valley of height at least log n, whereas in the second case τ(blogn) > n, S goes before time n to
the bottom of a neighbour valley of height at least log n with large probability. Figure 7 gives
the schema of a potential for which S can go before time n, with relatively comparable quenched
probability, to each of the bottoms of the two valleys ”surrounding” the origin, x0(V, log n) and
x2(V, log n) in this figure.

5.2.1. Case when τ(blogn) ≤ n. In this subsection, we consider the case τ(blogn) ≤ n of Propo-
sition 5.2, since for this case we can use an inequality coming from the reversibility of S. More
precisely, we prove the following lemma.

Lemma 5.3. There exists c11 > 0 and n6 ≥ n5 such that for all n ≥ n6,

∀z ∈ Z, P
(
Sn = z, |blogn − z| > Γn, τ(blogn) ≤ n,E(n)

3 , E
(n)
5

)
≤ c11(log n)−2−δ1/2. (137)

Proof: In this proof, T ↑V and T ↓V denote respectively T ↑V,logn and T ↓V,logn. By Lemma 2.15 applied

with h = log n, there exists n6 ≥ n5 such that for all n ≥ n6, E
[
`
(
T ↑V
)

+ `
(
T ↓V
)]
≥ c7(log n)2.

Let n ≥ n6 and z ∈ Z. We separate the proof into different cases, first when z /∈ [M−,M+],

then when z ∈ [M−,M+] −
]
L̂−, L̂+

[
and finally when z ∈

]
L̂−, L̂+

[
, this last case being cut

into four subcases, depending on the signs of blogn and of z − blogn.

First step: we have, conditioning by ω and applying the strong Markov property at stopping
time τ(log n), recalling M± from (87) (with xi = xi(V, log n), see Figure 5),

P
(
Sn = z, |blogn − z| > Γn, τ(blogn) ≤ n,E(n)

3 , E
(n)
5 , z /∈ [M−,M+]

)
≤ E

(
1
E

(n)
3

1{τ(blogn)≤n}P
blogn
ω (Sk /∈ [M−,M+])|k=n−τ(blogn))

)
≤ E

[
1
E

(n)
3

P
blogn
ω [τ(M−) ∧ τ(M+) ≤ n]

]
≤ (log n)−3, (138)

where we used (101), which is still valid on E
(n)
3 for n ≥ n3 with b̂(n) replaced by blogn, recalling

that n6 ≥ n3.

Second step: By reversibility (see (13)), we have for all y ∈ Z, k ∈ N and a.s. every environment
ω,

P
blogn
ω (Sk = y) = P yω(Sk = blogn)

µω(y)

µω(blogn)
≤ e−V (y) + e−V (y−1)

e−V (blogn) + e−V (blogn−1)
≤ c12e

−[V (y)−V (blogn)]

with c12 := (1 + ε−1
0 ) by ellipticity. Hence, recalling M± from (87) and L̂± from (91) and (92),

conditioning by ω and applying the strong Markov property at time τ(blogn),

P
(
Sn = z, |blogn − z| > Γn, τ(blogn) ≤ n,E(n)

3 , E
(n)
5 , z ∈ [M−,M+]

)
= E

[
1{|blogn−z|>Γn}1{τ(blogn)≤n}1E(n)

3 ∩E
(n)
5

1{z∈[M−,M+]}P
blogn
ω [Sk = z]|k=n−τ(blogn)

]
≤ E

[
1{|blogn−z|>Γn}1E(n)

3 ∩E
(n)
5

1{z∈[M−,M+]}c12e
−[V (z)−V (blogn)]

]
. (139)

We cut the expectation in (139) into several parts. We first notice that since n ≥ n6 ≥ n3,

E
[
1{z∈[M−,L̂−]∪[L̂+,M+]}1E(n)

3 ∩E
(n)
5

c12e
−[V (z)−V (blogn)]

]
≤ c12(log n)−C1 ≤ (log n)−3 (140)

by (95) and (96), and since C1 > 20 and log n > 2ε−1
0 because n ≥ n6 ≥ n3.

Third step: Hence, there only remains to treat the case z ∈]L̂−, L̂+[, which we divide into 4
subcases, depending on the signs of z and z − blogn. In this step, we write Ti := θ(Ti(V, log n))
for −1 ≤ i ≤ 1 to simplify the notation. First, we have, using TT1(hn) ≤ TT1(log n) and the
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fact that {z − blogn > Γn, blogn > 0} depends only on blogn and so is measurable with respect

to σ(T0, x0(V, log n)) in the first inequality, using the law T ↑V of T1 and its independence with
(T0, x0(V, log n)) conditionally on {blogn > 0} (i.e. on T0(V, log n) being downward) by Theorem

2.4 (ii) in the first equality, then the law of T ↑V (T ↑V,h with h = log n) by Theorem 2.3 with

Ξlogn = {TV (log n) < TV (R∗−)} as defined in (230) in the second inequality, then Proposition
7.3 in the third one since Γn ≥ p4 because n ≥ n6 ≥ n3 and n3 ≥ exp(p5), we get

E
[
1{z>blogn+Γn}1{blogn>0}1{z∈]L̂−,L̂+[}1E(n)

3 ∩E
(n)
5

e−[V (z)−V (blogn)]
]

≤ E
[
1{z−blogn>Γn}1{blogn>0}E

[
1{yn<TT1 (logn)}e

−T1(yn)
∣∣σ(T0, x0(V, log n))

]
yn=z−blogn

]
= E

[
1{z−blogn>Γn}1{blogn>0}E

[
1{yn<TT ↑

V

(logn)}e
−T ↑V (yn)

]
yn=z−blogn

]
≤ E

[
1{z−blogn>Γn}E

[
1{yn<TV (logn)}e

−V (yn)|Ξlogn

]
yn=z−blogn

]
≤ E

[
1{z−blogn>(logn)4/3+δ1}c13(z − blogn)−3/2

]
≤ c13(log n)−2−3δ1/2. (141)

Also, using x0(V, log n) = blogn < z < L̂+ = x0(V, log n) +TT0(hn) with hn ≤ log n (on the event

of the second line below) and E
(n)
5 in the first inequality, we have

E
[
1{z>blogn+Γn}1{blogn≤0}1{z∈]L̂−,L̂+[}1E(n)

3 ∩E
(n)
5

e−[V (z)−V (blogn)]
]

(142)

=
∑
y≤0

E
[
1{z>y+Γn}1{blogn=y}1{z∈]L̂−,L̂+[}1E(n)

3 ∩E
(n)
5

e−[V (z)−V (y)]
]

≤
∑
y≤0

1{z−y>Γn}E
[
1{blogn=y}1{z−y<TT0 (logn)}1{`(T0)≤2(logn)2+δ1}e

−T0(z−y)
]

=
∑
y≤0

1{z−y>Γn}

E
[
1
{−`(T ↑V )<y

}1{z−y<T
T ↑
V

(logn)}1{`(T ↑V )≤2(logn)2+δ1}e
−T ↑V (z−y)

]
E
[
`
(
T ↑V
)

+ `
(
T ↓V
)] ,

where we used, in the last equality, eq. (29) of Theorem 2.5 with ∆0 = {y}, ∆1 = Z and

h = log n and ]
{

0 ≤ i < `(T ↑V ), −i = y
}

= 1{−`(T ↑V )<y}, for which we recall that for y ≤ 0,

blogn = y means that x0(V, log n) = y and T0(`(T0)) > 0, i.e. T0 is an upward slope.

Then, using the definition of n6 and y > −`(T ↑V ) ≥ −2(log n)2+δ1 and the law of slopes provided
by Theorem 2.3 (i) in the first inequality, and Proposition 7.3 in the second inequality since
Γn ≥ p4 and log n ≥ p5 because n ≥ n6 ≥ n3, we get, with c14 := 3c−1

7 c13,

(142) ≤ c−1
7

(log n)2

0∑
y=−d2(logn)2+δ1e

1{z−y>Γn}E
[
1{z−y<TV (logn)}e

−V (z−y)|Ξlogn

]
≤ c−1

7

(log n)2

0∑
y=−d2(logn)2+δ1e

1{z−y>(logn)4/3+δ1}c13(z − y)−3/2

≤ c−1
7 (log n)−2

[
2(log n)2+δ1 + 1

]
c13

(
(log n)4/3+δ1

)−3/2 ≤ c14(log n)−2−δ1/2. (143)

Notice that ζ(T−1) =
(
V (x0 − i) − V (x0), 0 ≤ i ≤ x0 − x−1

)
, with xj = xj(V, log n), j ∈ Z.

Moreover, by Theorem 2.4 (i), conditionally on T0(V, log n) being upward, i.e. on {blogn ≤ 0},
ζ(T−1) is independent of (T0, x0(V, log n)) and has the same law as ζ(T ↓V ), so is equal in law,
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by Proposition 2.12, to T ↑∗
V −,logn

, which law is given by Theorem 2.9 (i) applied to V − (with ζ

defined in (24)). Using this in the second inequality, then Proposition 7.3 in the third one, we
get since n ≥ n6, with Ξ∗−logn := {TV −(log n) < T ∗V −(]−∞, 0])}, similarly as in (141),

E
[
1{z<blogn−Γn}1{blogn≤0}1{z∈]L̂−,L̂+[}1E(n)

3 ∩E
(n)
5

e−[V (z)−V (blogn)]
]

≤ E
[
1{z<blogn−Γn, blogn≤0}E

[
1{yn<Tζ(T−1)

(logn)}e
−ζ(T−1)(yn)

∣∣σ(T0, x0(V, log n))
]
yn=blogn−z

]
≤ E

[
1{blogn−z>Γn}E

[
1{yn<TV− (logn)}e

−V −(yn)|Ξ∗−logn

]
yn=blogn−z

]
≤ E

[
1{blogn−z>Γn}c13(blogn − z)−3/2

]
≤ c13(log n)−2−3δ1/2. (144)

Also, using x1(V, log n) = blogn > z > L̂− = x1(V, log n) − Tζ(T0)(hn) with hn ≤ log n and E
(n)
5

in the first inequality, we have

E
[
1{z<blogn−Γn}1{blogn>0}1{z∈]L̂−,L̂+[}1E(n)

3 ∩E
(n)
5

e−[V (z)−V (blogn)]
]

(145)

≤
∑
y>0

1{z−y<−Γn}E
[
1{blogn=y}1{y−z<Tζ(T0)(logn)}1{`(T0)≤2(logn)2+δ1}e

−ζ(T0)(y−z)
]

=
∑
y>0

1{z−y<−Γn}

E
[
1
{y≤`(T ↓V )

}1{y−z<T
ζ(T ↓

V
)
(logn), `(T ↓V )≤2(logn)2+δ1}e

−ζ(T ↓V )(y−z)
]

E
[
`
(
T ↑V
)

+ `
(
T ↓V
)] ,

where we used, in the last equality, eq. (29) of Theorem 2.5 with ∆0 = Z, ∆1 = {y} and

h = log n and ]
{

0 ≤ i < `(T ↓V ), `(T ↓V )− i = y
}

= 1{y≤`(T ↓V )} for y > 0, for which we recall that

for y > 0, blogn = y means that x1(V, log n) = y and T0(`(T0)) < 0.

Then, using the definition of n6, y ≤ `(T ↓V ) ≤ 2(log n)2+δ1 and Proposition 2.12 in the first
inequality, then Theorem 2.9 (i) in the equality, and Proposition 7.3 in the second inequality,
we get since log n ≥ p5 and Γn ≥ p4 because n ≥ n6 ≥ n3, concluding as in (143),

(145) ≤ c−1
7

(log n)2

b2(logn)2+δ1c∑
y=1

1{z−y<−Γn}E
[
1{y−z<T

T ↑∗
V−

(logn)}e
−T ↑∗

V−
(y−z)

]

=
c−1

7

(log n)2

b2(logn)2+δ1c∑
y=1

1{y−z>Γn}E
[
1{y−z<TV− (logn)}e

−V −(y−z)|Ξ∗−logn

]
≤ c14

(log n)2+δ1/2
. (146)

Combining (141), (143), (144) and (146) ensures that, with c15 := 2c14 + 2c13,

E
[
1{|blogn−z|>Γn}1E(n)

3 ∩E
(n)
5

1{z∈]L̂−,L̂+[}e
−[V (z)−V (blogn)]

]
≤ c15(log n)−2−δ1/2.

This, combined with (140), proves that the right hand side of (139) is ≤ c16(log n)−2−δ1/2 for
all n ≥ n6 and z ∈ Z with c16 := (c15c12 + 1). This together with (138) gives (137) since
δ1 ∈ (0, 2/3), with c11 := c16 + 1. �

5.2.2. Case with blogn far from z, without subvalleys and small valleys when τ(blogn) > n. The
aim of this subsection is to prove the following lemma.

Lemma 5.4. There exists a constant c17 > 0 such that, for all n ≥ n6 and all z ∈ Z,

P
(
Sn = z, |blogn − z| > Γn, τ(blogn) > n,E

(n)
3 , E

(n)
5

)
≤ c17(log2 n)3(log n)−3. (147)
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We start with the case blogn ≤ 0. We first make the following simple remark.

Lemma 5.5. We have,

∀n ≥ 3, ∀z ∈ Z, P
(
Sn = z, blogn ≤ 0, z < blogn − Γn, τ(blogn) > n

)
= 0. (148)

Proof: On {blogn ≤ 0, z < blogn − Γn, τ(blogn) > n}, we have z < blogn ≤ 0, so for S starting
from 0 (under Pω or P), τ(z) > τ(blogn) > n and thus Sn 6= z. This leads to (148). �

In order to prove Lemma 5.4, we also have to give an upper bound for the probability of F
(n)
1 (z),

where

F
(n)
1 (z) :=

{
Sn = z, blogn ≤ 0, z > blogn + Γn, τ(blogn) > n

}
∩ E(n)

3 ∩ E(n)
5 .

Loosely speaking, on E
(n)
3 by Remark 4.2, there are no subvalleys of height larger than hn −

C1 log2 n in the (log n)-central valley [M−,M+] and in the two neighbor valleys (of height at
least log n) on its left and on its right, and the height of these three valleys is quite larger than
log n. In particular, we prove:

Lemma 5.6. There exists a constant c18 > 0 such that

∀n ≥ n6, ∀z ∈ Z, P
[
F

(n)
1 (z)

]
≤ c18(log2 n)3(log n)−3. (149)

Outline of the proof: See Figure 7 for a schema of the potential. Assume for example that

blogn ≤ 0, so x0 = blogn, with xi := xi(V, log n), i ∈ Z, and that F
(n)
1 (z) holds. Since τ(x0) > n,

we first prove that, by Lemma 4.1, with large probability, τ(x2) ≤ n. Second, if z is not in the
valley [x1, x3], then after first hitting x2, S has to leave this valley before time n (so that Sn =
z /∈ [x1, x3]), which has negligible probability since the height of this valley [x1, x3] is quite larger

than log n on E
(n)
3 . Third, if z belongs to the valley [x1, x3] with V (z) ≥ V (x2) + 4 log2 n, then

the probability that Sn = z is negligible by reversibility, which we can apply to S started at x2 by
strong Markov property. Finally, if z belongs to the valley [x1, x3] with V (z) < V (x2) + 4 log2 n,
then V (z + .)− V (z) goes up log n before going down 4 log2 n on the left and on the right, and
conditionally on (V (k), k ≥ 0), max[x0,0] V − max[0,z] V = max[x0,0] V − V (x1) ∈ [−9 log2 n, 0[
(otherwise τ(x2) < τ(x0) would have small probability which would contradict our first step).
Since all these three conditions have probability less than c(log2 n)(log n)−1 for some c > 0 with
some independence, this last case is also negligible compared to (log n)−2. We now prove this
rigorously.

Proof: Let n ≥ n6 and z ∈ Z. In all the proof, we write xi for xi(V, log n) for every i ∈ Z.

First step: Applying Lemma 4.1 with h = log n, ξ2 = 1, a = x0 < b = x1 < c = x2 (so

that (i) is satisfied for ω ∈ E(n)
− ), ξ1 = 2C1 (so (ii) and (iii) are satisfied since there is no left

(log n − 2C1 log2 n)-extremum in ]x0, x1[ nor in ]x1, x2[ for ω ∈ E
(n)
− ∩ E(n)

3 by Remark 4.2),

α = 3 (so (iv) is satisfied for ω ∈ E(n)
5 since 0 < δ1 < 2/3) and x = 0, we get since n ≥ n6 ≥ n3

and so log n ≥ ĥ2(2C1, 1),

∀ω ∈ E(n)
− ∩ E

(n)
3 ∩ E(n)

5 , Pω
[
τ(x0) ∧ τ(x2) ≥ n

]
≤ (log n)−4. (150)

As a consequence, using τ(x0) = τ(blogn) > n on F
(n)
1 (z), we get

P
[
F

(n)
1 (z) ∩ {τ(x2) ≥ n}

]
≤ E

[
1
E

(n)
− ∩E

(n)
3 ∩E

(n)
5

Pω
(
τ(x0) ∧ τ(x2) ≥ n

)]
≤ (log n)−4. (151)
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Second step: There only remains to consider F
(n)
1 (z) ∩ {τ(x2) < n}. This second step focuses

on the case z /∈]x1, x3[. We start with the case z ≤ x1

(
see Figure 7 with z = z(2)

)
. In what

follows we prove that in this case, the probability that, after hitting x2, S goes or goes back to
z ∈]−∞, x1] before time n is negligible.

To this aim, using z ≤ x1 < x2, then (11) and ellipticity (16) in the second inequality, we have

for every ω ∈ E(n)
− ∩ E

(n)
3 ∩ {z ≤ x1} and k ∈ {0, . . . , n},

P x2ω [Sk = z] ≤ P x2ω [τ(x1) ≤ τ(z) ≤ k]

≤ (k + 1)ε−1
0 exp(−H[T1(V, log n)]) ≤ 2ε−1

0 (log n)−C2 ≤ (log n)−4

since V [x1]−min[x1,x2] V = H[T1(V, log n)] ≥ log n+C2 log2 n on E
(n)
3 , C2 > 9 and n ≥ n6 ≥ n3.

Hence, conditioning by ω then applying the strong Markov property at time τ(x2),

P
[
F

(n)
1 (z) ∩ {τ(x2) < n} ∩ {z ≤ x1}

]
≤ E

[
1
E

(n)
− ∩E

(n)
3 ∩{z≤x1}∩{τ(x2)<n}P

x2
ω [Sk = z]|k=n−τ(x2)

]
≤ (log n)−4. (152)

Similarly, using (10) instead of (11), we have for large n,

P
[
F

(n)
1 (z) ∩ {τ(x2) < n} ∩ {z ≥ x3}

]
≤ (log n)−4. (153)

Third step: Now, on {x1 < z < x3} ∩ {V (z) ≥ V (x2) +4 log2 n} ∩ E
(n)
−
(
see Figure 7 with

z = z(3)
)
, we have by reversibility (see (13)) and ellipticity (16), for k ∈ N,

P x2ω (Sk = z) ≤ µω(z)

µω(x2)
≤ ε−1

0 exp[V (x2)− V (z)] ≤ ε−1
0

(log n)4
.

As a consequence, once more conditioning by ω and applying the strong Markov property,
proceeding as in (152),

P
[
F

(n)
1 (z) ∩ {τ(x2) < n} ∩ {x1 < z < x3} ∩ {V (z) ≥ V (x2) + 4 log2 n}

]
≤ E

[
1
E

(n)
− ∩{x1<z<x3}∩{V (z)≥V (x2)+4 log2 n}∩{τ(x2)<n}P

x2
ω [Sk = z]|k=n−τ(x2)

]
≤ ε−1

0 (log n)−4. (154)

Forth step: Finally, we study
(
see Figure 7 with z = z(4)

)
,

F
(n)
2 (z) := F

(n)
1 (z) ∩ {τ(x2) < n} ∩ {x1 < z < x3} ∩ {V (z) < V (x2) + 4 log2 n}.

This set is empty for z < 0 because x1 > 0, so we can assume that z ≥ 0.

We once more define V ±z (k) := V (z ± k) − V (z), k ∈ Z, and notice that V −z and V +
z are

independent. We also introduce

E
(n)
11 := {τ(x2) < τ(x0)}, E

(n)
12 :=

{
max
[x0,0]

V ≤ V (x1)− 9 log2 n
}
.

We have by (7), for large n, for all ω ∈ E(n)
− ∩ E

(n)
5 ∩ E(n)

12 ,

Pω
(
E

(n)
11

)
=

∑−1
i=x0

eV (i)∑x2−1
i=x0

eV (i)
≤

(log n)2+δ1 exp[max[x0,0] V ]

exp[V (x1)]
≤ (log n)−6.

Consequently, since F
(n)
1 (z) ∩ {τ(x2) < n} ⊂ E(n)

11 ,

P
[
F

(n)
2 (z) ∩ E(n)

12

]
≤ P

[
E

(n)
− ∩ E

(n)
5 ∩ E(n)

12 ∩ E
(n)
11

]
≤ (log n)−6. (155)
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x2

0

V (k)

x−1 x3

z(4)

≥ log n+ C2 log2 n

x0 = blogn k

≥ log n+ C2 log2 n

x1

blogn + Γn

log n

4 log2 n

< 4 log2 n

≥ log n+ C2 log2 n

z(2) z(3)

≥ 4 log2 n

Figure 7. Schema of the potential V with xi = xi(V, log n), and z equal to z(2), z(3)

and z(4) respectively for step 2, 3
(
on F

(n)
1 (z)

)
and 4

(
on F

(n)
2 (z)

)
.

There remains to study P
[
F

(n)
2 (z) ∩

(
E

(n)
12

)c]
. For a process (v(k), k ∈ N) and y ∈ N, we define

vy(.) := v(y + .)− v(y) and

E
(n)
13 (v) := {Tv(]−∞,− log n]) < Tv(9 log2 n)},

E
(n)
14 (z) :=

{
TV +

z
(log n) < TV +

z
(−4 log2 n)

}
∩
{
TV −z (log n) < TV −z (−4 log2 n)

}
∩
{
TV −z (log n) ≤ z

}
.

Also for a ≥ 0, let V1,a(k) := V −
[
k + TV −(a)

]
− V −

[
TV −(a)

]
, k ∈ N. We claim that

F
(n)
2 (z) ∩

(
E

(n)
12

)c ⊂ E(n)
14 (z) ∩ E(n)

13

(
V1,max(0,max[0,z] V−9 log2 n)

)
. (156)

Indeed on F
(n)
2 (z) ∩

(
E

(n)
12

)c
, we have blogn = x0 ≤ 0, z ∈]x1, x3[, min[x1,x3] V = V (x2) >

V (z) − 4 log2 n, and V (x1) ≥ V (x2) + log n + C2 log2 n ≥ V (z) + log n due to E
(n)
3 and since

C2 > 9, the same being true also for V (x3) instead of V (x1). So V ±z hits [log n,+∞[ before

]−∞,−4 log2 n], so F
(n)
2 (z) ∩

(
E

(n)
12

)c
is included in the first two sets in E

(n)
14 (z).

Also on F
(n)
2 (z), x0 = blogn ≤ 0, thus max[x0,x2] V = V (x1), so max[0,z] V = V (x1) if x1 <

z ≤ x2. Assume now that x2 < z < x3 and F
(n)
2 (z) holds. If max[x2,z] V > V (x1), then

min{u ∈ [x2, z], V (u) = max[x2,z] V } would be a left (log n)-maximum (because its potential

would be greater than V (x1) ≥ V (x2) + log n + C2 log2 n ≥ V (z) + log n due to E
(n)
3 and

C2 > 9 as before, and greater than V (x2)+ log n), belonging to ]x2, x3[, which is not possible, so
max[x2,z] V ≤ V (x1). Hence max[0,z] V = V (x1) ≥ V (z) + log n in both cases, so max[0,z] V

−
z ≥

log n, thus F
(n)
2 (z) ∩

(
E

(n)
12

)c
is included in the third set in E

(n)
14 (z).

Finally on F
(n)
2 (z)∩

(
E

(n)
12

)c
, we have max[x0,0] V < V (x1) = max[x0,x2] V by definition of the xi

and of E
(n)
− , and max[x0,0] V > V (x1)−9 log2 n ≥ V (x0)+log n by definition of

(
E

(n)
12

)c
and since

H[T0(V, log n)] ≥ log n+ C2 log2 n with C2 > 9 on E
(n)
3 . Also, we just proved that max[0,z] V =

V (x1). Hence, starting from 0, V − first hits [max[0,z] V − 9 log2 n,+∞[, then goes down at least

log n before |x0| and so before going up 9 log2 n, so ω ∈ E(n)
13

(
V1,a

)
with a = max[0,z] V − 9 log2 n
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if max[0,z] V − 9 log2 n ≥ 0. Otherwise, max[x0,0] V < V (x1) = max[0,z] V < 9 log2 n, with

V (x0) = V (x1)−H[T0(V, log n)] ≤ − log n+ (9−C2) log2 n < − log n since C2 > 9 due to E
(n)
3 ,

so ω ∈ E(n)
13

(
V −
)

= E
(n)
13

(
V1,a

)
with a = 0. So (156) is proved in every case.

We have in particular, by (17), since n ≥ n6 ≥ n3 so log2 n > C0,

P[E
(n)
13 (V −)] = P

(
TV −(]−∞,− log n]) < TV −([9 log2 n,+∞[)

)
≤ 10(log2 n)(log n)−1. (157)

Also, using first the independence between V +
z and V −z , which have the same law as V and V −

respectively, then applying (17) again, we have since n ≥ n6 ≥ n3,

P
(
E

(n)
14 (z)

)
≤ P

[
TV +

z
(log n) < TV +

z
(−4 log2 n)

]
P
[
TV −z (log n) < TV −z (−4 log2 n)

]
≤ 25(log2 n)2(log n)−2. (158)

Hence using (156), then conditioning by V + = (V (k), k ≥ 0), noting that E
(n)
14 (z) and max[0,z] V

depend only on V + and for every a ∈ R+, E
(n)
13

(
V1,a

)
only on V −, which is independent of V +

and has the same law as V1,a, then applying (157) and (158), we get

P
[
F

(n)
2 (z) ∩

(
E

(n)
12

)c] ≤ P
[
E

(n)
14 (z) ∩ E(n)

13

(
V1,max(0,max[0,z] V−9 log2 n)

)]
= E

[
1
E

(n)
14 (z)

P
[
E

(n)
13

(
V1,max(0,max[0,z] V−9 log2 n)

)
|V +

]]
= E

[
1
E

(n)
14 (z)

P
[
E

(n)
13

(
V1,a

)]
|a=max(0,max[0,z] V−9 log2 n)

]
≤ 10(log2 n)(log n)−1P(E

(n)
14 (z)) ≤ 250(log2 n)3(log n)−3.

This, together with (155) gives P
(
F

(n)
2 (z)

)
≤ 251(log2 n)3(log n)−3 for all n ≥ n6 and z ∈ Z.

Conclusion: Combining this with (151), (152), (153), (154) proves (149). �

Proof of Lemma 5.4: We prove, similarly as in Lemmas 5.5 and 5.6 (replacing in particular x0,
x1, x2 and x3 respectively by x1, x0, x−1 and x−2 respectively in its proof, nearly by symmetry)
that for every n ≥ n6 and every z ∈ Z,

P
(
Sn = z, blogn > 0, z > blogn + Γn, τ(blogn) > n

)
= 0,

P
(
Sn = z, blogn > 0, z < blogn − Γn, τ(blogn) > n,E

(n)
3 , E

(n)
5

)
≤ c18(log2 n)3(log n)−3.

Combining this with Lemmas 5.5 and 5.6 proves Lemma 5.4 with c17 := 2c18. �

Proof of Proposition 5.2: This proposition follows directly from Lemmas 5.3 and 5.4 with
c10 := c11 + c17, since (log2 n)3 ≤ (log n)1/2 for n ≥ n6 ≥ n3 and δ1 ∈]0, 2/3[. �

5.3. Case with at least one subvalley or small valley. We now focus on the case where
some of the valleys (of height ≥ log n) close to the origin can be small (i.e. with height <
log n+C2 log2 n), or can contain subvalleys of height less than but close to log n. More precisely,
the aim of this subsection is to prove the following estimate.

Proposition 5.7. There exists n9 ≥ n6 and c19 > 0 such that

∀n ≥ n9, ∀z ∈ Z, P
(
Sn = z, (E

(n)
3 )c

)
≤ c19(log2 n)3(log n)−3.

This case can be divided into many different subcases. For example, there can be, or not, a
subvalley of height close to log n inside the (log n)-central valley, either at the right or at the
left of blogn, or there can even be two such subvalleys. There can also exist, close to the (log n)-
central valley, one or two valleys with height close to log n, larger or smaller than logn, which
can trap the random walk (Sk)k for some time. Also, the height of the (log n)-central valley
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can be close to log n, which can enable S to escape it before time n with not so small quenched
probability. Taking into account the indexes of the left (hn − C1 log2 n)-slopes considered, i.e.
with height less than log n+C2 log2 n, and their height, larger or smaller than log n, the indexes
i of the first left hn-minimum bi(V, hn) (defined in (160)) visited by S before time n, of the
second one etc, the fact that z is close or far from these left hn-extrema, this makes dozens
of cases. However we will combine together some of these cases, for example with the help of
Lemma 5.9 and of the notation Ik defined in (164) below.

On
(
E

(n)
3

)c
, there exists some i ∈ {−10, . . . 10} such that H[Ti(V, hn − C1 log2 n)] < log n +

C2 log2 n. Also, we prove that with large probability, there are no more than two such i. To this
aim, we define

E
(n)
15 :=

{
]{i ∈ Z, −99 ≤ i ≤ 99, H[Ti(V, hn − C1 log2 n)] < log n+ C2 log2 n} ≤ 2

}
.

More precisely, we prove the following estimate.

Lemma 5.8. There exist n7 ≥ n6 and c20 > 0 such that,

∀n ≥ n7, P
[(
E

(n)
15

)c] ≤ c20(log2 n)3(log n)−3. (159)

Proof: Due to Lemma 2.16, we have P
[
E

(n)
16 (i) | b

h̃n
≤ 0
]

= O
(
(log2 n)(log n)−1

)
, i ∈ Z, where

h̃n = hn − C1 log2 n as before and

E
(n)
16 (i) :=

{
H[Ti(V, hn − C1 log2 n)] < log n+ C2 log2 n

}
, i ∈ Z.

Hence, using the independence of the translated left h̃n-slopes conditionally on {b
h̃n
≤ 0} (see

Theorem 2.4 (i)), we have

P
[(
E

(n)
15

)c | b
h̃n
≤ 0
]

= P
(
∪−99≤i1<i2<i3≤99 E

(n)
16 (i1) ∩ E(n)

16 (i2) ∩ E(n)
16 (i3) | b

h̃n
≤ 0
)

≤
∑

−99≤i1<i2<i3≤99

3∏
k=1

P
[
E

(n)
16 (ik) | bh̃n ≤ 0

]
= O

(
(log2 n)3(log n)−3

)
as n → +∞. We prove similarly the same inequality with b

h̃n
≤ 0 replaced by b

h̃n
> 0, which

proves the lemma. �

We define, for h > 0 and i ∈ Z (this definition being different from that of [24]),

bi(V, h) :=

{
x2i(V, h) if x0(V, h) is a left h-minimum,
x2i−1(V, h) otherwise.

(160)

So, the bi(V, h), i ∈ Z, are the left h-minima for V , such that b0(V, h) ≤ 0 < b1(V, h) and
bi(V, h) < bi+1(V, h), i ∈ Z. We also denote by Mi(V, h) the unique left h-maximum for V
between bi(V, h) and bi+1(V, h). Hence, Mi(V, h) = xj+1(V, h) if bi(V, h) = xj(V, h).

We now prove that the probability that z is ”close” (in terms of potential) to the bottom bj(V, hn)

of a valley of height hn and that ω ∈
(
E

(n)
3

)c
is small. More precisely, we define, for h > 0,

E
(n)
17 (j, h, z) := {Mj−1(V, h) ≤ z ≤Mj(V, h), V (z) ≤ V [bj(V, h)] + 4 log2 n}, j ∈ Z.

We now have the following lemma, which is useful to prove Lemma 5.12 (in which we take

h′n = hn) and Lemma 5.13 (in which we take h′n = h̃n) and then Lemma 5.11.
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Lemma 5.9. There exist c21 > 0 and n8 ≥ n7 such that, whether h′n = hn or h′n = h̃n :=
hn − C1 log2 n, we have

∀n ≥ n8, ∀z ∈ Z, P
[(
E

(n)
3

)c ∩ ∪8
j=−8E

(n)
17 (j, h′n, z)

]
≤ c21(log2 n)3(log n)−3.

Loosely speaking, in the case h′n = h̃n, on E
(n)
17 (j, h̃n, z), V

+
z and V −z go up h̃n − 4 log2 n before

going down −4 log2 n, which has probability O
(

log2 n)2(log n)−2
)
. Also, on E

(n)
3 one of the left

h̃n-slopes around the origin has an excess height less than some C log2 n, which has probability

O
(
(log2 n)(log n)−1

)
, with some independence, which leads to Lemma 5.9 in the case h′n = h̃n,

the second case being nearly a consequence of the first one. We now prove this rigorously.

Proof of Lemma 5.9: Let n ≥ n7 and z ∈ Z. We start with the case h′n = h̃n. On the

one hand, we notice that for −13 ≤ j ≤ 13, on
(
E

(n)
3

)c ∩ E(n)
17

(
j, h̃n, z

)
, z belongs to the

support
[
xk
(
V, h̃n

)
, xk+1(V, h̃n

)]
of a left h̃n-slope T ′k := Tk

(
V, h̃n

)
with 2j − 2 ≤ k ≤ 2j,

the value of k depending on x0

(
V, h̃n

)
being a left h̃n-maximum or minimum for V and on

z ≤ bj
(
V, h̃n

)
or z > bj

(
V, h̃n), with T ′k(z) − inf

y∈[xk(V,h̃n),xk+1(V,h̃n)]
T ′k(y) ≤ 4 log2 n. Hence,

using xi
(
V, h̃n

)
= xi−k

(
Vz, h̃n

)
+ z, i ∈ Z on

{
xk
(
V, h̃n

)
≤ z < xk+1

(
V, h̃n

)}
and the definition

of E
(n)
3 , we get

P
[(
E

(n)
3

)c ∩ ∪13
j=−13E

(n)
17

(
j, h̃n, z

)]
≤ P

(
∪27
k=−28

{
xk
(
V, h̃n

)
≤ z < xk+1

(
V, h̃n

)}
∩
{
T ′k(z)− inf

[0,`(T ′k)]
θ(T ′k) ≤ 4 log2 n

}
∩ ∪10

i=−10

{
H
[
Ti
(
V, h̃n

)]
< log n+ C2 log2 n

})
≤ P

({
inf

[x0(Vz ,h̃n),x1(Vz ,h̃n)]
Vz ≥ −4 log2 n

}
∩ ∪38

j=−37

{
H
[
Tj
(
Vz, h̃n

)]
< log n+ C2 log2 n

})
,

where Vz has the same law as V , so the last probability does not depend on z.

Now, notice that, with V ± = (V (±y), y ∈ N) as before, and Ṽ3(k) := V
[
k + TV

([
h̃n −

4 log2 n,+∞
[)]

, k ∈ N, we have

E
(n)
18,0 ∩ {bh̃n ≤ 0} ⊂ E(n)

19,+ ∩ E
(n)
19,− ∩ E

(n)
20 , (161)

where for i ∈ Z and h > 0,

E
(n)
18,i :=

{
inf

[x0(V,h̃n),x1(V,h̃n)]
V ≥ −4 log2 n, H

[
Ti
(
V, h̃n

)]
< log n+ C2 log2 n

}
,

E
(n)
19,± := {TV ±

([
h̃n − 4 log2 n,+∞

[)
< TV ±(]−∞,−4 log2 n[)},

E
(n)
20 := {T

Ṽ3

(]
−∞, log n+ C2 log2 n− h̃n

[)
< T

Ṽ3

([
log n+ C2 log2 n,+∞

[)
}.

Using (17) and n ≥ n7 ≥ n3, we have P
(
E

(n)
19,±

)
≤ 10(log2 n)(log n)−1 and P

(
E

(n)
20 | V (k), k ≤

TV
([
h̃n−4 log2 n,+∞

[))
≤
(

log n+C2 log2 n−
(
h̃n−4 log2 n

)
+C0

)(
h̃n+C0

)−1 ≤ 2(2C1 +C2 +

5)(log2 n)(log n)−1. Hence, using (161), conditioning by σ
(
V (k), k ≤ TV

([
h̃n − 4 log2 n,+∞

[)
then using the independence of V + and V −, we have, with c22 := 200(2C1 + C2 + 5),

P
(
E

(n)
18,0, bh̃n ≤ 0

)
≤ c22(log2 n)3(log n)−3.

We get similarly the same result with b
h̃n
≤ 0 replaced by b

h̃n
> 0.
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Finally, for i 6= 0, using Theorem 2.4 (i) since H
[
θ
(
Ti
(
V, h̃n

))]
= H

[
Ti
(
V, h̃n

)]
,

P
(
E

(n)
18,i, bh̃n ≤ 0

)
= P

(
inf

[x0(V,h̃n),x1(V,h̃n)]
V ≥ −4 log2 n, bh̃n ≤ 0

)
P
(
H
[
Ti
(
V, h̃n

)]
< log n+ C2 log2 n | bh̃n ≤ 0

)
≤ 200c8(2C1 + C2 + C0)(log2 n)3(log n)−3

for large n since the first probability in the second line is ≤ P
(
E

(n)
19,−

)
P
(
E

(n)
19,+

)
and the second

one is ≤ c8

(
log n+C2 log2 n− h̃n

)(
h̃n
)−1

for large n by Lemma 2.16. We get similarly the same
result with b

h̃n
≤ 0 replaced by b

h̃n
> 0, using Theorem 2.4 (ii) instead of (i). Thus, there

exists some c23 > 0 and some n8 ≥ n7 such that P
(
E

(n)
18,i

)
≤ c23(log2 n)3(log n)−3 for all n ≥ n8

and all −37 ≤ i ≤ 38.

Finally, for all n ≥ n8 for all z ∈ Z,

P
[(
E

(n)
3

)c ∩ ∪13
j=−13E

(n)
17

(
j, h̃n, z

)]
≤

38∑
i=−37

P
(
E

(n)
18,i

)
≤ 76c23(log2 n)3(log n)−3, (162)

which proves the lemma in the case h′n = h̃n.

We now turn to the case h′n = hn. Let z ∈ Z. To this aim, we introduce some notation, which
will also be useful in the proof of Lemma 5.10 below. For j ∈ Z, let

Λj := ]
{
k ∈ Z, xk

(
V, h̃n

)
∈ [xj(V, hn), xj+1(V, hn)[

}
, (163)

which belongs to (2N+ 1) since left h̃n-maxima and minima alternate and h̃n < hn. If for j ∈ Z,

Λj = 2k + 1 with k > 1, then [xj(V, hn), xj+1(V, hn)[ =
[
x`
(
V, h̃n

)
, x`+2k+1

(
V, h̃n

)[
for some

` ∈ Z. Also for each 0 ≤ i < k, H
[
T`+2i+1

(
V, h̃n

)]
< hn, otherwise, if moreover x`

(
V, h̃n

)
is

a left hn-minimum (resp. maximum), then ũ := min
{
u ∈

[
x`
(
V, h̃n

)
, x`+2i+1

(
V, h̃n

)]
, V (u) =

max
[x`(V,h̃n)≤u≤x`+2i+1(V,h̃n)]

V
}

would be a left hn-extremum
(
since V

(
ũ
)
≥ V

[
x`+2i+2

(
V, h̃n

)]
+hn ≥ V

[
x`
(
V, h̃n

)]
+ hn

)
, belonging to ]xj(V, hn), xj+1(V, hn)[, which is not possible (resp.

similar argument with max replaced by min).

Hence on E
(n)
15 , Λ0 ≤ 5, otherwise the support of T0(V, hn) would contain the support of at

least (Λ0 − 1)/2 ≥ 3 slopes Tp
(
V, h̃n

)
with height H

[
Tp
(
V, h̃n

)]
< hn < log n + C2 log2 n, with

at least three of them such that |p| ≤ 5, which is not possible on E
(n)
15 . Also, notice that for

j ≥ 1, xj(V, hn) = x`
(
V, h̃n

)
with 1 ≤ ` ≤ Λ0 + · · · + Λj−1. Thus by induction, Λj ≤ 5

for every 0 ≤ j ≤ 17, for which we use for 0 < j ≤ 17 the same argument as for Λ0 with

1 ≤ p ≤ Λ0 + · · · + Λj−1 + 5 (≤ 5(j + 1) ≤ 90 by hypothesis of induction). Similarly on E
(n)
15 ,

Λj ≤ 5 for every −17 ≤ j ≤ 0, and so for every −17 ≤ j ≤ 17.

Consequently, for the same reasons, on E
(n)
15 , if for −17 ≤ j ≤ 17, Λj = 3 (resp. Λj = 5), then the

support of Tj(V, hn) contains the support of at least one (resp. at least two) slope(s) Tp
(
V, h̃n

)
with height H

[
Tp
(
V, h̃n

)]
< hn < log n + C2 log2 n with |p| < 99. Thus, Λ0 + · · · + Λj ≤ j + 5

for every 0 ≤ j ≤ 17 and Λj + · · ·+ Λ0 ≤ |j|+ 5 for every −17 ≤ j ≤ 0.

Notice that for −8 ≤ j ≤ 8, on E
(n)
15 ∩E

(n)
17 (j, hn, z), we have bj(V, hn) = xk(V, hn) with k ∈ {2j−

1, 2j} by (160), so bj(V, hn) = x`
(
V, h̃n

)
with 1 ≤ ` ≤ Λ0 + · · ·+ Λ2j−1 ≤ (2j−1) + 5 ≤ 20 if 1 ≤

j ≤ 8, and |`| ≤ Λ2j−1 + · · ·+Λ0 ≤ |2j−1|+5 ≤ 22 if −8 ≤ j ≤ 0, using the previous paragraph.

So bj(V, hn) = x`
(
V, h̃n

)
= bj0

(
V, h̃n

)
with ` ∈ {2j0−1, 2j0}, thus −11 ≤ j0 ≤ 10. Consequently,
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there exists j1 ∈ Z such that z ∈
[
Mj1−1

(
V, h̃n

)
,Mj1

(
V, h̃n

)]
⊂ [Mj−1(V, hn),Mj(V, hn)] ⊂[

x`−5

(
V, h̃n

)
, x`+5

(
V, h̃n

)]
⊂
[
x−27

(
V, h̃n

)
, x25

(
V, h̃n

)]
(so that −13 ≤ j1 ≤ 13), with V (z) ≤

V [bj(V, hn)] + 4 log2 n ≤ V
[
bj1
(
V, h̃n

)]
+ 4 log2 n, so the conditions defining E

(n)
17

(
j1, h̃n, z

)
are

satisfied. Hence,

P
[(
E

(n)
3

)c ∩ ∪8
j=−8E

(n)
17 (j, hn, z)

]
≤P
[(
E

(n)
15

)c]
+ P

[(
E

(n)
3

)c ∩ E(n)
15 ∩ ∪

13
j1=−13E

(n)
17

(
j1, h̃n, z

)]
≤ (c20 + 76c23)(log2 n)3(log n)−3

by Lemma 5.8 and (162) since n ≥ n8 ≥ n7, which proves the lemma when h′n = hn. �

We now introduce some notation. Recall that τ [bi(V, hn)] < ∞ P-a.s. for every i ∈ Z since
S = (Sk)k is P-almost surely recurrent. We define by induction

I1 := 1{τ [b1(V,hn)]<τ [b0(V,hn)]},

Ik :=
∑

`∈Z−{Ij , 1≤j<k}

`
∏

i∈Z, i/∈{Ij , 1≤j<k}∪{`}

1{τ [b`(V,hn)]<τ [bi(V,hn)]}, k ≥ 2. (164)

In words, I1 is the index ` of the first b`[V, hn] visited by S, so that I1 = 0 if τ [b0(V, hn)] <
τ [b1(V, hn)] and I1 = 1 if τ [b1(V, hn)] < τ [b0(V, hn)], which are the only possible cases since
b0(V, hn) ≤ 0 = S0 < b1(V, hn) P-a.s. Similarly, I2 is the index ` of the second b`(V, hn) visited
by S, so I2 6= I1, and more generally Ik is for k ∈ N∗ the index ` of the k-th b`(V, hn) visited
by S, so that Ik /∈ {I1, I2, . . . , Ik−1}. Notice that τ [bI1(V, hn)] = τ [b0(V, hn)] ∧ τ [b1(V, hn)] is
a stopping time under Pω with the natural filtration of S, and more generally τ [bIk(V, hn)] is a
stopping time for every k ≥ 1.

Recall that 0 ∈ [b0(V, hn), b1(V, hn)[, that b0(V, hn) and b1(V, hn) are consecutive left hn-minima,
and M0(V, hn) is the only left hn-maximum between them. So, applying Lemma 4.1 with
h = log n, ξ2 = 1/10, a = b0(V, hn) < b = M0(V, hn) < c = b1(V, hn) which satisfy (i)
due to the previous remark, ξ1 = C1 so that (ii) and (iii) are satisfied since there is no left
(hn = log n − C1 log2 n)-extremum in ]M0(V, hn), b1(V, hn)[ nor in ]b0(V, hn),M0(V, hn)[, α = 3

(so that (iv) is satisfied for ω ∈ E
(n)
5 , since |xi(V, hn)| ≤ |xi(V, log n)| for every i ∈ Z and

δ1 < 2/3) and x = 0, we get for n ≥ n8 (which implies that n ≥ n3 so log n ≥ ĥ2(C1, 1/10)), for

almost all ω ∈ E(n)
5 ,

Pω
[
τ(bI1(V, hn)) ≥ n/10

]
= Pω

[
τ(b0(V, hn)) ∧ τ(b1(V, hn)) ≥ n/10

]
≤ (log n)−4.

Consequently, using Lemma 7.1, for n ≥ max(n8, p3) =: n9,

P
[
τ(bI1(V, hn)) ≥ n/10

]
≤ P

[
τ(bI1(V, hn)) ≥ n/10, E

(n)
5

]
+ P

[(
E

(n)
5

)c] ≤ 2(log n)−3. (165)

We now prove several lemmas which are useful to prove Proposition 5.7. In what follows, for
i ∈ Z, we write bi and Mi respectively for bi(V, hn) and Mi(V, hn) (which are defined in and
after (160)). We first prove that, with large enough probability, S only visits up to 3 different
bi before time n:

Lemma 5.10. There exists c24 > 0 such that,

∀n ≥ n9, P
[
τ(bI4) ≤ n

]
≤ c24(log2 n)3(log n)−3.

The main idea is that, loosely speaking, on E
(n)
15 , S has to cross, before τ(bI4), at least one

slope with height at least log n + C2 log2 n, which takes more than n units of time with large
probability. We now prove this rigorously.
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Proof of Lemma 5.10: Let n ≥ n9. First, for every 1 ≤ k ≤ 3, using bIk < MIk < bIk+1 ≤
bIk+1

when Ik < Ik+1 in the first inequality, then conditioning by ω then applying the strong
Markov property at time τ(bIk) in the following line, and finally (10) and ellipticity in the last
line, we have

p1,k,n := P
[
τ(bIk ,bIk+1

) ≤ n, V (MIk)− V (bIk) ≥ log n+ C2 log2 n, Ik+1 > Ik
]

≤ P
[
τ(bIk ,MIk) ≤ n, V (MIk)− V (bIk) ≥ log n+ C2 log2 n

]
= E

[
1{V (MIk )−V (bIk )≥logn+C2 log2 n}P

bIk
ω [τ(MIk) ≤ n]

]
≤ 2ε−1

0 (log n)−C2 ≤ (log n)−4 (166)

since C2 > 9 and n ≥ n9 ≥ n3. Similarly, using (11) instead of (10) and bIk+1
≤ bIk−1 <

MIk−1 < bIk when Ik+1 < Ik, we have

p2,k,n := P
[
τ(bIk ,bIk+1

) ≤ n, V (MIk−1)− V (bIk) ≥ log n+ C2 log2 n, Ik+1 < Ik
]

≤ (log n)−4 (167)

for every 1 ≤ k ≤ 3 since C2 > 9 and n ≥ n9 ≥ n3.

We now prove that on E
(n)
15 ,

]{−6 ≤ j ≤ 6, H[Tj(V, hn)] < log n+ C2 log2 n} ≤ 2. (168)

To this aim, we use (163) and the following paragraphs. We claim that on E
(n)
15 , if for some

−6 ≤ j ≤ 6, H[Tj(V, hn)] < log n + C2 log2 n, then the support of Tj(V, hn) contains at least

the support of one Tk
(
V, h̃n

)
with H

[
Tk
(
V, h̃n

)]
< log n + C2 log2 n with |k| < 99. Indeed, on

E
(n)
15 , xj(V, hn) = xk

(
V, h̃n

)
with |k| ≤ Λ0 + · · ·+ Λj ≤ 35 and the support of Tj(V, hn) contains

the support of Tk
(
V, h̃n

)
, so H

[
Tk
(
V, h̃n

)]
≤ H[Tj(V, hn)] < log n + C2 log2 n. Since there are

at most two slopes H
[
Tk
(
V, h̃n

)]
, |k| ≤ 35 with height < log n+ C2 log2 n on E

(n)
15 , there are at

most two j ∈ {−6, . . . , 6} such that H[Tj(V, hn)] < log n+ C2 log2 n, which proves (168).

Also, {Ij , 1 ≤ j ≤ k} ⊂ {1 − k, . . . , k} for every k ∈ N∗ by induction, since for k ≥ 2,
min{Ij , 1 ≤ j < k} − 1 ≤ Ik ≤ max{Ij , 1 ≤ j < k} + 1, because S only makes ±1 jumps.
So by (160), bIk = xik(V, hn) with ik ∈ {−5, . . . , 6} when 1 ≤ k ≤ 3. Hence, each height
V (MIk) − V (bIk) or V (MIk−1) − V (bIk) with k ∈ {1, 2, 3} is equal to some H[Tj(V, hn)] with

|j| ≤ 6, so at most two of them are less than log n+ C2 log2 n on E
(n)
15 by (168).

Hence, for n ≥ n9, using (166) and (167) in the last inequality,

P
[
τ(bI4) ≤ n,E(n)

15

]
≤ P

[
∩3
j=1 {τ(bIj ,bIj+1) ≤ n} ∩ ∪3

k=1

(
{V (MIk)− V (bIk) ≥ log n+ C2 log2 n, Ik+1 > Ik}

∪ {V (MIk−1)− V (bIk) ≥ log n+ C2 log2 n, Ik+1 < Ik}
)]

≤
3∑

k=1

(p1,k,n + p2,k,n) ≤ 6(log n)−4. (169)

This together with Lemma 5.8 proves Lemma 5.10 since n9 ≥ n7 ≥ n3. �

In the following lemma, we study separately the cases in which z ∈ [bIk−1,bIk+1] for 1 ≤ k ≤ 3
(in view of Lemma 5.10 since Si ∈ ∪3

k=1[bIk−1,bIk+1] for i ≤ τ(bI4)).

Lemma 5.11. There exists c25 > 0 such that, for all n ≥ n9, for all z ∈ Z, for all 1 ≤ k ≤ 3,

P
(
Sn = z,bIk−1 ≤ z ≤ bIk+1, τ(bIk) ≤ n,E(n)

5 ,
(
E

(n)
3

)c) ≤ c25(log2 n)3(log n)−3.
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Before proving Lemma 5.11, we introduce some notation. For i ∈ Z, let (see Figure 8),

D+
i := min{j ≥Mi, V (j) ≤ V (bi) + 4 log2 n}, (170)

D−i := max{j ≤Mi−1, V (j) ≤ V (bi) + 4 log2 n},

so that, by ellipticity, V (j) ≥ V (bi) + 4 log2 n+ log ε0 for each j ∈ ([D−i ,Mi−1] ∪ [Mi, D
+
i ]).

We cut the proof of Lemma 5.11 into two main parts. First we consider the case z ∈
[
D−Ik , D

+
Ik

]
in Lemma 5.12, then z ∈

]
D+
Ik ,bIk+1

]
in Lemma 5.13, the case z ∈

[
bIk−1, D

−
Ik

[
being obtained

by symmetry in (198).

Lemma 5.12. There exists c26 > 0 such that, for all n ≥ n9, for all z ∈ Z, for all 1 ≤ k ≤ 3,

P
[
Sn = z,D−Ik ≤ z ≤ D

+
Ik , τ(bIk) ≤ n,

(
E

(n)
3

)c] ≤ c26(log2 n)3(log n)−3. (171)

Proof: The proof is divided into two cases, one for which we use Lemma 5.9 if V (z)−V (bIk) is
small enough (≤ 4 log2 n), and one for which we use reversibility if it is larger. More precisely,
let n ≥ n9 and z ∈ Z. First, recall that {Ij , 1 ≤ j ≤ k} ⊂ {1−k, . . . , k} for every k ∈ N∗. So by
Lemma 5.9 with h′n = hn, since n ≥ n9 ≥ n8, we have for every 1 ≤ k ≤ 3, taking into account
all the possible values j of Ik (see Figure 8 with z = z(5)),

P
[
Sn = z,MIk−1 ≤ z ≤MIk , V (z) ≤ V (bIk) + 4 log2 n,

(
E

(n)
3

)c]
≤ P

[(
E

(n)
3

)c ∩ ∪3
j=−2{Mj−1 ≤ z ≤Mj , V (z) ≤ V (bj) + 4 log2 n}

]
≤ c21(log2 n)3(log n)−3. (172)

Second, conditioning by ω, then applying the strong Markov property at stopping time τ(bIk)

in the first equality, we get (see Figure 8 with z = z(6)),

P
[
Sn = z, V (z) ≥ V (bIk) + 4 log2 n+ log ε0, τ(bIk) ≤ n

]
= E

[
1{V (z)≥V (bIk )+4 log2 n+log ε0}1{τ(bIk )≤n}P

bIk
ω (S` = z)|`=n−τ(bIk )

]
≤

(
1 + eC0

)
ε−1

0 (log n)−4, (173)

since P
bIk
ω (S` = z) ≤ µω(z)

µω(bIk ) ≤
(
1 + eC0

)
exp(−[V (z) − V (bIk)]) for all ` ∈ N by reversibility

and ellipticity (see (13) and (16)).

Finally, notice that if D−Ik ≤ z ≤ D+
Ik , then either V (z) ≥ V (bIk) + 4 log2 n + log ε0, either

MIk−1 ≤ z ≤MIk and V (z) ≤ V (bIk)+4 log2 n (by the remark after (170) and since log ε0 ≤ 0).
Hence, combining (172) and (173), we get (171), since n ≥ n9 ≥ n3. �

We now consider the case z ∈
]
D+
Ik ,bIk+1

]
(notice that this interval may be empty). We prove

the following lemma.

Lemma 5.13. There exists c27 > 0 such that, for all n ≥ n9, for all z ∈ Z, for all 1 ≤ k ≤ 3,

P
[
Sn = z,D+

Ik < z ≤ bIk+1, τ(bIk) ≤ n,E(n)
5 ,

(
E

(n)
3

)c] ≤ c27(log2 n)3(log n)−3. (174)

Before giving the proof, we introduce some notation. Let n ≥ n9 and z ∈ Z. We define for i ∈ Z
(see Figure 8),

m+(z, i) := min
{
D+
i ≤ j ≤ z, V (j) = min[D+

i ,z]
V
}
, (175)

with by convention, min ∅ = +∞, so m+(z, i) is defined in every case, even if we use it only
when z ≥ D+

i .
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Idea of the proof: (see Figures 8 and 9 for the different cases). First, loosely speaking,

if V (z) is quite larger than the minimum of V in [D+
Ik , z]

(
see E

(n,z)
21,k and Figure 8 below

)
and n ≥ τ(bIk), then by reversibility the probability that Sn = z is negligible. So we can
assume that V (z) is just slightly higher than min[D+

Ik
,z] V . If moreover on the right of z, the

potential V goes up h̃n before going down 4 log2 n
(
see E

(n,z)
22,k and Figure 8 below

)
, we prove

that we are in ∪8
q=−8E

(n)
17

(
q, h̃n, z

)
, so, applying Lemma 5.9, the probability of this case is

also negligible. Thus we can also assume that on the right of z, the potential V does not go

up h̃n before going down 4 log2 n
(
see E

(n,z)
23,k below and Figure 9

)
. In this case, if τ(bIk) +

τ [bIk ,m
+(z, Ik)] > n, then Sn 6= z. Also, we can choose some constant c28 such that, applying

(12), τ(bIk) + τ [bIk ,m
+(z, Ik)] ∈

[
n − n(log n)−c28 , n

]
has a negligible probability. Finally, if

τ(bIk) + τ [bIk ,m
+(z, Ik)] < n−n(log n)−c28 , then we prove that quite quickly and in particular

before time n (if some very probable additional condition is satisfied, see (186) and (196)), S

goes to some place z↓n with V (z↓n) ≤ V (z) − 4 log2 n, and then the probability that Sn = z is
negligible, once more by reversibility. We now prove this rigorously.

Proof of Lemma 5.13: Let n ≥ n9, z ∈ Z and 1 ≤ k ≤ 3. The proof is divided into three main
cases, corresponding to the following events, the last one being itself divided into four subcases
(which are defined around (183) and (186)):

E
(n,z)
21,k :=

{
D+
Ik < z ≤ bIk+1

}
∩
{
V (z) ≥ min[D+

Ik
,z] V + 4 log2 n

}
,

E
(n,z)
22,k :=

{
D+
Ik < z ≤ bIk+1

}
∩
{
V (z) < min[D+

Ik
,z] V + 4 log2 n

}
∩
{
TV +

z

([
h̃n,+∞

[)
< TV +

z
(]−∞,−4 log2 n])

}
,

E
(n,z)
23,k :=

{
D+
Ik < z ≤ bIk+1

}
∩
{
V (z) < min[D+

Ik
,z] V + 4 log2 n

}
∩
{
TV +

z
(]−∞,−4 log2 n]) < TV +

z

([
h̃n,+∞

[)}
.

where V +
z (`) = V (z + `)− V (z), ` ∈ N as before and h̃n := hn − C1 log2 n = log n− 2C1 log2 n.

See figures 8 and 9.

First case: We consider the event E
(n,z)
21,k .

We have, once more conditioning by ω then applying the strong Markov property at stopping

time τ(bIk) in the first equality, then using bIk ≤ D
+
Ik ≤ m

+(z, Ik) ≤ z on E
(n,z)
21,k in the second

equality, then the strong Markov property at time τ [m+(z, Ik)],

P
[
Sn = z, τ(bIk) ≤ n,E(n,z)

21,k

]
= E

[
1{τ(bIk )≤n}1E(n,z)

21,k

P
bIk
ω (S` = z)|`=n−τ(bIk )

]
= E

[
1{τ(bIk )≤n}1E(n,z)

21,k

P
bIk
ω (S` = z, τ [m+(z, i)] ≤ `)|i=Ik, `=n−τ(bIk )

]
= E

[
1{τ(bIk )≤n}1E(n,z)

21,k

E
bIk
ω

(
1{τ [m+(z,i)]≤`}P

m+(z,i)
ω (St = z)|t=`−τ [m+(z,i)]

)
|i=Ik, `=n−τ(bIk )

]
≤

(
1 + eC0

)
(log n)−4 (176)

since P
m+(z,Ik)
ω (St = z) ≤ µω(z)

µω [m+(z,Ik)]
≤
(
1 + eC0

)
exp(−[V (z) − V (m+(z, Ik))]) ≤

(
1 +

eC0
)
(log n)−4 for all t ∈ N on E

(n,z)
21,k by reversibility and ellipticity (see (13) and (16)).
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Figure 8. Schema of the potential V , with z represented as z(5) in the first case of the

proof of Lemma 5.12, z(6) in the second one, and as z(7) on E
(n,z)
21,k and z(8) on E

(n,z)
22,k for

the proof of Lemma 5.13.

Second case: We now focus on E
(n,z)
22,k . Notice in particular that E

(n,z)
22,k includes the case where

the potential of z is ”close” to the one of bIk+1 (with a difference of potential lower than 4 log2 n).

We now assume that we are on E
(n,z)
22,k . Hence we have, by definition (170) of D+

Ik ,

min[MIk ,z]
V = min[D+

Ik
,z] V > V (z)− 4 log2 n. (177)

Also, V (MIk) = max[MIk ,bIk+1] V and [MIk , z] ⊂ [MIk ,bIk+1], so

max
[MIk ,z]

V = V (MIk) ≥ V (bIk) + hn ≥ V (D+
Ik)− 4 log2 n+ hn, (178)

since V (MIk)− V (bIk) ≥ hn and once more by definition of D+
Ik .

Now, let z]n := z + TV +
z

([
h̃n,+∞

[)
. By definition of D+

Ik and due to the first event defining

E
(n,z)
22,k , then due to the last two events defining E

(n,z)
22,k , we have

min
[MIk ,z

]
n]
V = min

[D+
Ik
,z]n]

V ≥ V (z)− 4 log2 n. (179)

There exists a unique index p ∈ Z such that Mp−1

(
V, h̃n

)
≤ z < Mp

(
V, h̃n

)
. So Mp−1

(
V, h̃n

)
is the largest left h̃n-maximum less than or equal to z. Since MIk is a left hn and then left

h̃n-maximum and is ≤ z, we have MIk ≤Mp−1

(
V, h̃n

)
.

Assume that z]n < bp
(
V, h̃n

)
. We define

b]n := inf
{
q ∈ Z, q ≥Mp−1

(
V, h̃n

)
, V (q) = min

[Mp−1(V,h̃n), z]n]
V
}
.

We would have Mp−1

(
V, h̃n

)
≤ z < z]n < bp

(
V, h̃n

)
and so V (z]n) ≥ V (z) + h̃n ≥ V (b]n) + h̃n by

definition of z]n and b]n, and

V
[
Mp−1

(
V, h̃n

)]
= max

[Mp−1(V,h̃n), bp(V,h̃n)]
V ≥ V (z]n) ≥ V (b]n) + h̃n.
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Hence, b]n would be a left h̃n-minimum of V , strictly between Mp−1

(
V, h̃n

)
and bp

(
V, h̃n

)
, which

is not possible because Mp−1

(
V, h̃n

)
and bp

(
V, h̃n

)
are consecutive left h̃n-extrema (see (160)

and the comments below). So, bp
(
V, h̃n

)
≤ z]n.

Thus, MIk ≤ Mp−1

(
V, h̃n

)
≤ bp

(
V, h̃n

)
≤ z]n, Hence, V

[
bp
(
V, h̃n

)]
≥ min

[MIk ,z
]
n]
V ≥ V (z) −

4 log2 n by (179) for the last inequality, and thus V (z) ≤ V
[
bp
(
V, h̃n

)]
+ 4 log2 n. Hence, using

the definition of p, we are in E
(n)
17

(
p, h̃n, z

)
(defined after (160)).

Also, MIk < z ≤ bIk+1 on E
(n,z)
22,k . So, either z]n < bIk+1 < MIk+1, either z]n ≥ bIk+1. In the

second case, V (bIk+1) ≥ min
[MIk ,z

]
n]
V ≥ V (z) − 4 log2 n by (179), so V (z) + h̃n ≤ V (bIk+1) +

h̃n + 4 log2 n ≤ V (bIk+1) + hn since C1 > 4, thus z]n ≤ bIk+1 + TV +
bIk+1

([hn,+∞[) ≤ MIk+1 by

definition of z]n and MIk+1. Hence in every case, bIk < MIk ≤ bp
(
V, h̃n

)
≤ z]n ≤MIk+1 < bIk+2,

and so bp
(
V, h̃n

)
∈]bIk ,bIk+2[.

We now also assume that ω ∈ E(n)
15 . We recall that since 1 ≤ k ≤ 3, there exists ik ∈ {−5, . . . , 6}

such that bIk = xik(V, hn) (as proved before (169)).

Also bIk is a left hn-minimum and since h̃n < hn, it is a fortiori a left h̃n-minimum, so is equal

to a bj
(
V, h̃n

)
, with −4 ≤ j ≤ 5 since −2 ≤ Ik ≤ 3 (see before (169)) and on E

(n)
15 , as already

proved, all the left h̃n-minima b`
(
V, h̃n

)
with |`| ≤ 8 are also left hn-minima except at most two

of them because hn < log n+C2 log2 n, thus the number of left h̃n-minima in
]
0,bIk

]
if bIk > 0

(resp.
[
bIk , 0

]
if bIk ≤ 0) is at most |Ik|+ 2 (resp. |Ik|+ 3). Also for this last reason, there are

no more than three left h̃n-minima in ]bIk ,bIk+2[, interval to which bp
(
V, h̃n

)
belongs as proved

previously on E
(n,z)
22,k , so |p| ≤ |j|+ 3 ≤ 8. Since we already proved that we are on E

(n)
17

(
p, h̃n, z

)
,

this gives E
(n,z)
22,k ∩ E

(n)
15 ⊂ ∪8

q=−8E
(n)
17

(
q, h̃n, z

)
.

Finally, by Lemmas 5.8 and 5.9, we have since n ≥ n9 ≥ n8 ≥ n7,

P
[
E

(n,z)
22,k ∩

(
E

(n)
3

)c] ≤ P
[(
E

(n)
15

)c]
+ P

[
E

(n,z)
22,k ∩ E

(n)
15 ∩

(
E

(n)
3

)c]
≤ P

[(
E

(n)
15

)c]
+ P

[(
E

(n)
3

)c ∩ ∪8
q=−8E

(n)
17

(
q, h̃n, z

)]
≤ (c20 + c21)(log2 n)3(log n)−3. (180)

Third case: There remains to consider E
(n,z)
23,k . We recall m+(z, i) from (175), and the definition

of the return time τ∗(y) := inf{k ≥ 1 : Sk = y} for y ∈ Z.

Using (12) (with bIk < MIk < m+(z, Ik)) in the first line, the Markov property in the second

one, (7) in the third one, we have on E
(n,z)
23,k for every ` ∈ N,

P
bIk
ω [τ(m+(z, i)) = `]|i=Ik ≤ P

bIk
ω [τ(m+(z, i)) < τ∗(bi)]|i=Ik

= ωbIk
P

bIk+1
ω [τ(m+(z, i)) < τ(bi)]|i=Ik

≤ exp[V (bIk)− V (MIk)]

≤ exp(−hn) = (log n)C1/n (181)

since V (MIk)− V (bIk) = H[Tq(V, hn)] ≥ hn with q such that bIk = bq(V, hn).
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Figure 9. Schema of the potential V , with z equal to z(9) on E
(n,z)
23,k ∩ E

(n)
27,k, and z(10)

on E
(n,z)
23,k ∩

(
E

(n)
27,k

)c
.

Let c28 := C1 + 4. The next step is to prove that

P
[
Sn = z, τ(bIk) ≤ n, E(n,z)

23,k ∩ E
(n)
5

]
≤ c29(log2 n)3(log n)−3 (182)

for some constant c29 > 0. To this aim, we consider the three following events, defined as

E
(n,z)
24,k :=

{
τ(bIk) + τ [bIk ,m

+(z, Ik)] < n− n(log n)−c28
}
,

E
(n,z)
25,k :=

{
τ(bIk) + τ [bIk ,m

+(z, Ik)] ∈
[
n− n(log n)−c28 , n

]}
, (183)

E
(n,z)
26,k :=

{
τ(bIk) + τ [bIk ,m

+(z, Ik)] > n
}
.

First, we have, conditioning by ω then applying the strong Markov property at stopping time
τ(bIk), then summing (181) for all the integers ` in

[
t− n(log n)−c28 , t

]
∩ N,

P
[
τ(bIk) ≤ n,E(n,z)

23,k ∩ E
(n,z)
25,k

]
= E

[
1{τ(bIk )≤n}∩E(n,z)

23,k

P
bIk
ω

(
τ(m+(z, i)) ∈

[
t− n(log n)−c28 , t

])
|i=Ik, t=n−τ(bIk )

]
≤ [n(log n)−c28 + 1](log n)C1/n ≤ 2(log n)−c28+C1 ≤ (log n)−3 (184)

since C1 − c28 = −4 and n ≥ n9 ≥ n3.

Also, on E
(n,z)
23,k ∩ {τ(bIk) ≤ n} ∩ E(n,z)

26,k , m+(z, Ik) ≤ z, and after hitting bIk , S does not hit

m+(z, Ik) > bIk before time n, so Sn < m+(z, Ik) ≤ z thus Sn 6= z. Hence,

P
[
Sn = z, τ(bIk) ≤ n,E(n,z)

23,k ∩ E
(n,z)
26,k

]
≤ P

[
Sn = z, Sn < m+(z, Ik) ≤ z

]
= 0. (185)

There only remains to consider E
(n,z)
24,k . To this aim, we introduce

E
(n,z)
27,k :=

{
max[m+(z,Ik), z] V ≤ V (z) + h̃n

}
. (186)
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We have, conditioning by ω then applying the strong Markov property at stopping time τ(bIk)+
τ [bIk ,m

+(z, Ik)],

P
[
Sn = z, τ(bIk) ≤ n,E(n,z)

23,k ∩ E
(n,z)
24,k ∩ E

(n,z)
27,k ∩ E

(n)
5 ∩ E(n)

15

]
= E

[
1{τ(bIk )≤n}∩E(n,z)

23,k ∩E
(n,z)
24,k ∩E

(n,z)
27,k ∩E

(n)
5 ∩E

(n)
15

Pm
+(z,Ik)

ω

(
St = z

)
|t=n−τ(bIk )−τ [bIk ,m

+(z,Ik)]

]
.

(187)

We introduce z↓n := z+TV +
z

(]−∞,−4 log2 n]). Assume that E
(n,z)
23,k holds and that bIk+1 < z↓n. So

we would have z ≤ bIk+1 < z↓n < z]n, and then V (bIk+1) > V (z)− 4 log2 n, so max
[bIk+1,z

]
n]
V =

V (z]n) ≤ V (z)+ h̃n+C0 < V (bIk+1)+4 log2 n+ h̃n+C0 < V (bIk+1)+hn since n ≥ n9 ≥ n3 and

C1 > 20, thus z]n < MIk+1. So we would have z↓n ∈ [bIk+1,MIk+1] with V (z↓n) ≤ V (z)−4 log2 n <

V (bIk+1) = min[bIk+1,MIk+1] V ≤ V (z↓n) which is not possible. So, z↓n ≤ bIk+1 on E
(n,z)
23,k .

Also on E
(n,z)
23,k , min[MIk ,z]

V = V [m+(z, Ik)] > V (z) − 4 log2 n as in (177), and min
[z,z↓n]

V ≥

V (z)− 4 log2 n+ log(ε0) by ellipticity. So we have on E
(n,z)
23,k ,

min
[MIk ,z

↓
n]
V ≥ V (z)− 4 log2 n+ log(ε0). (188)

Notice that max
[z,z↓n]

V < V (z) + h̃n on E
(n,z)
23,k . So we have on E

(n,z)
23,k ∩ E

(n,z)
27,k ,

max
[m+(z,Ik),z↓n]

V ≤ V (z) + h̃n. (189)

Now on E
(n,z)
23,k ∩ E

(n,z)
27,k ∩ E

(n)
5 ∩ E(n)

15 , by Markov inequality and (8), then by (188), (189) and

−(log n)3 ≤ x−10(V, log n) ≤ x−10

(
V, h̃n

)
≤ M−5

(
V, h̃n

)
≤ M−3 ≤ MIk < D+

Ik ≤ m+(z, Ik) ≤
z < z↓n ≤ bIk+1 ≤ b4 ≤ b6(V, h̃n

)
≤ x12

(
V, h̃n

)
≤ x12(V, log n) ≤ (log n)3 (because on E

(n)
15 there

are similarly as previously, in [M−3, 0], at most two Mj

(
V, h̃n

)
which are not equal to some

M`(V, hn) so M−5

(
V, h̃n

)
≤M−3 and similarly b4 ≤ b6(V, h̃n

)
), we get

Pm
+(z,Ik)

ω

[
τ(Mi) ∧ τ(z↓n) ≥ 2−1n(log n)−c28

]
|i=Ik

(190)

≤ 2n−1(log n)c28ε−1
0 (z↓n −MIk)2 exp

(
max

[m+(z,Ik),z↓n]
V −min

[MIk ,z
↓
n]
V
)

≤ 8(log n)c28+6n−1ε−2
0 exp

(
h̃n + 4 log2 n

)
= 8(log n)c28−2C1+10ε−2

0 ≤ (log n)−3

since c28− 2C1 + 10 = 14−C1 < −6 and n ≥ n9 ≥ n3. Moreover on E
(n,z)
23,k , we get by definition

of E
(n,z)
23,k ,

V (z) < min[D+
Ik
,z] V + 4 log2 n ≤ V

[
D+
Ik

]
+ 4 log2 n,

and as a consequence, using (178) which remains true on E
(n,z)
23,k ,

V (MIk) ≥ V (D+
Ik)− 4 log2 n+ hn ≥ V (z)− 8 log2 n+ hn. (191)

Hence on E
(n,z)
23,k ∩ E

(n,z)
27,k ∩ E

(n)
5 ∩ E(n)

15 , using (7), then (189) and (191),

Pm
+(z,Ik)

ω

[
τ(Mi) < τ(z↓n)

]
|i=Ik

(192)

≤
(
z↓n −m+(z, Ik)

)
exp

[
max

[m+(z,Ik), z↓n]
V − V (MIk)

]
≤ 2(log n)3 exp

[
h̃n + 8 log2 n− hn

]
= 2(log n)11−C1 ≤ (log n)−3
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since 11− C1 < −9 and n ≥ n9 ≥ n3. Consequently on E
(n,z)
23,k ∩ E

(n,z)
27,k ∩ E

(n)
5 ∩ E(n)

15 ,

Pm
+(z,Ik)

ω

[
τ(z↓n) ≥ 2−1n(log n)−c28

]
≤ (190) + (192) ≤ 2(log n)−3. (193)

Notice that for every ` ∈ N, by reversibility and ellipticity (see (13) and (16)),

P z
↓
n
ω (S` = z) ≤ µω(z)/µω(z↓n) ≤

(
1 + eC0

)
exp[−V (z) + V (z↓n)] ≤ ε−1

0 (log n)−4. (194)

On E
(n,z)
23,k ∩E

(n,z)
27,k ∩E

(n)
5 ∩E(n)

15 , for every t ≥ n(log n)−c28 , by (193), the strong Markov property

and (194), since n ≥ n9 ≥ n3,

Pm
+(z,Ik)

ω

(
St = z

)
≤ Pm

+(z,Ik)
ω

[
τ(z↓n) ≥ 2−1n(log n)−c28

]
+ Pm

+(z,Ik)
ω

[
St = z, τ(z↓n) < 2−1n(log n)−c28

]
≤ 2(log n)−3 + Em

+(z,Ik)
ω

(
1{τ(z↓n)<2−1n(logn)−c28}P

z↓n
ω (S` = z)|`=t−τ(z↓n)

)
≤ 2(log n)−3 + ε−1

0 (log n)−4 ≤ 3(log n)−3.

Finally, this and (187) (on which t ≥ n(log n)−c28 thanks to E
(n,z)
24,k ) give

P
[
Sn = z, τ(bIk) ≤ n,E(n,z)

23,k ∩ E
(n,z)
24,k ∩ E

(n,z)
27,k ∩ E

(n)
5 ∩ E(n)

15

]
≤ 3(log n)−3. (195)

There only remains to estimate P
[(
E

(n,z)
27,k

)c ∩ E(n,z)
23,k

]
. We define (see Figure 9 with z = z(10)),

V −2,n := V −z [.+ TV −z ([h̃n,+∞[)]− V −z [TV −z ([h̃n,+∞[)],

V −3,n := V −2,n[.+ TV −2,n
(]−∞,−h̃n])]− V −2,n[TV −2,n

(]−∞,−h̃n])],

E
(n)
28 :=

{
TV −z ([h̃n,+∞[) < TV −z (]−∞,−4 log2 n[)

}
,

E
(n)
29 :=

{
TV −2,n

(]−∞,−h̃n]) < TV −2,n
([C1 log2 n,+∞[)

}
,

E
(n)
30 :=

{
TV −3,n

([h̃n,+∞[) < TV −3,n
(]−∞,−4 log2 n− C0[)

}
.

Notice that E
(n,z)
23,k ∩

(
E

(n,z)
27,k

)c
is included in E

(n)
28 because max[0,z−m+(z,Ik)] V

−
z > h̃n by (186)

and min[0,z−m+(z,Ik)] V
−
z = V −z (z − m+(z, Ik)) > −4 log2 n by definitions of m+(z, Ik) (see

(175)) and of E
(n)
23,k. It is also included in E

(n)
29 , otherwise there would be a left hn-maximum

of V in ]m+(z, Ik), z[ and so in ]MIk ,bIk+1[ which is not possible. Finally, E
(n,z)
23,k ∩

(
E

(n,z)
27,k

)c
is also included in E

(n)
30 because min[MIk ,z]

V > V (z) − 4 log2 n as in (177) and V (MIk) ≥
V (z)− 8 log2 n+ hn ≥ V (z) + h̃n + C0 by (191) and since C1 > 20 and n ≥ n9 ≥ n3. Using the

independence of E
(n)
28 , E

(n)
29 and E

(n)
30 , provided by the strong Markov property, then applying

(17), we get

P
[(
E

(n,z)
27,k

)c ∩ E(n,z)
23,k

]
≤ P

[
E

(n)
28

]
P
[
E

(n)
29

]
P
[
E

(n)
30

]
≤ c30(log2 n)3(log n)−3, (196)

with c30 := 10× 2(C1 + 1)× 12 since n ≥ n9 ≥ n3. This, combined with (195) and Lemma 5.8,
gives, where LHS means left hand side and since n ≥ n9 ≥ n7,

P
[
Sn = z, τ(bIk) ≤ n,E(n,z)

23,k ∩ E
(n,z)
24,k ∩ E

(n)
5

]
≤ LHS of (195) + P

[(
E

(n)
15

)c]
+ P

[(
E

(n,z)
27,k

)c ∩ E(n,z)
23,k

]
≤ (3 + c20 + c30)(log2 n)3(log n)−3. (197)
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Combining this, (184) and (185) proves (182) with c29 := c20 + c30 + 4 since n ≥ n3. Finally,
(176), (180) and (182) prove (174) with c27 := ε−1

0 + c20 + c21 + c29 for every n ≥ n9, z ∈ Z and
1 ≤ k ≤ 3, which ends the proof of Lemma 5.13. �

Proof of Lemma 5.11: We prove similarly as in the proof of Lemma 5.13 that for all n ≥ n9,
z ∈ Z and 1 ≤ k ≤ 3,

P
[
Sn = z,bIk−1 ≤ z < D−Ik , τ(bIk) ≤ n,E(n)

5 , (E
(n)
3 )c

]
≤ c27(log2 n)3(log n)−3. (198)

Combining (198), (171) and (174) proves Lemma 5.11 with c25 := c26 + 2c27. �

Proof of Proposition 5.7: Notice that for n ≥ n9 and k ≥ 1, on {τ(bIk) ≤ n < τ(bIk+1
)},

the random walk S does not reach the bi with i ∈ Z \ {I1, . . . , Ik} before time n, and so Sn
belongs to

]
min{bIi−1, 1 ≤ i ≤ k},max{bIi+1, 1 ≤ i ≤ k}

[
, which is equal to ∪ki=1]bIi−1,bIi+1[.

Consequently, using (165) and Lemma 5.10 in the second inequality, for all n ≥ n9 and all z ∈ Z,
with c31 := c24 + 2,

P
(
Sn = z, (E

(n)
3 )c

)
≤ P

[
τ(bI1) > n

]
+ P

[
Sn = z, (E

(n)
3 )c ∩ ∪3

k=1{τ(bIk) ≤ n < τ(bIk+1
)}
]

+ P
[
τ(bI4) ≤ n

]
≤

3∑
k=1

P
(
τ(bIk) ≤ n < τ(bIk+1

), Sn = z ∈ ∪ki=1]bIi−1,bIi+1[, (E
(n)
3 )c

)
+ c31

(log2 n)3

(log n)3

≤
3∑
i=1

3∑
k=i

P
(
τ(bIk) ≤ n < τ(bIk+1

), Sn = z ∈]bIi−1,bIi+1[, (E
(n)
3 )c

)
+ c31

(log2 n)3

(log n)3

=
3∑
i=1

P
[
τ(bIi) ≤ n < τ(bI4), Sn = z ∈]bIi−1,bIi+1[, (E

(n)
3 )c

]
+ c31

(log2 n)3

(log n)3

≤ c19(log2 n)3(log n)−3,

with c19 := 3c25 + 3 + c31 and where we used Lemmas 5.11 and 7.1 in the last line since
n ≥ n9 ≥ max(n3, p3). This proves Proposition 5.7. �

5.4. Proof of the upper bound in Theorem 1.1. Recall E
(n)
C (z) from (85). We have, for

all n ≥ max(n9, p2) and all z ∈ Z,

P
(
Sn = z,

(
E

(n)
C (z)

)c)
≤ P

(
Sn = z,

(
E

(n)
3

)c)
+ P

[(
E

(n)
5

)c]
+ P

[(
E

(n)
6

)c ∩ E(n)
5

]
+P
[
Sn = z,

(
E

(n)
7 (z)

)c
, E

(n)
3 , E

(n)
5

]
+ P

[(
E

(n)
4 (z)

)c ∩ E(n)
3 ∩ E(n)

6 ∩ E(n)
7 (z)

]
≤ (c19 + 2 + c9)(log2 n)3(log n)−3 + c10(log n)−2−δ1/2

by Proposition 5.7, Lemmas 7.1 and 7.2, Proposition 5.2 and Lemma 5.1. This and Proposition
4.8 give, since δ1 ∈]0, 2/3[,

sup
z∈(2Z+n)

[
P
(
Sn = z

)
− 2σ2

(log n)2
ϕ∞

(
σ2z

(log n)2

)]
≤ o
(
(log n)−2

)
, (199)

as n→ +∞, which proves the upper bound in Theorem 1.1. �

6. Proof of the lower bound of Theorem 1.1

Let ε > 0. Since lim±∞ ϕ∞ = 0, we can fix some A0 > 0 such that sup|x|≥A0
|ϕ∞(σ2x)| < σ−2ε.
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In this section, T ↑V and T ↓V always denote h̃n-slopes, that is, T ↑V = T ↑
V,h̃n

and T ↓V = T ↓
V,h̃n

, where

h̃n = log n − 2C1 log2 n = hn − C1 log2 n as before. In what follows, we consider independent

slopes Z↑2k, −9 ≤ k ≤ 9 and Z↓2k+1, −9 ≤ k ≤ 9, each Z↑2k having the same law as T ↑V
(
i.e. T ↑

V,h̃n

)
,

and each Z↓2k+1 having the same law as T ↓V
(
i.e. T ↓

V,h̃n

)
.

Recall that ζ is defined in (24). We also introduce Y ↑−1 := ζ
(
Z↓−1

)
, which is independent of Z↑0 ,

with Y ↑−1 =law ζ
(
T ↓V
)

=law T ↑∗
V −,h̃n

=: T ↑∗
V − by Proposition 2.12, and `

(
Y ↑−1

)
= `
(
Z↓−1

)
.

First case: We start with the case z ≤ −Γn.

Using Lemma 2.6 eq. (44), we have for each z ∈ Z such that z − Γn ≤ 0,

J6(n, z) := P
(
b
h̃n

= z − Γn
)

=
P
[
− z + Γn < `

(
Z↑0
)]

E
(
`
(
Z↑0
)

+ `
(
Z↓1
)) . (200)

Using the uniform continuity of ϕ∞ on R and supz∈[−A0(logn)2,A0(logn)2]

∣∣∣∣ σ2z
(logn)2

− σ2
(
z−Γn

)(
h̃n
)2 ∣∣∣∣

= o(1) as n→ +∞ since δ1 < 2/3 and h̃n ∼n→+∞ log n in the first inequality, then ‖ϕ∞‖∞ =:

supR |ϕ∞| <∞ and h̃n ∼n→+∞ log n in the second one, and finally Theorem 1.4 in the last one,
there exists n10 ≥ max(n9, p2) (with p2 defined in Lemma 7.2) such that for all n ≥ n10, for all
z ∈ [−A0(log n)2, A0(log n)2] such that z − Γn ≤ 0,

σ2

(log n)2
ϕ∞

(
σ2z

(log n)2

)
≤ σ2

(log n)2
ϕ∞

(
σ2
(
z − Γn

)(
h̃n
)2 )

+ ε(log n)−2

≤ σ2(
h̃n
)2ϕ∞(σ2

(
z − Γn

)(
h̃n
)2 )

+ 2ε(log n)−2

≤ J6(n, z) + 3ε(log n)−2. (201)

Also for n ≥ n10, if |z| > A0(log n)2, then by definition of A0,

σ2

(log n)2
ϕ∞

(
σ2z

(log n)2

)
≤ ε

(log n)2
≤ J6(n, z) + 3ε(log n)−2. (202)

The objective is to approximate progressively this quantity J6(n, z) by P(Sn = z), by using
Theorems 2.4 (i) and 2.5 eq. (29) (see (211) below) and Lemma 4.7. To this aim, we introduce
the following events.

E
(n)
31 :=

{
T
Z↑0

(
h̃n
)
> Γn

}
∩
{
T
Y ↑−1

(
h̃n
)
> Γn

}
,

E
(n)
32 :=

{
∀k ∈

[
T
Z↑0

(
h̃n
)
, `
(
Z↑0
)]
, Z↑0 (k) ≥ 9 log2 n

}
,

E
(n)
33 :=

{
∀k ∈

[
T
Y ↑−1

(
h̃n
)
, `
(
Y ↑−1

)]
, Y ↑−1(k) ≥ 9 log2 n

}
,

E
(n)
34 := ∩9

k=−9

{
H
(
Z↑2k
)
≥ log n+ C2 log2 n

}
∩ ∩9

k=−9

{
H
(
Z↓2k+1

)
≥ log n+ C2 log2 n

}
,

E
(n)
35 :=

{ 9∑
k=−9

`
(
Z↑2k
)

+
9∑

k=−9

`
(
Z↓2k+1

)
≤ (log n)2+δ1

}
.

Recall that Z↑0 =law T ↑V and Y ↑−1 =law T ↑∗V − (with h = h̃n). So by Lemma 7.2 eq. (228), there
exists n11 ≥ n10 such that for all n ≥ n11,

P
[(
E

(n)
31

)c] ≤ P
[
TT ↑V

(
h̃n
)
≤ Γn

]
+ P

[
TT ↑∗

V−

(
h̃n
)
≤ Γn

]
≤ ε(log n)−2. (203)
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Notice that, using Theorem 2.3 (i) with its notation and h = h̃n, since Z↑0
(
T
Z↑0

(
h̃n
))
∈
[
h̃n, h̃n+

C0

[
by ellipticity (16), there exists n12 ≥ n11 such that for all n ≥ n12,

P
[(
E

(n)
32

)c]
= P

[
∃k ∈

[
T
Z↑0

(
h̃n
)
, `
(
Z↑0
)]
, Z↑0 (k) < 9 log2 n

]
≤ P

[
TV
(
9 log2 n− h̃n

)
< M ]

h̃n
, min

[0,M]

h̃n
]
V > −h̃n − C0, V

(
M ]

h̃n

)
≥ 0
]

≤ P
[
TV
(
h̃n − 9 log2 n

)
< TV (−9 log2 n− C0)

]
≤ 22(log2 n)(log n)−1, (204)

by the strong Markov property at TV
(
9 log2 n− h̃n

)
, (16) and (17) since n ≥ n12 ≥ n3. We prove

similarly that P
[(
E

(n)
33

)c] ≤ 22(log2 n)(log n)−1 for all n ≥ n12, using Theorem 2.9 (i) instead of
Theorem 2.3.

Also, using (61) with h = h̃n, there exists n13 ≥ n12 such that, for all n ≥ n13, and all
−9 ≤ k ≤ 9, since n13 ≥ n3,

P
[
H(Z↑2k) < log n+ C2 log2 n

]
= P

[
H
(
T ↑V
)
− h̃n < (2C1 + C2) log2 n

]
≤ 4(2C1 + C2)(log2 n)(log n)−1.

This remains true for H
(
Z↑2k
)

replaced by H
(
Z↓2k+1

)
=law H

(
T ↓V
)

=law H
(
T ↑−V

)
, −9 ≤ k ≤ 9

by Theorem 2.3 (ii) (or by the inequality after (61)). Consequently, we get P
[(
E

(n)
34

)c] ≤
152(2C1 + C2)(log2 n)(log n)−1 for all n ≥ n13.

Moreover, we have P
[(
E

(n)
35

)c] ≤ 19P
[
`
(
T ↑V
)
> (log n)2+δ1/50

]
+ 19P

[
`
(
T ↓V
)
> (log n)2+δ1/50

]
≤

38(log n)−8 for all n ≥ n13 by Lemma 7.1 eq. (223) and (224), since n13 ≥ n9 ≥ p3.

Also, using (200) then P
[(
E

(n)
i

)c]
= o(1) for 31 ≤ i ≤ 35, there exists n14 ≥ n13 such that, for

all n ≥ n14 and all z ≤ Γn, E
(
`
(
Z↑0
)

+ `
(
Z↓1
))
≥ c7(log n)2 by Lemma 2.15 and

J6(n, z) ≤ E

(
1{−z+Γn<`(Z

↑
0 )}1∩35i=31E

(n)
i

E
(
`
(
Z↑0
)

+ `
(
Z↓1
))

(∑`(Z↑0 )−1
i=0 e−Z

↑
0 (i) +

∑`(Y ↑−1)

i=1 e−Y
↑
−1(i)

)
(∑`(Z↑0 )−1

i=0 e−Z
↑
0 (i) +

∑`(Y ↑−1)

i=1 e−Y
↑
−1(i)

)
)

+
ε

(log n)2
.

(205)
The next step is to deal with the sums in numerator in the previous expectation. Notice that

on E
(n)
32 ∩ E

(n)
35 , we have `

(
Z↑0
)
≤ (log n)3 − 1 and so

`(Z↑0 )−1∑
i=T

Z
↑
0

(h̃n)

e−Z
↑
0 (i) ≤

[
`(Z↑0 )− T

Z↑0

(
h̃n
)]

(log n)−9 ≤ (log n)−6. (206)

Similarly,
∑`(Y ↑−1)

i=T
Y
↑
−1

(h̃n)
e−Y

↑
−1(i) ≤ (log n)−6 on E

(n)
33 ∩ E

(n)
35 since `

(
Y ↑−1

)
= `
(
Z↓−1

)
.

Also using Theorem 2.3 (i) since Z↑0 =law T ↑V , then applying Proposition 7.3, for large n, for all
i ≥ Γn,

E
[

exp
(
− Z↑0 (i)

)
1{i<T

Z
↑
0

(h̃n)}

]
= E

[
e−V (i)1{i<TV (h̃n)} | TV (h̃n) < TV (R∗−)

]
≤ c13i

−3/2.

This remains true with Z↑0 and V replaced by Y ↑−1 =law T ↑∗V − and V−, and TV (R∗−) by T ∗V −(R−)
by Theorem 2.9 (i) and Proposition 7.3. So there exists c32 > 0 and n15 ≥ n14 such that, for all



ANNEALED LOCAL LIMIT THEOREM FOR SINAI’S RANDOM WALK 67

n ≥ n15,

E

( ∑
Γn≤i<T

Z
↑
0

(h̃n)

e−Z
↑
0 (i)

)
=

∞∑
i=Γn

E

[
e−Z

↑
0 (i)1{

i<T
Z
↑
0

(h̃n)
}] ≤ ∞∑

i=Γn

c13

i3/2
≤ c32

(log n)
2
3

+
δ1
2

, (207)

since Γn =
⌊
(log n)4/3+δ1

⌋
. This remains true with Z↑0 replaced by Y ↑−1.

Combining (205) with (206), (207), and the corresponding inequalities for V− and Y ↑−1, `
(
Z↑0
)
≥

T
Z↑0

(
h̃n
)
> Γn and `

(
Y ↑−1

)
≥ T

Y ↑−1

(
h̃n
)
> Γn on E

(n)
31 ,

∑`(Z↑0 )−1
i=0 e−Z

↑
0 (i) ≥ 1 and again E

(
`
(
Z↑0
)

+

`
(
Z↓1
))
≥ c7(log n)2, there exists n16 ≥ n15 such that, for all n ≥ n16, for every j ∈ {0, 1}, for

all z ≤ Γn (although J6 does not depend on j),

J6(n, z) ≤ E

(
1{−z+Γn<`(Z

↑
0 )}1∩35i=31E

(n)
i

E
(
`
(
Z↑0
)

+ `
(
Z↓1
))(∑Γn−1

i=0 e−Z
↑
0 (i) +

∑Γn−1
i=1 e−Y

↑
−1(i)

)
(∑`(Z↑0 )−1

i=0 e−Z
↑
0 (i) +

∑`(Y ↑−1)

i=1 e−Y
↑
−1(i)

)
)

+ 2ε(log n)−2

≤ J7(j, n, z) + 2ε(log n)−2, (208)

where for j ∈ {0, 1},

J7(j, n, z) (209)

:= E

(
1{−z+Γn<`(Z

↑
0 )}1∩35i=31E

(n)
i

E
(
`
(
Z↑0
)

+ `
(
Z↓1
))(∑Γn

k=−Γn

[
e−Z

↑
0 (−(k+j))1{k+j≤0} + e−Y

↑
−1(k+j)1{k+j>0}

])
(∑`(Z↑0 )−1

i=0 e−Z
↑
0 (i) +

∑`(Y ↑−1)

i=1 e−Y
↑
−1(i)

)
)

(210)

≤
Γn∑

k=−Γn

E

(
1{−z−k<`(Z↑0 )}∩∩35i=31E

(n)
i

(
e−Z

↑
0 (−(k+j))1{k+j≤0} + e−Y

↑
−1(k+j)1{k+j>0}

)
E
(
`
(
Z↑0
)

+ `
(
Z↓1
))(∑`(Z↑0 )−1

i=0 e−Z
↑
0 (i) +

∑`(Y ↑−1)

i=1 e−Y
↑
−1(i)

)
)
.

Now, for −Γn ≤ k ≤ Γn, applying Theorems 2.4 (i) and 2.5 eq. (29), we have for every

nonnegative measurable function ϕ, since {b
h̃n

= z+k} =
{
x0

(
V, h̃n

)
= z+k

}
∩
{
θ
(
T0

(
V, h̃n

))
∈⊔

t∈N∗ Rt+
}

=
{
x0

(
V, h̃n

)
= z+k

}
∩
{
V
(
x0

(
V, h̃n

))
< V

(
x1

(
V, h̃n

))}
and ]

{
0 ≤ i < `(T ↑V ), −i =

z + k
}

= 1{−z−k<`(T ↑V )} for each k ∈ Z such that z + k ≤ 0,

E
[
ϕ
(
θ
(
Ti
(
V, h̃n

))
,−18 ≤ i ≤ 19

)
1{b

h̃n
=z+k}

]
=E

[
ϕ
(
Z↑−18, Z

↓
−17, Z

↑
−16, . . . , Z

↑
−2, Z

↓
−1, Z

↑
0 , Z

↓
1 , . . . , Z

↑
18, Z

↓
19

) 1{−z−k<`(Z↑0 )}

E
(
`
(
Z↑0
)

+ `
(
Z↓1
))]. (211)

In the previous equality, θ(Ti(V, h̃n)) becomes Z↑i or Z↓i depending on the parity of i.

So, since Y ↑−1 = ζ
(
Z↓−1

)
and z ≤ −Γn in this first case, we get, as explained below,

J7(j, n, z) ≤
Γn∑

k=−Γn

E

(
e−θ[T0(V,h̃n)](−(k+j))1{k+j≤0} + e−ζ[θ(T−1(V,h̃n))](k+j)1{k+j>0}∑`(T0(V,h̃n))−1
i=0 e−θ[T0(V,h̃n)](i) +

∑`(T−1(V,h̃n))
i=1 e−ζ[θ(T−1(V,h̃n))](i)
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1{b
h̃n

=z+k}∩E(n)
3 ∩E

(n)
5 ∩E

(n)
6

)

= E

(∑Γn
k=−Γn

e−V (blogn−k−j)1{blogn=z+k}∩E(n)
3 ∩E

(n)
5 ∩E

(n)
6∑x1(V,logn)−1

i=x−1(V,logn) e
−V (i)

)
, (212)

for all n ≥ n16, j ∈ {0, 1} and z ≤ −Γn. Indeed, when applying (211) to the quantity after

(210), E
(n)
34 corresponds to (i.e. becomes) a set Ẽ

(n)
34 included in E

(n)
3 , on which we have in

particular H
[
Ti
(
V, h̃n

)]
≥ log n+ C2 log2 n for all −13 ≤ i ≤ 13 and so xj

(
V, h̃n

)
= xj(V, log n)

for j ∈ {−12, . . . , 12} and so bh̃n = blogn = x0(V, log n) (when bh̃n = z + k ≤ 0); Z↑0 corresponds

to θ
(
T0

(
V, h̃n

))
= θ
(
T0

(
V, log n

))
=
(
V (blogn + i) − V (blogn), 0 ≤ i ≤ x1(V, log n) − blogn

)
and

Y ↑−1 to ζ
(
θ
[
T−1

(
V, h̃n

)])
= (V (blogn − i) − V (blogn), 0 ≤ i ≤ blogn − x−1(V, log n)) so E

(n)
31

corresponds to a set included in E
(n)
6 since h̃n < log n, E

(n)
35 corresponds to a set included in{∣∣x−12

(
V, h̃n

)
−x12

(
V, h̃n

)∣∣ ≤ (log n)2+δ1
}

, and the intersection of this and Ẽ
(n)
34 is itself included

in
{∣∣x−12

(
V, log n

)
− x12

(
V, log n

)∣∣ ≤ (log n)2+δ1
}

, and so in E
(n)
5 , whereas E

(n)
32 and E

(n)
33 are

not necessary anymore.

Notice that
∑Γn

k=−Γn
e−V (blogn−k−j) ≤

∑x1(V,logn)−1
i=x−1(V,logn) e

−V (i) =
∑M+−1

i=M− e
−V (i) on E

(n)
6 ∩ {blogn ≤

0} ∩ E(n)
3 with M± defined in (87) since V (x±1)− V (x0) ≥ log n+ C0 for n ≥ n16 ≥ n3. Thus,

using Lemma 5.1, there exists n17 ≥ n16 such that, for all n ≥ n17, j ∈ {0, 1} and z ≤ −Γn

(writing E
(n)
i (z) instead of E

(n)
i for i 6= 3),

J7(j, n, z) ≤ E

(∑Γn
k=−Γn

e−V (z−j)1{z=blogn−k}∩∩6`=3E
(n)
` (z)∑M+−1

i=M− e
−V (i)

)
+ ε(log n)−2, (213)

where we write E
(n)
` (z) for E

(n)
` for ` ∈ {3, 5, 6} for convenience. Hence, using (208), then (213),

M− < z < M+ on E
(n)
6 ∩ {z = blogn − k} for |k| ≤ Γn and (88) gives for all n ≥ n17 and

z ∈ (2Z + n) such that z ≤ −Γn,

2J6(n, z) ≤ J7(1, n, z) + J7(0, n, z) + 4ε(log n)−2

≤ E

(∑Γn
k=−Γn

µ̂n(z)1{z=blogn−k}∩∩6`=3E
(n)
` (z)∑M+−1

i=M− e
−V (i)

)
+ 6ε(log n)−2

= E
(
ν̂n(z)1{|blogn−z|≤Γn}∩∩6`=3E

(n)
` (z)

)
+ 6ε(log n)−2,

where we used µ̂n(2Z) = µ̂n(2Z + 1) =
∑M+−1

i=M− e
−V (i) and the definition (89) of ν̂n since n and

z have the same parity.

Applying Lemma 4.7, there exists n18 ≥ n17 such that, for all n ≥ n18 and all z ∈ (2Z+n) such
that z ≤ −Γn,

2J6(n, z) ≤ E
(
Pω[Sn = z] + 5(log n)−3

)
+ 6ε(log n)−2 ≤ P(Sn = z) + 7ε(log n)−2.

This, (201) and (202) lead to 2σ2

(logn)2
ϕ∞
(

σ2z
(logn)2

)
≤ P(Sn = z) + 13ε(log n)−2 for all n ≥ n18 and

all z ∈ (2Z + n) such that z ≤ −Γn.

Second case: We now consider the case z > Γn. We use the same Z↑2k, Z
↓
2k+1, Y ↑−1 = ζ

(
Z↓−1

)
and E

(n)
i as in the first case.
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Using Lemma 2.6 with x = z + Γn, we have when z + Γn > 0,

J+
6 (n, z) := P

(
b
h̃n

= z + Γn
)

=
P
(
z + Γn ≤ `(Z↓−1)

)
E
(
`
(
Z↑0
)

+ `
(
Z↓1
)) . (214)

Similarly as in (201), for all n ≥ n18, for all z ∈]Γn, A0(log n)2],

σ2

(log n)2
ϕ∞

(
σ2z

(log n)2

)
≤ σ2(

h̃n
)2ϕ∞(σ2

(
z + Γn

)(
h̃n
)2 )

+
2ε

(log n)2
≤ J+

6 (n, z) +
3ε

(log n)2
. (215)

Also σ2

(logn)2
ϕ∞

(
σ2z

(logn)2

)
≤ J+

6 (n, z) + 3ε
(logn)2

for all n ≥ n18 and all z ≥ max(Γn, A0(log n)2)

as in (202), and so for all z > Γn.

Similarly as in (205) and (208), using 1{z+Γn≤`(Z↓−1)} ≤ 1{z+k≤`(Z↓−1)} instead of 1{−z+Γn<`(Z
↑
0 )}

≤ 1{−z−k<`(Z↑0 )}, we get for all n ≥ n18 and all z > Γn, J+
6 (n, z) ≤ J+

7 (j, n, z) + 2ε(log n)−2 for

each j ∈ {0, 1}, where for j ∈ {0, 1},

J+
7 (j, n, z) (216)

:=

Γn∑
k=−Γn

E

(
1{z+k≤`(Z↓−1)}∩∩35i=31E

(n)
i

(
e−Z

↑
0 (−(k+j))1{k+j≤0} + e−Y

↑
−1(k+j)1{k+j>0}

)
E
(
`
(
Z↑0
)

+ `
(
Z↓1
))(∑`(Z↑0 )−1

i=0 e−Z
↑
0 (i) +

∑`(Y ↑−1)

i=1 e−Y
↑
−1(i)

)
)
.

Now, applying Theorems 2.4 (ii) and 2.5 eq. (29), we have for every nonnegative measurable

function ϕ, since {b
h̃n

= z + k} =
{
x1

(
V, h̃n

)
= z + k

}
∩
{
θ
(
T0

(
V, h̃n

))
∈
⊔
t∈N∗ Rt−

}
when

z + k > 0,

E
[
ϕ
(
θ(Ti(V, h̃n)),−17 ≤ i ≤ 20

)
1{b

h̃n
=z+k}

]
=E

[
ϕ
(
Z↑−18, Z

↓
−17, Z

↑
−16, . . . , Z

↑
−2, Z

↓
−1, Z

↑
0 , . . . , Z

↑
18, Z

↓
19

) 1{z+k≤`(Z↓−1)}

E
(
`
(
Z↑0
)

+ `
(
Z↓1
))]. (217)

In the previous equality, θ(Ti(V, h̃n)) becomes Z↑i−1 or Z↓i−1 depending on the parity of i.

So, since Y ↑−1 = ζ
(
Z↓−1

)
and z > Γn, we get, similarly as in (212), with bh̃n = blogn = x1(V, log n),

and using the definition (87) of M± on {blogn > 0}.

J+
7 (j, n, z) ≤

Γn∑
k=−Γn

E

(
e−θ[T1(V,h̃n)](−(k+j))1{k+j≤0} + e−ζ[θ(T0(V,h̃n))](k+j)1{k+j>0}∑`(T1(V,h̃n))−1
i=0 e−θ[T1(V,h̃n)](i) +

∑`(T0(V,h̃n))
i=1 e−ζ[θ(T0(V,h̃n))](i)

1{b
h̃n

=z+k}∩E(n)
3 ∩E

(n)
5 ∩E

(n)
6

)

= E

(∑Γn
k=−Γn

e−V (blogn−k−j)1{blogn=z+k}∩E(n)
3 ∩E

(n)
5 ∩E

(n)
6∑M+−1

i=M− e
−V (i)

)
, (218)

for all n ≥ n18, j ∈ {0, 1} and z > Γn.

We conclude as in the first case that 2σ2

(logn)2
ϕ∞
(

σ2z
(logn)2

)
≤ P(Sn = z) + 13ε(log n)−2 for all

n ≥ n18 and all z ∈ (2Z + n) such that z > Γn.

Third case: We finally consider the case −Γn < z ≤ Γn.
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We use the same notation as in the first case. Notice that (200), (201), (202), (205), (208) and
(210) remain valid when n ≥ n18 and −Γn < z ≤ Γn, with the same definitions of J6 and J7.
However in this third case, that is, for every n ≥ n18 and −Γn < z ≤ Γn, for j ∈ {0, 1},

J7(j, n, z) ≤ J8(j, n, z) + J9(j, n, z) + J10(j, n, z), (219)

where

J8(j, n, z)

:=

−z∑
k=−Γn

E

(
1{−z−k<`(Z↑0 )}∩∩35i=31E

(n)
i

(
e−Z

↑
0 (−(k+j))1{k+j≤0} + e−Y

↑
−1(k+j)1{k+j>0}

)
E
(
`
(
Z↑0
)

+ `
(
Z↓1
))(∑`(Z↑0 )−1

i=0 e−Z
↑
0 (i) +

∑`(Y ↑−1)

i=1 e−Y
↑
−1(i)

)
)
,

J9(j, n, z)

:=

Γn∑
k=−z+1

E

((
1− 1{z+k≤`(Z↓−1)}

)
1∩35i=31E

(n)
i

(
e−Z

↑
0 (−(k+j))1{k+j≤0} + e−Y

↑
−1(k+j)1{k+j>0}

)
E
(
`
(
Z↑0
)

+ `
(
Z↓1
))(∑`(Z↑0 )−1

i=0 e−Z
↑
0 (i) +

∑`(Y ↑−1)

i=1 e−Y
↑
−1(i)

)
)
,

J10(j, n, z)

:=

Γn∑
k=−z+1

E

(
1{z+k≤`(Z↓−1)}1∩35i=31E

(n)
i

(
e−Z

↑
0 (−(k+j))1{k+j≤0} + e−Y

↑
−1(k+j)1{k+j>0}

)
E
(
`
(
Z↑0
)

+ `
(
Z↓1
))(∑`(Z↑0 )−1

i=0 e−Z
↑
0 (i) +

∑`(Y ↑−1)

i=1 e−Y
↑
−1(i)

)
)
.

We first notice that, since −`(Z↑0 ) + 2 ≤ −Γn + 1 ≤ −z + 1 ≤ Γn ≤ `(Y ↑−1) − 1 on E
(n)
31 for

−Γn < z ≤ Γn, and using 1{z+Γn≤`(Z↓−1)} ≤ 1{z+k≤`(Z↓−1)}, there exists n19 ≥ n18 such that, for

all n ≥ n19, all −Γn < z ≤ Γn, and all j ∈ {0, 1},

0 ≤ J9(j, n, z) ≤ E

(
1− 1{z+Γn≤`(Z↓−1)}

E
(
`
(
Z↑0
)

+ `
(
Z↓1
)) ) = P

(
bh̃n = 0

)
− P

(
bh̃n = z + Γn

)
≤ σ2(

h̃n
)2(ϕ∞(0)− ϕ∞

(
σ2(z + Γn)(

h̃n
)2 ))

+ ε(log n)−2/4

≤ ε(log n)−2/2 (220)

by Lemma 2.6, then Theorem 1.4, and finally by continuity of ϕ∞ since δ1 < 2/3 and |z| ≤ Γn.

In order to prove an inequality for J8(j, n, z), we can do the same proof as in the first case from

the line following (210) to (213), replacing
∑Γn

k=−Γn
by
∑−z

k=−Γn
since |z| ≤ Γn (so z + k ≤ 0),

which gives, for all n ≥ n19, all −Γn < z ≤ Γn and all j ∈ {0, 1},

J8(j, n, z) ≤ E

(∑−z
k=−Γn

e−V (z−j)1{z=blogn−k}∩∩6`=3E
(n)
` (z)∑M+−1

i=M− e
−V (i)

)
+ ε(log n)−2/4. (221)

In order to prove an inequality for J10(j, n, z), we can do the same proof as in the second case,

between the definition (216) of J+
7 and (218), replacing

∑Γn
k=−Γn

by
∑Γn

k=−z+1 since |z| ≤ Γn (so
z+k > 0), then using once more Lemma 5.1 as in (213), we get for all n ≥ n19, all −Γn < z ≤ Γn
and all j ∈ {0, 1},

J10(j, n, z) ≤ E

(∑Γn
k=−z+1 e

−V (z−j)1{z=blogn−k}∩∩6`=3E
(n)
` (z)∑M+−1

i=M− e
−V (i)

)
+ ε(log n)−2/4.

This, (219), (220) and (221) prove that (213) remains true for all n ≥ n19, all −Γn < z ≤ Γn
and all j ∈ {0, 1}.
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Since (208), (201) and (202) also remain true, we conclude as in the first case that for all

n ≥ n19 and all z ∈ (2Z + n) such that −Γn < z ≤ Γn, we have 2σ2

(logn)2
ϕ∞
(

σ2z
(logn)2

)
≤ P(Sn =

z) + 13ε(log n)−2.

Finally, combining the conclusions of the three cases gives for all n ≥ n19,

sup
z∈(2Z+n)

[
2σ2

(log n)2
ϕ∞

(
σ2z

(log n)2

)
− P

(
Sn = z

)]
≤ 13ε(log n)−2,

which proves the lower bound in Theorem 1.1. This and (199) prove Theorem 1.1. �

7. Some estimates concerning the environment

7.1. Probabilities of
(
E

(n)
5

)c
and (E

(n)
6 )c. The aim of this subsection is to give upper bounds

of some probabilities related to the events E
(n)
i , which are defined between equations (83) and

(84).

Lemma 7.1. There exists p3 ≥ 2 such that,

∀n ≥ p3, P
[
(E

(n)
5 )c

]
≤ (log n)−7. (222)

Also, we have for n ≥ p3, with h̃n = log n− 2C1 log2 n as before,

P
[
`
(
T ↑
V,h̃n

)
> (log n)2+δ1/50

]
≤ (log n)−8, (223)

P
[
`
(
T ↑
V−,h̃n

)
> (log n)2+δ1/50

]
= P

[
`
(
T ↓
V,h̃n

)
> (log n)2+δ1/50

]
≤ (log n)−8. (224)

Proof: The idea is to approximate V by a two-sided Brownian motion, in order to transfer to
V some results already known for Brownian motions.

To this aim, we recall the definition of h-extrema introduced by Neveu et al. [54] for continuous
functions. If w is a continuous function R → R, h > 0, and y ∈ R, it is said that w admits an
h-minimum at y if there exists real numbers u and v such that u < y < v, w(y) = inf{w(z), z ∈
[u, v]}, w(u) ≥ w(y) + h and w(v) ≥ w(y) + h. It is said that w admits an h-maximum at y if
−w admits an h-minimum at y. In these two cases we say that w admits an h-extremum at y.
Notice that contrary to Definition 2.1, all the inequalities are large.

It is known (see [14], Lemma 8) that, when w = W or w = σW , almost surely, (a) w is continuous
on R; (b) for every h > 0, the set of h-extrema of w can be written {xk(w, h), k ∈ Z}, where
(xk(w, h))k∈Z is strictly increasing, unbounded from above and below, with x0(w, h) ≤ 0 <
x1(w, h); (c) for all h > 0 and k ∈ Z, xk+1(w, h) is an h-maximum if and only if xk(w, h) is an
h-minimum (we use the same notation as for left extrema of V since no confusion is possible).

According to a slightly modified version (see e.g. [24], Lemma 4.3, with (log n)α replaced by K
and a single potential V instead of two) of the Komlós–Major–Tusnády strong approximation
theorem (see Komlós et al. [50]), there exist (strictly) positive constants C3 and C4, independent
of K ∈ N∗, such that, possibly in an enlarged probability space, there exists a two-sided standard
Brownian motion (W (t), t ∈ R), such that

E36(K) :=

{
sup

−K≤t≤K

∣∣∣V (btc)− σW (t)
∣∣∣ ≤ C3 logK

}
satisfies P([E36(K)]c) ≤ K−C4 for large K.

Let n ≥ n3 and α > 0, and recall that 0 < δ1 < 2/3. We define h′n := log n+3C3(3+8/C4) log2 n.

On E36

(
(log n)3+8/C4

)
, consider, if they exist, two consecutive h′n-minima for σW , denoted
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by yi := xi(σW, h
′
n) and yi+2 := xi+2(σW, h′n), such that |yi| ≤ α(log n)2+δ1 and |yi+2| ≤

α(log n)2+δ1 . Let zi+1 := min
{
k ∈ [byic, byi+2c] ∩ Z, V (k) = max[byic,byi+2c] V

}
. We have,

using ω ∈ E36

(
(log n)3+8/C4

)
in the second and forth inequalities, for n large enough so that

(log n)3+8/C4 > α(log n)2+δ1 ,

V (zi+1) = max
[byic,byi+2c]

V ≥ V (bxi+1(σW, h′n)c) ≥ σW [xi+1(σW, h′n)]− C3(3 + 8/C4) log2 n

≥ σW [xi(σW, h
′
n)] + h′n − C3(3 + 8/C4) log2 n

≥ V (byic) + h′n − 2C3(3 + 8/C4) log2 n ≥ V (byic) + log n.

We prove similarly that V (zi+1) ≥ V (byi+2c) + log n, and so byic < zi+1 < byi+2c. Since
max[byic,zi+1[ V < V (zi+1) and max]zi+1,byi+2c] V ≤ V (zi+1), zi+1 is a left (log n)-maximum for
V .

So we have proved that for large n on E36

(
(log n)3+8/C4

)
, between two consecutive h′n-minima

for σW belonging to the interval
[
−α(log n)2+δ1 , α(log n)2+δ1

]
, there is at least one left (log n)-

maximum for V . Notice in particular that for such n, on E36

(
(log n)3+8/C4

)
, if x17(σW, h′n)

≤ α(log n)2+δ1 , then in [x1(σW, h′n), x17(σW, h′n)], there are at least eight consecutive h′n-minima
for σW , and then at least seven left (log n)-maxima for V , and so x13(V, log n) ≤ x17(σW, h′n) ≤
α(log n)2+δ1 . Hence for large n,

P
[
x13(V, log n) > α(log n)2+δ1 , E36

(
(log n)3+8/C4

)]
≤ P

[
x17(σW, h′n) > α(log n)2+δ1

]
≤

16∑
i=0

P

[
`(Ti(σW, h

′
n)) >

α(log n)2+δ1

17

]
, (225)

where `(Ti(w, h)) := xi+1(w, h) − xi(w, h) for i ∈ Z, h > 0 and any continuous function w, is
the length of the i-th h-slope of w.

The length of a non central 1-slope of W , that is, `(Ti(W, 1)) for i 6= 0, has a density, which is (see
[14], eq. (7)) f`(x) := π

∑
k∈N(−1)k(k + 1/2) exp

(
− π2(k + 1/2)2x/2

)
1R∗+(x). Also, the length

of the central 1-slope `(T0(W, 1)) has a density, which is (see [14], eq. (10)) equal to f`(T0)(x) :=

xf`(x). Notice that f`(x) ≤ (π/2) exp[−π2x/8] for large x. Hence for large x, f`(T0)(x) ≤
exp[−π2x/10] and f`(x) ≤ exp[−π2x/10]. Thus, P

[
`(Ti(W, 1)) > u) = O(exp(−π2u/10)) as

u→ +∞ for any i ∈ Z, so for large n,

P
[
`(Ti(σW, h

′
n)) > α(log n)2+δ1/17

]
= P

[
`(Ti(W, 1)) > σ2α(log n)2+δ1/(17(h′n)2)

]
≤ P

[
`(Ti(W, 1)) > σ2α(log n)δ1/20

]
= O

(
exp(−π2σ2α(log n)δ1/200)

)
,

as n→ +∞, where we used `(Ti(σW, h
′
n)) = `(Ti(W,h

′
n/σ)) =law (h′n/σ)2`(Ti(W, 1)) by scaling.

This, (225) and P([E36(K)]c) ≤ K−C4 for large K lead to

P
[
x13(V, log n) > α(log n)2+δ1

]
≤ O

(
exp(−π2σ2α(log n)δ1/200)

)
+ P

[(
E36

(
(log n)3+8/C4

))c] ≤ (log n)−8 (226)

for large n. We prove similarly that P
[
x−12(V, log n) < −α(log n)2+δ1

]
≤ (log n)−8. Finally,

P
[
(E

(n)
5 )c

]
≤ P

[
x12(V, log n) > (log n)2+δ1

]
+ P

[
x−12(V, log n) < −(log n)2+δ1

]
≤ (log n)−7

for large n, which proves (222).

Since x3(V, h̃n) ≤ x3(V, log n) < x13(V, log n), we get

P
[
x3(V, h̃n) > (log n)2+δ1/50

]
≤ P

[
x13(V, log n) > (log n)2+δ1/50

]
≤ (log n)−8
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for large n by (226). Since x3

(
V, h̃n

)
> x3

(
V, h̃n

)
− x1

(
V, h̃n

)
, which has the same law as

`
(
T ↑
V,h̃n

)
+ `
(
T ↓
V,h̃n

)
, by Theorem 2.4, this gives

P
[
`
(
T ↑
V,h̃n

)
> (log n)2+δ1/50

]
≤ P

[
x3(V, h̃n) > (log n)2+δ1/50

]
≤ (log n)−8

and similarly P
[
`
(
T ↓
V,h̃n

)
> (log n)2+δ1/50

]
≤ (log n)−8 for large n. Since `

(
T ↑
V−,h̃n

)
=law

`
(
T ↑
−V,h̃n

)
=law `

(
T ↓
V,h̃n

)
, by Theorem 2.3 (ii),

this proves (223) and (224) up to a change of p3, which ends the proof of the lemma. �

We now turn to the probability of (E
(n)
6 )c ∩ E(n)

5 .

Lemma 7.2. Recall that δ1 ∈]0, 2/3[. There exist c33 > 0 and p2 ∈ N such that

∀n ≥ p2, P
[
(E

(n)
6 )c ∩ E(n)

5

]
≤ exp

[
− c33(log n)2/3−δ1] ≤ (log n)−3. (227)

We now consider left and right h̃n-slopes. As n→ +∞,

P
[
TT ↑

V±,h̃n

(
h̃n
)
≤ Γn

]
= o
(
(log n)−2

)
, P

[
TT ↑∗

V±,h̃n

(
h̃n
)
≤ Γn

]
= o
(
(log n)−2

)
, (228)

recalling that T , TT ↑V,h
, TT ↓V,h

, TT ↑∗V,h
and TT ↓∗V,h

are defined in (14), Definition 2.2, (47) and (48),

and that V±(.) = V (±.).

Proof: First, for n ≥ n3, b ∈ Z and 0 < |i| ≤ Γn, we have by Hoeffding’s inequality (see [43],
Theorem 2),

P
[
V (b+ i)− V (b) ≥ log n

]
= P

[
V (i) ≥ log n

]
≤ exp

[
− 2(log n)2/

(
|i|
(
2C0)2

)]
≤ exp

[
− c34(log n)2/|i|

]
≤ exp

[
− c34(log n)2/3−δ1] (229)

with c34 := 1/(2C2
0 ) > 0, since V (i) is the sum of |i| independent random variables with zero

mean, bounded by ±C0 by ellipticity (see (16)).

Notice that on
(
E

(n)
6

)c ∩E(n)
5 , there exists b = blogn ∈ Z and i ∈ Z such that V (b+ i)− V (b) ≥

log n, |i| ≤ Γn and |b| ≤ (log n)2+δ1 since ω ∈ E(n)
5 . Thus by (229),

P
[
(E

(n)
6 )c ∩ E(n)

5

]
≤

∑
|b|≤b(logn)2+δ1c

∑
|i|≤b(logn)4/3+δ1c

P
[
V (b+ i)− V (b) ≥ log n

]
≤ 9(log n)5 exp

[
− c34(log n)2/3−δ1],

since 0 < δ1 < 2/3. This proves (227), e.g. with c33 := c34/2.

Now, notice that, using the law of T ↑
V,h̃n

provided by Theorem 2.3 (i), then (18) and once more

Hoeffding’s inequality and h̃n ∼n→+∞ log n,

P
[
TT ↑

V,h̃n

(
h̃n
)
≤ Γn

]
= P

[
TV
(
h̃n
)
≤ Γn, TV

(
h̃n
)
< TV (R∗−)

]
/P
[
TV
(
h̃n
)
< TV (R∗−)

]
≤ 2 log n

c1

Γn∑
i=1

P
[
V (i) ≥ h̃n

]
≤ 2 log n

c1

b(logn)4/3+δ1c∑
i=1

exp
[
− c34

(
h̃n
)2
/i
]

≤ (2/c1)(log n)3 exp[−c34(log n)2/3−δ1/2]
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for large n. This proves (228) for V+ since 0 < δ1 < 2/3. The proof for V− is similar. The proof
for TT ↑∗

V±,h̃n
is the similar, with Theorem 2.9 and c∗1 instead of Theorem 2.3 and c1. �

7.2. Laplace transform of V conditioned to stay positive or nonnegative. The main
tools of this subsection are local limit theorems for random walks conditioned to stay positive,
by Vatutin and Wachtel ([64], Theorems 4 and 6 and Lemma 12 with α = 2 and ρ = 1/2).

We define for h ≥ 0, with TV and T ∗V defined in (14), and (15),

Ξh :=
{

inf
[1,TV ([h,+∞[)]

V ≥ 0
}

= {TV (h) < TV (R∗−)}, (230)

Ξ∗h :=
{

inf
[1,TV ([h,+∞[)]

V > 0
}

= {TV (h) < T ∗V (]−∞, 0])}.

The aim of this subsection is to prove the following uniform upper bound:

Proposition 7.3. There exist c13 > 0, p4 > 0 and p5 > 0 such that

∀x ≥ p4,∀h ≥ p5, E
[
e−V (x)1{x<TV (h)} | TV (h) < TV (R∗−)

]
≤ c13x

−3/2.

This remains true when TV (R∗−) is replaced by T ∗V (]−∞, 0]).

Before proving this lemma, we introduce some notation and some technical lemmas. First, let

Gx := {∀1 ≤ k ≤ x, V (k) ≥ 0}, G∗x := {∀1 ≤ k ≤ x, V (k) > 0}, x > 0. (231)

We know (due to the Spitzer and Ròsen theorem, see Vatutin and Wachtel [64] eq. (18), or [10]
Theorem 8.9.23, p. 382) that

P[Gx] ∼x→+∞ c35x
−1/2, P[G∗x] ∼x→+∞ c∗35x

−1/2, (232)

where c35 > 0 and c∗35 > 0.

The following (uniform) estimates are maybe already known. However we did not find them in
the literature, so we provide their proof.

Lemma 7.4. For large h > 0, for every 0 ≤ z < h,

z − Ez[V (TV (R∗−))]

h
− 3C0(z + C0)

h2
≤ Pz(Ξh) ≤

z − Ez[V (TV (R∗−))]

h
, (233)

z − Ez[V (T ∗V (R−))]

h
− 3C0(z + C0)

h2
≤ Pz(Ξ∗h) ≤

z − Ez[V (T ∗V (R−))]

h
. (234)

Also, for z = 0,
hP[Ξh]→h→+∞ −E[V (TV (R∗−))] =: c1 > 0, (235)

hP[Ξ∗h]→h→+∞ −E[V (T ∗V (R−))] =: c∗1 > 0. (236)

Proof: Let h > 0, Uh := TV ([h,+∞[) ∧ TV (R∗−), and 0 ≤ z < h. Since (V (k), k ≥ 0) is under
Pz a martingale starting at z for its natural filtration due to (3), and |V (k ∧ Uh)| ≤ h+ C0 a.s.
for every k ∈ N thanks to ellipticity (16), the optimal stopping theorem gives

z = Ez[V (Uh)] = Ez[V (TV ([h,+∞[))1Ξh ] + Ez[V (TV (R∗−))1(Ξh)c ]. (237)

Since h ≤ V (TV ([h,+∞[)) ≤ h+ C0 a.s. by ellipticity, we have

hPz[Ξh] ≤ Ez[V (TV ([h,+∞[))1Ξh ] ≤ (h+ C0)Pz[Ξh]. (238)

Also, −C0 ≤ V [TV (R∗−)] ≤ 0 a.s. by ellipticity, thus

Ez[V (TV (R∗−))] ≤ Ez[V (TV (R∗−))1(Ξh)c ] = Ez[V (TV (R∗−))]− Ez[V (TV (R∗−))1Ξh ]
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≤ Ez[V (TV (R∗−))] + C0P
z(Ξh). (239)

Hence, using first (238) and (237) and then the first inequality in (239),

hPz[Ξh] ≤ z − Ez[V (TV (R∗−))1(Ξh)c ] ≤ z − Ez[V (TV (R∗−))]. (240)

Similarly,

(h+ C0)Pz[Ξh] ≥ z − Ez[V (TV (R∗−))1(Ξh)c ] ≥ z − Ez[V (TV (R∗−))]− C0P
z(Ξh),

and so for large h for every 0 ≤ z < h, since z + C0 ≥ z − Ez[V (TV (R∗−))] ≥ z ≥ 0,

Pz[Ξh] ≥
z − Ez[V (TV (R∗−))]

h+ 2C0
≥
z − Ez[V (TV (R∗−))]

h

(
1− 3C0

h

)
≥

z − Ez[V (TV (R∗−))]

h
− 3C0(z + C0)

h2
.

This and (240) prove (233). The proof of (234) is similar. We get (235) and (236) as a conse-
quence. �

In order to apply the results of Vatutin et al. ([64], thm. 4 and 6), we introduce some of its
notation (see its pages 177 and 179). Let χ+ := V (τ+), where τ+ := min{k ≥ 1, V (k) > 0} =
TV (R∗+), and χ+

k , k ≥ 1 be independent copies of χ+. We can now define the (left-continuous)
renewal function

H(u) := 1{u>0} +

∞∑
k=1

P
(
χ+

1 + · · ·+ χ+
k < u

)
, u ∈ R.

Also it is well known that H(x) <∞ for every x ∈ R (see e.g. [64] Lem. 13).

As in [64] (page 180), we say that the random variable log 1−ω0
ω0

is (`, a)-lattice if its distribution

is lattice with span ` > 0 and shift a ∈ [0, `[, that is, if ` is the maximal real number such that
the support of the distribution of log 1−ω0

ω0
is included in the set (a + `Z) = {a + k`, k ∈ Z}.

We say that the random variable log 1−ω0
ω0

is non-lattice if its distribution is not supported in

(a + `Z) for any a ∈ R, ` > 0. The two following lemmas are a bit more precise that what is
needed in the present paper. They may be of independent interest and will be useful in a work
in progress [23].

Lemma 7.5. Assume that log 1−ω0
ω0

is non-lattice. We have for p ≥ 0,

E
[(
V (x)

)p
e−V (x)|G∗x

]
∼x→+∞

f2(p)

x
, f2(p) :=

1

c∗35σ
√

2π

∫ ∞
0

upe−uH(u)du ∈]0,∞[. (241)

The case p = 1 was already proved in Afanasyev et al. ([1], Prop. 2.1) and Hirano ([42] Lemma
5) with different methods.

Proof of Lemma 7.5: We fix p ≥ 0, and define βp := supy≥0(ype−y/9) ∈]0,∞[. We first
observe that for large x,

E
[(
V (x)

)p
e−V (x)1{V (x)≥9 log x}|G∗x

]
≤ βpE

[
e−8V (x)/91{V (x)≥9 log x}|G∗x

]
≤ βpx−8. (242)

Our potential V is a random walk with i.i.d. bounded, non constant and zero mean jumps ρx,
x ∈ Z by (2), (3) (4) and (6), and by hypotheses, its jumps have a non lattice distribution. So
we can use the following result ([64], Theorem 4 with α = 2, β = 0 and cx ∼x→+∞ σ

√
x, as seen

in the line after its eq. (3)) and with g2,0(0) = 1/
√

2π: for ∆ > 0,

σ
√
xP
[
V (x) ∈ [y, y + ∆[

∣∣G∗x] ∼x→+∞
1

xP[G∗x]
√

2π

∫ y+∆

y
H(u)du (243)
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uniformly in y ∈]0, δx
√
x], where δx → 0 as x→ +∞.

We prove that this convergence is in fact uniform in y ∈ [0, δx
√
x] as x → +∞. To this aim,

notice that for fixed x > 0 and ∆ > 0, P
[
V (x) ∈ [y, y+ ∆[

∣∣G∗x] tends to P
[
V (x) ∈]0,∆]

∣∣G∗x] =

P
[
V (x) ∈ [0,∆]

∣∣G∗x] as y → 0 with y > 0, since P
[
V (x) = 0

∣∣G∗x] = 0 by definition (231) of

G∗x. Now, fix some ε > 0. Using the uniformity in y ∈]0, x1/4] in (243), there exists Aε > 0 such

that for all x > Aε, for all y ∈]0, x1/4],

1− ε ≤
xP[G∗x]σ

√
xP
[
V (x) ∈ [y, y + ∆[

∣∣G∗x]
1√
2π

∫ y+∆
y H(u)du

≤ 1 + ε. (244)

Letting y ↓ 0 in (244) for fixed x > Aε and using the convergence before (244), (244) remains

true with [y, y + ∆[ and
∫ y+∆
y replaced respectively by [0,∆] and

∫ ∆
0 . Hence,

xP[G∗x]σ
√
xP
[
V (x) ∈ [0,∆]

∣∣G∗x]→x→+∞
1√
2π

∫ ∆

0
H(u)du. (245)

Moreover, applying once more (243) with [y, y + ∆[ replaced by [∆ − η,∆ + η[ for fixed ∆

and 0 < η < ∆ gives, for large x, xP[G∗x]σ
√
xP
[
V (x) = ∆

∣∣G∗x] ≤ (2/
√

2π)
∫ ∆+η

∆−η H(u)du ≤
(4/
√

2π)H(2∆)η. Since this is true for any η > 0, we get xP[G∗x]σ
√
xP
[
V (x) = ∆

∣∣G∗x]→ 0 as
x → +∞. So, (245) remains true with [0,∆] replaced by [0,∆[. This and (243) prove that the
convergence in (243) is in fact uniform in y ∈ [0, δx

√
x] as x→ +∞, where δx → 0 as x→ +∞.

So, we have for any ε > 0 and ∆ > 0, for large x,

E

[
(V (x))p

eV (x)
1{V (x)<9 log x}

∣∣G∗x] =

∞∑
k=0

E

[
(V (x))p

eV (x)
1{V (x)<9 log x}1{V (x)∈[k∆,(k+1)∆[} | G∗x

]

≤
b9∆−1 log xc∑

k=0

((k + 1)∆)p

ek∆
P
[
V (x) ∈ [k∆, (k + 1)∆[ | G∗x

]
≤ (1 + ε)

σx3/2P[G∗x]
√

2π

b9∆−1 log xc∑
k=0

((k + 1)∆)P

ek∆

∫ (k+1)∆

k∆
H(u)du

≤ (1 + ε)2

c∗35σ
√

2πx

b9∆−1 log xc∑
k=0

((k + 1)∆)p

ek∆
∆H

[
(k + 1)∆

]
,

where we used (232) and since H is nondecreasing. So,

lim sup
x→+∞

(
xE
[(
V (x)

)p
e−V (x)1{V (x)<9 log x} | G∗x

])
≤ (1 + ε)2

c∗35σ
√

2π
e∆

∞∑
k=0

∆
((k + 1)∆)p

e(k+1)∆
H[(k + 1)∆] →∆→0

(1 + ε)2

c∗35σ
√

2π

∫ ∞
0

upe−uH(u)du <∞,

since H is a nondecreasing function and H(x) = O(x2) as x→ +∞ e.g. by ([64] Lem. 13 with
α = 2 and ρ = 1/2 as explained at the end of its p. 181, following from Rogozin [57] and from
the Spitzer-Ròzen theorem).

This, combined with (242) gives

lim sup
x→+∞

(
xE
[(
V (x)

)p
e−V (x)|G∗x

])
≤ 1

c∗35σ
√

2π

∫ ∞
0

upe−uH(u)du.

Since we get a similar inequality for lim inf and H ≥ 1 on ]0,∞[, this proves (241) and the
lemma. �
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Lemma 7.6. Assume that log 1−ω0
ω0

is (h, a)-lattice for some h > 0 and a ∈ [0, h[. We have for
p ≥ 0,

E
[(
V (x)

)p
e−V (x)|G∗x

]
∼x→+∞

h

c∗35

√
2πσx

ψp[(ax) mod h], (246)

where ψp(y) :=
∑

k∈N(y + kh)pe−(y+kh)H(y + kh), y ∈ [0, h], is a function bounded on [0, h]
between two (strictly) positive constants.

Proof: Let p ≥ 0, h > 0 and a ∈ [0, h[, and assume that log 1−ω0
ω0

is (h, a)-lattice. First, notice

that for every y ∈ [0, h], ψp(y) ≤
∑

k∈N(h + kh)pe−khH(h + kh) = ehψp(h) < ∞ since H is

nondecreasing and H(x) = O(x2) as x→ +∞ as in the previous lemma. Moreover, taking into
account only k = 1, we have ψp(y) ≥ hpe−2hH(h) > 0 for every y ∈ [0, h], so ψp is bounded on
[0, h] between two (strictly) positive constants.

Let ε > 0. Applying ([64], Theorem 6, extending previous results obtained when a = 0 by Alili
and Doney [2]), again with α = 2, β = 0, cx ∼x→+∞ σ

√
x, and g2,0(0) = 1/

√
2π:

σ
√
xP[V (x) = ax+ y | G∗x] ∼x→+∞

hH(ax+ y)√
2πxP[G∗x]

(247)

uniformly in y ∈] − ax,−ax + δx
√
x] ∩ (hZ), where δx → 0 as x → +∞. Also, notice that for

y = −ax when x > 0, we have P[V (x) = 0 | G∗x] = 0 = hH(0)/[
√

2πxP(G∗x)σ
√
x] by definitions

of G∗x and H. Hence for large x,

E
[
(V (x))pe−V (x)1{V (x)<9 log x}

∣∣G∗x]
=

∑
k∈Z, ax+kh≥0

(ax+ kh)pe−(ax+kh)1{ax+kh<9 log x}P[V (x) = ax+ kh | G∗x]

≤
∑

k∈Z, 0≤ax+kh<9 log x

(ax+ kh)pe−(ax+kh)(1 + ε)
hH(ax+ kh)√
2πσx3/2P[G∗x]

≤ (1 + ε)h√
2πσx3/2P[G∗x]

ψp[(ax) mod h] ≤ (1 + 2ε)h

c∗35

√
2πσx

ψp[(ax) mod h]

by (247) applied with δx = 9(log x)/
√
x and (232). This and (242) give for large x,

E
[(
V (x)

)p
e−V (x)|G∗x

]
≤ (1 + 2ε)h

c∗35

√
2πσx

ψp[(ax) mod h] + βpx
−8. (248)

Similarly as in (248), for large x,

E
[(
V (x)

)p
e−V (x)|G∗x

]
≥ (1− 2ε)h

c∗35

√
2πσx

(
ψp[(ax) mod h]−O(x−8)

)
,

since
∑

k∈Z, ax+kh≥9 log x(ax+ kh)pe−(ax+kh)H(ax+ kh) = O(x−8) as x→ +∞ because H(x) =

O(x2) as in the previous lemma. This and (248) prove (246) since x−8 = o
(
ψp[(ax) mod h]/x

)
as x→ +∞ because inf [0,h] ψp > 0. �

Proof of Proposition 7.3: Let h > 0 and x ∈ N∗. We first provide a relation between
conditioning by Ξ∗h and by G∗x. We have, due to the Markov property,

E
[
e−V (x)1{x<TV (h)}

∣∣Ξ∗h] = E
[
e−V (x)1{x<TV (h)}1{TV (h)<T ∗V (R−)}

]
/P[Ξ∗h]

= E
[
e−V (x)1{∀0<k≤x, 0<V (k)<h}1∀k∈[x,TV (h)], V (k)>0}

]
/P[Ξ∗h]

= E
[
e−V (x)1{∀0<k≤x, 0<V (k)<h}P

V (x)
(
TV (h) < T ∗V (R−)

)]
/P[Ξ∗h]. (249)
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Hence for large h > 0, for every x ∈ N∗, by (249) and Lemma 7.4 eq. (234),

E
[
e−V (x)1{x<TV (h)}|Ξ∗h

]
≤ E

[
e−V (x)1{∀0<k≤x, 0<V (k)}

V (x)− EV (x)[V (T ∗V (R−))]

hP[Ξ∗h]

]
=

P[G∗x]

hP[Ξ∗h]
E
[[
V (x)− EV (x)[V (T ∗V (R−))]

]
e−V (x)

∣∣G∗x]. (250)

Also,

E
[
e−V (x)1{x=TV (h)}|Ξ∗h

]
≤ E

[
e−V (x)1{V (x)≥h}|Ξ∗h

]
≤ e−h.

Let ε > 0. By (250), (232) and (236), then by ellipticity (2), there exists p6 > 0 and p7 > 0 such
that for x ≥ p6 and h ≥ p7,

E
[
e−V (x)1{x<TV (h)}|Ξ∗h

]
≤ E

[[
V (x)− EV (x)

[
V (T ∗V (R−))

]]
e−V (x)|G∗x

](1 + ε)c∗35

c∗1x
1/2

(251)

≤ (1 + ε)(c∗35/c
∗
1)x−1/2

[
E
(
V (x)e−V (x)|G∗x

)
+ C0E

(
e−V (x)|G∗x

)]
.

Thanks to Lemmas 7.5 and 7.6, there exists p4 > p6 such that, for x ≥ p4, for each p ∈ {0, 1},
E
[(
V (x)

)p
e−V (x)|G∗x

]
≤ f3(p)

x , with f3(p) := 2f2(p) when log 1−ω0
ω0

is non lattice, and f3(p) :=

2h sup[0,h] ψp/(c
∗
35

√
2πσ) if log 1−ω0

ω0
is (h, a)-lattice for some h > 0 and a ∈ [0, h[. This together

with (251) gives for x ≥ p4 and h ≥ p7,

E
[
e−V (x)1{x<TV (h)}|Ξ∗h

]
≤ (1 + ε)(c∗35/c

∗
1)
[
f3(1) + C0f3(0)

]
x−3/2. (252)

We now aim to prove a similar inequality, conditioning by Ξh instead of Ξ∗h. There exists c > 0
such that P[V (1) ∈ [c, 2c]] > 0, thanks to (3) and (4). For such a (fixed) c, there exists p8 ≥ p7

such that for all h ≥ p8, we have h/10 > 2c, P(Ξ∗h+2c)/P(Ξh) ≤ 2c∗1/c1 (by Lemma 7.4) and

P
[
TV (h/10) < TV (] − ∞,−h/10])

]
≥ 1/3 (e.g. by (17)). So with Ṽ1(k) := V (k + 1) − V (1),

k ≥ 0, using the independence of V (1) and Ṽ1, then the independence of (V (u), u ≤ TV (h)) and

Ṽ2, defined by Ṽ2(k) := V [TV (h) + k]− V [TV (h)], k ≥ 0, we have for h ≥ p8 and for x ≥ p4,

E
[
e−V (x+1)1{x+1<TV (h+2c)}|Ξ∗h+2c

]
= E

[
e−V (x+1)1{x+1<TV (h+2c)}1Ξ∗h+2c

]
/P(Ξ∗h+2c)

≥ E
[
e−V (1)−Ṽ1(x)1{V (1)∈[c,2c]}1{x<T

Ṽ1
(h)}1∀y∈[1,T

Ṽ1
(h+2c)], Ṽ1(y)≥0

]
/P(Ξ∗h+2c)

≥ e−2cP[V (1) ∈ [c, 2c]]

P(Ξ∗h+2c)
E
[
e−V (x)1{x<TV (h)}1∀y∈[1,TV (h+2c)], V (y)≥0

]
≥ e−2cP[V (1) ∈ [c, 2c]]

P(Ξ∗h+2c)
E
[
e−V (x)1{x<TV (h)}1Ξh1TṼ2 (h/10)<T

Ṽ2
(]−∞,−h/10])

]
≥ P[V (1) ∈ [c, 2c]]P(Ξh)

e2cP(Ξ∗h+2c)
E

[
1{x<TV (h)}

eV (x)
|Ξh
]
P

[
TV

(
h

10

)
< TV

(]
−∞,− h

10

])]
.

So, using the definition of p8 then (252), we get with c36 := 6e2cc∗1/(c1P[V (1) ∈ [c, 2c]]), for
every x ≥ p4 and h ≥ p8,

E
[
e−V (x)1{x<TV (h)} | Ξh

]
≤ c36E

[
e−V (x+1)1{x+1<TV (h+2c)}|Ξ∗h+2c

]
≤ c13x

−3/2

for some constant c13 > 0. This and (252) prove Proposition 7.3, up to a change of c13. �

7.3. Two lemmas about left h-extrema. For the sake of completeness, we prove the two
following lemmas. We recall that V is defined before (19).

Lemma 7.7. Let v ∈ V , and let h > 0. The left (resp. right) h-minima and left (resp. right)
h-maxima for v alternate.
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Proof: Assume that y1 and y2 are two left h-minima for v, with y1 < y2. It is enough to prove
that there exists at least a left h-maximum for v between y1 and y2. By Definition 2.1, for each
j ∈ {1, 2}, there exists αj < yj < βj such that min[αj ,yj−1] v > v(yj), min[yj+1,βj ] v ≥ v(yj),

v(αj) ≥ v(yj) +h and v(βj) ≥ v(yj) +h. We define x := min{u ≥ y1, v(u) = max[y1, y2] v}. The
goal is to prove that x is a left h-maximum for v.

Assume that y2 ≤ β1. If α2 ≤ y1, then α2 ≤ y1 < y2 ≤ β1, so v(y2) ≥ min[y1+1,β1] v ≥ v(y1)
and v(y1) ≥ min[α2,y2−1] v > v(y2), which contradicts v(y2) ≥ v(y1). So α2 > y1, thus y1 <
α2 < y2 ≤ β1. We have v(x) = max[y1, y2] v ≥ v(α2) ≥ v(y2) + h and v(x) ≥ v(y2) + h ≥
min[y1+1,β1] v + h ≥ v(y1) + h.

Now, assume that y2 > β1 and α2 ≤ y1. Thus, α2 ≤ y1 < β1 < y2, so v(y1) ≥ min[α2,y2−1] v >
v(y2). We have v(x) = max[y1,y2] v ≥ v(β1) ≥ v(y1) + h ≥ v(y2) + h.

Finally, assume that y2 > β1 and α2 > y1. Hence, y1 < β1 < y2, so v(x) = max[y1,y2] v ≥ v(β1) ≥
v(y1) + h. Also, y1 < α2 < y2, so v(x) = max[y1,y2] v ≥ v(α2) ≥ v(y2) + h.

So in every case, we have v(x) ≥ v(y1) + h and v(x) ≥ v(y2) + h, with h > 0, thus by definition
of x, y1 < x < y2, max[y1,x−1] v < v(x) and max[x+1,y2] v ≤ v(x), so x is a left h-maximum for v
such that y1 < x < y2.

Applying this to −v proves that, if y1 and y2 are two left h-maxima for v with y1 < y2, there
exists at least a left h-minimum for v between y1 and y2, which concludes the proof of the lemma
for left h-extrema. The proof is similar for right ones by symmetry. �

For the following lemma, see definitions (20)–(23), represented in Figure 2.

Lemma 7.8. Assume that V ∈ V (which has probability one if (2), (3) and (4) are satisfied).

(i) For i ≥ 1, m
(V )
2i+1(h) is a left h-minimum for V , and there is no other left h-extremum for

V in
[
τ

(V )
2i (h), τ

(V )
2i+1(h)

[
. (ii) For i ≥ 0, m

(V )
2i+2(h) is a left h-maximum for V , and there is no

other left h-extremum for V in
[
τ

(V )
2i+1(h), τ

(V )
2i+2(h)

[
.

Proof: Let i ≥ 1. First, m
(V )
2i (h) < m

(V )
2i+1(h) < τ

(V )
2i+1(h) by definition. We also have

V
(
τ

(V )
2i+1(h)

)
≥ V

(
m

(V )
2i+1(h)

)
+ h by (20) and (21) and V

(
m

(V )
2i (h)

)
≥ V

(
τ

(V )
2i (h)

)
+ h ≥

V
(
m

(V )
2i+1(h)

)
+h since i ≥ 1 by (23), (22) and (21). Also, min

[m
(V )
2i+1(h)+1,τ

(V )
2i+1(h)]

V ≥ V
(
m

(V )
2i+1(h)

)
by (21), min

[m
(V )
2i (h),τ

(V )
2i (h)−1]

V > V
(
τ

(V )
2i (h)

)
≥ V

(
m

(V )
2i+1(h)

)
by (22), (23) and (21), and

min
[τ

(V )
2i (h),m

(V )
2i+1(h)−1]

V > V
(
m

(V )
2i+1(h)

)
by (21). So, m

(V )
2i+1(h) is a left h-minimum for V .

First case: Assume that there exists a left h-minimum y 6= m
(V )
2i+1(h) for V in

[
τ

(V )
2i (h),

τ
(V )
2i+1(h)

[
, and let α < y and β > y be as in Definition 2.1 with v = V . Assume first that y ∈[

τ
(V )
2i (h),m

(V )
2i+1(h)

[
. If β < m

(V )
2i+1(h), then V (β) ≥ V (y) + h with τ

(V )
2i (h) ≤ y < β < τ

(V )
2i+1(h),

which contradicts the definition of τ
(V )
2i+1(h). If β ≥ m

(V )
2i+1(h), then y + 1 ≤ m

(V )
2i+1(h) ≤ β

so V
(
m

(V )
2i+1(h)

)
≥ min[y+1,β] V ≥ V (y), which contradicts V (y) ≥ min

[τ
(V )
2i (h),m

(V )
2i+1(h)−1]

V >

V
(
m

(V )
2i+1(h)

)
by (21).

So y ∈
]
m

(V )
2i+1(h), τ

(V )
2i+1(h)

[
. If α > m

(V )
2i+1(h), then V (α) ≥ V (y) + h ≥ V

(
m

(V )
2i+1(h)

)
+ h

with τ
(V )
2i (h) ≤ m

(V )
2i+1(h) < α < τ

(V )
2i+1(h), which contradicts the definition of τ

(V )
2i+1(h). If

α ≤ m
(V )
2i+1(h), then, since y > m

(V )
2i+1(h), we have V

(
m

(V )
2i+1(h)

)
≥ min[α,y−1] V > V (y) by
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definition of α, which contradicts V (y) ≥ min
[τ

(V )
2i (h),τ

(V )
2i+1(h)]

V = V
(
m

(V )
2i+1(h)

)
by (21). So there

is no left h-minimum for V in
[
τ

(V )
2i (h), τ

(V )
2i+1(h)

[
−
{
m

(V )
2i+1(h)

}
.

Second case: Now, we assume that there exists a left h-maximum y for V in
[
τ

(V )
2i (h), τ

(V )
2i+1(h)

[
,

and let α < y and β > y be as in Definition 2.1 for left h-maxima. If α ≥ τ
(V )
2i (h), then

V (y) ≥ V (α) + h with τ
(V )
2i (h) ≤ α < y < τ

(V )
2i+1(h), which contradicts the definition of τ

(V )
2i+1(h).

If α < τ
(V )
2i (h), then V (α) ≤ V (y) − h < V

(
τ

(V )
2i (h)

)
by definition of τ

(V )
2i+1(h) since τ

(V )
2i (h) ≤

y < τ
(V )
2i+1(h). So if m

(V )
2i (h) ≤ α < τ

(V )
2i (h), then V (α) < V

(
τ

(V )
2i (h)

)
contradicts V

(
τ

(V )
2i (h)

)
<

min
[m

(V )
2i (h),τ

(V )
2i (h)[

V ≤ V (α), coming from (22) and (23) since i ≥ 1. Finally if α < m
(V )
2i (h),

then α < m
(V )
2i (h) < τ

(V )
2i (h) ≤ y by (22) and (23) since i ≥ 1, so V

(
m

(V )
2i (h)

)
≤ max[α,y−1] V <

V (y) < V
(
τ

(V )
2i (h)

)
+h by definition of α and (20) since y ∈

[
τ

(V )
2i (h), τ

(V )
2i+1(h)

[
, which contradicts

V
(
τ

(V )
2i (h)

)
≤ V

(
m

(V )
2i (h)

)
− h coming from (22) and (23) since i ≥ 1. So there is no left h-

maximum for V in
[
τ

(V )
2i (h), τ

(V )
2i+1(h)

[
for i ≥ 1.

Thus (i) is proved. The proof of (ii) is similar. �

References

[1] Afanasyev, V. I., Böinghoff, C., Kersting, G. and Vatutin, V. A.: Limit theorems for weakly
subcritical branching processes in random environment. J. Theoret. Probab. 25 (2012), 703–732.

[2] Alili, L. and Doney, R.A.: Wiener-Hopf factorization revisited and some applications. Stoc. Stoc. Rep.
66 (1999), 87-102.

[3] Andreoletti, P. and Devulder, A.: Localization and number of visited valleys for a transient diffusion
in random environment. Electron. J. Probab. 20, no 56 (2015), 1–58.
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