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Annealed local limit theorem for Sinai's random walk in random environment

Alexis Devulder

Introduction and statement of the main results

1.1. Presentation of the model. We consider a collection ω := (ω x ) x∈Z of i.i.d. random variables, taking values in the interval ]0, 1[, with joint law P. A realization of ω is called an environment. A random walk (S k ) k∈N in the environment ω is defined as follows. Conditionally on ω, (S k ) k∈N is a Markov chain starting at S 0 = 0 and such that for every k ∈ N := {0, 1, 2, . . . }, x ∈ Z and y ∈ Z,

P ω S k+1 = y|S k = x =    ω x if y = x + 1, 1 -ω x if y = x -1, 0 otherwise. (1) 
We call P ω the quenched law, and S := (S k ) k is a random walk in random environment (RWRE).

The annealed law is defined as follows:

P[•] := P ω [•]P(dω).
Notice that P is not Markovian. The expectations with respect to P, P ω and P are denoted respectively by E, E ω and E.

One dimensional RWRE have many unusual properties, and have attracted much interest from mathematicians and physicists. For applications in physics and in biology, see e.g. Cocco et al. [START_REF] Cocco | Reconstructing a random potential from its random walks[END_REF], Hughes [START_REF] Hughes | Random Environments[END_REF] and more recently the introduction of Padash et al. [START_REF] Padash | Local equilibrium properties of ultraslow diffusion in the Sinai model[END_REF]. Also, (one dimensional) RWRE are used to define or study some other mathematical models, see e.g. Kochler [START_REF] Kochler | Random Walks in Random Environment, Random Orientations and Branching[END_REF] (chapter 3) for random walks in oriented lattices with random environments, Zindy [START_REF] Zindy | Upper limits of Sinai's walk in random scenery[END_REF] for random walks in random environments with random scenery. Aurzada et al. [START_REF] Aurzada | Random walks and branching processes in correlated Gaussian environment[END_REF] for branching processes in random environments, and Devulder [START_REF] Devulder | The speed of a branching system of random walks in random environment[END_REF] for branching random walks in random environments. We refer to Révész [START_REF] Révész | Random walk in random and non-random environments[END_REF] and Zeitouni [START_REF] Zeitouni | Lecture notes on random walks in random environment[END_REF] for a general account on results on RWRE proved before 2005. For a statistical point of view, see e.g. Diel et al. [START_REF] Diel | Non parametric estimation for random walks in random environment[END_REF] and references therein.

We assume that there exists ε 0 ∈]0, 1/2[ such that

P[ε 0 ≤ ω 0 ≤ 1 -ε 0 ] = 1. (2) 
This classical condition is known as the ellipticity condition. We introduce ρ x := 1-ωx ωx , x ∈ Z. Solomon [START_REF] Solomon | Random walks in a random environment[END_REF] proved that (S k ) k is recurrent for almost every environment ω if

E[log ρ 0 ] = 0, (3) 
and transient for almost every ω otherwise. Throughout the paper, log denotes the natural logarithm. We only consider the recurrent case [START_REF] Andreoletti | Localization and number of visited valleys for a transient diffusion in random environment[END_REF] in the present paper. Also, in order to avoid the degenerate case of simple random walks, we assume that

σ := E (log ρ 0 ) 2 1/2 > 0. ( 4 
)
The asymptotic behaviour of S in the very delicate recurrent case was first analyzed in a celebrated paper of Sinai [START_REF] Sinai | The limiting behavior of a one-dimensional random walk in a random medium[END_REF]. Indeed, Sinai [START_REF] Sinai | The limiting behavior of a one-dimensional random walk in a random medium[END_REF] showed that under Hypotheses (2), ( 3) and ( 4), S n is localized at time n, with large annealed probability, in the neighborhood of some random quantity b log n , which depends only on the environment. More precisely, he proved that for every ε > 0,

P |S n -b log n | ≤ ε(log n) 2 → n→+∞ 1.
He also proved that σ 2 b log n /(log n) 2 converges in law, as n → +∞, to some random variable b ∞ , which is non degenerate and non gaussian. As a consequence, Sinai obtained the following convergence in law under the annealed law P:

σ 2 (log n) 2 S n → n→+∞ b ∞ .
It was proved independently by Kesten [START_REF] Kesten | The limit distribution of Sinai's random walk in random environment[END_REF] and Golosov [START_REF] Golosov | Limit distributions for random walks in random environments[END_REF] that P[b ∞ ∈ dx] = ϕ ∞ (x)dx, where

ϕ ∞ (x) := 2 π ∞ k=0 (-1) k 2k + 1 exp - (2k + 1) 2 π 2 8 |x| , x ∈ R. (5) 
This very slow movement of (S k ) k∈N , of order (log n) 2 instead of √ n for simple random walks, is due to the presence of some traps which slow down the walk. Due to this result proved by Sinai, a random walk in random environment (S k ) k∈N satisfying Hypotheses (2), (3) and ( 4) is often called a Sinai walk. Some other unusual properties of Sinai's walk are proved e.g. in Dembo et al. [START_REF] Dembo | Valleys and the maximum local time for random walk in random environment[END_REF], Gantert et al. [START_REF] Gantert | The infinite valley for a recurrent random walk in random environment[END_REF], [START_REF] Gantert | Many visits to a single site by a transient random walk in random environment[END_REF], Hu et al. [START_REF] Hu | The limits of Sinai's simple random walk in random environment[END_REF], [START_REF] Hu | The problem of the most visited site in random environment[END_REF] and Shi [START_REF] Shi | A local time curiosity in random environment[END_REF]. See also Shi [59] for a general account about Sinai's walk before 2001. 

d n = O(m n ) if lim sup n→+∞ |d n /m n | < ∞.
Our main result is the following local limit theorem for Sinai's walk (S n ) n∈N under the annealed law P: Theorem 1.1. Assume (2), ( 3) and (4). As n → +∞, sup z∈(2Z+n)

P S n = z - 2σ 2 (log n) 2 ϕ ∞ σ 2 z (log n) 2 = o 1 (log n) 2 ,
where 2Z + n denotes the set of integers having the same parity as n.

Notice that S := (S k ) k∈N only makes ±1 jumps and starts from 0 under P, so P(S n = z) = 0 if n and z have different parity. Since ϕ ∞ > 0 and is continuous on R, we get in particular: Corollary 1.2. Assume (2), ( 3) and (4). Let (z n ) n∈N be a sequence of integers such that z n = O (log n) 2 as n → +∞, and such that z n and n have the same parity for every n ∈ N. Then,

P S n = z n ∼ n→+∞ 2σ 2 (log n) 2 ϕ ∞ σ 2 z n (log n) 2 .
Also ∞ k=0 (-1) k 2k+1 = arctan(1) = π/4, hence ϕ ∞ (0) = 1/2, so this leads to: Corollary 1.3. Assume (2), ( 3) and (4). We have,

P S 2n = 0 ∼ n→+∞ σ 2 (log n) 2 ,
and more generally P(S 2n = 2x) ∼ n→+∞ σ 2 (log n) 2 for every fixed x ∈ Z since ϕ ∞ is continuous on R. Also, for every fixed x ∈ Z,

P S 2n = 2 (x/2)(log n) 2 ∼ n→+∞ 2σ 2 ϕ ∞ (σ 2 x) (log n) 2 ,
where for y ∈ R, y denotes the integer part of y.

In order to prove Theorem 1.1, we introduce in Section 2 (see [START_REF] Comets | Limit law for transition probabilities and moderate deviations for Sinai's random walk in random environment[END_REF]) a random quantity b h , h > 0, depending only on the environment. It is defined differently from the localization point b h introduced by Sinai, but plays a similar role. Our b h is defined in terms of left h-extrema, which are also introduced in Section 2 (see Definition 2.1). In order to prove our Theorem 1.1, we first prove a local limit theorem for b h :

Theorem 1.4. We have as h → +∞,

sup x∈Z P b h = x - σ 2 h 2 ϕ ∞ σ 2 x h 2 = o 1 h 2 .
Even though Theorem 1.4 looks, at first sight, very similar to Theorem 1.1, Theorem 1.1 is not a direct consequence of Theorem 1.4, because, loosely speaking, the event {S n = z} can be decomposed into a union of events {S n = z} ∩ {b log n = y}, and we will see that each one has a non-negligible probability for y "close" to z. Also, estimating the annealed probabilities of these events for y close to z, as well as proving that such probabilities are negligible for y "far" from z, is not immediate, since we have to decompose each of these events into many different cases, corresponding to different kinds of environments and trajectories.

The probability P(S n = z n ) for Sinai's walk seems to have been first studied in a physics paper in 1985 by Nauenberg [START_REF] Nauenberg | Random walk in a random medium in one dimension[END_REF], by heuristic arguments in some particular cases and numerical simulations. However the function he obtained instead of our ϕ ∞ is x → (C/2) exp(-C|x|) for some C > 0, which is not correct. This function was also claimed in Nauenberg [START_REF] Nauenberg | Random walk in a random medium in one dimension[END_REF] to be the density of the limit law of σ 2 (log n) 2 S n , and Kesten [START_REF] Kesten | The limit distribution of Sinai's random walk in random environment[END_REF] already noticed that this is not the correct function, although ϕ ∞ (x) is equivalent to some exponential as x → +∞.

There have been many papers dealing with local limit theorems for different models of random walks in random environments recently. For example, Dolgopyat and Goldsheid [START_REF] Dolgopyat | Local Limit Theorems for Random Walks in a 1D Random Environment[END_REF], [START_REF] Dolgopyat | Local Limit Theorems for Random Walks in a Random Environment on a Strip[END_REF], Leskela and Stenlund [START_REF] Leskela | A local limit theorem for a transient chaotic walk in a frozen environment[END_REF] and Berger et al. [START_REF] Berger | Local limit theorem and equivalence of dynamic and static points of view for certain ballistic random walks in i.i.d. environments[END_REF] prove local limit theorems for transient RWRE respectively on Z and on a strip, both in the diffusive regime, on Z with only 0 or 1 jumps, and for some ballistic multidimensional RWRE. See also Dolgopyat et al. [START_REF] Dolgopyat | Constructive approach to limit theorems for recurrent diffusive random walks on a strip[END_REF] for diffusive recurrent RWRE on a strip, Takenami [START_REF] Takenami | Local limit theorem for random walk in periodic environment[END_REF] for random walks on periodic environments, Chiarini et al. [START_REF] Chiarini | Local central limit theorem for diffusions in a degenerate and unbounded random medium[END_REF] for some diffusions in random environment, and Andres et al. [START_REF] Andres | Local limit theorems for the random conductance model and applications to the Ginzburg-Landau ∇φ interface model[END_REF] for the random conductance model. We refer to the first two sections of Dolgopyat et al. [START_REF] Dolgopyat | Local Limit Theorems for Random Walks in a Random Environment on a Strip[END_REF] for a recent review of this subject. However, the previously cited papers consider transient or diffusive random walks or diffusions, whereas we consider Sinai's walk which is recurrent and subdiffusive. Also, we obtain probabilities of order (log n) -2 with a non gaussian limit law, instead of n -1/2 with a gaussian limit law in their cases. Therefore, to the extent of our knowledge, our Theorem 1.1 is the first local limit theorem for (recurrent) subdiffusive RWRE. Also, a similar local limit theorem for the quenched probability, replacing P by P ω , does not hold. Indeed, P ω (S n = 0) almost surely takes very small values compared to (log n) -2 as n → +∞, since for η ∈]0, 1[, P-almost surely P ω (S n = 0) = O exp(-(log n) 1-η ) as n → +∞ (see Devulder et al. [START_REF] Devulder | Collisions of several walkers in recurrent random environments[END_REF], last inequality of page 6). See also Gantert et al. ([34], Theorem 1.1) for previous results, Comets et al. ([19], Theorem 2.1 and Corollary 2.1) for estimates for a related model in continuous time, and Gantert et al. [START_REF] Gantert | Maximal displacement for bridges of random walks in a random environment[END_REF] for transient RWRE. So, contrarily to some of the previously cited papers on local limit theorems for RWRE, our annealed local limit theorem, Theorem 1.1, cannot be the consequence of a corresponding quenched local limit theorem.

We also mention that some estimates of P(S n = z n ) when z n is large, more precisely when n = O(z n ), are given by Comets et al. [START_REF] Comets | Quenched, annealed and functional large deviations for one-dimensional random walk in random environment[END_REF]. For an overview of the vast literature about large deviations for RWRE, see e.g. Gantert et al. [START_REF] Gantert | Large deviations for one-dimensional random walk in a random environment-a survey[END_REF] and more recently Buraczewski et al. [START_REF] Buraczewski | Precise large deviations for random walk in random environment[END_REF].

Finally, we think that the tools and technics developed in the present paper, in particular the ones of Section 2, will be useful for future research projects, including [START_REF] Devulder | Rates of convergence in Sinai and Golosov localization theorems for random walks in random environments[END_REF], which will study the rates of convergence in Sinai and Golosov localization theorems for Sinai's walk.

Acknowledgement: I am thankful to Yueyun Hu for asking, after a talk in a conference in Landela (France) in 2016, if I could give an estimate of P(S 2n = 0) as n → +∞, which made me aware that this question was still open. I also thank Françoise Pène for organizing this conference. Part of this work was done during a six months sabbatical "délégation CNRS". 1.3. Organization of the proof and of the paper. In Section 2, we recall the definition and use of the potential V . We also define left and right h-extrema for V , for h > 0. This allows us to introduce two path decompositions of the potential V , one with left h-extrema and one with right h-extrema. We can then define our localization point b h . We describe the law of the potential V between two consecutive left (or right) h-extrema x i and x i+1 when 0 / ∈ [x i , x i+1 ], which uses in particular the law of V or -V conditioned to stay positive, or nonnegative, up to some hitting time (see Theorem 2.3). The law of V between the two left h-extrema surrounding 0 is given by a renewal theorem (see Theorem 2.5), and some independence is provided by Theorem 2.4. A first application of this renewal theorem is that we can give a simple formula for the law of b h , that is, for P(b h = x), x ∈ Z (in Lemma 2.6), which is an important tool in the proof of Theorem 1.4. Section 3 is devoted to the proof of Theorem 1.4.

In Section 4, we first define an event E (n) C (z), depending only on the environment and on z. On this event, we use a coupling argument, which helps us approximate the quenched probability P ω (S n = z) by ν n (z), where ν n is an invariant probability measure. This enables us to give an upper bound for the annealed probability that S n = z on E (n) C (z) (see Proposition 4.8), giving the main contribution in the upper bound of Theorem 1.1. To this aim, loosely speaking, we express the expectation of ν n (z) on each event {b log n = k + z} ∩ E (n) C (z) with quantities depending only on the laws of the potential V between consecutive left or right (log n)-extrema; summing this over k makes appear, after some inequalities and computations using the tools developed in Section 2, a formula equal to P(b log n = z) by Lemma 2.6. We conclude by applying Theorem 1.4.

In Section 5, we prove that the environments and trajectories such that S n = z which were not considered in Section 4 have a negligible annealed probability. This covers many different cases, which often combine conditions on both environments and trajectories of (S k ) k . For example, z can be far from b log n , or the origin 0 can be very close to the maximum of the potential between two valleys (defined before [START_REF] Dembo | Valleys and the maximum local time for random walk in random environment[END_REF]), or some of the valleys around the origin can have a height just slightly larger than log n, or the central valley of height at least log n can include one or several subvalleys of height slightly less than log n. The potentials for some of these cases are represented in Figures 6 page 43, 7 page 50, 8 page 59 and 9 page 61. In this section, we prove that all these cases, and some others, with S n = z have a negligible annealed probability (compared to (log n) -2 ). Combining this with the previous subsection, we get (uniformly on z) an upper bound of P(S n = z), which completes the proof of the upper bound in Theorem 1.1. Even if this section mainly consider negligible events, it is maybe the most delicate of the paper. Section 6 is devoted to the proof of the lower bound in Theorem 1.1, that is, we give (uniformly on z) a minoration of P(S n = z). The proof is divided into three cases, depending on z being negative and far from 0, positive and far from 0, or z being close to 0. This uses results of all the other sections.

Finally, Section 7 is devoted to some important technical lemmas and their proofs. These lemmas mainly deal with the potential V , and with V conditioned to stay positive or nonnegative.

Outlines or sketches of proofs of several lemmas or theorems are also provided throughout the paper.

2. Potential, path decomposition and renewal theorem 2.1. Definition and applications of the potential. The potential (V (x), x ∈ Z), which was first introduced by Sinai [START_REF] Sinai | The limiting behavior of a one-dimensional random walk in a random medium[END_REF], is an important quantity which depends only on the environment ω. It is defined as follows:

V (x) :=    x i=1 log 1-ω i ω i if x > 0, 0 if x = 0, -0 i=x+1 log 1-ω i ω i if x < 0. (6) 
We denote by P x ω the quenched probability for the RWRE (S k ) k starting at x ∈ Z instead of 0, and by E x ω the expectation with respect to P x ω . Also, let τ (y) := inf{k ≥ 0 : S k = y}, τ * (y) := inf{k ≥ 1 :

S k = y}, y ∈ Z,
where by convention, inf ∅ = +∞. In words, τ (y) (resp. τ * (y)) is the hitting time of (resp. return time to) the site y by the RWRE (S k ) k . We also define for x ∈ Z and y ∈ Z, τ (x, y) := inf{k ∈ N : S τ (x)+k = y}.

We now recall some classical estimates, which explain why the potential is very useful. These formulas will be used throughout the paper. First, we have (see e.g. [65, (2.1.4)],

P b ω [τ (c) < τ (a)] = b-1 j=a e V (j) c-1 j=a e V (j) -1 , a < b < c. (7) 
Furthermore (see e.g. [START_REF] Devulder | Persistence of some additive functionals of Sinai's walk[END_REF] Lem. 2.2 coming from Zeitouni [START_REF] Zeitouni | Lecture notes on random walks in random environment[END_REF] p. 250), if g < h < i,

E h ω [τ (g)∧τ (i)] ≤ i-1 k=h k =g exp[V (k) -V ( )] ω ≤ ε -1 0 (i-g) 2 exp max g≤ ≤k≤i-1,k≥h (V (k) -V ( )) , (8) 
where we used ellipticity [START_REF] Alili | Wiener-Hopf factorization revisited and some applications[END_REF] in the last inequality and with x ∧ y := min(x, y). For symmetry reasons, we also have

E b ω [τ (a) ∧ τ (c)] ≤ ε -1 0 (c -a) 2 exp max a≤ ≤k≤c-1, ≤b-1 V ( ) -V (k) , a < b < c . (9) 
Moreover, we have (see Golosov [START_REF] Golosov | Localization of random walks in one-dimensional random environments[END_REF], Lemma 7, proved for a RWRE on N but still true for a RWRE on Z),

P b ω [τ (c) < k] ≤ k exp min ∈[b,c-1] V ( ) -V (c -1) , b < c . (10) 
Also by symmetry, we get (similarly as in Shi and Zindy [START_REF] Shi | A weakness in strong localization for Sinai's walk[END_REF], eq. (2.5) but with some slight differences for the values of )

P b ω [τ (a) < k] ≤ k exp min ∈[a,b-1] V ( ) -V (a) , a < b . (11) 
Moreover, we have by Devulder et al. ( [START_REF] Devulder | Collisions of several walkers in recurrent random environments[END_REF], Lemma 4.10), if a = b,

∀k ∈ N, P b ω [τ (a) = k] ≤ P b ω [τ (a) < τ * (b)]. (12) 
Finally, we recall that, given ω, the Markov chain S is an electrical network where, for every x ∈ Z, the conductance of the unoriented bond (x, x + 1) is C (x,x+1) = e -V (x) (in the sense of Doyle and Snell [START_REF] Doyle | Probability: Random walks and Electrical Networks[END_REF]) (see also Levin et al. [51]). In particular, its reversible measure µ ω (unique up to a multiplication by a constant) is given by µ ω (x) := e -V (x) + e -V (x-1) , z ∈ Z,

where, for the sake of simplicity, we write µ ω (x) instead of µ ω ({x}). For any process Y , we define

T Y (A) := inf{x ≥ 0, Y (x) ∈ A}, A ⊂ R, (14) 
T * Y (A) := inf{x > 0, Y (x) ∈ A}, A ⊂ R. (15) 
We sometimes write T Y (a) := T Y ([a, +∞[) when a > 0 and T Y (a) := T Y (] -∞, a]) when a < 0. Due to the ellipticity (2), we have

∀x ∈ Z, V (x) -V (x -1) ≤ log 1 -ε 0 ε 0 =: C 0 . (16) 
In particular, thanks to (3) and ( 16), the following fact follows from the optimal stopping theorem applied to the martingale (V (k), k ≥ 0) at time

T V ([z, +∞[) ∧ T V (] -∞, x]: y -x z -x + C 0 ≤ P y T V ([z, +∞[) < T V (] -∞, x]) ≤ y -x + C 0 z -x + C 0 , x < y < z, (17) 
where P y denotes the law of V starting from y instead of 0. Moreover, these inequalities remain valid if we replace ] -∞, x] and/or [z, +∞[ by the corresponding open interval ] -∞, x[ and/or ]z, +∞[. Also, there exist constants c 1 > 0 and c * 1 > 0 such that (see e.g. Lemma 7.4),

P[T V (h) < T * V (R -)] ∼ h→+∞ c * 1 h -1 , P[T V (h) < T V (R * -)] ∼ h→+∞ c 1 h -1 . (18) 
2.2. Definition and properties of left and right h-extrema. The point of view of hextrema has been used recently in some papers for RWRE or diffusions in a random potential, either to prove localization results, see e.g. [START_REF] Andreoletti | Localization and number of visited valleys for a transient diffusion in random environment[END_REF], [START_REF] Bovier | Spectral analysis of Sinais walk for small eigenvalues[END_REF], [START_REF] Devulder | Collisions of several walkers in recurrent random environments[END_REF] and [START_REF] Freire | Application of Moderate Deviation Techniques to Prove Sinai Theorem on RWRE[END_REF], or to use localization techniques, see e.g. [START_REF] Andreoletti | Renewal structure and local time for diffusions in random environment[END_REF], [START_REF] Cheliotis | Localization of favorite points for diffusion in a random environment[END_REF], [START_REF] Devulder | Persistence of some additive functionals of Sinai's walk[END_REF] and [START_REF] Comets | Limit law for transition probabilities and moderate deviations for Sinai's random walk in random environment[END_REF] (where they are called e h -stable points).

However, these studies use h-extrema of a (maybe drifted) two-sided Brownian motion W , and sometimes transfer results about W to the potential V by Komlòs, Major and Tusnády strong approximation theorem [START_REF] Komlós | An approximation of partial sums of independent rv's and the sample df. I[END_REF]. This is not precise enough to prove our theorems, so we introduce and study variants of h-extrema directly for our potential V .

Let h > 0, and v be a function from Z to R. Following Neveu and Pitman [START_REF] Neveu | Renewal property of the extrema and tree property of the excursion of a onedimensional Brownian motion[END_REF], we say that y is an h-minimum for v if there exist integers α < y < β such that v(y) = min [α,β] v, v(α) ≥ v(y)+h and v(β) ≥ v(y) + h. We say that y is an h-maximum for v if it is an h-minimum for -v. In both cases, we say that y is an h-extremum for v.

One of the main differences with h-extrema of Brownian motion is that unfortunately, in the general case, h-maxima and h-minima for V do not necessarily alternate. For this reason, we introduce the following definitions (see Figure 1).

Definition 2.1. Let h > 0 and v be a function from Z to R. We say that y ∈ Z is a left h-minimum (resp. right h-minimum) for v if there exist α < y < β such that

• min [α,y-1] v > v(y) (resp ≥), • min [y+1,β] v ≥ v(y) (resp. >), • v(α) ≥ v(y) + h, • v(β) ≥ v(y) + h.
We say that y is a left h-maximum (resp. right h-maximum) for v if it is a left h-minimum (resp. right h-minimum) for -v. In both cases, we say that y is a left h-extremum (resp. right h-extremum) for v.

With these definitions, left h-minima and left h-maxima for v alternate, and similarly right h-minima and right h-maxima for v alternate. The elementary proof is given in Lemma 7.7. Also, between two consecutive left h-maxima y 1 and y 2 , more precisely in [y 1 , y 2 [∩Z, there are one or several h-minima, among which the smallest one is the only left h-minimum, which is y 1 , and the largest one is the only right h-minimum, which we will not use in the present paper.

x -1 (V, h)

x 0 (V, h) = b h 0 h V (k) x 1 (V, h) ≥ h ≥ h ≥ h ≥ h x * 3 (V, h) x 2 (V, h) x 3 (V, h) k left and right h-minimum ≥ h x * 0 (V, h) left and right h-maximum x * 1 (V, h) x * -1 (V, h) = x -1 (V, h) x * 2 (V, h) = x 2 (V, h) Figure 1. Schema of the potential V with left h-extrema x i (V, h) (defined before (19)) and right h-extrema x * i (V, h) (defined before (46)).
Left and right h-extrema of V have the disadvantage of not being stopping times. However, we will see that they allow a very simple definition of the localization point b h (see [START_REF] Comets | Limit law for transition probabilities and moderate deviations for Sinai's random walk in random environment[END_REF] below, which can be compared e.g. to [START_REF] Neveu | Renewal property of the extrema and tree property of the excursion of a onedimensional Brownian motion[END_REF]), that they have nice independence properties, that the properties of the law of trajectories of V between consecutive left or right h-extrema are convenient, and that we can use renewal theory, which enables for example to prove very useful formulas such as the law of b h (see Lemma 2.6).

We now focus on left h-extrema. Let V be the set of functions v from Z to R, such that lim inf ±∞ v = -∞ and lim sup ±∞ v = +∞. If v ∈ V and h > 0, then the set of left hminima of v is unbounded from above and below, and so is the set of left h-maxima of v.

Consequently, for v ∈ V for every h > 0, the set of left h-extrema of v can be denoted by

{x k (v, h), k ∈ Z}, such that k → x k (v, h) is strictly increasing and x 0 (v, h) ≤ 0 < x 1 (v, h).
And also, lim k→±∞ x k (v, h) = ±∞. Notice that due to our hypotheses (3) and ( 4), V ∈ V almost surely.

Similarly as in the continuous case (see Cheliotis [START_REF] Cheliotis | Diffusion in random environment and the renewal theorem[END_REF]), we can now define for h > 0,

b h := x 0 (V, h) if x 0 (V, h) is a left h-minimum for V, x 1 (V, h) otherwise. ( 19 
)
As already mentioned, the definition of the localization point b h given by Sinai [START_REF] Sinai | The limiting behavior of a one-dimensional random walk in a random medium[END_REF] is not the same.

Similarly as in the continuous case for h-slopes, we introduce for each function v ∈ V and for

each i ∈ Z and h > 0 the left h-slope T i (v, h) := (v(j) -v[x i (v, h)], x i (v, h) ≤ j ≤ x i+1 (v, h)).
Its height and its excess height are defined respectively as

H[T i (v, h)] := v[x i+1 (v, h)] -v[x i (v, h)] ≥ h, e[T i (v, h)] = H[T i (v, h)] -h ≥ 0. If x i (v, h) is a left h-minimum (resp. maximum), then T i (v, h
) is a nonnegative (resp. nonpositive) function, it is said to be an upward slope (resp. a downward slope) and its maximum (resp. minimum) is attained at

x i+1 (v, h), with sup [x i (v,h),x i+1 (v,h)[ v < v[x i+1 (v, h)] (resp. inf [x i (v,h),x i+1 (v,h)[ v > v[x i+1 (v, h)] ).
Similarly, if y i and y i+1 are two consecutive right h-extrema of v, we say that (v(j) -v(y i ),

y i ≤ j ≤ y i+1 ) is a right h-slope of v (see Subsection 2.
6 for some properties of right h-slopes and extrema). More generally, we call a slope each T=(T (j), α We call valleys of height at least h of V the intervals

≤ j ≤ β) ∈ R β-α+1 , with α ∈ Z, β ∈ Z∩]α, +∞[, such that either T (α) = 0 = min [α,β]∩Z T < max [α,β]∩Z T = T (β) or T (β) = min [α,β]∩Z T < max [α,
[x i (V, h), x i+2 (V, h)], i ∈ Z, such that x i (V, h) and x i+2 (V, h) are (consecutive) left h-maxima. The bottom of such a valley is the left h-minimum x i+1 (V, h). If its bottom is b h , that is, if b h = x i+1 (V, h), then it is called the central valley of height at least h of V .
Knowing, for some h > 0, θ[T i (V, h)] for each i ∈ Z * and (θ[T 0 (V, h)], x 0 (V, h)) allows us to reconstitute totally the process V since V (0) = 0. The two following subsections will provide their laws and independence properties.

Definition and law of T ↑

V,h and T ↓ V,h . Let h > 0. We define by induction the following notation. Let τ (V ) 0 (h) := 0 and for i ≥ 0 (see Figure 2),

τ (V ) 2i+1 (h) := min k ≥ τ (V ) 2i (h), V (k) -min [τ (V ) 2i (h),k] V ≥ h , (20) 
m (V ) 2i+1 (h) := min k ≥ τ (V ) 2i (h), V (k) = min [τ (V ) 2i (h),τ (V ) 2i+1 (h)] V , (21) 
τ (V ) 2i+2 (h) := min k ≥ τ (V ) 2i+1 (h), max [τ (V ) 2i+1 (h),k] V -V (k) ≥ h , (22) 
m (V ) 2i+2 (h) := min k ≥ τ (V ) 2i+1 (h), V (k) = max [τ (V ) 2i+1 (h),τ (V ) 2i+2 (h)] V . (23) 
Notice that that τ (V ) i (h) < ∞ P-a.s. for i ≥ 0 since V ∈ V P-a.s. due to (3) and ( 4), and that the τ (V ) i (h), i ≥ 0, are stopping times for the natural filtration of (V ( ), ≥ 0). [START_REF] Dembo | Valleys and the maximum local time for random walk in random environment[END_REF] and [START_REF] Devulder | Rates of convergence in Sinai and Golosov localization theorems for random walks in random environments[END_REF], in Definition 2.2 and before ( 47)).

0 V (k) τ (V ) 1 (h) h h k m (V ) 1 (h) m (V ) 2 (h) h τ (V ) 2 (h) τ (V ) 3 (h) m (V ) 3 (h) m (V ) 4 (h) j T ↑ V,h (j) 0 0 x T ↓ V,h (x) ℓ T ↑ V,h ℓ T ↓ V,h h τ (V ) 4 (h) m (V ) * 1 (h) m (V ) * 2 (h) Figure 2. Schema of the potential V with the τ (V ) i (h), m (V ) i (h), T ↑ V,h , T ↓ V,h and m (V ) * i (h) (defined between

Let

denote the disjoint union. Notice that, with a slight abuse of notation, each translated (left h-) slope T = (T (0), T (1), . . . , T ( (T ))) belongs to R (T )+1 . So, we can consider our translated slopes (and T ↑ V,h and T ↓ V,h defined below) as random variables taking values into t∈N * R t , equipped with the σ-algebra

{ t∈N * A t : ∀t ∈ N * , A t ∈ B(R t )}, where B(R t ) is the Borel σ-algebra of R t .
The following notations are useful to express the law of left h-slopes in the next subsection: Definition 2.2. Let h > 0. We introduce (see Figure 2),

T ↑ V,h := V m (V ) 1 (h) + x -V m (V ) 1 (h) , 0 ≤ x ≤ m (V ) 2 (h) -m (V ) 1 (h) , T ↓ V,h := V m (V ) 2 (h) + x -V m (V ) 2 (h) , 0 ≤ x ≤ m (V ) 3 (h) -m (V ) 2 (h) . (iii) Also, E T ↑ V,h < ∞ and E T ↓ V,h < ∞.
Before proving Theorem 2.3, we introduce some notation. For a slope (T (i), 0 ≤ i ≤ (T )) (recall that T (0) = 0), we define the slope

ζ(T ) := T [ (T ) -i] -T [ (T )], 0 ≤ i ≤ (T ) , (24) 
with ζ • ζ being identity (since T (0) = 0 when T is a slope).

Proof of Theorem 2.3: Let h > 0. Applying ( [START_REF] Devulder | Arbitrary many walkers meet infinitely often in a subballistic random environment[END_REF], Proposition 5.2, (ii)), V m

(V ) 1 (h) + x - V m (V ) 1 (h) , 0 ≤ x ≤ τ (V ) 1 (h) -m (V ) 1 (h) , is equal in law to V (k), 0 ≤ k ≤ T V ([h, +∞[) conditioned on {T V ([h, +∞[) < T V (] -∞, 0[},
which proves the first part of (i). The second one follows from the strong Markov property applied to (V (k), k ≥ 0) at stopping time τ

(V ) 1 (h), which is equal to m (V ) 1 (h) + T T ↑ V,h ([h, +∞[).
We now prove some more general results, which will also be useful later. Due to Lemma 7.8, the m

(V ) 2i+1 (h), i ≥ 1, are left h-minima, the m (V ) 2i+2 (h), i ≥ 0, are left h-maxima, and the m (V ) i (h), i ≥ 2, are the only left h-extrema in τ (V ) 1 (h), +∞ . However, m (V ) 1 (h) is not necessarily a left h-minimum, depending on the values taken by (V (k), k ≤ 0). For k ≥ 1, let θ ( ) k,h (V ) := θ ( ) k,h := V m (V ) k (h)-x -V m (V ) k (h) , 0 ≤ x ≤ m (V ) k (h)-τ (V ) k-1 (h) and θ (r) k,h (V ) := θ (r) k,h := V m (V ) k (h) + x -V m (V ) k (h) , 0 ≤ x ≤ τ (V ) k (h) -m (V ) k (h) . According to ([25], Proposition 5.2, (i)), the processes θ ( ) 1,h (V ) and θ (r) 1,h (V ) are independent. Also, θ ( ) 2,h (V ) = -θ ( ) 1,h V τ (V ) 1 (h) -V τ (V ) 1 (h) + . and θ (r) 2,h (V ) = -θ (r) 1,h V τ (V ) 1 (h) -V τ (V )
1 (h) + . , so it follows from the previous result and from the strong Markov property applied at stopping time τ

(V ) 1 (h) that θ ( ) 2,h (V ) and θ (r)
2,h (V ) are independent and more precisely that all the trajectories θ ( ) k,h (V ) and θ (r) k,h (V ), k ∈ {1, 2}, are independent. Applying the same procedure by induction, with the strong Markov property applied successively at stopping times τ

(V ) k (h), k ≥ 1, proves that all the trajectories θ ( ) k,h and θ (r) k,h , k ≥ 1, are independent.
In what follows we will "glue" trajectories. For two trajectories (f (i), a ≤ i ≤ b) and (g(i), c ≤ i ≤ d), by gluing g to the right of f , we mean defining a new function j : {a, . . . , b + d -c} → R such that

j(i) = Glue(f, g)(i) := f (i) if a ≤ i ≤ b, f (b) + g(i -b + c) -g(c) if b ≤ i ≤ b + d -c. (25) 
Thanks to the previous paragraph, the trajectories

θ (V ) k,h := V x + m (V ) k (h) -V m (V ) k (h) , 0 ≤ x ≤ m (V ) k+1 (h) -m (V ) k (h) , k ∈ N * (26) 
are independent, since the k-th one is obtained by gluing θ

(r)

k,h and, to its right, V τ

(V ) k (h) + x -V τ (V ) k (h) , 0 ≤ x ≤ m (V ) k+1 (h) -τ (V ) k (h) = ζ θ ( ) k+1,h (with ζ defined in (24)), that is, θ (V ) k,h = Glue θ (r) k,h , ζ θ ( ) k+1,h .
Also by the strong Markov property applied at stopping time τ

(V ) 2k (h), θ ( ) 2k+i,h (V ) = law θ ( ) i,h (V ) and θ (r) 2k+i,h (V ) = law θ (r)
i,h (V ) for every k ≥ 1 and i ∈ {1, 2}. Consequently, using the previous paragraph, θ

(V ) 2k+1,h = Glue θ (r) 2k+1,h , ζ θ ( ) 2k+2,h = law Glue θ (r) 1,h , ζ θ ( ) 2,h = θ (V ) 1,h = T ↑ V,h and θ (V ) 2k+2,h = Glue θ (r) 2k+2,h , ζ θ ( ) 2k+3,h = law Glue θ (r) 2,h , ζ θ ( ) 3,h = θ (V ) 2,h = T ↓ V,h for every k ∈ N.
Finally, by the strong Markov property applied at time τ

(-V ) 1 (h), θ ( ) 2,h (-V ), θ (r) 2,h (-V ) is equal in law to -θ ( ) 1,h (V ), -θ (r) 1,h (V ) . Similarly, θ ( ) 3,h (-V ), θ (r) 3,h (-V ) = law -θ ( ) 2,h (V ), -θ (r) 2,h (V ) . As a consequence, T ↓ -V,h = Glue θ (r) 2,h (-V ), ζ θ ( ) 3,h (-V ) = law Glue -θ (r) 1,h (V ), ζ -θ ( ) 2,h (V ) = -Glue θ (r) 1,h (V ), ζ θ ( ) 2,h (V ) = -T ↑ V,h . Also, applying this to -V instead of V gives T ↑ -V,h = law -T ↓ V,h
, which ends the proof of (ii). We now prove (iii). Due to (3) and ( 4), there exist a > 0 such that

P[V (1) ≥ a] =: b > 0. Let d := h/a + 1. Now, notice that τ (V ) 1 (h) ≤ d(N d + 1), where N d := min{i ∈ N, ∀0 ≤ k ≤ d, V (id + k) -V (id) ≥ ak}. Hence, E τ (V ) 1 (h) ≤ d(E(N d ) + 1) < ∞ since N d is a geometric r.v. with parameter P[∀0 ≤ k ≤ d, V (k) ≥ ak] ≥ b d > 0. Using the strong Markov property, we get similarly E τ (V ) 2 (h) -τ (V ) 1 (h) < ∞. Consequently, E T ↑ V,h = E m (V ) 2 (h) -m (V ) 1 (h) ≤ E τ (V ) 2 (h) < ∞. Finally, applying this to -V , we get E T ↓ V,h = E T ↑ -V,h < ∞, since T ↑ -V,h = law -T ↓ V,h by (ii)
. This proves (iii). 2.4. Independence and law of translated left h-slopes via renewal theory. Notice that the law of V may be nonsymmetric, so T ↑ V,h and -T ↓ V,h = law T ↑ -V,h may have a different law, contrarily to what happens for Brownian motion (imagine for example that the jumps of V belong to [-2, -1] ∪ [START_REF] Andreoletti | Renewal structure and local time for diffusions in random environment[END_REF][START_REF] Andres | Local limit theorems for the random conductance model and applications to the Ginzburg-Landau ∇φ interface model[END_REF]).

The following theorem is proved simultaneously as the next one. It says that for h > 0, roughly speaking, conditionally on the central left h-slope T 0 (V, h) being upward (or being downward), the translated left h-slopes θ[T i (V, h)], i ∈ Z * , are independent and are independent of the (non translated) central left h-slope T 0 (V, h), and that the translated left h-slopes θ[T i (V, h)], i ∈ Z * , have the same law as T ↑ V,h (under P) for the upward ones (ie the ones with i ∈ (2Z) -{0} when T 0 (V, h) is upward, the ones for i ∈ (2Z + 1) when T 0 (V, h) is downward) and the same law as T ↓ V,h (under P) for the downward ones (the other ones).

We denote by

L T ↑ V,h resp. L T ↓ V,h the law of T ↑ V,h resp. T ↓ V,h under P. Theorem 2.4. Let h > 0. (i) Conditionally on V (x 1 (V, h)) > V (x 0 (V, h)) (i.e. on the central left h-slope T 0 (V, h) being upward), the θ[T 2i+1 (V, h)], i ∈ Z have the law L T ↓ V,h whereas the θ[T 2i (V, h)], i ∈ Z * have the law L T ↑ V,h , and (θ[T 0 (V, h)], x 0 (V, h), x 1 (V, h)), θ[T i (V, h)], i ∈ Z * are independent. (ii) Conditionally on V (x 1 (V, h)) < V (x 0 (V, h)) (i.e. on the central left h-slope T 0 (V, h) being downward), the θ[T 2i+1 (V, h)], i ∈ Z have the law L T ↑ V,h , whereas the θ[T 2i (V, h)], i ∈ Z * have the law L T ↓ V,h , and (θ[T 0 (V, h)], x 0 (V, h), x 1 (V, h)), θ[T i (V, h)], i ∈ Z * are independent.
However the law of the central left h-slope T 0 (V, h) is different. It is provided by the following renewal theorem.

Theorem 2.5. Let h > 0, ∆ 0 ⊂ Z and ∆ 1 ⊂ Z. For A ∈ { t∈N * A t : ∀t ∈ N * , A t ∈ B(R t +
)} (so that the only slopes in A are upward slopes), we have

P[θ(T 0 (V, h)) ∈ A, x 0 (V, h) ∈ ∆ 0 , x 1 (V, h) ∈ ∆ 1 ] = E 0 ≤ i < (T ↑ V,h ), (-i) ∈ ∆ 0 , ( (T ↑ V,h ) -i) ∈ ∆ 1 1 {T ↑ V,h ∈A} E[ (T ↑ V,h ) + (T ↓ V,h )] . ( 27 
)
Moreover if A ∈ { t∈N * A t : ∀t ∈ N * , A t ∈ B(R t -)
} (so that the only slopes in A are downward slopes), then

P[θ(T 0 (V, h)) ∈ A, x 0 (V, h) ∈ ∆ 0 , x 1 (V, h) ∈ ∆ 1 ] = E 0 ≤ i < T ↓ V,h , (-i) ∈ ∆ 0 , T ↓ V,h -i ∈ ∆ 1 1 {T ↓ V,h ∈A} E T ↑ V,h + T ↓ V,h . (28) 
Finally, for all nonnegative function, ϕ :

t∈N * R t → [0, +∞[, measurable with respect to the σ-algebra { t∈N * A t : ∀t ∈ N * , A t ∈ B(R t )}, E ϕ θ(T 0 (V, h)) 1 {x 0 (V,h)∈∆ 0 } 1 {x 1 (V,h)∈∆ 1 } = E 0 ≤ i < T ↑ V,h , (-i) ∈ ∆ 0 , T ↑ V,h -i ∈ ∆ 1 ϕ T ↑ V,h E[ (T ↑ V,h ) + (T ↓ V,h )] + E 0 ≤ i < T ↓ V,h , (-i) ∈ ∆ 0 , T ↓ V,h -i ∈ ∆ 1 ϕ T ↓ V,h E T ↑ V,h + T ↓ V,h . ( 29 
)
Proof of Theorems 2.4 and 2.5:

Let h > 0, ∆ 0 ⊂ Z, ∆ 1 ⊂ Z, q ≤ 0 ≤ r, and B i ∈ { t∈N * A t : ∀t ∈ N * , A t ∈ B(R t )} =: G, for q ≤ i ≤ r. We first assume that B 0 ∈ { t∈N * A t : ∀t ∈ N * , A t ∈ B(R t + )
}, so that B 0 contains only upward slopes. For t ∈ Z and v ∈ V , let, loosely speaking, T 0 (t, v, h) be the left h-slope around t for v, that is, the left h-slope whose of v domain contains t, and denote its domain as

[x 0 (t, v, h), x 1 (t, v, h)].
More precisely and more generally, for j ∈ Z, we define

T j (t, v, h) = T i+j (v, h) if and only if x i (v, h) ≤ t < x i+1 (v, h
), and for this unique i, x j (t, v, h) := x i+j (v, h) for j ∈ Z (recall that the notations x i+j , T i+j are defined before and after [START_REF] Comets | Limit law for transition probabilities and moderate deviations for Sinai's random walk in random environment[END_REF]). We also introduce V -t (k) := V (k -t) -V (-t) for t ∈ Z and k ∈ Z. Hence, for t ∈ N,

P x 0 (V, h) ∈ ∆ 0 , x 1 (V, h) ∈ ∆ 1 ∩ r i=q θ[T i (V, h)] ∈ B i ( 30 
) = P (x 0 (t, V -t , h) -t) ∈ ∆ 0 , (x 1 (t, V -t , h) -t) ∈ ∆ 1 ∩ r i=q θ[T i (t, V -t , h)] ∈ B i = P[E B (t)] = P E B (t), m (V ) -q+3 (h) ≤ t + P E B (t), m (V ) -q+3 (h) > t , (31) 
where

E B (t) := {(x 0 (t, V, h)-t) ∈ ∆ 0 , (x 1 (t, V, h)-t) ∈ ∆ 1 }∩∩ r i=q θ[T i (t, V, h)] ∈ B i , because x j (V, h) = x j (t, V -t , h) -t for j ∈ Z, θ[T i (V, h)] = θ[T i (t, V -t , h)] for i ∈ Z, and V -t has the same law as V . Let (Y k ) k∈Z be a sequence of independent left h-slopes, such that Y 2k = law T ↑ V,h and Y 2k+1 = law T ↓ V,h for every k ∈ Z. We glue sequentially (see (25)) Y 0 , Y 1 , . . . , Y k , . . . to get a process (Y (i), i ∈ N), starting from 0 (i.e. Y (i) = Y 0 (i) for 0 ≤ i ≤ (Y 0 )). This process (Y (i), i ∈ N) has the same law as V m (V ) 1 (h) + x -V m (V )
1 (h) , x ≥ 0 . Indeed, this last process can be obtained from gluing θ [START_REF] Diel | Non parametric estimation for random walks in random environment[END_REF]), which are independent and such that θ

(V ) 1,h , θ (V ) 2,h , . . . , θ (V ) k,h , . . . (see
(V ) k,h = law Y k-1 , k ∈ N * by definition of the Y k and the law of the θ (V )
k,h (see after [START_REF] Diel | Non parametric estimation for random walks in random environment[END_REF]). We also glue sequentially the Y k , k < 0 in the same way to the left of (Y (i), i ∈ N), so that Y k is followed by Y k+1 , k ∈ Z. The resulting process is denoted by (Y (i), i ∈ Z), with Y (0) = 0. Notice that

x 0 (Y, h) = 0, for i ∈ N * . We also have x i (Y, h) = (Y 0 ) + • • • + (Y i-1
), and for i ∈ Z * -, we have

x i (Y, h) = -(Y -1 ) -• • • -(Y i ).
We can assume without loss of generality that q ∈ (-2N * ), so T q (V, h) is an upward slope when θ(T 0 (V, h)) ∈ B 0 . Using, in the second equality, the fact that V x+m

(V ) 3 (h) -V m (V )
3 (h) , x ≥ 0 has the same law as (Y (x), x ≥ 0) (see [START_REF] Diel | Non parametric estimation for random walks in random environment[END_REF] and below), and is independent of V (x), x ≤ m (V ) 3 (h) (see the paragraph before ( 25)), we have for t ∈ N,

P E B (t), m (V ) -q+3 (h) ≤ t = t y=0 P E B (t), m (V ) 3 (h) = y, m (V ) -q+3 (h) ≤ t = t y=0 P m (V ) 3 (h) = y h B (t -y) (32) 
where h B (p

) := P E B (p) ∩ { (Y 0 ) + • • • + (Y -q-1 ) ≤ p} , with E B (p) := { x 0 (p, Y, h) -p ∈ ∆ 0 , x 1 (p, Y, h) -p ∈ ∆ 1 } ∩ ∩ r i=q θ T i (p, Y, h) ∈ B i , p ∈ N. Indeed, on m (V ) -q+3 (h) ≤ t , we have x 0 (t, V, h) ≥ m (V ) -q+3 (h) thanks to Lemma 7.8, thus x q (t, V, h) ≥ m (V ) 3 (h), so E B (t) depends only on V x + m (V ) 3 (h) -V m (V ) 3 (h) , x ≥ 0 =: (Y (x), x ≥ 0), with x i (t, V, h) = x i (t-y, Y , h)+y and θ[T i (t, V, h)] = θ[T i (t-y, Y , h)] for i ≥ q on m (V ) 3 (h) = y and Y = law Y .
We want to prove that h B (p) has a limit as p → +∞. For p ∈ N, let

a p := P ( (Y 0 ) + • • • + (Y -q-1 ) -p) ∈ ∆ 0 , (Y 0 ) + • • • + (Y -q ) -p ∈ ∆ 1 ∩ 0 ≤ p -(Y 0 ) -• • • -(Y -q-1 ) < (Y -q ) ∩ r i=q {Y i-q ∈ B i } .
We have for p ∈ N, since q ∈ (-2N * ),

h B (p) = P E B (p), (Y 0 ) + • • • + (Y -q-1 ) ≤ p < (Y 0 ) + • • • + (Y -q-1 ) + (Y -q ) (33) +P E B (p), (Y 0 ) + • • • + (Y -q ) ≤ p < (Y 0 ) + • • • + (Y -q ) + (Y -q+1 ) (34) 
+ p y=0 P (Y 0 ) + (Y 1 ) = y, E B (p), (Y 2 ) + • • • + (Y -q+1 ) ≤ p -y (35) 
= a p + 0 +

p y=0 P (Y 0 ) + (Y 1 ) = y P E B (p -y), (Y 0 ) + • • • + (Y -q-1 ) ≤ p -y = a p + p y=0 P (Y 0 ) + (Y 1 ) = y h B (p -y).
Indeed in the probability in line [START_REF] Freire | Application of Moderate Deviation Techniques to Prove Sinai Theorem on RWRE[END_REF], the image by θ of the slope T 0 (p, Y, h) containing p is Y -q and the 0 in the second equality comes from the fact that on the set inside the probability of line (34), θ T 0 (p, Y, h) = Y -q+1 is a downward slope, whereas B 0 contains only upward slopes, and in the sets appearing in [START_REF] Gantert | The infinite valley for a recurrent random walk in random environment[END_REF], there exists j ≥ 0 such that

x i (p-y, Y, h) = (Y 2 )+• • •+ (Y -q+1+j+i ) and θ T i (p -y, Y, h) = Y -q+2+j+i for i ≥ q and (Y 0 , Y 1 ) is independent of (Y i+2 , i ≥ 0), which has the same law as (Y i , i ≥ 0). So, h B (p) is solution of the discrete time renewal equation h p = a p + p k=0 f k h p-k , p ∈ N, with h p = h B (p) and f k = P (Y 0 ) + (Y 1 ) = k . Notice that a p ≥ 0, p ∈ N and ∞ p=0 a p ≤ E (Y 0 ) + • • • + (Y -q ) + a 0 ≤ (|q| + 1)E T ↑ V,h + T ↓ V,h
+ 1 < ∞ by our Theorem 2.3 (iii). So, Theorem 2.2 of Barbu and Limnios [START_REF] Barbu | Semi-Markov chains and hidden semi-Markov models toward applications, Their use in reliability and DNA analysis[END_REF] with its notation

X n = (Y 2n-2 ) + (Y 2n-1 ) > 0, n ≥ 1 so that f k = P[X 1 = k] and u n := n m=0 P[X 1 + • • • + X m = n] = n m=0 P[ (Y 0 ) + (Y 1 ) + • • • + (Y 2m-2 ) + (Y 2m-1 ) = n] with X 1 + • • • + X 0 =
0 by convention, give us that this renewal equation has a unique solution, which is

h B (p) = h p = (u * a ) p = p k=0 u p-k a k , p ∈ N.
Let n 1 ∈ N * and n 2 ∈ N * be such that 3) and (4). Hence, using the law of

P[T V (h) = n 1 | T V (h) < T V (R * -)] =: c 2 > 0 and P[ (Y 1 ) = n 2 ] =: c 3 > 0 and let c 4 := P[T V (-h) < T V (]0, ∞[)] > 0 due to (
T ↑ V,h (see Theorem 2.3 (i)), P[ (Y 0 ) = n 1 ] = P T ↑ V,h = n 1 ≥ c 2 c 4 > 0. Also, P[ (Y 0 ) = n 1 + 1] ≥ c 2 P[V (1) > 0]c 4 > 0. Thus, P[ (Y 0 ) + (Y 1 ) = n 1 + n 2 ] > 0 and P[ (Y 0 ) + (Y 1 ) = n 1 + n 2 + 1] > 0, and then the renewal chain (X 1 + • • • + X n ) n is aperiodic. It is also recurrent since X 1 < ∞ a.s., e.g. because E(X 1 ) = E T ↑ V,,h + T ↓ V,h
< ∞ by Theorem 2.3 (iii). So by the renewal theorem (see e.g. Barbu and Limnios [7], Theorem 2.6), we have 

u p → p→+∞ 1/E(X 1 ) = 1/E T ↑ V,h + T ↓ V,
h B (p) = h p = p k=0 u p-k a k → p→+∞ 1 E[ (T ↑ V,h ) + (T ↓ V,h )] ∞ p=0 a p . (36) 
Also, let A k 0 ,...,k r-q := p ∈ N,

(k 0 + • • • + k -q-1 -p) ∈ ∆ 0 , k 0 + • • • + k -q -p ∈ ∆ 1 ∩ 0 ≤ p -k 0 -• • • -k -q-1 < k -q for (k 0 , . . . , k r-q ) ∈ N r-q+1 . We have, ∞ p=0 a p = ∞ p=0 (k 0 ,...,k r-q )∈N r-q+1 P r-q j=0 (Y j ) = k j ∩ {Y j ∈ B j+q } ∩ {p ∈ A k 0 ,...,k r-q } = (k 0 ,...,k r-q )∈N r-q+1 r-q j=0 P (Y j ) = k j ∩ {Y j ∈ B j+q } ∞ p=0 1 A k 0 ,...,k r-q (p) = (k 0 ,...,k r-q )∈N r-q+1 0≤j≤r-q, j =-q P (Y j ) = k j ∩ {Y j ∈ B j+q } ×E 1 { (Y -q )=k -q , Y -q ∈B 0 } ∞ p=0 1 A k 0 ,...,k r-q (p) = (k 0 ,...,k r-q )∈N r-q+1 0≤j≤r-q, j =-q P (Y j ) = k j ∩ {Y j ∈ B j+q } ×E 1 { (Y -q )=k -q , Y -q ∈B 0 } {0 ≤ m < (Y -q ), (-m) ∈ ∆ 0 , ( (Y -q ) -m) ∈ ∆ 1 } = 0≤j≤r-q, j =-q P Y j ∈ B j+q ×E 1 {Y -q ∈B 0 } {0 ≤ m < (Y -q ), (-m) ∈ ∆ 0 , ( (Y -q ) -m) ∈ ∆ 1 } . (37) 
Now, notice that by definition of (Y k ) k∈Z and since q ∈ (-2N * ), the product in ( 37) is equal to

q≤i≤r, i =0, i∈(2Z) P T ↑ V,h ∈ B i × q≤i≤r, i∈(2Z+1) P T ↓ V,h ∈ B i . (38) 
The second probability in [START_REF] Enriquez | Limit laws for transient random walks in random environment on Z[END_REF] is less than P m (V )

-q+3 (h) > t and then it goes to 0 as t → +∞ since m

(V ) -q+3 (h) < τ (V ) -q+3 (h) < ∞ a.s. since V ∈ V a.s.
Combining this with [START_REF] Enriquez | Aging and quenched localization for one dimensional random walks in random environment in the sub-ballistic regime[END_REF], letting t → +∞ and applying the dominated convergence theorem gives (30) = lim p→+∞ h B (p) (since this limit exists by [START_REF] Gantert | Maximal displacement for bridges of random walks in a random environment[END_REF]). This, together with [START_REF] Gantert | Maximal displacement for bridges of random walks in a random environment[END_REF], [START_REF] Gantert | Many visits to a single site by a transient random walk in random environment[END_REF], and (38) leads to

(30) = q≤i≤r, i =0, i∈(2Z) P T ↑ V,h ∈ B i × q≤i≤r, i∈(2Z+1) P T ↓ V,h ∈ B i × E 1 {Y -q ∈B 0 } E[ (T ↑ V,h ) + (T ↓ V,h )] {0 ≤ m < (Y -q ), (-m) ∈ ∆ 0 , ( (Y -q ) -m) ∈ ∆ 1 } . (39) 
Moreover, taking (only here) all the B i equal to t∈N * R t , except B 0 in (39), we get

P x 0 (V, h) ∈ ∆ 0 , x 1 (V, h) ∈ ∆ 1 , θ[T 0 (V, h)] ∈ B 0 = E 1 {T ↑ V,h ∈B 0 } {0 ≤ m < (T ↑ V,h ), (-m) ∈ ∆ 0 , ( (T ↑ V,h ) -m) ∈ ∆ 1 } E[ (T ↑ V,h ) + (T ↓ V,h )] , (40) 
since Y -q has the same law as T ↑ V,h because q ∈ (2Z). This proves [START_REF] Dolgopyat | Local Limit Theorems for Random Walks in a 1D Random Environment[END_REF]. Consequently, (39) becomes (30) = q≤i≤r, i =0, i∈(2Z)

P T ↑ V,h ∈ B i × q≤i≤r, i∈(2Z+1) P T ↓ V,h ∈ B i × P x 0 (V, h) ∈ ∆ 0 , x 1 (V, h) ∈ ∆ 1 ∩ θ[T 0 (V, h)] ∈ B 0 . (41) 
This proves Theorem 2.4 (i).

We now prove (28) and Theorem 2.4 (ii). We assume that B 0 ∈ { t∈N * A t : ∀t ∈ N * , A t ∈ B(R t -)}, so that B 0 contains only downward slopes. Notice that

x i (-V, h) = x i (V, h) and θ[T i (-V, h)] = -θ[T i (V, h)] for i ∈ Z. Then, -B 0 = {-f, f ∈ B 0 } ∈ { t∈N * A t : ∀t ∈ N * , A t ∈ B(R t + )}, and for each q ≤ i ≤ r, θ(T i (V, h)) ∈ B i iff θ(T i (-V, h)) ∈ (-B i )
, for which we can apply [START_REF] Grimmett | Probability and random processes[END_REF] and [START_REF] Golosov | Limit distributions for random walks in random environments[END_REF] as follows. We get,

P x 0 (V, h) ∈ ∆ 0 , x 1 (V, h) ∈ ∆ 1 ∩ r i=q θ[T i (V, h)] ∈ B i ( 42 
) = P x 0 (-V, h) ∈ ∆ 0 , x 1 (-V, h) ∈ ∆ 1 ∩ r i=q θ[T i (-V, h)] ∈ (-B i ) = q≤i≤r, i =0, i∈(2Z) P T ↑ -V,h ∈ (-B i ) × q≤i≤r, i∈(2Z+1) P T ↓ -V,h ∈ (-B i ) × E 1 {T ↑ -V,h ∈(-B 0 )} {0 ≤ m < (T ↑ -V,h ), (-m) ∈ ∆ 0 , ( (T ↑ -V,h ) -m) ∈ ∆ 1 } E[ (T ↑ -V,h ) + (T ↓ -V,h )] , = q≤i≤r, i =0, i∈(2Z) P T ↓ V,h ∈ B i × q≤i≤r, i∈(2Z+1) P T ↑ V,h ∈ B i × E 1 {T ↓ V,h ∈B 0 } {0 ≤ m < (T ↓ V,h ), (-m) ∈ ∆ 0 , ( (T ↓ V,h ) -m) ∈ ∆ 1 } E[ (T ↑ V,h ) + (T ↓ V,h )] , since T ↑ -V,h = law -T ↓ V,h and E T ↑ -V,h + T ↓ -V,h = E T ↓ V,h + T ↑ V,h
by Theorem 2.3 (ii). Taking all the B i , i = 0, equal to t∈N * R t , this proves [START_REF] Dolgopyat | Local Limit Theorems for Random Walks in a Random Environment on a Strip[END_REF]. This, in turn, proves that

(42) = q≤i≤r, i =0, i∈(2Z) P T ↓ V,h ∈ B i × q≤i≤r, i∈(2Z+1) P T ↑ V,h ∈ B i ×P x 0 (V, h) ∈ ∆ 0 , x 1 (V, h) ∈ ∆ 1 , θ[T 0 (V, h)] ∈ B 0 ,
which proves Theorem 2.4 (ii).

In order to prove [START_REF] Dolgopyat | Constructive approach to limit theorems for recurrent diffusive random walks on a strip[END_REF], we first show that ( 29) is true for ϕ = 1 A for any

A ∈ { t∈N * A t : ∀t ∈ N * , A t ∈ B(R t )} = G.
To this aim, let A ∈ G. We introduce S ± := t∈N * R t ± . Applying [START_REF] Dolgopyat | Local Limit Theorems for Random Walks in a 1D Random Environment[END_REF] to A ∩ S + (resp. [START_REF] Dolgopyat | Local Limit Theorems for Random Walks in a Random Environment on a Strip[END_REF] to A ∩ S -) proves [START_REF] Dolgopyat | Constructive approach to limit theorems for recurrent diffusive random walks on a strip[END_REF] for ϕ = 1 A∩S + (resp. ϕ = 1 A∩S -), since the second (resp. first) expectation in ( 29) is 0 when for ϕ 29) is true for ϕ = 1 A∩(S + ∪S -) c since every term is equal to 0 in (29) in this case, since when θ[T 0 (V, h)] is a downward (resp. upward) slope, it belongs to S -(resp. S + ) and T ↓ V,h ∈ S -(resp. T ↑ V,h ∈ S + ). Hence, adding [START_REF] Dolgopyat | Constructive approach to limit theorems for recurrent diffusive random walks on a strip[END_REF] in the three previous cases proves that [START_REF] Dolgopyat | Constructive approach to limit theorems for recurrent diffusive random walks on a strip[END_REF] is true for ϕ = 1 A , for every A ∈ G.

= 1 A∩S + (resp. ϕ = 1 A∩S -), because T ↓ V,h / ∈ S + (resp. T ↑ V,h / ∈ S -). Also, (
Then by linearity, ( 29) is true for every simple function p i=1 α i 1 29) is true for any nonnegative G-measurable function by the monotone convergence theorem, since every nonnegative G-measurable function is the pointwise limit of a nondecreasing sequence of nonnegative simple G-measurable functions.

B i for p ≥ 1, α i ≥ 0 and B i ∈ G, 1 ≤ i ≤ p. Finally, (

A simple expression for P(b h = x).

A first application of our renewal Theorem 2.5 is the following lemma, which contains key formulas to prove Theorem 1.4 and study the main contribution in Theorem 1.1 (see e.g. ( 129), (214) and (220)).

Lemma 2.6. For h > 0,

∀x ≥ 0, P(b h = x) = P T ↓ V,h ≥ x E T ↑ V,h + T ↓ V,h , (43) 
∀x ≤ 0,

P(b h = x) = P T ↑ V,h > -x E T ↑ V,h + T ↓ V,h . (44) 
Proof: Let h > 0 and x ∈ Z. If x > 0, applying Theorem 2.5 eq. ( 28), with

A = ∞ i=1 R i -, ∆ 1 = {x} and ∆ 0 = -N, P(b h = x) = P[b h = x, x 1 (V, h) = b h > 0] = P x 1 (V, h) = x, θ(T 0 (V, h)) ∈ ∞ i=1 R i - = E 0 ≤ i < T ↓ V,h , T ↓ V,h -i = x E T ↑ V,h + T ↓ V,h = P T ↓ V,h ≥ x E T ↑ V,h + T ↓ V,h
.

Similarly if x ≤ 0, applying Theorem 2.5 eq. ( 27) with

A = ∞ i=1 R i + , ∆ 0 = {x} and ∆ 1 = N * , P(b h = x) = E 0 ≤ i < T ↑ V,h , i = -x E T ↑ V,h + T ↓ V,h = P T ↑ V,h > -x E T ↑ V,h + T ↓ V,h
.

In particular,

P(b h = 0) = P T ↑ V,h > 0 E T ↑ V,h + T ↓ V,h = 1 E T ↑ V,h + T ↓ V,h = P T ↓ V,h ≥ 0 E T ↑ V,h + T ↓ V,h , (45) 
so both formulas of Lemma 2.6 are true for x = 0.

2.6. About right h-extrema and right h-slopes. We have detailed in the previous subsections, for h > 0, a path decomposition of the potential V , which we cut into different trajectories, called left h-slopes, between random times which are the left h-extrema. We have also given the laws and independence properties of these left h-slopes, in particular in Theorems 2.3, 2.4 and 2.5.

We now focus on right h-extrema and provide a similar path decomposition of V with right h-slopes and right h-extrema. Similarly as for left h-minima, for v ∈ V , for every h > 0, the set of right h-extrema of v can be denoted by

{x * k (v, h), k ∈ Z}, such that k → x * k (v, h) is strictly increasing and x * 0 (v, h) < 0 ≤ x * 1 (v, h) (see Figure (1)
), the first inequality being strict and second one being large, contrarily to inequalities for left h-extrema x i (v, h), i ∈ Z, in order to get relation [START_REF] Hu | The problem of the most visited site in random environment[END_REF] below. Also, we prove below that the right h-extrema of v can be obtained from the left h-extrema of v -(.) := v -(.) := v(-.) (and in particular, V -(.) := V -(.) := V (-.); both notations V -and V -will be used throughout the paper, depending on which one is more convenient). More precisely, we have:

Lemma 2.7. Let v ∈ V . For h > 0, ∀i ∈ Z, x * i (v, h) = -x 1-i (v -, h). (46) 
Proof: Let v ∈ V and h > 0. First, notice that, applying Definition 2.1, -x j (v -, h) is a right hextremum for v for each j ∈ Z, so {-

x j (v -, h), j ∈ Z} ⊂ {x * i (v, h), i ∈ Z}. Similarly, for i ∈ Z, -x * i (v, h) is a left h-extremum for v -, so {x * i (v, h), i ∈ Z} ⊂ {-x j (v -, h
), j ∈ Z}, thus these two sets are equal. Moreover, (x * i (v, h)) i∈Z and (-x -j (v -, h)) j∈Z are two strictly increasing sequences, taking the same values, so there exists k ∈ Z such that

x * i (v, h) = -x k-i (v -, h) for every i ∈ Z. Since x * 0 (v, h) < 0 ≤ x * 1 (v, h) and -x 1 (v -, h) < 0 ≤ -x 0 (v -, h
), we have k = 1, which proves the lemma.

Let h > 0. Similarly as for left h-extrema, for v ∈ V , we introduce for each i ∈ Z the right h-slope

T * i (v, h) := (v(j)-v[x * i (V, h)], x * i (v, h) ≤ j ≤ x * i+1 (v, h)). If x * i (v, h) is a right h-minimum (resp. maximum), then θ[T * i (v, h)
] is strictly positive (resp. strictly negative) on {1, . . . , (T * i (v, h))}. and its maximum (resp. minimum) is attained at (T * i (v, h)). The notation with a star for x * i and T * i corresponds to this fact that the translated slopes θ[T * i (v, h)] are non-zero except at the origin.

Using the previous definition of τ (V ) i (h) (see around (20)), we define for i ≥ 0 (see Figure 2, in which m

(V ) * 3 (h) = m (V ) 3 (h) and m (V ) * 4 (h) = m (V ) 4 (h)), m (V ) * 2i+1 (h) := max k ∈ τ (V ) 2i (h), τ (V ) 2i+1 (h) ∩ N, V (k) = min [τ (V ) 2i (h),τ (V ) 2i+1 (h)] V , m (V ) * 2i+2 (h) := max k ∈ τ (V ) 2i+1 (h), τ (V ) 2i+2 (h) ∩ N, V (k) = max [τ (V ) 2i+1 (h),τ (V ) 2i+2 (h)] V .
Also, similarly as in Definition 2.2, we introduce for h > 0,

T ↑ * V,h := V m (V ) * 1 (h) + x -V m (V ) * 1 (h) , 0 ≤ x ≤ m (V ) * 2 (h) -m (V ) * 1 (h) , (47) 
T ↓ * V,h := V m (V ) * 2 (h) + x -V m (V ) * 2 (h) , 0 ≤ x ≤ m (V ) * 3 (h) -m (V ) * 2 (h) . (48) 
Recall T V and T * V from ( 14) and [START_REF] Cheliotis | Localization of favorite points for diffusion in a random environment[END_REF]. The following proposition is similar to ([25], Proposition 5.2) with m

(V ) * 1 (h) instead of m (V ) 1 (h). The other main difference is that in (ii), we condition by {T V ([h, +∞[) < T * V (] -∞, 0])}, closed at 0, instead of {T V ([h, +∞[) < T V (] -∞, 0[)}.
Since we did not find this lemma in the literature (in which our stopping time τ (V ) 1 (h) is generally replaced by a deterministic time, see e.g. [START_REF] Bertoin | Splitting at the infimum and excursions in half-lines for random walks and Lévy processes[END_REF]), we give a detailed proof.

Proposition 2.8. Let h > 0. Let V be a random walk given as in (6) by a sequence of partial sums of i.i.d. r.v. log ρ i , i ∈ Z, such that P[log ρ 0 > 0] > 0 and P[log ρ 0 < 0] > 0 (this result does not require Hypotheses (2), [START_REF] Andreoletti | Localization and number of visited valleys for a transient diffusion in random environment[END_REF] 

or (4)). If moreover lim inf x→+∞ V (x) = -∞ a.s., then (i) The processes V m (V ) * 1 (h) -k -V m (V ) * 1 (h) , 0 ≤ k ≤ m (V ) * 1 (h) and V m (V ) * 1 (h) + k - V m (V ) * 1 (h) , 0 ≤ k ≤ τ (V ) 1 (h) -m (V ) * 1 (h) are independent. (ii) The process V m (V ) * 1 (h) + k -V m (V ) * 1 (h) , 0 ≤ k ≤ τ (V ) 1 (h) -m (V ) * 1 (h) is equal in law to V (k), 0 ≤ k ≤ T V ([h, +∞[) conditioned on {T V ([h, +∞[) < T * V (] -∞, 0])}.
Proof: We fix h > 0, and consider V satisfying the hypotheses. Let ψ 1 and ψ 2 be two nonnegative functions, t∈N * R t → [0, +∞[, measurable with respect to the σ-algebra

{ t∈N * A t : ∀t ∈ N * , A t ∈ B(R t )}. To simplify the notation, we set m * 1 := m (V ) * 1 (h) and τ * 1 := τ (V )
1 (h). We now define by induction, e.g. as in Enriquez et al. [START_REF] Enriquez | Limit laws for transient random walks in random environment on Z[END_REF] and [START_REF] Enriquez | Aging and quenched localization for one dimensional random walks in random environment in the sub-ballistic regime[END_REF], the weak descending ladder epochs for V as e 0 := 0, e i := inf{k > e i-1 :

V (k) ≤ V (e i-1 )}, i ≥ 1, (49) 
with e i < ∞ a.s. for each i ≥ 1 since lim inf x→+∞ V (x) = -∞. In particular, the excursions (V (k + e i ) -V (e i ), 0 ≤ k ≤ e i+1 -e i ), i ≥ 0 are i.i.d. by the Strong Markov property. Also, the height H i of the excursion [e i , e i+1 ] is defined as

H i := max e i ≤k≤e i+1 [V (k) -V (e i )], i ≥ 0. ( 50 
)
Notice in particular that m * 1 = e L , where L := min{ ≥ 0, H ≥ h} < ∞ a.s. Hence, summing over the values of L, we get

E ψ 1 V (m * 1 -k) -V (m * 1 ), 0 ≤ k ≤ m * 1 ψ 2 V (m * 1 + k) -V (m * 1 ), 0 ≤ k ≤ τ * 1 -m * 1 = ∞ =0 E ψ 1 V e -k -V e , 0 ≤ k ≤ e 1 ∩ -1 i=0 {H i <h} 1 {H ≥h} × ψ 2 V e + k -V e , 0 ≤ k ≤ T V (•+e )-V (e ) ([h, +∞[) = Π 1 Π 2 ,
due to the strong Markov property at stopping time e , where, applying it again on the second equality,

Π 1 := ∞ =0 E ψ 1 V e -k -V e , 0 ≤ k ≤ e 1 ∩ -1 i=0 {H i <h} P[H ≥ h] = ∞ =0 E ψ 1 V e -k -V e , 0 ≤ k ≤ e 1 {L= }
The following lemma says that ζ, defined in [START_REF] Devulder | Collisions of several walkers in recurrent random environments[END_REF], transforms translated left (resp. right) hslopes for V into right (resp. left) ones for V -(see Lemma 2.10 below), and upward ones into downward ones.

Lemma 2.10.

For i ∈ Z, ζ[θ(T i (V, h)))] = θ[T * -i (V -, h)]. Proof: Recall that x * k (V, h) = -x 1-k (V -, h) for k ∈ Z by Lemma 2.7. Hence for i ∈ Z, ζ[θ(T i (V, h)))] = ζ V [x i (V, h) + j] -V [x i (V, h)], 0 ≤ j ≤ x i+1 (V, h) -x i (V, h) = (V -[-x i+1 (V, h) + j] -V -[-x i+1 (V, h)], 0 ≤ j ≤ x i+1 (V, h) -x i (V, h)) = V -[x * -i (V -, h) + j] -V -[x * -i (V -, h)], 0 ≤ j ≤ -x * -i (V -, h)) + x * 1-i (V -, h)) = θ[T * -i (V -, h)]. (51) 
This proves the lemma.

As a consequence, we get the following result.

Theorem 2.11. Theorems 2.4 and 2.5 remain valid if we replace "left" and each

x k (V, h), T k (V, h), T ↑ V,h and T ↓ V,h respectively by "right", x * k (V, h), T * k (V, h), T ↑ * V,h and T ↓ * V,h
, and < and ≤ respectively by ≤ and < in Theorem 2.5.

Proof: Indeed, their proofs remain valid if we make these replacements and also replace m

(V ) k (h) by m (V ) * k (h), k ∈ Z, and T j (t, V, h) by T * j (t, V, h) = T * i+j (V, h) if x * i (V, h) < t ≤ x * i+1 (V, h
), and for this unique i, x * j (t, V, h) := x * i+j (V, h) for j ∈ Z, and as a consequence, replace < and ≤ respectively by ≤ and < throughout the proof.

The following proposition, combined with some other results such as Theorem 2.9, will be useful to obtain the law of V on the left of x i (V, h) (for i ∈ Z) conditionally on b h ≤ 0 or b h > 0, in view of Theorems 2.4 and 2.5.

Proposition 2.12. Let h > 0. Then, (i) ζ T ↑ V,h = law T ↓ * V -,h and (ii) ζ T ↓ V,h = law T ↑ * V -,h . Proof: We denote by L T ↓ * V -,h the law of T ↓ * V -,h under P. Conditionally on {V [x 0 (V, h)] < V [x 1 (V, h)]} = {V -[x * 1 (V -, h)] < V -[x * 0 (V -, h)]} (thanks to (46)), θ[T 2 (V, h)] has the law L T ↑ V,h by Theorem 2.4 (i), whereas θ[T * -2 (V -, h)] has the law L T ↓ * V -,h
by the version of Theorem 2.4 (ii) with stars (see Theorem 2.11) applied to V -. This and (51) prove our (i).

Applying the same arguments to

θ[T 1 (V, h)] and θ[T * -1 (V -, h)] proves (ii).

2.7.

Relation with another localization point. In this subsection, we recall another way to define a localization point denoted by b

(K)
h , and we prove that b

(K] h is equal to b h (defined in (19)) with large probability. The localization point b (K) h
is useful because we will apply the previous result of Kesten ([48], Thm 1.2) to the limit law of b (K) h /h 2 (in the proof of Theorem 1.4, see after ( 66)), whereas our b h is convenient e.g. due to Lemma 2.6 and to the law of the potential near b h (by Theorems 2.3, 2.4, and 2.5).

To this aim, we define for any process (Z(k), k ≥ 0), similarly as in Hu ([44] from eq. (2.1) to eq. (2.6)) but for processes indexed by N,

Z(t) := sup 0≤k≤t Z(k), Z(t) := inf 0≤k≤t Z(k), Z (t) := sup 0≤s≤t Z(s) -Z(s) t ≥ 0, d Z (h) := inf{t ≥ 0, Z (t) ≥ h}, h > 0. (52) 
Also, with V -(k) := V (-k) for k ≥ 0 as before, we introduce (see Figure 3)

b + V (h) := inf{0 ≤ u ≤ d V (h), V (u) = V (d V (h))}, h > 0, b - V (h) := sup{0 ≤ u ≤ d V -(h), V -(u) = V -(d V -(h))}, h > 0. ( 53 
)
The sup instead of inf in the last line will be necessary so that in some cases, -b - V (h) is a left h-minimum for V instead of a right one (as in Figure 3). Finally, we introduce

b (K) h := b + V (h) if V [d V (h)] < V -[d V -(h)], -b - V (h) otherwise. (54) 
Let (W (x), x ∈ R) be a two-sided Brownian motion, and W -:= (W (-x), x ≥ 0). As in Hu ([44] eq. (2.6)), for w = W or w = σW , we define b (K,w) h by the same formula as in [START_REF] Neveu | Renewal property of the extrema and tree property of the excursion of a onedimensional Brownian motion[END_REF], the previous notations of this Subsection 2.7 being the same, with V replaced by w, and the inf and sup being taken for real numbers instead of integers. As already stated by Hu [START_REF] Hu | Tightness of localization and return time in random environment[END_REF] after eq.

(2.6), his b(1) being a.s. equal to our b Kesten ([48], as expressed in the statement of his Lemma 2.1), which has density ϕ ∞ by ( [START_REF] Kesten | The limit distribution of Sinai's random walk in random environment[END_REF], Thm 1.2).

(K,W ) 1 since the sup in (53) is a.s. a inf when V is replaced by W , the density of b (K,W ) 1 is ϕ ∞ , defined in (5). Indeed, it is easy to check that b (K,W ) 1 is a.s. equal to the r.v. L of
For some choices of P, we have

P b h = b (K) h > 0 for some h > 0. Indeed, for example, if P[V (1) = z] > 0 for every z ∈ {-2, -1, 0, 1, 2}, we have for h ∈ N * , with non zero probability, V (-1) = V (0) = V (1) = 0, with V (k) = k -1 for 1 ≤ k ≤ h + 1, V (k) = |k| -1 for -h ≤ k ≤ -1 and V (-h -1) = h + 1, and so b (K) h = b + V (h) = 0 whereas b h = -1 = b (K)
h . However, we prove that b (K) h = b h with large probability. More precisely, we have: Lemma 2.13. There exists a constant c 5 > 0 such that, for large h,

P b (K) h = b h ≤ c 5 h -1 .
This lemma will be useful to prove Lemma 2.14 and Theorem 1.4. Moreover, we think it will also be necessary in a work in progress [START_REF] Devulder | Rates of convergence in Sinai and Golosov localization theorems for random walks in random environments[END_REF].

So c -(h) /

∈ [γ, α] and since c -(h) ≤ 0 ≤ α by definition, this gives c -(h) < γ < 0. Using ellipticity [START_REF] Chiarini | Local central limit theorem for diffusions in a degenerate and unbounded random medium[END_REF], then [START_REF] Padash | Local equilibrium properties of ultraslow diffusion in the Sinai model[END_REF], we get [START_REF] Révész | Random walk in random and non-random environments[END_REF] in the second inequality,

V [c -(h) + 1] ≥ V [c -(h)] -C 0 = V -[d V -(h)] -C 0 ≥ V [b + V (h)] + C 0 . Thus, using
V [c -(h) + 1] -V (γ) ≥ V [b + V (h)] + C 0 -V (γ) ≥ V [b + V (h)] + C 0 + h -V (α) ≥ C 0 + h, since V [b + V (h)] ≥ V (α) because α ∈ [0, b + V (h)]. So, V -(|c -(h)| -1) -V -(|γ|) > h with 0 < |γ| ≤ |c -(h)| -1, which gives d V -(h) ≤ |c -(h)| -1 < |c -(h)| ≤ d V -(h), which is not possible. Hence there is no left h-extremum in [0, b + V (h) -1]. Since b + V (h) is a left h-minimum, this gives x 1 (V, h) = b + V (h) if b + V (h) = 0 and x 0 (V, h) = b + V (h) if b + V (h) = 0, and by definition (19) of b h , it follows that b h = b + V (h). Since V [d V (h)] ≤ max V [b + V (h)], max [b + V (h),d V (h)] V ≤ max V [b + V (h)], V [b + V (h)]+h+C 0 < V -[d V -(h)
] by ellipticity and ( 55), we also have b

(K) h = b + V (h) by (54). Hence, b h = b (K) h when (55) holds. Second case: we assume that max V -[b - V (h)], V -[b - V (h)] + h ≤ V [d V (h)] -2C 0 . ( 57 
)
This case is nearly the symmetric of the previous one, the only asymmetry being the sup in [START_REF] Nauenberg | Random walk in a random medium in one dimension[END_REF] (which is necessary for -b - V (h) to be a left h-minimum instead of a right one). So we prove similarly as in the first case that b

h = -b - V (h) = b (K) h
when (57) holds.

Third step: Consequently, if b h = b (K) h
then neither ( 55) nor ( 57) hold, and so

V -[d V -(h)] -2C 0 < max V [b + V (h)], V [b + V (h)] + h ≤ V [d V (h)] < max V -[b - V (h)], V -[b - V (h)] + h + 2C 0 ≤ V -[d V -(h)] + 2C 0
, where we first used the negation of (55), then the definitions of d V (h) and b + V (h), then the negation of (57) and finally the definitions of d V -(h) and b - V (h). In view of these inequalities, we define

E 1 := -2C 0 < max V [b + V (h)], V [b + V (h)] + h -V -[d V -(h)] < 2C 0 , E 2 := V [b + V (h)] + h < V [b + V (h)] , so that P b h = b (K) h ≤ P[E 1 ].
First, notice that on E 1 ∩ E 2 , writing here

β := V -[d V -(h)] to simplify the notation, we have β -2C 0 < V [b + V (h)] < β + 2C 0 , and so V [b + V (h)] < β + 2C 0 -h thanks to E 2 . Hence, T V ([β - 2C 0 , +∞[) ≤ b + V (h) and V [. + T V ([β -2C 0 , +∞[)] hits V [b + V (h)] ∈] -∞, β + 2C 0 -h] before [β + 2C 0 , +∞[. Thus, since V -is independent of (V (x), x ≥ 0), the strong Markov property, and then (17) lead to, if h > 4C 0 , P[E 1 ∩ E 2 | V -] ≤ E P T V ([y-2C 0 ,+∞[) [T V (] -∞, y + 2C 0 -h]) < T V ([y + 2C 0 , +∞[)] |y=β | V - ≤ 5C 0 (h + C 0 ) -1 . Consequently, P[E 1 ∩ E 2 ] ≤ 6C 0 h -1 for large h.
Similarly, notice that on E 1 ∩ E c 2 , once more with the notation

β := V -[d V -(h)], we have β -2C 0 < V [b + V (h)] + h < β + 2C 0 . So, T V (] -∞, β + 2C 0 -h]) ≤ b + V (h). Also, min [0,d V (h)] V = V [b + V (h)] > β -2C 0 -h and V [d V (h)] ≥ V [b + V (h)]+h > β -2C 0 , thus V [.+T V (]-∞, β +2C 0 -h]) hits [β -2C 0 , +∞[ before ] -∞, β -2C 0 -h].
Hence as previously, since V -is independent of (V (x), x ≥ 0), by the strong Markov property, and then by [START_REF] Cocco | Reconstructing a random potential from its random walks[END_REF], if h > 4C 0 ,

P[E 1 ∩ E c 2 | V -] ≤ E P T V (]-∞,y+2C 0 -h]) [T V ([y -2C 0 , +∞[) < T V (] -∞, y -2C 0 -h])] y=β | V - ≤ 5C 0 (h + C 0 ) -1 . Consequently, P[E 1 ∩ E c 2 ] ≤ 6C 0 h -1 for large h. Finally, P b h = b (K) h ≤ P[E 1 ] ≤ 12C 0 h -1
for large h, which proves the lemma.

Lemma 2.14. There exists a constant c 6 > 0 such that

P b h > 0 → h→+∞ 1/2, P b h = 0 ∼ h→+∞ c 6 h -2 .
Proof: For the equivalent, observe that by [START_REF] Comets | Limit law for transition probabilities and moderate deviations for Sinai's random walk in random environment[END_REF],

b h = 0 if and only if 0 is a left h-minimum for V , that is if and only if V and V (-.) =: V -(.) hit [h, +∞[ before going back to ] -∞, 0] for V -, and before hitting ] -∞, 0[ for (V (k), k ≥ 0). So by independence of (V (k), k ≥ 0) and V -and (18) 
(or (235)),

P b h = 0 = P T V -([h, +∞[) < T * V -(] -∞, 0]) P T V ([h, +∞[) < T V (] -∞, 0[) ∼ h→+∞ c 6 h -2 (58) 
with c 6 > 0 being the product of c * 1 (for the law of V -) and of c 1 (for the law of V ) with the notation of (18) (and ( 235)). This proves the second claim in Lemma 2.14. Notice that this constant c 6 depends on the law of ω 0 , that is, c 6 depends on P.

For the first limit of the lemma, notice that [START_REF] Buraczewski | Precise large deviations for random walk in random environment[END_REF], so we just have to prove that P b

P[b h > 0] = P b (K) h > 0 + O(1/h) as h → +∞ by Lemma 2.
(K) h > 0 → h→+∞ 1/2.
We now consider a two sided Brownian motion (W (x), x ∈ R), and consider W -(x) := W (-x) for x ≥ 0, and define W , W -, d W , d W -, as explained after [START_REF] Neveu | Renewal property of the extrema and tree property of the excursion of a onedimensional Brownian motion[END_REF]. By [START_REF] Neveu | Renewal property of the extrema and tree property of the excursion of a onedimensional Brownian motion[END_REF], we have for h > 0,

P b (K) h > 0 = P V [d V (h)] < V -[d V -(h)], b + V (h) = 0 = P V [d V (h)] < V -[d V -(h)] + O(1/h) (59) 
since [START_REF] Shi | A local time curiosity in random environment[END_REF]. By the theorem of Donsker, the limit of the probability in [START_REF] Shi | Sinai's walk via stochastic calculus[END_REF] [START_REF] Afanasyev | Limit theorems for weakly subcritical branching processes in random environment[END_REF]] and σW -[d σW -(1)] are independent and have a density (by Hu [START_REF] Hu | Tightness of localization and return time in random environment[END_REF] Lemma 2.1 and by scaling). Hence P b

P b + V (h) = 0 = P T V ([h, +∞[) < T V (]-∞, 0[) = O(1/h) as h → +∞ similarly as in
as h → +∞ is P σW [d σW (1)] < σW -[d σW -(1)] , which is 1/2 by symmetry and because P σW [d σW (1)] = σW -[d σW -(1)] = 0 since the r.v. σW [d σW
(K) h > 0 → h→+∞ 1/2 and so P b h > 0 → h→+∞ 1/2. Lemma 2.15. There exists a constant c 7 := (2c 6 ) -1 > 0 such that E[ (T ↑ V,h )] ∼ h→+∞ E[ (T ↓ V,h )] ∼ h→+∞ c 7 h 2 .
Proof: Applying (45), and Theorem 2.5, using [START_REF] Dolgopyat | Local Limit Theorems for Random Walks in a 1D Random Environment[END_REF] with

A = S + = ∞ t=1 R t + , ∆ 1 = N * and ∆ 0 = -N, we have, since b h ≤ 0 if and only if θ(T 0 (V, h)) ∈ S + by (19), P(b h = 0) = 1 E[ (T ↑ V,h ) + (T ↓ V,h )] , P(b h ≤ 0) = E (T ↑ V,h ) E[ (T ↑ V,h ) + (T ↓ V,h )]
.

Consequently, E (T ↑ V,h ) = P(b h ≤0) P(b h =0) ∼ h→+∞ h 2 /(2c 6
) by Lemma 2.14. Similarly, we obtain

E (T ↓ V,h ) = P(b h >0) P(b h =0) ∼ h→+∞ h 2 /(2c 6
), which proves the lemma.

2.8. An inequality for the excess height of left h-slopes.

Lemma 2.16. There exists a constant c 8 > 0 such that, for large h,

∀i ∈ Z, ∀C 0 < ∆ < h, P e[T i (V, h)] ≤ ∆|b h ≤ 0 ≤ c 8 ∆ h . ( 60 
)
This remains true if b h ≤ 0 is replaced by b h > 0.

Proof: Let h > 0 and C 0 < ∆ < h. Applying Theorem 2.4 (i) since {V (x 1 (V, h)) > V (x 0 (V, h))} = {b h ≤ 0}, then Theorem 2.3 (i)
, and then [START_REF] Cocco | Reconstructing a random potential from its random walks[END_REF], we have for i = 0, since

C 0 < ∆ < h, P e[T 2i (V, h)] ≤ ∆|b h ≤ 0 = P H[θ(T 2i (V, h))] -h ≤ ∆|b h ≤ 0 = P H T ↑ V,h -h ≤ ∆ ≤ P T V (-h + ∆) ≤ τ1 (h) < T V (]∆, +∞[) ≤ ∆ + C 0 h + C 0 ≤ 2∆ h . (61) 
Similarly, applying Theorem 2.4 (i), then

T ↓ V,h = law -T ↑ -V,h by Theorem 2.3 (ii), P e[T 2i+1 (V, h)] ≤ ∆|b h ≤ 0 = P H T ↓ V,h -h ≤ ∆ = P H T ↑ -V,h -h ≤ ∆ ≤ 2∆ h similarly as before for i ∈ Z and C 0 < ∆ < h. This proves (60) for i = 0.
The proof is similar when conditioning by b h > 0, applying Theorem 2.4 (ii) instead of (i).

We now consider the case i = 0. We have, by Theorem 2.5 eq. ( 27) applied with ∆

0 = ∆ 1 = Z, P e[T 0 (V, h)] ≤ ∆|V (x 1 (V, h)) > V (x 0 (V, h)) = E (T ↑ V,h )1 {H(T ↑ V,h )-h≤∆} E[ (T ↑ V,h ) + (T ↓ V,h )]P V (x 1 (V, h)) > V (x 0 (V, h)) . (62) 
Notice by Theorem 2.3 (i) and since

H(T ↑ V,h ) = T ↑ V,h T ↑ V,h , T T ↑ V,h ([h, +∞[) ≤ (T ↑ V,h
) and ∆ -h < 0, and finally by ( 17),

E T T ↑ V,h ([h, +∞[)1 {H(T ↑ V,h )-h≤∆} ≤ E T T ↑ V,h ([h, +∞[)1 {H(T ↑ V,h )-T ↑ V,h (T T ↑ V,h ([h,+∞[))≤∆} = E T T ↑ V,h ([h, +∞[) P H(T ↑ V,h ) -T ↑ V,h (T T ↑ V,h ([h, +∞[)) ≤ ∆ ≤ E T ↑ V,h ) P T V (-h + ∆) < T V (]∆, +∞[) ≤ E T ↑ V,h ) 2∆h -1 . (63) 
Finally, once more by Theorem 2.3 (i) with its notation,

E (T ↑ V,h ) -T T ↑ V,h ([h, +∞[) 1 {H(T ↑ V,h )-h≤∆} ≤ E M h 1 { τ 1 (h)<T V (]∆,+∞[)} ≤ E τ 1 (h)1 { τ 1 (h)<T V (]∆,+∞[)} . (64) 
Notice that 20), ( 22), Definition 2.2 (see also Figure 2) and Theorem 2.3 (iii). Also, for every k ∈ N,

X k := (V (k)) 2 -σ 2 k, k ∈ N is a martingale for the filtration F V,k := σ(V (1), . . . , V (k)), k ∈ N. Moreover, the stopping time τ 1 (h) ∧ T V (]∆, +∞[) has finite expectation, since E[ τ 1 (h) ∧ T V (]∆, +∞[)] ≤ E[ τ 1 (h)] = E τ (V ) 2 (h) -τ (V ) 1 (h) ≤ E[ (T ↑ V,h ) + (T ↓ V,h )] < ∞ by (
E X k+1 -X k | F V,k = E (V (k + 1)) 2 -(V (k)) 2 -σ 2 | F V,k ≤ 2C 0 (∆ + h + C 0 ) + σ 2 a.s. on {k < τ 1 (h) ∧ T V (]∆, +∞[)}, since V (k) and V (k + 1) belong to [-h -C 0 , ∆ + C 0 ] on this event and |V (k + 1) -V (k)| ≤ C 0 .
Hence by the optimal stopping time theorem (see e.g. [START_REF] Grimmett | Probability and random processes[END_REF], (9) p. 492), we have 2 and ellipticity ( 16),

E X τ 1 (h)∧T V (]∆,+∞[) ] = E X 0 = 0. This gives E [V ( τ 1 (h))] 2 -σ 2 τ 1 (h) 1 { τ 1 (h)<T V (]∆,+∞[)} + E X T V (]∆,+∞[) 1 { τ 1 (h)>T V (]∆,+∞[)} ] = 0, since τ 1 (h) = T V (]∆, +∞[) a.s. Consequently, using X k ≤ (V (k))
σ 2 E τ 1 (h)1 { τ 1 (h)<T V (]∆,+∞[)} = E [V ( τ 1 (h))] 2 1 { τ 1 (h)<T V (]∆,+∞[)} ] + E X T V (]∆,+∞[) 1 { τ 1 (h)>T V (]∆,+∞[)} ] ≤ (h + C 0 ) 2 P[T V (-h + ∆) < T V (]∆, +∞[)] + (∆ + C 0 ) 2 ≤ (h + C 0 ) 2 2∆h -1 + (∆ + C 0 ) 2 ,
as before since C 0 < ∆ < h. This and (64) give for large h for every ∆ ∈]C 0 , h[,

E (T ↑ V,h ) -T T ↑ V,h ([h, +∞[) 1 {H(T ↑ V,h )-h≤∆} ≤ σ -2 (3∆h + 3∆h
). This together with [START_REF] Takenami | Local limit theorem for random walk in periodic environment[END_REF] gives

E (T ↑ V,h )1 {H(T ↑ V,h )-h≤∆} ≤ 6σ -2 ∆h + E T ↑ V,h ) 2∆h -1 . (65) 
Moreover,

P V (x 1 (V, h)) > V (x 0 (V, h)) = P(b h ≤ 0) → 1/2 as h → +∞ by Lemma 2.14, so (62) 
, ( 65) and Lemma 2.15 give for large h for every ∆ ∈]C 0 , h[,

P e[T 0 (V, h)] ≤ ∆|b h ≤ 0 ≤ 6σ -2 ∆h 2c 7 h 2 .1/3 + 5 ∆ h ≤ c 8 ∆ h with c 8 := 9σ -2 /c 7 + 5.
The proof is similar if we replace b h ≤ 0 by b h > 0, using Theorem 2.5 eq. ( 28) instead of eq. ( 27) and since

T ↓ V,h = law -T ↑ -V,h by Theorem 2.3 (ii)
. This proves (60) in the case i = 0, which ends the proof of the lemma.

Proof of Theorem 1.4

The proof relies mainly on the expression of P(b h = x) provided by Lemma 2.6, the monotonicity of x → P(b h = x) on N and -N due to Lemma 2.6, the uniform continuity of ϕ ∞ , Donsker's theorem, Kesten [START_REF] Kesten | The limit distribution of Sinai's random walk in random environment[END_REF]'s result and some estimates on the laws of left h-slopes. The proof is divided into three steps, depending on whether x is far from 0, close to 0, or in between.

Proof of Theorem 1.4:

Let 0 < ε < 1/2.
First step: Notice that by Lemma 2.6 and Markov inequality, for h > 0,

∀x > 0, P(b h = x) = P T ↓ V,h ≥ x E T ↑ V,h + T ↓ V,h ≤ E T ↓ V,h xE T ↑ V,h + T ↓ V,h ≤ 1 x
and similarly P(b h = x) ≤ 1 |x| for all x < 0. Moreover, lim x→±∞ ϕ ∞ (x) = 0, so we can fix some A > 0 such that, for every h > 0, for all x ∈ Z such that |x| > Ah 2 , we have

P b h = x - σ 2 h 2 ϕ ∞ σ 2 x h 2 ≤ P b h = x + σ 2 h 2 ϕ ∞ σ 2 x h 2 ≤ 1 |x| + σ 2 h 2 sup |y|≥Aσ 2 ϕ ∞ (y) ≤ 1 h 2 1 A + σ 2 sup |y|≥Aσ 2 ϕ ∞ (y) ≤ ε h 2 . ( 66 
)
Second step: By Donsker's theorem, b

(K) h /h 2 converges in law as h → +∞ under P to b (K,σW ) 1
(defined after [START_REF] Neveu | Renewal property of the extrema and tree property of the excursion of a onedimensional Brownian motion[END_REF]), which has the same law as σ -2 b (K,W ) 1 by scaling. Also, the law of b Kesten [48] as explained after our [START_REF] Neveu | Renewal property of the extrema and tree property of the excursion of a onedimensional Brownian motion[END_REF]. Also,

(K,W ) 1 is ϕ ∞ (x)dx by
P b h = b (K) h → h→+∞ 0 by Lemma 2.13, so σ 2 b h /h 2 converges in law under P to ϕ ∞ (x)dx as h → +∞. Since ϕ ∞ is continuous on R and lim x→±∞ ϕ ∞ (x) = 0, ϕ ∞ is uniformly continuous on R. Hence, there exists η > 0 such that ∀x ∈ R, ∀y ∈ R, |x -y| ≤ η ⇒ |ϕ ∞ (x) -ϕ ∞ (y)| < ε, (67) 
and we can choose η > 0 small enough so that 5ησ

-2 ≤ A, 5c -1 7 exp[-90 -1 η -1 ] ≤ εσ 2 and 3 √ 5η ≤ 1, where c 7 > 0 is a constant introduced in Lemma 2.15. We can now fix N 0 ∈ N such that [-A, A] ⊂ [-N 0 ησ -2 , N 0 ησ -2 ]. Since σ 2 b h /h 2 converges in law under P to ϕ ∞ (x)dx as h → +∞, for all j ∈ {-N 0 -3, . . . , N 0 + 3}, P σ 2 b h /h 2 ∈ [jη, (j + 1)η[ → h→+∞ (j+1)η jη ϕ ∞ (u)du.
Hence there exists

h 0 > 0 such that ησ -2 h 2 0 > 2, 1 ≤ [(1 -ε) -1 -1]ησ -2 h 2 0 , 1 ≤ [1 -(1 + ε) -1 ]ησ -2 h 2 0 and ∀h ≥ h 0 , ∀j ∈ {-N 0 -3, . . . , N 0 + 3}, P σ 2 b h h 2 ∈ [jη, (j + 1)η[ - (j+1)η jη ϕ ∞ (u)du ≤ ηε.
This, combined with (67), gives for all j ∈ {-N 0 -3, . . . , N 0 + 3},

∀h ≥ h 0 , η[ϕ ∞ (jη) -ε] -ηε ≤ P σ 2 b h /h 2 ∈ [jη, (j + 1)η[ ≤ η[ϕ ∞ (jη) + ε] + ηε. ( 68 
)
We consider h ≥ h 0 . Due to Lemma 2.6, x → P(b h = x) is nonincreasing on N, and nondecreasing on -N. Hence, for 0 ≤ j ≤ N 0 + 3,

P σ 2 b h /h 2 ∈ [jη, (j + 1)η[ = i∈[jησ -2 h 2 ,(j+1)ησ -2 h 2 [∩N P(b h = i) ≤ (1 -ε) -1 ησ -2 h 2 P b h = jησ -2 h 2 ,
due to the second inequality defining h 0 . This and (68) give for such j,

P b h = jησ -2 h 2 ≥ η[ϕ ∞ (jη) -ε] -ηε (1 -ε) -1 ησ -2 h 2 = σ 2 [ϕ ∞ (jη) -2ε]h -2 (1 -ε) ≥ σ 2 [ϕ ∞ (jη) -3ε]h -2 , ( 69 
) since ϕ ∞ (u) ∈ [0, 2/π] for all u ∈ R. Similarly for such j, P σ 2 b h /h 2 ∈ [jη, (j + 1)η[ ≥ ησ -2 h 2 -1 P b h = (j + 1)ησ -2 h 2 .
This and (68) give, using the third inequality in the definition of h 0 ,

P b h = (j + 1)ησ -2 h 2 ≤ η[ϕ ∞ (jη) + ε] + ηε (1 + ε) -1 ησ -2 h 2 = (1 + ε)σ 2 [ϕ ∞ (jη) + 2ε]h -2 ≤ σ 2 [ϕ ∞ (jη) + 4ε]h -2 , ( 70 
) since 0 < ε < 1/2 and ϕ ∞ (u) ∈ [0, 2/π] for all u ∈ R. Now, let j ∈ {2, . . . , N 0 } and x ∈ N such that jησ -2 h 2 ≤ x < (j + 1)ησ -2 h 2 . We have since P(b h = .
) is nonincreasing on N and x ≤ (j + 1)ησ -2 h 2 , then by (69) and finally by (67),

P(b h = x) ≥ P(b h = (j + 1)ησ -2 h 2 ) ≥ σ 2 [ϕ ∞ ((j + 1)η) -3ε]h -2 ≥ σ 2 ϕ ∞ xσ 2 h -2 -4ε h -2 .
Similarly, using (70) applied to j -1 ≥ 1 instead of (69), followed by (67),

P(b h = x) ≤ P(b h = jησ -2 h 2 ) ≤ σ 2 [ϕ ∞ ((j -1)η) + 4ε]h -2 ≤ σ 2 ϕ ∞ xσ 2 h -2 + 6ε h -2 .
Since this is true for all h ≥ h 0 , every j ∈ {2, . . . , N 0 } and for every x ∈ N such that jησ -2 h 2 ≤ x < (j + 1)ησ -2 h 2 for such j, and A ≤ N 0 ησ -2 , this gives

∀h ≥ h 0 , max x∈[2ησ -2 h 2 ,Ah 2 ]∩Z P(b h = x) -ϕ ∞ xσ 2 h -2 σ 2 h -2 ≤ 6εσ 2 h -2 . ( 71 
)
We get similarly

∀h ≥ h 0 , max x∈[-Ah 2 ,-2ησ -2 h 2 ]∩Z P(b h = x) -ϕ ∞ xσ 2 h -2 σ 2 h -2 ≤ 6εσ 2 h -2 . ( 72 
)
Third step: Now, for -5ησ -2 h 2 ≤ x ≤ 0, we have by ( 44) and [START_REF] Hu | The limits of Sinai's simple random walk in random environment[END_REF],

P(b h = x) -P(b h = 0) = P T ↑ V,h ≤ -x E T ↑ V,h + T ↓ V,h ≤ P T ↑ V,h ≤ 5ησ -2 h 2 c 7 h 2 (73) (uniformly) for all -5ησ -2 h 2 ≤ x ≤ 0 for large h, since E T ↑ V,h ∼ h→+∞ E T ↓ V,h ∼ h→+∞ c 7 h 2 by Lemma 2.15.
We know from Theorem 2.3 (i) that up to its first hitting time of

[h, +∞[), T ↑ V,h has the same law as (V (k), 0 ≤ k ≤ T V ([h, +∞[) conditioned by {T V ([h, +∞[) < T V (] -∞, 0[)}.
Thus for α > 0, applying the strong Markov property in the last equality, and ellipticity ( 16) in the last line (for h large enough so that C 0 < h/6), [START_REF] Comets | Quenched, annealed and functional large deviations for one-dimensional random walk in random environment[END_REF]) and Donsker's theorem, the last line is equivalent, as h → +∞, to

P T ↑ V,h ≤ αh 2 ≤ P T T ↑ V,h ([h, +∞[) -T T ↑ V,h ([h/2, +∞[) ≤ αh 2 = P T V ([h, +∞[) -T V ([h/2, +∞[) ≤ αh 2 , T V ([h, +∞[) < T V (] -∞, 0[) P T V ([h, +∞[) < T V (] -∞, 0[) = E 1 {T V ([h/2,+∞[)<T V (]-∞,0[)} P V (T V ([h/2,+∞[)) T V ([h, +∞[) ≤ (αh 2 ) ∧ T V (] -∞, 0[) P T V ([h, +∞[) < T V (] -∞, 0[) ≤ P T V ([h/2, +∞[) < T V (] -∞, 0[) P T V ([h, +∞[) < T V (] -∞, 0[) P T V ([h/3, +∞[) ≤ αh 2 . Using P T V ([h, +∞[) < T V (] -∞, 0[) ∼ h→+∞ c 1 h -1 (see
2P T σW ([1/3, +∞[)) ≤ α = 2P sup [0,α] (σW ) ≥ 1/3 = 2P σ|W (α)| ≥ 1/3 = 2P |W (1)| ≥ (3σ √ α) -1 ≤ 4 exp[-(3σ √ α) -2 /2] if 3σ √ α ≤ 1
, where (W (x), x ∈ R) is a two-sided Brownian motion as before. Since 3 √ 5η ≤ 1, this and (73) give for large h,

max -5ησ -2 h 2 ≤x≤0 P(b h = x) -P(b h = 0) ≤ 5c -1 7 h -2 exp -3 5η -2 /2 ≤ εσ 2 h -2
by the second inequality after (67). Since we have a similar result for 0 ≤ x ≤ 5ησ -2 h 2 , using (43) instead of ( 44) and e.g.

T ↓ V,h = law T ↑ -V,h (see Theorem 2.3 (ii)), there exists h 1 > h 0 such that ∀h ≥ h 1 , max -5ησ -2 h 2 ≤x≤5ησ -2 h 2 P(b h = x) -P(b h = 0) ≤ εσ 2 h -2 . ( 74 
)
We already know, from (69

), that ∀h ≥ h 1 ≥ h 0 , P(b h = 0) ≥ σ 2 [ϕ ∞ (0) -3ε]h -2 .
Moreover, using (74), (71) and then (67),

P(b h = 0) ≤ P(b h = 4ησ -2 h 2 ) + εσ 2 h -2 ≤ [φ ∞ ( 4ησ -2 h 2 σ 2 h -2 ) + 7ε]σ 2 h -2 ≤ [φ ∞ (0) + 11ε]σ 2 h -2 for h ≥ h 1 . So, ∀h ≥ h 1 , P(b h = 0) -σ 2 ϕ ∞ (0)h -2 ≤ 11εσ 2 h -2 . ( 75 
)
Finally, once more by (67

), ϕ ∞ xσ 2 h -2 -ϕ ∞ (0) ≤ 5ε for x ∈ Z such that |x| ≤ 5ησ -2 h 2 .
This, combined with (74) and (75) and the triangular inequality yields to

∀h ≥ h 1 , max x∈[-5ησ -2 h 2 ,5ησ -2 h 2 ]∩Z P(b h = x) -ϕ ∞ xσ 2 h -2 σ 2 h -2 ≤ 17εσ 2 h -2 . ( 76 
)
This, together with (71) and (72) leads to

∀h ≥ h 1 , max x∈[-Ah 2 ,Ah 2 ]∩Z P(b h = x) -ϕ ∞ xσ 2 h -2 σ 2 h -2 ≤ 17εσ 2 h -2 . ( 77 
)
This, combined with (66), proves Theorem 1.4.

Coupling argument when b log n is close to z

In this section, we use a coupling argument, in order to approximate the quenched probability P ω [S n = z] by the invariant probability measure at z of a RWRE reflected inside the central valley of the potential. In order to make this approximation, we require some conditions, mainly for the environment.

4.1. An inequality related to hitting times of (S k ) k . Before dealing with the coupling argument, we prove a useful inequality about hitting times. This lemma is in the same spirit as ( [START_REF] Devulder | Collisions of several walkers in recurrent random environments[END_REF], Lemma 4.7), but is more general. We will use this lemma with different values of ξ 1 . See Figure 4 for the schema of the potential V under the hypotheses of this lemma.

Lemma 4.1. Assume (2). Let ξ 1 > 0, ξ 2 > 0 and α > 0. There exists h 2 = h 2 (ξ 1 , ξ 2 ) > 1 such that, for almost every environment ω, for every a < b < c and h ≥ h 2 such that (i) V (b) = max [a,c] V , (ii) max b≤ ≤k≤c-1 V (k) -V ( ) ≤ h -ξ 1 log h, (iii) max a≤ ≤k≤b-1 V ( ) - V (k) ≤ h -ξ 1 log h and (iv) |c -a| ≤ 2h α
, and for every a ≤ x ≤ c, we have

P x ω τ (a) ∧ τ (c) ≥ ξ 2 e h ≤ 24ξ -1 2 ε -2 0 h 2α-ξ 1 +8 + 4ε -1 0 h α-8 , (78) 
and is, in particular, uniformly less than h -4 for all h ≥ h 2 if α = 3 and ξ 1 > 19.

Proof: We cannot apply directly [START_REF] Berger | Local limit theorem and equivalence of dynamic and static points of view for certain ballistic random walks in i.i.d. environments[END_REF] or ( 9) to E ω [τ (a) ∧ τ (c)], because the max(. . . ) which appear in these inequalities can be much too large, since they can be respectively nearly as large as V (b) -V (a) or V (b) -V (c), which can be much larger than our h. Consider h 2 > 1 such that h -(ξ 1 -8) log h > 0 for every h ≥ h 2 . We fix h ≥ h 2 , and assume that the hypotheses of the lemma are satisfied for this h. We define (see Figure 4), with x ∨ y := max(x, y),

A -:= a ∨ max{y ≤ b, V (b) -V (y) ≥ h -(ξ 1 -8) log h} , A + := c ∧ min{y ≥ b, V (b) -V (y) ≥ h -(ξ 1 -8) log h} .
First case: we assume that a ≤ x ≤ A -. We start with the sub-case a < x ≤ A -, which implies that A -= max{. . . } = a in the definition of A -. Then, by Markov inequality, [START_REF] Bertoin | Splitting at the infimum and excursions in half-lines for random walks and Lévy processes[END_REF] and Hypotheses (iii) and (iv),

P x ω [τ (a) ∧ τ (b) ≥ ξ 2 e h /2] ≤ 2ξ -1 2 e -h ε -1 0 (b -a) 2 exp max a≤ ≤k≤b-1 V ( ) -V (k) ≤ 8ξ -1 2 e -h ε -1 0 h 2α exp(h -ξ 1 log h) = 8ξ -1 2 ε -1 0 h 2α-ξ 1 . (79) 
Also, notice that since a < A -< b, using Hypothesis (iii), ≤

max [a,A -] V ≤ V (A -) + max a≤ ≤k≤b-1 V ( ) -V (k) 0 V (k) h -(ξ 1 -8) log h a k b c = A + A - ≤ h -ξ 1 log h ≤ h -ξ 1 log h ≤ h -ξ 1 log h ≤ a + 2h α
V (b) -(h -(ξ 1 -8) log h) + (h -ξ 1 log h) ≤ V (b) -8 log h. ( 80 
)
Hence using [START_REF] Barbu | Semi-Markov chains and hidden semi-Markov models toward applications, Their use in reliability and DNA analysis[END_REF], a < x ≤ A -< b, then Hypothesis (iv), ellipticity ( 2) and (80),

P x ω [τ (b) < τ (a)] ≤ (x -a) exp[max [a,x-1] V -V (b -1)] ≤ 2h α ε -1 0 h -8
. Consequently, this and (79) lead to

P x ω [τ (a) ∧ τ (c) ≥ ξ 2 e h /2] ≤ P x ω [τ (b) < τ (a)] + P x ω [τ (a) ∧ τ (c) ≥ ξ 2 e h /2, τ (a) < τ (b) < τ (c)] ≤ 2ε -1 0 h α-8 + P x ω [τ (a) ∧ τ (b) ≥ ξ 2 e h /2] ≤ 2ε -1 0 h α-8 + 8ξ -1 2 ε -1 0 h 2α-ξ 1 . (81) 
This remains true if x = a, whether a = A -or a = A -, and so for every a ≤ x ≤ A -. This already proves (78) in this case.

Second case: we now assume that A + ≤ x ≤ c. This case is similar as the first one, so we get by symmetry, using (ii) instead of (iii) and (8) instead of (9),

P x ω [τ (a) ∧ τ (c) ≥ ξ 2 e h /2] ≤ 2ε -1 0 h α-8 + 8ξ -1 2 ε -1 0 h 2α-ξ 1 . (82) 
This already proves (78) in the this case.

Third case: We now assume that A -< x < A + . Using Markov inequality, [START_REF] Berger | Local limit theorem and equivalence of dynamic and static points of view for certain ballistic random walks in i.i.d. environments[END_REF] and Hypothesis (iv) and a ≤ A

-< A + ≤ c ≤ a + 2h α in the first line, then max [A -,A + ] V = V (b) (due to Hypothesis (i) and b ∈ [A -, A + ] ⊂ [a, c]) and min [A -,A + ] V ≥ V (b) -(h -(ξ 1 -8) log h) -log ε -1 0
(by definition of A ± and ellipticity ( 16)), we have

P x ω [τ (A -) ∧ τ (A + ) ≥ ξ 2 e h /2] ≤ 2ξ -1 2 e -h ε -1 0 (2h α ) 2 exp max [A -,A + ] V -min [A -,A + ] V ≤ 8ξ -1 2 e -h ε -1 0 h 2α exp h -(ξ 1 -8) log h + log ε -1 0 = 8ξ -1 2 ε -2 0 h 2α-ξ 1 +8
. Consequently, we have by the strong Markov property applied at time τ (A -) ∧ τ (A + ), 81) and (82) applied respectively at A -and A + . This proves (78) in this third case, so (78) is proved in every case for every h larger than some constant h 2 > 1. Finally, when α = 3 and

P x ω τ (a) ∧ τ (c) ≥ ξ 2 e h ≤ P x ω τ (A -) ∧ τ (A + ) ≥ ξ 2 e h /2 + P A - ω τ (a) ∧ τ (c) ≥ ξ 2 e h /2 +P A + ω τ (a) ∧ τ (c) ≥ ξ 2 e h /2 ≤ 8ξ -1 2 ε -2 0 h 2α-ξ 1 +8 + 2 2ε -1 0 h α-8 + 8ξ -1 2 ε -1 0 h 2α-ξ 1 ≤ 24ξ -1 2 ε -2 0 h 2α-ξ 1 +8 + 4ε -1 0 h α-8 by (
ξ 1 > 19, we have 24ξ -1 2 ε -2 0 h 2α-ξ 1 +8 + 4ε -1 0 h α-8 ≤ (24ξ -1 2 ε -2 0 + 4ε -1 0 )h -5 which is o(h -4
) as h → +∞, so, up to a change of h 2 , the right hand side of (78) is less than h -4 for all h > h 2 , which ends the proof of the lemma. 4.2. Some events useful for the coupling argument. In order to evaluate the probability P(S n = z), we decompose the event {S n = z} into smaller ones, and to this aim we introduce some conditions on the environment ω. First, we fix C 1 > 20, C 2 > 9, and δ 1 ∈]0, 2/3[. For n ≥ 3, we introduce

h n := log n -C 1 log 2 n, h n := h n -C 1 log 2 n, Γ n := (log n) 4/3+δ 1 ,
where for x > 1, log 2 x := log log x. We also fix an integer

n 3 ≥ 3 such that, for all n ≥ n 3 , log 2 n > C 0 + 1, log n > max 2ε -1 0 , h 2 (2C 1 , 1/10), h 2 (C 1 , 1/10), h 2 (2C 1 , 1), p 5 , h n -C 1 log 2 n > max{3C 0 + 10 log 2 n, (log n)/2 + (2C 1 + C 2 + 2) log 2 n}, (log 2 n) 6 ≤ log n, n ≥ (log n) C 1 +4
and Γ n ≥ p 4 , with p 4 and p 5 defined in Proposition 7.3 and h 2 in Lemma 4.1. We also define for n ≥ n 3 and z ∈ Z,

E (n) - := {b log n ≤ 0} = {b log n = x 0 (V, log n)}, (83) 
E (n) + := {b log n > 0} = {b log n = x 1 (V, log n)} = E (n) - c , E (n) 3 : 
= ∩ 10 i=-10 H[T i (V, h n -C 1 log 2 n)] ≥ log n + C 2 log 2 n , E (n) 4 (z) := {V (z) -V (b log n ) ≥ 5 log 2 n} ∪ E (n) -∩ max [b log n ,0] V < V [x 1 (V, log n)] -9 log 2 n ∪ E (n) + ∩ max [0,b log n ] V < V [x 0 (V, log n)] -9 log 2 n , E (n) 5 := -(log n) 2+δ 1 ≤ x -12 (V, log n) ≤ x 12 (V, log n) ≤ (log n) 2+δ 1 , E (n) 6 := max{V (b log n + i) -V (b log n ), |i| ≤ Γ n } < log n , E (n) 7 (z) := {|b log n -z| ≤ Γ n }. (84) 
Finally, let

E (n) C (z) := E (n) 3 ∩ E (n) 4 (z) ∩ E (n) 5 ∩ E (n) 6 ∩ E (n) 7 (z). ( 85 
) Remark 4.2. For ω ∈ E (n) 3 , for every -9 ≤ i ≤ 10, H(T i-1 (V, h n -C 1 log 2 n)) ≥ log n and H(T i (V, h n -C 1 log 2 n)) ≥ log n, so x i (V, h n -C 1 log 2 n) is also a left (log n)-extremum. So, x i (V, log n) = x i (V, h n -C 1 log 2 n) for every -9 ≤ i ≤ 10, and as a consequence, H[T i (V, log n)] = H[T i (V, h n -C 1 log 2 n)] for every -9 ≤ i ≤ 9.
The previous events depend only on the environment ω and on z. They are useful for the coupling argument used in this section. More precisely, we saw in Remark 4.2 that

E (n) 3 ensures that x i (V, h n -C 1 log 2 n) = x i (V, log n) for |i| ≤ 9,
and as a consequence, there is no subvalley of height slightly less than log n in the (log n)-central valley (defined after (87)), so (S k ) k is not trapped a long time in such subvalleys, which helps (S k ) k to go quickly to b log n with large quenched probability.

Also, E (n) 4 (z) is useful to prove a technical lemma, Lemma 4.6. E (n) 5 says that the |x i (V, log n)| are quite small, which will often be useful in applying inequalities such as (7), . . . , [START_REF] Bovier | Spectral analysis of Sinais walk for small eigenvalues[END_REF] to prove that some events are negligible. Finally, E (n) [START_REF] Aurzada | Random walks and branching processes in correlated Gaussian environment[END_REF] and E (n) 7 (z) will imply in particular that z is inside the (log n)-central valley (see (107)).

We will use, in the proof of Theorem 1.1, left h-extrema of V for three different values of h. In particular, left (log n)-extrema are useful to define b log n , left h n -extrema are useful e.g. to use

E (n) 3
as explained previously, and the proof of Lemma 5.9 uses left h-extrema with two different values strictly less than log n, which are h n and h n ; left h n -extrema are used in Lemma 5.11 (in view of (164) and Lemma 5.10), whereas left h n -extrema are also used in Lemma 5.13 and in the proof of the lower bound of Theorem 1.1 (see Section 6).

In the rest of the paper, the n i , 3 ≤ i ≤ 19, denote some integers with n i ≤ n i+1 for 3 ≤ i ≤ 18, which are useful to get the uniformity in Theorem 1.1 (n 3 being defined before (83)). 4.3. Definition of the coupling. We fix an integer n ≥ n 3 , z ∈ Z, and an environment ω ∈ E (n) C (z). In all the remaining of Section 4, we set x i := x i (V, log n), i ∈ Z (defined before ( 19)), to simplify the notation. Notice that, since ω ∈ E

(n) 3 , x i = x i (V, log n) = x i (V, h n -C 1 log 2 n) for every -9 ≤ i ≤ 10 by Remark 4.2. We also introduce b(n) := 2 b log n /2 + 1 2N+1 (n), (86) 
which belongs to {b log n -1, b log n , b log n + 1} and has the same parity as n. We define

M -:= x -1 if b log n ≤ 0, x 0 if b log n > 0, M + := x 1 if b log n ≤ 0, x 2 if b log n > 0. ( 87 
)
Since b log n = x 0 when b log n ≤ 0 and b log n = x 1 when b log n > 0, M -and M + are the two left (log n)-maxima surrounding b log n , respectively on its left and on its right. For this reason, [M -, M + ] is called the (log n)-central valley (see Figure 5); also 0 ∈ [M -, M + ].

x 1 = M + 0 V (k) x -1 = M - x 2 = b 1 x 3 = M 1 log n + C 2 log 2 n x 0 = b log n ≈ b(n) k log n + C 2 log 2 n b log n + Γ n b log n -Γ n log n h n L + L - z Figure 5. Schema of the potential V for ω ∈ E (n) C (z) in the case b log n ≤ 0.
Similarly as in Brox [START_REF] Brox | A one-dimensional diffusion process in a Wiener medium[END_REF] and Andreoletti et al. [START_REF] Andreoletti | Localization and number of visited valleys for a transient diffusion in random environment[END_REF] for diffusions in a random environment, and as in Devulder et al. [START_REF] Devulder | Collisions of several walkers in recurrent random environments[END_REF] and [START_REF] Devulder | Arbitrary many walkers meet infinitely often in a subballistic random environment[END_REF] for RWRE, but with some adaptations, we use a coupling between S = (S k ) k under P b(n) ω and a reflected RWRE S defined below. To this aim, we define, for fixed n, ω x x∈Z as follows:

ω M -:= 1, ω x := ω x if x / ∈ {M -, M + }, ω M + := 0.
We can now introduce, for fixed ω and n, a random walk S := S k k∈N in the environment

ω := ω x M -≤x≤M + , starting from y ∈ [M -, M + ],
and denote its law by P y ω . So, S satisfies (1) with ω and S replaced respectively by ω and S. In words, S is a random walk in the environment ω, starting from y ∈ [M -, M + ], and reflected at M -and M + . We also define the measure µ n on Z by

µ n (M -) := e -V (M -) , µ n (M + ) := e -V (M + -1) , µ n (x) := e -V (x) + e -V (x-1) , M -< x < M + , (88) 
and µ n (x) := 0 for x / ∈ [M -, M + ] (where µ n (x) denotes µ n ({x}) for simplicity).

Observe that for fixed n and ω, µ n (.)/ µ n (Z) is an invariant probability measure for S.

Consequently, similarly as in ([25] eq. ( 55)), for every fixed n and ω, the measure ν n defined by

ν(x) := ν n (x) := µ n (x)1 2Z (x)/ µ n (2Z) if n ∈ (2N), µ n (x)1 2Z+1 (x)/ µ n (2Z + 1) if n ∈ (2N + 1), x ∈ Z, (89) 
is an invariant probability measure for S 2k k∈N . This means that P ν ω S 2k = x = ν(x) for all x ∈ Z and k ∈ N, where P ν ω . := y∈Z ν(y)P y ω (.). Observe that ω, S, µ n , ν n and some other notation of this subsection defined below, depend on M -and M + and so on n and ω, but we often do not write the subscript n in the following to simplify the notation.

We now have all the ingredients to build, for fixed n and ω, our coupling Q ω of S and S as follows and similarly as in ( [START_REF] Devulder | Arbitrary many walkers meet infinitely often in a subballistic random environment[END_REF] around eq. ( 56)):

Q ω S ∈ . = P ν ω S ∈ . , Q ω S ∈ . = P b(n) ω S ∈ . , (90) 
so that under Q ω , the two Markov chains S and S move independently until

τ S=S := inf ≥ 0, S = S ,
which is their first meeting time, then S k = S k for all τ S=S ≤ k < τ exit , where

τ exit := inf > τ S=S , S / ∈ [M -, M + ]
is the first exit time of S from the central valley [M -, M + ] after the meeting time τ S=S , and then S and S move independently again after τ exit .

4.4. Approximation of the quenched probability measure. The next step is to prove that, under Q ω , S and S meet quickly, and more precisely that τ S=S ≤ n/10 with large probability.

For this purpose, we define, for

n ≥ n 3 , in view of E (n) 3 , L -:= max{k ≤ b log n , V (k) -V (b log n ) ≥ h n }, (91) 
L + := min{k ≥ b log n , V (k) -V (b log n ) ≥ h n }. ( 92 
)
Loosely speaking, L -and L + are useful because V L ± -V (b log n ) is approximatively h n and then is quite lower than log n, so L -and L + will be hit quickly by S under Q ω (see Lemma 4.3 below), but V L ± -V (b log n ) is also chosen quite large because the invariant measure ν outside of L -, L + needs to be small (see Lemma 4.4). We introduce the notation u ∨ v := max(u, v). We prove the three following lemmas, which are uniform on z since they do not depend on z.

Lemma 4.3. We have, with τ (.) denoting the hitting times by S as before,

∀n ≥ n 3 , ∀ω ∈ E (n) 3 ∩ E (n) 5 , Q ω τ L -∨ τ L + > n/10 ≤ (log n) -3 . Proof: Assume that n ≥ n 3 and ω ∈ E (n) 3 ∩ E (n) 5 . Since V (M ± ) -V (b log n ) ≥ log n + C 2 log 2 n > h n + C 0 ≥ V L + -V (b log n ) by E (n) 3
(see also Remark 4.2) and using ellipticity [START_REF] Chiarini | Local central limit theorem for diffusions in a degenerate and unbounded random medium[END_REF], and since h n > 0 by definition of n 3 , we have b log n < L + < M + . Moreover, max

M -≤ ≤k≤ L + ,k≥ b(n) [V (k) -V ( )] ≤ max [ b(n), L + ] V -min [M -, L + ] V ≤ V L + -V b log n ≤ h n + log(ε -1 0 )
by ellipticity, i.e. by [START_REF] Chiarini | Local central limit theorem for diffusions in a degenerate and unbounded random medium[END_REF], and because [M -, M + ] is the (log n)-central valley, its bottom being b log n . Consequently, using ( 8) and Markov's inequality since

M -< b(n) < L + because V M -> V L + ≥ V b log n + h n ≥ V b log n + 3C 0 > V b(n) , then M -, L + ⊂ [x -1 , x 2 [⊂ [-(log n) 3 , (log n) 3 [ because ω ∈ E (n) 5
and δ 1 ∈]0, 2/3[, this leads to

P b(n) ω τ (M -) ∧ τ L + > n/10 ≤ 10n -1 ε -1 0 (2(log n) 3 ) 2 ε -1 0 e hn = 40ε -2 0 (log n) 6-C 1 ≤ (log n) -3 /4, since n ≥ n 3 and C 1 > 20. Moreover, applying (7), then ω ∈ E (n) 5
and the definition of L + and finally using

V (M ± ) -V (b log n ) ≥ log n + C 2 log 2 n on E (n) 3
as before,

P b(n) ω τ (M -) < τ L + ≤ L + -b(n) exp max [ b(n), L + -1] V -V (M -) ≤ 2(log n) 3 exp V (b log n ) + h n -(V (b log n ) + log n) ≤ 2(log n) 3-C 1 ≤ (log n) -3 /4, since n ≥ n 3 and C 1 > 20.
As a consequence, using (90),

Q ω τ L + > n/10 = P b(n) ω τ L + > n/10 ≤ P b(n) ω τ (M -) < τ L + + P b(n) ω τ (M -) ∧ τ L + > n/10 ≤ (log n) -3 /2. ( 93 
)
We prove similarly that Q ω τ L -> n/10 ≤ (log n) -3 /2 for all n ≥ n 3 and ω ∈ E

(n) 3 ∩ E (n)
5 , using (9) instead of (8). This, together with (93), proves Lemma 4.3.

We now prove that the invariant measure outside L -, L + is small for n ≥ n 3 . Lemma 4.4. We have,

∀n ≥ n 3 , ∀ω ∈ E (n) 3 ∩ E (n) 5 , ν M -, L -+ ν L + , M + ≤ (log n) -4 . ( 94 
) Proof: Let n ≥ n 3 and ω ∈ E (n) 3 ∩ E (n) 5 . As explained in Remark 4.2, due to E (n) 3 , x i (V, h n - C 1 log 2 n) = x i (V, log n) = x i for every i ∈ {-1, 0, 1, 2}. So when b log n ≤ 0, there is no left (h n -C 1 log 2 n)-extremum in ]x 0 (V, h n -C 1 log 2 n), x 1 (V, h n -C 1 log 2 n)[=]x 0 , x 1 [=]b log n , M + [. Similarly, when b log n > 0, there is no left (h n -C 1 log 2 n)-extremum in ]x 1 , x 2 [=]b log n , M + [.
We first prove that min

[ L + ,M + ] V ≥ V (b log n ) + C 1 log 2 n. ( 95 
)
Assume that min

[ L + ,M + ] V < V (b log n ) + C 1 log 2 n, and let u ∈ L + , M + be such that V (u) = min [ L + ,M + ] V , and y := min{ ∈ [b log n , u], V ( ) = max [b log n ,u] V }, so y ≥ L + . Notice that V (y) ≥ V L + ≥ V (b log n ) + h n and V (y) ≥ V (b log n ) + h n ≥ V (u) -C 1 log 2 n + h n , so y would be a left (h n -C 1 log 2 n)-maximum for V . Since b log n < y < u ≤ M + ,
this contradicts the remark before (95). So, (95) is true. We prove similarly that min

[M -, L -] V ≥ V (b log n ) + C 1 log 2 n. (96) 
We have by ( 95) and since ω ∈ E

(n) 5

and

µ n (2Z) = µ n (2Z + 1) = M + -1 i=M -e -V (i) ≥ e -V (b log n ) , ν L + , M + ≤ M + -L + + 1 max x∈[ L + ,M + ] e -V (x) + e -V (x-1) e V (b log n ) ≤ 3(log n) 3 1 + ε -1 0 (log n) -C 1 ≤ (log n) -4 /2 (97) 
since n ≥ n 3 and C 1 > 20, and where we used -V (x -1) ≤ -V (x) + log(ε -1 0 ), x ∈ Z by ( 16). We prove similarly that ν M -, L -≤ (log n) -4 /2 for all n ≥ n 3 and ω ∈ E

(n) 3 ∩ E (n) 5
thanks to (96). This, together with (97) proves (94).

We can now prove that, with large enough probability, the coupling (i.e. S = S) occurs quickly, and lasts at least until time n. Lemma 4.5. We have,

∀n ≥ n 3 , ∀ω ∈ E (n) 3 ∩ E (n) 5 , Q ω τ S=S > n/10 ≤ 2(log n) -3 , (98) 
and

∀n ≥ n 3 , ∀ω ∈ E (n) 3 , Q ω τ exit ≤ n ≤ (log n) -3 . (99) 
Proof: Let n ≥ n 3 , and ω ∈ E

(n) 3 ∩ E (n) 5 .
We have by Lemma 4.3,

Q ω τ S=S > n/10 ≤ Q ω τ L -∨ τ L + < τ S=S + Q ω τ L -∨ τ L + > n/10 ≤ Q ω τ L -< τ S=S , S 0 < b(n) + Q ω τ L + < τ S=S , S 0 ≥ b(n) + (log n) -3 .
Now, observe that a.s. under Q ω , S 0 = b(n) by (90) and has the same parity as n by (86), and S 0 also has the same parity as n by (90) and (89). Hence the process S k -S k k∈N starts at S 0 -b(n) ∈ (2Z), and it only makes jumps belonging to {-2, 0, 2}, so up to time τ S=S -1 it is < 0 (resp. > 0) on S 0 < b(n) resp. on S 0 > b(n) , and in particular at time τ

L -on τ L -< τ S=S , S 0 < b(n) resp. at time τ L + on τ L + < τ S=S , S 0 > b(n) = τ L + < τ S=S , S 0 ≥ b(n) ; for the last equality, notice that τ S=S = 0 on S 0 = b(n) . So, Q ω τ S=S > n/10 ≤ Q ω τ L -< τ S=S , S τ ( L -) < L -+ Q ω τ L + < τ S=S , S τ ( L + ) > L + + (log n) -3 ≤ Q ω τ L -< τ S=S , S 2 τ ( L -)/2 ≤ L -+ Q ω τ L + < τ S=S , S 2 τ ( L + )/2 ≥ L + +(log n) -3 ≤ ν M -, L -+ ν L + , M + + (log n) -3 .
(100) Indeed, the last inequality is a consequence of the fact that Q ω S 2k = x = P ν ω S 2k = x = ν(x) for all x ∈ Z and all (deterministic) k ∈ N (see (90) and the explanations after (89)), and from the independence of S with S (and its hitting times τ (.)) up to time τ S=S . Hence, (100) together with Lemma 4.4 prove (98).

Finally, (90), followed by [START_REF] Bingham | Regular variation[END_REF] and [START_REF] Bovier | Spectral analysis of Sinais walk for small eigenvalues[END_REF] give for every n ≥ n 3 and ω ∈ E 16), log n > 2ε -1 0 since n ≥ n 3 ≥ 3, and C 2 > 9. This proves (99). Also, the following lemma will be useful to prove Lemma 4.7 (see (110)).

(n) 3 , Q ω τ exit ≤ n ≤ Q ω [τ (M -) ∧ τ (M + ) ≤ n] = P b(n) ω [τ (M -) ∧ τ (M + ) ≤ n] ≤ P b(n) ω [τ (M -) ≤ n] + P b(n) ω [τ (M + ) ≤ n] ≤ 2(n + 1)ε -2 0 exp[-(log n + C 2 log 2 n)] ≤ 4ε -2 0 (log n) -C 2 ≤ (log n) -3 , (101) since min [M -,b log n ] V = min [b log n ,M + ] V = V (b log n ), V (M ± ) -V (b log n ) ≥ log n + C 2 log 2 n on E (n) 3 , |b log n -b(n)| ≤ 1, |V (u) -V (u -1)| ≤ log(ε -1 0 ) for u ∈ Z by (
Lemma 4.6. We have,

∀n ≥ n 3 , ∀z ∈ Z, ∀ω ∈ E (n) 3 ∩ E (n) 4 (z) ∩ E (n) 5 , ν n (z)P ω τ ( b(n)) ≥ n/10 ≤ (log n) -3 . (102) Proof: Let n ≥ n 3 , z ∈ Z and ω ∈ E (n) 3 ∩ E (n) 4 (z) ∩ E (n)
5 . We treat separately the three different cases defining

E (n) 4 (z). First case: if in addition ω ∈ {V (z) -V (b log n ) ≥ 5 log 2 n}, we have by ellipticity, ν n (z) ≤ e -V (z) + e -V (z-1) e V (b log n ) ≤ (1 + ε -1 0 )e -[V (z)-V (b log n )] ≤ 2ε -1 0 (log n) -5 ≤ (log n) -3 since n ≥ n 3 , which proves (102) in this case. Second case: if ω ∈ E (n) -∩ max [b log n ,0] V < V (x 1 ) -9 log 2 n , we have b log n = x 0 ≤ 0 and either b(n) = 1, or -(log n) 3 -1 ≤ b(n) ≤ 0 < x 1 < x 2 since ω ∈ E (n) 5 and b(n) -b log n ≤ 1.
We start with this second sub-case b(n) ≤ 0. We have by [START_REF] Barbu | Semi-Markov chains and hidden semi-Markov models toward applications, Their use in reliability and DNA analysis[END_REF],

P ω τ (x 2 ) < τ b(n) ≤ b(n) + 1 exp max [ b(n),0] V -V (x 1 ) ≤ 2(log n) 3 exp -9 log 2 n + log ε -1 0 ≤ (log n) -4 (103) 
by ellipticity since b(n) -b log n ≤ 1 and because n ≥ n 3 so log n ≥ 2ε -1 0 ≥ 2.

Also, by Lemma 4.1 applied with

ξ 1 = 2C 1 > 19, ξ 2 = 1/10, α = 3, a = b(n) ≤ 0 < b = x 1 < c = x 2 , h = log n > h 2 (2C 1 , 1/10
) because n ≥ n 3 , and x = 0, since its hypothesis (i) is satisfied because b log n ≤ 0 and so x 1 is a left (log n)-maximum, and there is no left

(h -ξ 1 log h) = (h n -C 1 log 2 n)-extremum in ]x 1 , x 2 [ nor in ]x 0 , x 1 [ by E (n) 3
(as explained after (94) since x 0 , x 1 and x 2 are consecutive left (h n -C 1 log 2 n)-extrema) and so hypotheses (ii) and (iii) of this lemma are satisfied (e.g. if (ii) was not satisfied, there would be a left (

h n -C 1 log 2 n)- maximum in ]x 1 , x 2 [), and hypothesis (iv) is satisfied with α = 3 thanks to E (n) 5 and δ 1 < 1, so ∀ω ∈ E (n) 3 ∩ E (n) 5 , (b log n ≤ 0 and b(n) ≤ 0) ⇒ P ω τ b(n) ∧ τ (x 2 ) ≥ n/10 ≤ (log n) -4 . (104)
This and (103) lead to P ω τ b(n) ≥ n/10 ≤ 2(log n) -4 ≤ (log n) -3 for every ω of this second subcase since n ≥ n 3 .

We now turn to the other subcase, that is, we assume that b

(n) = 1. Then, b log n = x 0 = 0 since ω ∈ E (n) -and b(n) -b log n ≤ 1.
In this subcase we have, using [START_REF] Barbu | Semi-Markov chains and hidden semi-Markov models toward applications, Their use in reliability and DNA analysis[END_REF], Markov inequality and (8) in the second inequality,

P ω τ b(n) ≥ n/10 = P ω τ (1) ≥ n/10 ≤ P ω τ (x -1 ) < τ (1) + P ω τ (x -1 ) ∧ τ (1) ≥ n/10 ≤ exp[V (x 0 ) -V (x -1 )] + 10n -1 ε -1 0 (1 -x -1 ) 2 exp[V (0) -min [x -1 ,0] V ] ≤ n -1 + 40ε -1 0 n -1 (log n) 6 ≤ (log n) -4 (105) 
for every ω of this subcase since

n ≥ n 3 , H[T 0 (V, log n)] = V (x -1 ) -V (x 0 ) ≥ log n, |x -1 | ≤ (log n) 3 since ω ∈ E (n) 5
and min

[x -1 ,0] V = min [x -1 ,x 0 ] V = V (x 0 ) = V (0) = 0. So, (102) is proved in this second case (whenever b(n) = 1 or not), since ν n (z) ≤ 1, for all n ≥ n 3 , z ∈ Z and ω ∈ E (n) -∩ max [b log n ,0] V < V (x 1 ) -9 log 2 n ∩ E (n) 3 ∩ E (n) 5 .
Third case: finally, the proof is similar when ω ∈ E

(n) + ∩ max [0,b log n ] V < V (x 0 ) -9 log 2 n
with x -1 instead of x 2 and x 1 exchanged with x 0 , which ends the proof of the lemma.

We now have all the ingredients to approximate the quenched probability P ω (S n = z) by the invariant probability measure ν n (z) for ω ∈ E (n) C (z) (defined in (85)), uniformly for n ≥ n 3 (recall that P ω (S n = z) and ν n (z) are equal to 0 if z and n do not have the same parity by (89)).

Lemma 4.7. We have,

∀n ≥ n 3 , ∀z ∈ Z, ∀ω ∈ E (n) C (z), P ω (S n = z) -ν n (z) ≤ 5(log n) -3 . ( 106 
) Proof: Let n ≥ n 3 , z ∈ Z and ω ∈ E (n) C (z). For u ∈ Z, we define V u = V + u and V - u by V u (.) := V (u + .) -V (u) and V ± u (.) := V (u ± .) -V (u). Since ω ∈ E (n) 6 , T V ± b log n (log n) > Γ n . Also, |b log n -z| ≤ Γ n because ω ∈ E (n) 7 (z), so (M ± being defined in (87)), z ≤ b log n + Γ n < b log n + T V + b log n (log n) ≤ M + . (107) 
Thus z < M + , and similarly, z > M -, and so z ∈]M -, M + [.

Observe that for k ∈ [n/10, n] ∩ (2N),

P b(n) ω [S k = z] = Q ω [S k = z] ≥ Q ω S k = z, τ S=S ≤ n/10 ≤ k ≤ n < τ exit = Q ω S k = z, τ S=S ≤ n/10 ≤ k ≤ n < τ exit ≥ Q ω S k = z -Q ω τ S=S > n/10 -Q ω τ exit ≤ n ≥ ν(z) -3(log n) -3 , (108) 
where we used (90) in the first equality, S k = S k for k ∈ τ S=S , τ exit in the second one, and

Q ω S k = x = P ν ω S k = x = ν(x)
for all x ∈ Z since k is even (see (90) and the remark after (89)), and Lemma 4.5 in the last line since n ≥ n 3 and ω ∈ E

(n) C (z). Similarly, for every k ∈ [n/10, n] ∩ (2N), P b(n) ω [S k = z] ≤Q ω S k = z, τ S=S ≤ n/10, τ exit > n + Q ω τ S=S > n/10 + Q ω τ exit ≤ n ≤Q ω S k = z + 3(log n) -3 = ν(z) + 3(log n) -3 . ( 109 
)
We have, applying the strong Markov property in the second line, C . Similarly, using (109) instead of (108), we get

P ω [S n = z] ≥ P ω S n = z, τ b(n) < n/10 = E ω 1 {τ ( b(n))<n/10} P b(n) ω [S k = z] |k=n-τ ( b(n)) ≥ E ω 1 {τ ( b(n))<n/10} ν(z) -3(log n) -3 ≥ ν(z) -ν(z)P ω τ ( b(n)) ≥ n/10 -3(log n) -3 ≥ ν(z) -4(log n) -3 ( 
P ω S n = z, τ b(n) < n/10 ≤ E ω 1 {τ ( b(n))<n/10} ν(z) + 3(log n) -3 ≤ ν(z) + 3(log n) -3 . ( 111 
)
We now assume that b log n ≤ 0, and so b log n = x 0 and M + = x 1 . Also, we have once more

P ω τ b(n) ∧ τ (x 2 ) ≥ n/10 ≤ (log n) -4 . ( 112 
)
Indeed this is proved in (104) when b(n) = 1 since n ≥ n 3 , whereas when b(n) = 1, the left hand side of ( 112) is equal to

P ω τ b(n) ≥ n/10 , which is ≤ (log n) -4 by (105) since b(n) = 1 < x 2 in this case.
Moreover for 0 ≤ k ≤ n, using z < M + = x 1 < x 2 (see ( 107)), we have by [START_REF] Bovier | Spectral analysis of Sinais walk for small eigenvalues[END_REF] and ellipticity [START_REF] Chiarini | Local central limit theorem for diffusions in a degenerate and unbounded random medium[END_REF], and since

V (x 1 ) -min [x 1 ,x 2 ] V = H[T 1 (V, log n)] = H[T 1 (V, h n -C 1 log 2 n)] ≥ log n + C 2 log 2 n because ω ∈ E (n) 3
(see also Remark 4.2),

P x 2 ω (S k = z) ≤ P x 2 ω [τ (x 1 ) < k] ≤ n exp[-H(T 1 [V, log n)] + log ε -1 0 ] ≤ ε -1 0 (log n) -C 2 ≤ (log n) -3
since C 2 > 9 and log n > ε -1 0 because n ≥ n 3 . Hence by the strong Markov property,

P ω S n = z, τ (x 2 ) < n/10 = E ω 1 {τ (x 2 )<n/10} P x 2 ω (S k = z) |k=n-τ (x 2 ) ≤ (log n) -3 . (113) 
Finally, (111), ( 112) and (113) give

P ω (S n = z) ≤ P ω τ b(n) ∧ τ (x 2 ) ≥ n/10 + P ω S n = z, τ b(n) < n/10 +P ω S n = z, τ (x 2 ) < n/10 (114) ≤ ν(z) + 5(log n) -3 . (115) 
We prove similarly this inequality P ω (S n = z) ≤ ν(z) + 5(log n) -3 by symmetry when b log n > 0, exchanging x 0 and x 1 and replacing x 2 by x -1 in (112) and (113) since z > M -= x 0 > x -1 in this case, and using (10) instead of [START_REF] Bovier | Spectral analysis of Sinais walk for small eigenvalues[END_REF].

Combining this with (115) and ( 110) proves (106).

4.5.

Upper bound of the annealed probability: main contribution. The aim of this subsection is to give an upper bound of the annealed probability of {S n = z} on the event for which we used the coupling, that is, on E

C (z). More precisely, we prove the following estimate. 

P S n = z, E (n) 
C (z) - 2σ 2 (log n) 2 ϕ ∞ σ 2 z (log n) 2 ≤ o (log n) -2 . ( 116 
)
The strategy of the proof is to use Lemma 4.7 to dominate P S n = z, E

C (z) by some quantity expressed in terms of left (log n)-slopes T i (V, log n) for -1 ≤ i ≤ 1 (see e.g. ( 121), (122), ( 124) and ( 125)), then use our Theorems 2.4 and 2.5 to obtain an expression with T ↑ V,log n and T ↓ V,log n , then Lemma 2.6 to make appear the quantity P b log n = z + n for some z + n ≈ z, which, in turn, can be approximated by the expression with ϕ ∞ in (116) thanks to Theorem 1.4.

Proof:

We assume that the hypotheses of Theorem 1.1 are satisfied. Let n ≥ n 3 and z ∈ (2Z+n). Using Lemma 4.7 in the last line, E (n) C (z) being defined in (85), we have

P S n = z, E (n) C (z) = Γn k=-Γn E 1 E (n) C (z)∩{b log n =z+k} P ω (S n = z) = f 1 (n, z) + Γn k=-Γn J 0 (k, n, z), (117) 
where |f 1 (n, z)| ≤ 5(log n) -3 and (writing

E (n) i (z) instead of E (n) i
even for i = 3 for simplicity),

J 0 (k, n, z) := E 1 E (n) C (z)∩{b log n =z+k} ν n (z) = E 1 ∩ 6 i=3 E (n) i (z)∩{b log n =z+k} ν n (z) . (118) 
Notice that, using (107) and in the remark below, we have if

ω ∈ E (n) C (z) ∩ {b log n = z + k} with |k| ≤ Γ n (M ± being defined in (87)), M -< z = b log n -k < M + . (119) 
Hence, we have on E

C (z) ∩ {b log n = z + k} with |k| ≤ Γ n , using the definitions of ν n and µ n (see ( 89) and ( 88)),

ν n (z) = µ n (z) µ n (2Z + 1 2N+1 (n)) = µ n (b log n -k) M + -1 i=M -e -V (i) = e -V (b log n -k) + e -V (b log n -k-1) M + -1 i=M -e -V (i)
since z and n have the same parity, and µ n (2Z) = µ n (2Z + 1) = M + -1 i=M -e -V (i) , and where we used the definition (88) of µ n on ]M -, M + [ and (119) in the last equality. Now, we define for j ∈ {0, 1},

J ± 2 (k, n, z, j) := E 1 E (n) ± ∩{b log n =z+k}∩E (n) 6 e -V (b log n -k-j) M + -1 i=M -e -V (i) . ( 120 
) Notice that for k ∈ Z such that |k| ≤ Γ n , if k ≤ -z then {b log n = z + k} ⊂ {b log n ≤ 0} = E (n) -, so J 0 (k, n, z) ≤ J - 2 (k, n, z, 0) + J - 2 (k, n, z, 1), whereas if k > -z, then {b log n = z + k} ⊂ {b log n > 0} = E (n) + , so J 0 (k, n, z) ≤ J + 2 (k, n, z, 0) + J + 2 (k, n, z, 1 
). So we have, thanks to (117),

P S n = z, E (n) 
C (z) ≤ J 3 (n, z, 0) + J 3 (n, z, 1) + 5(log n) -3 , (121) 
where for j ∈ {0, 1},

J 3 (n, z, j) := Γn k=-Γn J - 2 (k, n, z, j)1 {k+z≤0} + J + 2 (k, n, z, j)1 {k+z>0} . ( 122 
)
We first consider k ≤ -z, with |k| ≤ Γ n . Hence on {b log n = z + k}, we have b log n ≤ 0, so

ω ∈ E (n) -, thus M -= x -1 , b log n = x 0 and M + = x 1 (recall that x i = x i (V, log n), i ∈ Z
in this section). So for j ∈ {0, 1}, recalling that for u ∈ Z, V u (.) := V (u + .) -V (u), and V - u (.) := V (u -.) -V (u), we have

J - 2 (k, n, z, j) = E 1 E (n) -∩{x 0 =z+k}∩E (n) 6 e -V (x 0 -k-j) x 1 -1 i=x -1 e -V (i) = E 1 Vx 0 (x 1 -x 0 )≥log n, T Vx 0 (log n)>Γn, T V - x 0 (log n)>Γn e -Vx 0 (-k-j) 1 {x 0 =z+k} x 1 -x 0 -1 i=x -1 -x 0 e -Vx 0 (i) . (123) 
Notice that (V x 0 (i), 0 [START_REF] Devulder | Collisions of several walkers in recurrent random environments[END_REF]. Also, on the event in (123

≤ i ≤ x 1 -x 0 ) = θ(T 0 (V, log n)) and that (V - x 0 (i), 0 ≤ i ≤ x 0 -x -1 ) = (V (x 0 -i) -V (x 0 ), 0 ≤ i ≤ x 0 -x -1 ) = (V x -1 (x 0 -x -1 -i) -V x -1 (x 0 -x -1 ), 0 ≤ i ≤ x 0 -x -1 ) = ζ[θ(T -1 (V, log n))], with ζ defined in
), |k| ≤ Γ n implies that -k -j ≤ Γ n + 1 ≤ T Vx 0 (log n) ≤ x 1 -x 0 = [θ(T 0 (V, log n))], and similarly k + j ≤ x 0 -x -1 = [ζ(θ(T -1 (V, log n)))].
Hence, with the following notation for slopes v and t,

ϕ v (t) := 1 {t( (t))≥log n, Tt(log n)∧Tv(log n)>Γn} e -t(-k-j) 1 {k+j≤0} + e -v(k+j) 1 {k+j>0} (v) i=1 e -v(i) + (t)-1 i=0 e -t(i) , ( 124 
)
in which we do not write the dependency on n, k, j to simplify the notations, we have for our fixed n, k and j since |k| ≤ Γ n ,

J - 2 (k, n, z, j) = E ϕ ζ[θ(T -1 (V,log n))] [θ(T 0 (V, log n))]1 {x 0 =z+k} . (125) 
In the rest of this section, all the slopes considered, such as

T ↑ V,h , T ↓ V,h , T ↑ * V -,h
, etc, are with h = log n, and we remove this subscript h to simplify the notation. That is,

T ↑ V denotes T ↑ V,log n , T ↓ V denotes T ↓ V,log n , etc. Due to Theorem 2.4 (i), conditionally on E (n) -, ζ[θ(T -1 (V, log n))] is independent of (θ[T 0 (V, log n)],
x 0 ) and has the same law as ζ(T ↓ V ) (under P) and so as T ↑ * Vby Proposition 2.12. Hence, we get, since

ϕ v [θ(T 0 (V, log n))]1 E (n) + = 0 for any v, J - 2 (k, n, z, j) = E E ϕ v [θ(T 0 (V, log n))]1 {x 0 =z+k} |v=T ↑ * V - .
Thus, applying the (renewal) Theorem 2.5 eq. ( 29) with h = log n, ϕ = ϕ v , ∆ 0 = {z + k}, ∆ 1 = Z (notice that ϕ v (t) = 0 if t is a downward slope whereas 1 {t( (t))≥log n} = 1 when t is an upward (log n)-slope), we get, T ↑ V and T ↑ * Vbeing here independent,

J - 2 (k, n, z, j) = E E {0 ≤ i < T ↑ V , -i = z + k}ϕ v T ↑ V |v=T ↑ * V - E T ↑ V + T ↓ V = E 1 T T ↑ V (log n)∧T T ↑ * V - (log n)>Γn e -T ↑ V (-(k+j)) 1 {k+j≤0} + e -T ↑ * V - (k+j) 1 {k+j>0} (T ↑ * V - ) i=1 e -T ↑ * V - (i) + (T ↑ V )-1 i=0 e -T ↑ V (i) 1 {-z-k< (T ↑ V )} E T ↑ V + T ↓ V , (126) 
where we used

{0 ≤ i < T ↑ V , -i = z + k} = 1 {-z-k< (T ↑ V )} when z + k ≤ 0.
We now assume that k > -z, with |k| ≤ Γ n . We have b log n > 0 on {b log n = z + k}, and so ω ∈ E (n) + , thus b log n = x 1 , M -= x 0 and M + = x 2 . So by (120), for j ∈ {0, 1},

J + 2 (k, n, z, j) = E 1 Vx 1 (x 0 -x 1 )≥log n, x 1 =z+k, T Vx 1 (log n)∧T V - x 1 (log n)>Γn e -Vx 1 (-k-j) x 2 -x 1 -1 i=x 0 -x 1 e -Vx 1 (i) . Notice that (V x 1 (i), 0 ≤ i ≤ x 2 -x 1 ) = θ(T 1 (V, log n)) and that (V x 1 (-i), 0 ≤ i ≤ x 1 -x 0 ) = (V (x 1 -i) -V (x 1 ), 0 ≤ i ≤ x 1 -x 0 ) = ζ[θ(T 0 (V, log n))]. Hence, with ϕ + v (t) := 1 {t( (t))≥log n, Tt(log n)∧Tv(log n)>Γn} e -v(-k-j) 1 {k+j≤0} + e -t(k+j) 1 {k+j>0} (t) i=1 e -t(i) + (v)-1 i=0 e -v(i)
, in which we do not write the dependency on n, k, j to simplify the notations, we have

J + 2 (k, n, z, j) = E ϕ + θ[T 1 (V,log n)] [ζ(θ(T 0 (V, log n)))]1 {x 1 =z+k} .
Since due to Theorem 2.4 (ii), conditionally on

E (n) + , θ(T 1 (V, log n))
has the law L T ↑ V , and is independent of (θ(T 0 (V, log n)), x 1 ), we have,

J + 2 (k, n, z, j) = E E ϕ + v [ζ(θ(T 0 (V, log n)))]1 {x 1 =z+k} |v=T ↑ V , since ϕ + v [ζ(θ(T 0 (V, log n)))]1 E (n) -
= 0 for any v. Thus, applying the (renewal) Theorem 2.5 with

h = log n, ϕ = ϕ + v • ζ, ∆ 0 = Z, ∆ 1 = {z + k} (we use once more that ϕ + v • ζ(t)
= 0 when t is a (translated) upward slope, since in this case ζ(t) is a downward slope), we get

J + 2 (k, n, z, j) = E E {0 ≤ i < T ↓ V , T ↓ V -i = z + k}ϕ + v • ζ T ↓ V |v=T ↑ V E T ↑ V + T ↓ V .
Recall that, by Proposition 2.12 (ii), ζ(T ↓ V ) = law T ↑ * V -. Hence, T ↑ V and T ↑ * Vbeing independent, and using

T ↓ V = ζ T ↓ V , we get J + 2 (k, n, z, j) = E 1 T T ↑ * V - (log n)>Γn 1 T T ↑ V (log n)>Γn e -T ↑ V (-(k+j)) 1 {k+j≤0} + e -T ↑ * V - (k+j) 1 {k+j>0} (T ↑ * V - ) i=1 e -T ↑ * V - (i) + (T ↑ V )-1 i=0 e -T ↑ V (i) 1 {z+k≤ (T ↑ * V - )} E T ↑ V + T ↓ V , (127) 
where we used

{0 ≤ i < T ↓ V , T ↓ V -i = z + k} = 1 {z+k≤ (T ↓ V )} which becomes 1 {z+k≤ (T ↑ * V - )} since z + k > 0 and 1 {t( (t))≥log n} = 1 for t = ζ T ↓ V .
Notice that the only difference between this formula and (126) is that

1 {-z-k< (T ↑ V )} is replaced by 1 {z+k≤ (T ↑ * V - )} .
We now define

z + n :=    z + Γ n if z ≤ -Γ n , 0 if -Γ n < z ≤ Γ n , z -Γ n if z > Γ n , ψ k T ↑ V , T ↑ * V -, z :=        1 {-z-k< (T ↑ V )} if z ≤ -Γ n , 1 {0< (T ↑ V )} if -Γ n < z ≤ Γ n , 1 {z+k≤ (T ↑ * V - )} if z > Γ n .
Notice that in the case z ≤ -Γ n , we have z + k ≤ 0 for every k in the sum in (122), so, using (126), we have for each j ∈ {0, 1} (the inequality being an equality in this first case z ≤ -Γ n ),

J 3 (n, z, j) ≤ E 1 T T ↑ V (log n)>Γn 1 T T ↑ * V - (log n)>Γn Γn k=-Γn e -T ↑ V (-(k+j)) 1 {k+j≤0} + e -T ↑ * V - (k+j) 1 {k+j>0} ψ k T ↑ V , T ↑ * V -, z (T ↑ V )-1 i=0 e -T ↑ V (i) + (T ↑ * V - ) i=1 e -T ↑ * V - (i) E T ↑ V + T ↓ V . (128) 
When z > Γ n , we have z + k > 0 for every k in the sum in (122). So, combining (122) and (127), inequality (128) remains true in this case (and is actually an equality in this second case).

Finally, assume that -Γ n < z ≤ Γ n . In this case, notice that the quantity 1 {-z-k< (T ↑ V )} which appears in (126) for k+z ≤ 0, and the quantity 1 {z+k≤ (T ↑ * V -

)} which appears in (127) for k+z > 0 are both dominated by 1 = 1 {0< (T ↑ V )} = ψ k T ↑ V , T ↑ * V -, z P-a.s., so J - 2 (k, n, z, j) and J + 2 (k, n, z, j) are dominated by the same formula. So for j ∈ {0, 1}, (128) also remains true in this case. So, (128) holds for every z ∈ Z and every j ∈ {0, 1}. Now, we notice that for every

-Γ n ≤ k ≤ Γ n , we have ψ k T ↑ V , T ↑ * V -, z = 1 {-z-k< (T ↑ V )} ≤ 1 {-z-Γn< (T ↑ V )} = 1 {-z + n < (T ↑ V )} when z ≤ -Γ n , also ψ k T ↑ V , T ↑ * V -, z = 1 {-z + n < (T ↑ V )} when -Γ n < z ≤ Γ n , whereas ψ k T ↑ V , T ↑ * V -, z = 1 {z+k≤ (T ↑ * V - )} ≤ 1 {z-Γn≤ (T ↑ * V - )} = 1 {z + n ≤ (T ↑ * V - )} when z > Γ n .
Hence, (128) leads to, for every j ∈ {0, 1}, n ≥ n 3 and z ∈ (2Z + n), as explained below,

J 3 (n, z, j) ≤ P -z + n < T ↑ V E T ↑ V + T ↓ V 1 {z≤Γn} + P z + n ≤ (T ↑ * V -) E T ↑ V + T ↓ V 1 {z>Γn} = P b log n = z + n . (129) Indeed, we first used Γ n + 1 ≤ T T ↑ V (log n) ≤ (T ↑ V ) and similarly Γ n + 1 ≤ (T ↑ * V -), so that Γn k=-Γn (• • • + . . . ) ≤ (T ↑ V )-1 i=0 • • • + (T ↑ * V - ) i=1
. . . in (128) to get the (first) inequality. Then, to get the following equality, we used eq. ( 44) of Lemma 2.6 when z ≤ Γ n , and

T ↑ * V -= law ζ T ↓ V = T ↓
V by Proposition 2.12 (ii) and eq. ( 43) of Lemma 2.6 when z > Γ n . Now, let ε > 0. By Theorem 1.4, there exists n 4 ≥ n 3 such that, for every j ∈ {0, 1}, n ≥ n 4 and z ∈ (2Z + n),

J 3 (n, z, j) ≤ P b log n = z + n ≤ σ 2 (log n) 2 ϕ ∞ σ 2 z + n (log n) 2 + ε(log n) -2 . Now, recall that ϕ ∞ is uniformly continuous on R since ϕ ∞ is continuous on R and lim ±∞ ϕ ∞ = 0. Also, sup z∈Z |σ 2 z + n (log n) -2 -σ 2 z(log n) -2 | → 0 as n → +∞ because δ 1 < 2/3. Thus, there exists n 5 ≥ n 4 such that for all n ≥ n 5 , sup z∈Z |ϕ ∞ (σ 2 z + n (log n) -2 ) -ϕ ∞ (σ 2 z(log n) -2 )| ≤ σ -2 ε. Hence, ∀n ≥ n 5 , ∀z ∈ (2Z + n), ∀j ∈ {0, 1}, J 3 (n, z, j) ≤ σ 2 (log n) 2 ϕ ∞ σ 2 z (log n) 2 + 2ε (log n) 2 . (130)
Finally, (121) and (130) lead to, for all n ≥ n 5 ,

∀z ∈ (2Z + n), P S n = z, E (n) C (z) ≤ 2σ 2 (log n) 2 ϕ ∞ σ 2 z (log n) 2 + 4ε (log n) 2 + 5 (log n) 3 .
This gives (116), which proves the proposition.

Proving that some environments or trajectories are negligible

The aim of this section is to prove that sup z∈Z P S n = z, E 85)). To this aim we give upper bounds of the probabilities of different events, most of them depending both on the environment and on the walk, except the event considered in Lemma 5.1.

(n) C (z) c is negligible compared to (log n) -2 as n → +∞ (recall E (n) C (z) from (

Contribution of E

(n) 4 (z) c . As a warm up, we start with following estimate.

Lemma 5.1. There exists c 9 > 0 such that

∀n ≥ n 5 , ∀z ∈ Z, P E (n) 4 (z) c ∩ E (n) 3 ∩ E (n) 6 ∩ E (n) 7 (z) ≤ c 9 (log 2 n) 3 (log n) -3 .
Proof: Let n ≥ n 5 and z ∈ Z. We introduce

E (n) 8 (z) := E (n) 4 (z) c ∩ E (n) 3 ∩ E (n) 6 ∩ E (n) 7 (z), E (n) 8,± (z) := E (n) ± ∩ E (n) 8 (z).
We first assume that ω ∈ E (n) 8,-(z) (see Figure 6). Hence, ω ∈ E

(n) -∩ E (n) 4 (z) c , so b log n = x 0 (V, log n), V (z) -V (b log n ) < 5 log 2 n (131) and max [b log n ,0] V ≥ V [x 1 (V, log n)] -9 log 2 n = V (b log n ) + H[T 0 (V, log n)] -9 log 2 n ≥ V (b log n ) + log n + (C 2 -9) log 2 n > V (b log n ) + log n, (132) 
since

H[T 0 (V, log n)] = H[T 0 (V, h n -C 1 log 2 n)] ≥ log n + C 2 log 2 n by Remark 4.2 because ω ∈ E (n)
3 , and where we used C 2 > 9.

0

V (k) k x 2 b log n ≥ log n + C 2 log 2 n ≥ log n + C 2 log 2 n z < 5 log 2 n 9 log 2 n x 1 log n -5 log 2 n log n z + T V + z (log n -5 log 2 n) b log n + T V + b log n (log n) b log n + Γ n log n T V ↑y (-log n) 10 log 2 n T V ↑y (10 log 2 n) argmax [z,0] V T V (y) y Figure 6. Schema of the potential V on ω ∈ E (n) 8,-(z), with x i = x i (V, log n) and y = max [z,0] V . Also, ω ∈ E (n) 6 ∩ E (n)
7 (z), so as in (107), using (132) in the last inequality,

b log n -T V - b log n (log n) < z < b log n + T V + b log n (log n) ≤ 0, (133) 
where for x ∈ Z, V ± x (k) = V (x ± k) -V (x), k ∈ N, as before. This and (132) also lead to max

[z,0] V = max [b log n ,0] V ≥ V [x 1 (V, log n)] -9 log 2 n. (134) 
We now introduce, for y ≥ 0, V ↑y (k

) := V [k + T V (y)] -V [T V (y)], k ∈ N, and 
E (n) 9,± (z) := T V ± z (log n -5 log 2 n) < T V ± z (-5 log 2 n) , E (n) 10 (y) := T V ↑y (-log n) < T V ↑y (10 log 2 n) ,
where log n -5 log 2 n > h n > 0 since n ≥ n 5 ≥ n 3 and C 1 > 20. Due to (131) and (133) and since b log n is a left (log n)-minimum, we have ω ∈ E 131) and ( 133), and

(n) 9,-(z) ∩ E (n) 9,+ (z). Also, notice that, using (134), V [x 1 (V, log n)] = max [0,x 2 (V,log n)] V = max [b log n ,x 2 (V,log n)] V ≥ max [b log n ,0] V = max [z,0] V and H[T 1 (V, log n)] = H[T 1 (V, h n -C 1 log 2 n)] ≥ log n + C 2 log 2 n with C 2 > 9 (by Remark 4.2 since ω ∈ E (n) 3 ). So, after hitting max [z,0] V, +∞ , the potential (V (u), u ≥ 0) cannot take values larger than V [x 1 (V, log n)] ≤ max [z,0] V + 9 log 2 n (see (134)) before going (down) to x 2 (V, log n) with V [x 2 (V, log n)] = V [x 1 (V, log n)] -H[T 1 (V, log n)] ≤ V [x 1 (V, log n)] -log n -C 2 log 2 n ≤ max [z,0] V -log n by (134) and since C 2 > 9. Hence, ω ∈ E (n) 10 max [z,0] V . Finally, z + T V + z (log n -5 log 2 n) ≤ b log n + T V + b log n (log n) ≤ 0 by (
E (n) 9,-(z) ∩ E (n) 9,+ (z) ∩ {z + T V + z (log n -5 log 2 n) ≤ 0} depend only on V -= (V (k), k ≤ 0)
. Hence, conditioning by V -to get the third line, using [START_REF] Cocco | Reconstructing a random potential from its random walks[END_REF] for the forth, the independence of V - z and V + z and C 0 < log 2 n since n ≥ n 5 ≥ n 3 for the fifth, and once more [START_REF] Cocco | Reconstructing a random potential from its random walks[END_REF] for the sixth, we get for every n ≥ n 5 and z ∈ Z,

P E (n) 8,-(z) ≤ P E (n) 9,-(z) ∩ E (n) 9,+ (z) ∩ z + T V + z (log n -5 log 2 n) ≤ 0 ∩ E (n) 10 max [z,0] V = E 1 E (n) 9,-(z)∩E (n) 9,+ (z)∩{z+T V + z (log n-5 log 2 n)≤0} P E (n) 10 max [z,0] V |V - ≤ E 1 E (n) 9,-(z)∩E (n) 9,+ (z) (10 log 2 n + C 0 )(log n + 10 log 2 n + C 0 ) -1 ≤ P E (n) 9,-(z) P E (n) 9,+ (z) (11 log 2 n)(log n) -1 ≤ (6 log 2 n) 2 (11 log 2 n)(log n) -3 . ( 135 
)
We show similarly that P E (n) 8,+ (z) ≤ 396(log 2 n) 3 (log n) -3 for every n ≥ n 5 and z ∈ Z. This, combined with (135), ends the proof of the lemma.

5.2.

Case when b log n is far from z without subvalleys or small valleys. In this subsection, we prove that the event constituted by environments and trajectories such that b log n is far from z and S n = z while E

(n) 3 ∩ E (n) 5
holds is negligible. More precisely, we prove the following proposition.

Proposition 5.2. There exist c 10 > 0 and n 6 ≥ n 5 such that, for all n ≥ n 6 ,

∀z ∈ Z, P S n = z, |z -b log n | > Γ n , E (n) 3 , E (n) 5 ≤ c 10 (log n) -2-δ 1 /2 . ( 136 
)
Before giving a complete proof, we first introduce the different cases considered.

Organisation of the proof: We consider separately the case τ (b log n ) ≤ n (see Lemma 5.3) and the case τ (b log n ) > n (see Lemmas 5.4, 5.5 and 5.6) since in this second case, we prove (see (150)) that with large enough probability, τ

[x 2 (V, log n)] ≤ n on E (n) -and similarly τ [x -1 (V, log n)] ≤ n on E (n)
+ . So in the first case τ (b log n ) ≤ n, S goes before time n to the bottom b log n of the central valley of height at least log n, whereas in the second case τ (b log n ) > n, S goes before time n to the bottom of a neighbour valley of height at least log n with large probability. Figure 7 gives the schema of a potential for which S can go before time n, with relatively comparable quenched probability, to each of the bottoms of the two valleys "surrounding" the origin, x 0 (V, log n) and x 2 (V, log n) in this figure .   5.2.1. Case when τ (b log n ) ≤ n. In this subsection, we consider the case τ (b log n ) ≤ n of Proposition 5.2, since for this case we can use an inequality coming from the reversibility of S. More precisely, we prove the following lemma.

Lemma 5.3. There exists c 11 > 0 and n 6 ≥ n 5 such that for all n ≥ n 6 ,

∀z ∈ Z, P S n = z, |b log n -z| > Γ n , τ (b log n ) ≤ n, E (n) 3 , E (n) 5 ≤ c 11 (log n) -2-δ 1 /2 . ( 137 
)
Proof: In this proof, T ↑ V and T ↓ V denote respectively T ↑ V,log n and T ↓ V,log n . By Lemma 2.15 applied with h = log n, there exists n 6 ≥ n 5 such that for all n ≥ n 6 , E T

↑ V + T ↓ V ≥ c 7 (log n) 2 .
Let n ≥ n 6 and z ∈ Z. We separate the proof into different cases, first when z / ∈ [M -, M + ], then when z ∈ [M -, M + ] -L -, L + and finally when z ∈ L -, L + , this last case being cut into four subcases, depending on the signs of b log n and of z -b log n .

First step: we have, conditioning by ω and applying the strong Markov property at stopping time τ (log n), recalling M ± from (87) (with x i = x i (V, log n), see Figure 5),

P S n = z, |b log n -z| > Γ n , τ (b log n ) ≤ n, E (n) 3 , E (n) 5 , z / ∈ [M -, M + ] ≤ E 1 E (n) 3 1 {τ (b log n )≤n} P b log n ω (S k / ∈ [M -, M + ]) |k=n-τ (b log n) ) ≤ E 1 E (n) 3 P b log n ω [τ (M -) ∧ τ (M + ) ≤ n] ≤ (log n) -3 , (138) 
where we used (101), which is still valid on E Second step: By reversibility (see ( 13)), we have for all y ∈ Z, k ∈ N and a.s. every environment ω,

P b log n ω (S k = y) = P y ω (S k = b log n ) µ ω (y) µ ω (b log n ) ≤ e -V (y) + e -V (y-1) e -V (b log n ) + e -V (b log n -1) ≤ c 12 e -[V (y)-V (b log n )]
with c 12 := (1 + ε -1 0 ) by ellipticity. Hence, recalling M ± from (87) and L ± from (91) and (92), conditioning by ω and applying the strong Markov property at time τ (b log n ),

P S n = z, |b log n -z| > Γ n , τ (b log n ) ≤ n, E (n) 3 , E (n) 5 , z ∈ [M -, M + ] = E 1 {|b log n -z|>Γn} 1 {τ (b log n )≤n} 1 E (n) 3 ∩E (n) 5 1 {z∈[M -,M + ]} P b log n ω [S k = z] |k=n-τ (b log n ) ≤ E 1 {|b log n -z|>Γn} 1 E (n) 3 ∩E (n) 5 1 {z∈[M -,M + ]} c 12 e -[V (z)-V (b log n )] . ( 139 
)
We cut the expectation in (139) into several parts. We first notice that since n ≥ n 6 ≥ n 3 ,

E 1 {z∈[M -, L -]∪[ L + ,M + ]} 1 E (n) 3 ∩E (n) 5 c 12 e -[V (z)-V (b log n )] ≤ c 12 (log n) -C 1 ≤ (log n) -3 (140) 
by ( 95) and (96), and since C 1 > 20 and log n > 2ε -1 0 because n ≥ n 6 ≥ n 3 . Third step: Hence, there only remains to treat the case z ∈] L -, L + [, which we divide into 4 subcases, depending on the signs of z and z -b log n . In this step, we write T i := θ(T i (V, log n)) for -1 ≤ i ≤ 1 to simplify the notation. First, we have, using T T 1 (h n ) ≤ T T 1 (log n) and the fact that {z -b log n > Γ n , b log n > 0} depends only on b log n and so is measurable with respect to σ(T 0 , x 0 (V, log n)) in the first inequality, using the law T ↑ V of T 1 and its independence with (T 0 , x 0 (V, log n)) conditionally on {b log n > 0} (i.e. on T 0 (V, log n) being downward) by Theorem 2.4 (ii) in the first equality, then the law of T ↑ V (T ↑ V,h with h = log n) by Theorem 2.3 with Ξ log n = {T V (log n) < T V (R * -)} as defined in (230) in the second inequality, then Proposition 7.3 in the third one since Γ n ≥ p 4 because n ≥ n 6 ≥ n 3 and n 3 ≥ exp(p 5 ), we get

E 1 {z>b log n +Γn} 1 {b log n >0} 1 {z∈] L -, L + [} 1 E (n) 3 ∩E (n) 5 e -[V (z)-V (b log n )] ≤ E 1 {z-b log n >Γn} 1 {b log n >0} E 1 {yn<T T 1 (log n)} e -T 1 (yn) σ(T 0 , x 0 (V, log n)) yn=z-b log n = E 1 {z-b log n >Γn} 1 {b log n >0} E 1 {yn<T T ↑ V (log n)} e -T ↑ V (yn) yn=z-b log n ≤ E 1 {z-b log n >Γn} E 1 {yn<T V (log n)} e -V (yn) |Ξ log n yn=z-b log n ≤ E 1 {z-b log n >(log n) 4/3+δ 1 } c 13 (z -b log n ) -3/2 ≤ c 13 (log n) -2-3δ 1 /2 . ( 141 
)
Also, using x 0 (V, log n) = b log n < z < L + = x 0 (V, log n) + T T 0 (h n ) with h n ≤ log n (on the event of the second line below) and

E (n) 5
in the first inequality, we have

E 1 {z>b log n +Γn} 1 {b log n ≤0} 1 {z∈] L -, L + [} 1 E (n) 3 ∩E (n) 5 e -[V (z)-V (b log n )] (142) = y≤0 E 1 {z>y+Γn} 1 {b log n =y} 1 {z∈] L -, L + [} 1 E (n) 3 ∩E (n) 5 e -[V (z)-V (y)] ≤ y≤0 1 {z-y>Γn} E 1 {b log n =y} 1 {z-y<T T 0 (log n)} 1 { (T 0 )≤2(log n) 2+δ 1 } e -T 0 (z-y) = y≤0 1 {z-y>Γn} E 1 {-(T ↑ V )<y 1 {z-y<T T ↑ V (log n)} 1 { (T ↑ V )≤2(log n) 2+δ 1 } e -T ↑ V (z-y) E T ↑ V + T ↓ V ,
where we used, in the last equality, eq. ( 29) of Theorem 2.5 with ∆ 0 = {y}, ∆ 1 = Z and h = log n and 0

≤ i < (T ↑ V ), -i = y = 1 {-(T ↑ V )<y}
, for which we recall that for y ≤ 0, b log n = y means that x 0 (V, log n) = y and T 0 ( (T 0 )) > 0, i.e. T 0 is an upward slope.

Then, using the definition of n 6 and y > -(T ↑ V ) ≥ -2(log n) 2+δ 1 and the law of slopes provided by Theorem 2.3 (i) in the first inequality, and Proposition 7.3 in the second inequality since Γ n ≥ p 4 and log n ≥ p 5 because n ≥ n 6 ≥ n 3 , we get, with c 14 := 3c -1 7 c 13 , (142

) ≤ c -1 7 (log n) 2 0 y=-2(log n) 2+δ 1 1 {z-y>Γn} E 1 {z-y<T V (log n)} e -V (z-y) |Ξ log n ≤ c -1 7 (log n) 2 0 y=-2(log n) 2+δ 1 1 {z-y>(log n) 4/3+δ 1 } c 13 (z -y) -3/2 ≤ c -1 7 (log n) -2 2(log n) 2+δ 1 + 1 c 13 (log n) 4/3+δ 1 -3/2 ≤ c 14 (log n) -2-δ 1 /2 . (143) Notice that ζ(T -1 ) = V (x 0 -i) -V (x 0 ), 0 ≤ i ≤ x 0 -x -1 , with x j = x j (V, log n), j ∈ Z.
Moreover, by Theorem 2.4 (i), conditionally on T 0 (V, log n) being upward, i.e. on {b log n ≤ 0}, ζ(T -1 ) is independent of (T 0 , x 0 (V, log n)) and has the same law as ζ(T ↓ V ), so is equal in law, by Proposition 2.12, to T ↑ * V -,log n , which law is given by Theorem 2.9 (i) applied to V -(with ζ defined in [START_REF] Devulder | Collisions of several walkers in recurrent random environments[END_REF]). Using this in the second inequality, then Proposition 7.3 in the third one, we get since n ≥ n 6 , with Ξ * -

log n := {T V -(log n) < T * V -(] -∞, 0])}, similarly as in (141), E 1 {z<b log n -Γn} 1 {b log n ≤0} 1 {z∈] L -, L + [} 1 E (n) 3 ∩E (n) 5 e -[V (z)-V (b log n )] ≤ E 1 {z<b log n -Γn, b log n ≤0} E 1 {yn<T ζ(T -1 ) (log n)} e -ζ(T -1 )(yn) σ(T 0 , x 0 (V, log n)) yn=b log n -z ≤ E 1 {b log n -z>Γn} E 1 {yn<T V -(log n)} e -V -(yn) |Ξ * - log n yn=b log n -z ≤ E 1 {b log n -z>Γn} c 13 (b log n -z) -3/2 ≤ c 13 (log n) -2-3δ 1 /2 . ( 144 
) Also, using x 1 (V, log n) = b log n > z > L -= x 1 (V, log n) -T ζ(T 0 ) (h n ) with h n ≤ log n and E (n) 5
in the first inequality, we have

E 1 {z<b log n -Γn} 1 {b log n >0} 1 {z∈] L -, L + [} 1 E (n) 3 ∩E (n) 5 e -[V (z)-V (b log n )] (145) 
≤ y>0 1 {z-y<-Γn} E 1 {b log n =y} 1 {y-z<T ζ(T 0 ) (log n)} 1 { (T 0 )≤2(log n) 2+δ 1 } e -ζ(T 0 )(y-z) = y>0 1 {z-y<-Γn} E 1 {y≤ (T ↓ V ) 1 {y-z<T ζ(T ↓ V ) (log n), (T ↓ V )≤2(log n) 2+δ 1 } e -ζ(T ↓ V )(y-z) E T ↑ V + T ↓ V ,
where we used, in the last equality, eq. ( 29) of Theorem 2.5 with ∆ 0 = Z, ∆ 1 = {y} and h = log n and 0

≤ i < (T ↓ V ), (T ↓ V ) -i = y = 1 {y≤ (T ↓ V )
} for y > 0, for which we recall that for y > 0, b log n = y means that x 1 (V, log n) = y and T 0 ( (T 0 )) < 0.

Then, using the definition of n 6 , y ≤ (T ↓ V ) ≤ 2(log n) 2+δ 1 and Proposition 2.12 in the first inequality, then Theorem 2.9 (i) in the equality, and Proposition 7.3 in the second inequality, we get since log n ≥ p 5 and Γ n ≥ p 4 because n ≥ n 6 ≥ n 3 , concluding as in (143),

(145) ≤ c -1 7 (log n) 2 2(log n) 2+δ 1 y=1 1 {z-y<-Γn} E 1 {y-z<T T ↑ * V - (log n)} e -T ↑ * V -(y-z) = c -1 7 (log n) 2 2(log n) 2+δ 1 y=1 1 {y-z>Γn} E 1 {y-z<T V -(log n)} e -V -(y-z) |Ξ * - log n ≤ c 14 (log n) 2+δ 1 /2 . (146)
Combining ( 141), ( 143), ( 144) and ( 146) ensures that, with c 15 := 2c 14 + 2c 13 ,

E 1 {|b log n -z|>Γn} 1 E (n) 3 ∩E (n) 5 1 {z∈] L -, L + [} e -[V (z)-V (b log n )] ≤ c 15 (log n) -2-δ 1 /2 .
This, combined with (140), proves that the right hand side of ( 139) is ≤ c 16 (log n) -2-δ 1 /2 for all n ≥ n 6 and z ∈ Z with c 16 := (c 15 c 12 + 1). This together with (138) gives (137) since δ 1 ∈ (0, 2/3), with c 11 := c 16 + 1.

5.2.2.

Case with b log n far from z, without subvalleys and small valleys when τ (b log n ) > n. The aim of this subsection is to prove the following lemma.

Lemma 5.4. There exists a constant c 17 > 0 such that, for all n ≥ n 6 and all z ∈ Z,

P S n = z, |b log n -z| > Γ n , τ (b log n ) > n, E (n) 3 , E (n) 5 ≤ c 17 (log 2 n) 3 (log n) -3 . ( 147 
)
We start with the case b log n ≤ 0. We first make the following simple remark.

Lemma 5.5. We have,

∀n ≥ 3, ∀z ∈ Z, P S n = z, b log n ≤ 0, z < b log n -Γ n , τ (b log n ) > n = 0. ( 148 
)
Proof: On {b log n ≤ 0, z < b log n -Γ n , τ (b log n ) > n}, we have z < b log n ≤ 0, so for S starting from 0 (under P ω or P), τ (z) > τ (b log n ) > n and thus S n = z. This leads to (148).

In order to prove Lemma 5.4, we also have to give an upper bound for the probability of

F (n) 1 (z)
, where

F (n) 1 (z) := S n = z, b log n ≤ 0, z > b log n + Γ n , τ (b log n ) > n ∩ E (n) 3 ∩ E (n) 5 .
Loosely speaking, on E (n) 3 by Remark 4.2, there are no subvalleys of height larger than h n -C 1 log 2 n in the (log n)-central valley [M -, M + ] and in the two neighbor valleys (of height at least log n) on its left and on its right, and the height of these three valleys is quite larger than log n. In particular, we prove: Lemma 5.6. There exists a constant c 18 > 0 such that

∀n ≥ n 6 , ∀z ∈ Z, P F (n) 1 (z) ≤ c 18 (log 2 n) 3 (log n) -3 . ( 149 
)
Outline of the proof: See Figure 7 for a schema of the potential. Assume for example that b log n ≤ 0, so x 0 = b log n , with x i := x i (V, log n), i ∈ Z, and that F (n) 1 (z) holds. Since τ (x 0 ) > n, we first prove that, by Lemma 4.1, with large probability, τ (x 2 ) ≤ n. Second, if z is not in the valley [x 1 , x 3 ], then after first hitting x 2 , S has to leave this valley before time n (so that S n = z / ∈ [x 1 , x 3 ]), which has negligible probability since the height of this valley [x 1 , x 3 ] is quite larger than log n on E (n) 3 . Third, if z belongs to the valley [x 1 , x 3 ] with V (z) ≥ V (x 2 ) + 4 log 2 n, then the probability that S n = z is negligible by reversibility, which we can apply to S started at x 2 by strong Markov property. Finally, if z belongs to the valley [x 1 , x 3 ] with V (z) < V (x 2 ) + 4 log 2 n, then V (z + .) -V (z) goes up log n before going down 4 log 2 n on the left and on the right, and conditionally on (

V (k), k ≥ 0), max [x 0 ,0] V -max [0,z] V = max [x 0 ,0] V -V (x 1 ) ∈ [-9 log 2 n, 0[ (otherwise τ (x 2 ) < τ (x 0 )
would have small probability which would contradict our first step). Since all these three conditions have probability less than c(log 2 n)(log n) -1 for some c > 0 with some independence, this last case is also negligible compared to (log n) -2 . We now prove this rigorously.

Proof: Let n ≥ n 6 and z ∈ Z. In all the proof, we write x i for x i (V, log n) for every i ∈ Z.

First step: Applying Lemma 4.1 with h = log n, ξ 2 = 1, a = x 0 < b = x 1 < c = x 2 (so that (i) is satisfied for ω ∈ E (n) -), ξ 1 = 2C 1 (so (ii) and (iii) are satisfied since there is no left (log n -2C 1 log 2 n)-extremum in ]x 0 , x 1 [ nor in ]x 1 , x 2 [ for ω ∈ E (n) -∩ E (n) 3 by Remark 4.2), α = 3 (so (iv) is satisfied for ω ∈ E (n) 5
since 0 < δ 1 < 2/3) and x = 0, we get since n ≥ n 6 ≥ n 3 and so log n ≥ h 2 (2C 1 , 1),

∀ω ∈ E (n) -∩ E (n) 3 ∩ E (n) 5 , P ω τ (x 0 ) ∧ τ (x 2 ) ≥ n ≤ (log n) -4 . ( 150 
)
As a consequence, using τ

(x 0 ) = τ (b log n ) > n on F (n) 1 (z), we get P F (n) 1 (z) ∩ {τ (x 2 ) ≥ n} ≤ E 1 E (n) -∩E (n) 3 ∩E (n) 5 P ω τ (x 0 ) ∧ τ (x 2 ) ≥ n ≤ (log n) -4 . ( 151 
)
Second step: There only remains to consider F (n) 1 (z) ∩ {τ (x 2 ) < n}. This second step focuses on the case z / ∈]x 1 , x 3 [. We start with the case z ≤ x 1 see Figure 7 with z = z (2) . In what follows we prove that in this case, the probability that, after hitting x 2 , S goes or goes back to z ∈] -∞, x 1 ] before time n is negligible.

To this aim, using z ≤ x 1 < x 2 , then [START_REF] Bovier | Spectral analysis of Sinais walk for small eigenvalues[END_REF] and ellipticity [START_REF] Chiarini | Local central limit theorem for diffusions in a degenerate and unbounded random medium[END_REF] in the second inequality, we have for every ω ∈ E

(n) -∩ E (n) 3 ∩ {z ≤ x 1 } and k ∈ {0, . . . , n}, P x 2 ω [S k = z] ≤ P x 2 ω [τ (x 1 ) ≤ τ (z) ≤ k] ≤ (k + 1)ε -1 0 exp(-H[T 1 (V, log n)]) ≤ 2ε -1 0 (log n) -C 2 ≤ (log n) -4 since V [x 1 ] -min [x 1 ,x 2 ] V = H[T 1 (V, log n)] ≥ log n + C 2 log 2 n on E (n) 3 , C 2 > 9 and n ≥ n 6 ≥ n 3 .
Hence, conditioning by ω then applying the strong Markov property at time τ (x 2 ),

P F (n) 1 (z) ∩ {τ (x 2 ) < n} ∩ {z ≤ x 1 } ≤ E 1 E (n) -∩E (n) 3 ∩{z≤x 1 }∩{τ (x 2 )<n} P x 2 ω [S k = z] |k=n-τ (x 2 ) ≤ (log n) -4 . ( 152 
)
Similarly, using (10) instead of ( 11), we have for large n,

P F (n) 1 (z) ∩ {τ (x 2 ) < n} ∩ {z ≥ x 3 } ≤ (log n) -4 . ( 153 
)
Third step: Now, on {x 1 < z < x 3 } ∩ {V (z) ≥ V (x 2 ) +4 log 2 n} ∩ E (n) -
see Figure 7 with z = z (3) , we have by reversibility (see [START_REF] Buraczewski | Precise large deviations for random walk in random environment[END_REF]) and ellipticity [START_REF] Chiarini | Local central limit theorem for diffusions in a degenerate and unbounded random medium[END_REF], for k ∈ N,

P x 2 ω (S k = z) ≤ µ ω (z) µ ω (x 2 ) ≤ ε -1 0 exp[V (x 2 ) -V (z)] ≤ ε -1 0 (log n) 4 .
As a consequence, once more conditioning by ω and applying the strong Markov property, proceeding as in (152),

P F (n) 1 (z) ∩ {τ (x 2 ) < n} ∩ {x 1 < z < x 3 } ∩ {V (z) ≥ V (x 2 ) + 4 log 2 n} ≤ E 1 E (n) -∩{x 1 <z<x 3 }∩{V (z)≥V (x 2 )+4 log 2 n}∩{τ (x 2 )<n} P x 2 ω [S k = z] |k=n-τ (x 2 ) ≤ ε -1 0 (log n) -4 . ( 154 
)
Forth step: Finally, we study see Figure 7 with z = z (4) ,

F (n) 2 (z) := F (n) 1 (z) ∩ {τ (x 2 ) < n} ∩ {x 1 < z < x 3 } ∩ {V (z) < V (x 2 ) + 4 log 2 n}.
This set is empty for z < 0 because x 1 > 0, so we can assume that z ≥ 0.

We once more define

V ± z (k) := V (z ± k) -V (z), k ∈ Z,
and notice that V - z and V + z are independent. We also introduce

E (n) 11 := {τ (x 2 ) < τ (x 0 )}, E (n) 12 := max [x 0 ,0] V ≤ V (x 1 ) -9 log 2 n .
We have by [START_REF] Barbu | Semi-Markov chains and hidden semi-Markov models toward applications, Their use in reliability and DNA analysis[END_REF], for large n, for all ω ∈ E (n)

-∩ E (n) 5 ∩ E (n) 12 , P ω E (n) 11 = -1 i=x 0 e V (i) x 2 -1 i=x 0 e V (i) ≤ (log n) 2+δ 1 exp[max [x 0 ,0] V ] exp[V (x 1 )] ≤ (log n) -6 .
Consequently, since

F (n) 1 (z) ∩ {τ (x 2 ) < n} ⊂ E (n) 11 , P F (n) 2 (z) ∩ E (n) 12 ≤ P E (n) -∩ E (n) 5 ∩ E (n) 12 ∩ E (n) 11 ≤ (log n) -6 . ( 155 
) x 2 0 V (k) x -1 x 3 z (4) ≥ log n + C 2 log 2 n x 0 = b log n k ≥ log n + C 2 log 2 n x 1 b log n + Γ n log n 4 log 2 n < 4 log 2 n ≥ log n + C 2 log 2 n z (2) z (3) ≥ 4 log 2 n
Figure 7. Schema of the potential V with x i = x i (V, log n), and z equal to z (2) , z (3) and z (4) respectively for step 2, 3 on

F (n) 1 (z) and 4 on F (n) 2 (z) .
There remains to study P F

(n) 2 (z) ∩ E (n) 12
c . For a process (v(k), k ∈ N) and y ∈ N, we define v y (.) := v(y + .) -v(y) and

E (n) 13 (v) := {T v (] -∞, -log n]) < T v (9 log 2 n)}, E (n) 14 (z) := T V + z (log n) < T V + z (-4 log 2 n) ∩ T V - z (log n) < T V - z (-4 log 2 n) ∩ T V - z (log n) ≤ z . Also for a ≥ 0, let V 1,a (k) := V -k + T V -(a) -V -T V -(a) , k ∈ N. We claim that F (n) 2 (z) ∩ E (n) 12 c ⊂ E (n) 14 (z) ∩ E (n) 13 V 1,max(0,max [0,z] V -9 log 2 n) . ( 156 
)
Indeed on

F (n) 2 (z) ∩ E (n) 12 c , we have b log n = x 0 ≤ 0, z ∈]x 1 , x 3 [, min [x 1 ,x 3 ] V = V (x 2 ) > V (z) -4 log 2 n, and V (x 1 ) ≥ V (x 2 ) + log n + C 2 log 2 n ≥ V (z) + log n due to E (n) 3
and since C 2 > 9, the same being true also for

V (x 3 ) instead of V (x 1 ). So V ± z hits [log n, +∞[ before ] -∞, -4 log 2 n], so F (n) 2 (z) ∩ E (n) 12 c is included in the first two sets in E (n) 14 (z). Also on F (n) 2 (z), x 0 = b log n ≤ 0, thus max [x 0 ,x 2 ] V = V (x 1 ), so max [0,z] V = V (x 1 ) if x 1 < z ≤ x 2 . Assume now that x 2 < z < x 3 and F (n) 2 (z) holds. If max [x 2 ,z] V > V (x 1 ), then min{u ∈ [x 2 , z], V (u) = max [x 2 ,z] V } would be a left (log n)-maximum (because its potential would be greater than V (x 1 ) ≥ V (x 2 ) + log n + C 2 log 2 n ≥ V (z) + log n due to E (n) 3
and C 2 > 9 as before, and greater than

V (x 2 ) + log n), belonging to ]x 2 , x 3 [, which is not possible, so max [x 2 ,z] V ≤ V (x 1 ). Hence max [0,z] V = V (x 1 ) ≥ V (z) + log n in both cases, so max [0,z] V - z ≥ log n, thus F (n) 2 (z) ∩ E (n) 12 c is included in the third set in E (n) 14 (z). Finally on F (n) 2 (z) ∩ E (n) 12 c , we have max [x 0 ,0] V < V (x 1 ) = max [x 0 ,x 2 ] V by definition of the x i and of E (n) -, and max [x 0 ,0] V > V (x 1 )-9 log 2 n ≥ V (x 0 )+log n by definition of E (n) 12
c and since

H[T 0 (V, log n)] ≥ log n + C 2 log 2 n with C 2 > 9 on E (n)
3 . Also, we just proved that max [0,z] V = V (x 1 ). Hence, starting from 0, V -first hits [max [0,z] V -9 log 2 n, +∞[, then goes down at least log n before |x 0 | and so before going up 9 log 2 n, so ω ∈ E 156) is proved in every case. We have in particular, by [START_REF] Cocco | Reconstructing a random potential from its random walks[END_REF], since n ≥ n 6 ≥ n 3 so log 2 n > C 0 ,

(n) 13 V 1,a with a = max [0,z] V -9 log 2 n if max [0,z] V -9 log 2 n ≥ 0. Otherwise, max [x 0 ,0] V < V (x 1 ) = max [0,z] V < 9 log 2 n, with V (x 0 ) = V (x 1 ) -H[T 0 (V, log n)] ≤ -log n + (9 -C 2 ) log 2 n < -log n since C 2 > 9 due to E (n) 3 , so ω ∈ E (n) 13 V -= E (n) 13 V 1,a with a = 0. So (
P[E (n) 13 (V -)] = P T V -(] -∞, -log n]) < T V -([9 log 2 n, +∞[) ≤ 10(log 2 n)(log n) -1 . (157)
Also, using first the independence between V + z and V - z , which have the same law as V and V - respectively, then applying ( 17) again, we have since n ≥ n 6 ≥ n 3 ,

P E (n) 14 (z) ≤ P T V + z (log n) < T V + z (-4 log 2 n) P T V - z (log n) < T V - z (-4 log 2 n) ≤ 25(log 2 n) 2 (log n) -2 . ( 158 
)
Hence using (156), then conditioning by

V + = (V (k), k ≥ 0), noting that E (n)
14 (z) and max [0,z] V depend only on V + and for every a ∈ R + , E (n) [START_REF] Buraczewski | Precise large deviations for random walk in random environment[END_REF] V 1,a only on V -, which is independent of V + and has the same law as V 1,a , then applying (157) and ( 158), we get

P F (n) 2 (z) ∩ E (n) 12 c ≤ P E (n) 14 (z) ∩ E (n) 13 V 1,max(0,max [0,z] V -9 log 2 n) = E 1 E (n) 14 (z) P E (n) 13 V 1,max(0,max [0,z] V -9 log 2 n) |V + = E 1 E (n) 14 (z) P E (n) 13 V 1,a |a=max(0,max [0,z] V -9 log 2 n) ≤ 10(log 2 n)(log n) -1 P(E (n) 14 (z)) ≤ 250(log 2 n) 3 (log n) -3 . This, together with (155) gives P F (n) 2 (z) ≤ 251(log 2 n) 3 (log n) -3
for all n ≥ n 6 and z ∈ Z. Conclusion: Combining this with (151), ( 152), ( 153), ( 154) proves (149).

Proof of Lemma 5.4: We prove, similarly as in Lemmas 5.5 and 5.6 (replacing in particular x 0 , x 1 , x 2 and x 3 respectively by x 1 , x 0 , x -1 and x -2 respectively in its proof, nearly by symmetry) that for every n ≥ n 6 and every z ∈ Z,

P S n = z, b log n > 0, z > b log n + Γ n , τ (b log n ) > n = 0, P S n = z, b log n > 0, z < b log n -Γ n , τ (b log n ) > n, E (n) 3 , E (n) 5 ≤ c 18 (log 2 n) 3 (log n) -3 .
Combining this with Lemmas 5.5 and 5.6 proves Lemma 5.4 with c 17 := 2c 18 .

Proof of Proposition 5.2: This proposition follows directly from Lemmas 5.3 and 5.4 with c 10 := c 11 + c 17 , since (log 2 n) 3 ≤ (log n) 1/2 for n ≥ n 6 ≥ n 3 and δ 1 ∈]0, 2/3[.

5.3.

Case with at least one subvalley or small valley. We now focus on the case where some of the valleys (of height ≥ log n) close to the origin can be small (i.e. with height < log n + C 2 log 2 n), or can contain subvalleys of height less than but close to log n. More precisely, the aim of this subsection is to prove the following estimate. Proposition 5.7. There exists n 9 ≥ n 6 and c 19 > 0 such that ∀n ≥ n 9 , ∀z ∈ Z, P S n = z, (E

(n) 3 ) c ≤ c 19 (log 2 n) 3 (log n) -3 .
This case can be divided into many different subcases. For example, there can be, or not, a subvalley of height close to log n inside the (log n)-central valley, either at the right or at the left of b log n , or there can even be two such subvalleys. There can also exist, close to the (log n)central valley, one or two valleys with height close to log n, larger or smaller than log n, which can trap the random walk (S k ) k for some time. Also, the height of the (log n)-central valley can be close to log n, which can enable S to escape it before time n with not so small quenched probability. Taking into account the indexes of the left (h n -C 1 log 2 n)-slopes considered, i.e. with height less than log n + C 2 log 2 n, and their height, larger or smaller than log n, the indexes i of the first left h n -minimum b i (V, h n ) (defined in (160)) visited by S before time n, of the second one etc, the fact that z is close or far from these left h n -extrema, this makes dozens of cases. However we will combine together some of these cases, for example with the help of Lemma 5.9 and of the notation I k defined in (164) below.

On E

(n) 3 c , there exists some i ∈ {-10, . . .

10} such that H[T i (V, h n -C 1 log 2 n)] < log n + C 2 log 2 n
. Also, we prove that with large probability, there are no more than two such i. To this aim, we define

E (n) 15 := {i ∈ Z, -99 ≤ i ≤ 99, H[T i (V, h n -C 1 log 2 n)] < log n + C 2 log 2 n} ≤ 2 .
More precisely, we prove the following estimate.

Lemma 5.8. There exist n 7 ≥ n 6 and c 20 > 0 such that,

∀n ≥ n 7 , P E (n) 15 c ≤ c 20 (log 2 n) 3 (log n) -3 . ( 159 
)
Proof: Due to Lemma 2.16, we have P E

(n) 16 (i) | b hn ≤ 0 = O (log 2 n)(log n) -1 , i ∈ Z, where h n = h n -C 1 log 2 n as before and E (n) 16 (i) := H[T i (V, h n -C 1 log 2 n)] < log n + C 2 log 2 n , i ∈ Z.
Hence, using the independence of the translated left h n -slopes conditionally on {b hn ≤ 0} (see Theorem 2.4 (i)), we have

P E (n) 15 c | b hn ≤ 0 = P ∪ -99≤i 1 <i 2 <i 3 ≤99 E (n) 16 (i 1 ) ∩ E (n) 16 (i 2 ) ∩ E (n) 16 (i 3 ) | b hn ≤ 0 ≤ -99≤i 1 <i 2 <i 3 ≤99 3 k=1 P E (n) 16 (i k ) | b hn ≤ 0 = O (log 2 n) 3 (log n) -3
as n → +∞. We prove similarly the same inequality with b hn ≤ 0 replaced by b hn > 0, which proves the lemma.

We define, for h > 0 and i ∈ Z (this definition being different from that of [START_REF] Devulder | Collisions of several walkers in recurrent random environments[END_REF]),

b i (V, h) := x 2i (V, h) if x 0 (V, h) is a left h-minimum, x 2i-1 (V, h) otherwise. (160) So, the b i (V, h), i ∈ Z, are the left h-minima for V , such that b 0 (V, h) ≤ 0 < b 1 (V, h) and b i (V, h) < b i+1 (V, h), i ∈ Z. We also denote by M i (V, h) the unique left h-maximum for V between b i (V, h) and b i+1 (V, h). Hence, M i (V, h) = x j+1 (V, h) if b i (V, h) = x j (V, h).
We now prove that the probability that z is "close" (in terms of potential) to the bottom b j (V, h n ) of a valley of height h n and that ω ∈ E (n) 3

c is small. More precisely, we define, for h > 0,

E (n) 17 (j, h, z) := {M j-1 (V, h) ≤ z ≤ M j (V, h), V (z) ≤ V [b j (V, h)] + 4 log 2 n}, j ∈ Z.
We now have the following lemma, which is useful to prove Lemma 5.12 (in which we take h n = h n ) and Lemma 5.13 (in which we take h n = h n ) and then Lemma 5.11.

Lemma 5.9. There exist c 21 > 0 and n 8 ≥ n 7 such that, whether

h n = h n or h n = h n := h n -C 1 log 2 n, we have ∀n ≥ n 8 , ∀z ∈ Z, P E (n) 3 c ∩ ∪ 8 j=-8 E (n) 17 (j, h n , z) ≤ c 21 (log 2 n) 3 (log n) -3 .
Loosely speaking, in the case

h n = h n , on E (n) 17 (j, h n , z), V + z and V - z go up h n -4 log 2 n before going down -4 log 2 n, which has probability O log 2 n) 2 (log n) -2 . Also, on E (n) 3
one of the left h n -slopes around the origin has an excess height less than some C log 2 n, which has probability O (log 2 n)(log n) -1 , with some independence, which leads to Lemma 5.9 in the case h n = h n , the second case being nearly a consequence of the first one. We now prove this rigorously.

Proof of Lemma 5.9: Let n ≥ n 7 and z ∈ Z. We start with the case h n = h n . On the one hand, we notice that for -13 ≤ j ≤ 13, on E

(n) 3 c ∩ E (n) 17 j, h n , z , z belongs to the support x k V, h n , x k+1 (V, h n of a left h n -slope T k := T k V, h n with 2j -2 ≤ k ≤ 2j, the value of k depending on x 0 V, h n being a left h n -maximum or minimum for V and on z ≤ b j V, h n or z > b j V, h n ), with T k (z) -inf y∈[x k (V, hn),x k+1 (V, hn)] T k (y) ≤ 4 log 2 n. Hence, using x i V, h n = x i-k V z , h n + z, i ∈ Z on x k V, h n ≤ z < x k+1 V, h n and the definition of E (n) 3 , we get P E (n) 3 c ∩ ∪ 13 j=-13 E (n) 17 j, h n , z ≤ P ∪ 27 k=-28 x k V, h n ≤ z < x k+1 V, h n ∩ T k (z) -inf [0, (T k )] θ(T k ) ≤ 4 log 2 n ∩ ∪ 10 i=-10 H T i V, h n < log n + C 2 log 2 n ≤ P inf [x 0 (Vz, hn),x 1 (Vz, hn)] V z ≥ -4 log 2 n ∩ ∪ 38 j=-37 H T j V z , h n < log n + C 2 log 2 n ,
where V z has the same law as V , so the last probability does not depend on z.

Now, notice that, with V ± = (V (±y), y ∈ N) as before, and

V 3 (k) := V k + T V h n - 4 log 2 n, +∞ , k ∈ N, we have E (n) 18,0 ∩ {b hn ≤ 0} ⊂ E (n) 19,+ ∩ E (n) 19,-∩ E (n) 20 , (161) 
where for i ∈ Z and h > 0,

E (n) 18,i := inf [x 0 (V, hn),x 1 (V, hn)] V ≥ -4 log 2 n, H T i V, h n < log n + C 2 log 2 n , E (n) 19,± := {T V ± h n -4 log 2 n, +∞ < T V ± (] -∞, -4 log 2 n[)}, E (n) 20 
:= {T V 3 -∞, log n + C 2 log 2 n -h n < T V 3 log n + C 2 log 2 n, +∞ }.
Using [START_REF] Cocco | Reconstructing a random potential from its random walks[END_REF] and n ≥ n 7 ≥ n 3 , we have P E

(n) 19,± ≤ 10(log 2 n)(log n) -1 and P E (n) 20 | V (k), k ≤ T V h n -4 log 2 n, +∞ ≤ log n + C 2 log 2 n -h n -4 log 2 n + C 0 h n + C 0 -1 ≤ 2(2C 1 + C 2 + 5)(log 2 n)(log n) -1 .
Hence, using (161), conditioning by σ V (k), k ≤ T V h n -4 log 2 n, +∞ then using the independence of V + and V -, we have, with

c 22 := 200(2C 1 + C 2 + 5), P E (n) 18,0 , b hn ≤ 0 ≤ c 22 (log 2 n) 3 (log n) -3 .
We get similarly the same result with b hn ≤ 0 replaced by b hn > 0.

Finally, for i = 0, using Theorem 2.4

(i) since H θ T i V, h n = H T i V, h n , P E (n) 18,i , b hn ≤ 0 = P inf [x 0 (V, hn),x 1 (V, hn)] V ≥ -4 log 2 n, b hn ≤ 0 P H T i V, h n < log n + C 2 log 2 n | b hn ≤ 0 ≤ 200c 8 (2C 1 + C 2 + C 0 )(log 2 n) 3 (log n) -3
for large n since the first probability in the second line is

≤ P E (n) 19,-P E (n)
19,+ and the second one is ≤ c 8 log n + C 2 log 2 n -h n h n -1 for large n by Lemma 2.16. We get similarly the same result with b hn ≤ 0 replaced by b hn > 0, using Theorem 2.4 (ii) instead of (i). Thus, there exists some c 23 > 0 and some n 8 ≥ n 7 such that P E

(n) 18,i ≤ c 23 (log 2 n) 3 (log n) -3 for all n ≥ n 8 and all -37 ≤ i ≤ 38.
Finally, for all n ≥ n 8 for all z ∈ Z,

P E (n) 3 c ∩ ∪ 13 j=-13 E (n) 17 j, h n , z ≤ 38 i=-37 P E (n) 18,i ≤ 76c 23 (log 2 n) 3 (log n) -3 , (162) 
which proves the lemma in the case h n = h n .

We now turn to the case h n = h n . Let z ∈ Z. To this aim, we introduce some notation, which will also be useful in the proof of Lemma 5.10 below. For j ∈ Z, let

Λ j := k ∈ Z, x k V, h n ∈ [x j (V, h n ), x j+1 (V, h n )[ , (163) 
which belongs to (2N + 1) since left h n -maxima and minima alternate and

h n < h n . If for j ∈ Z, Λ j = 2k + 1 with k > 1, then [x j (V, h n ), x j+1 (V, h n )[ = x V, h n , x +2k+1 V, h n for some ∈ Z. Also for each 0 ≤ i < k, H T +2i+1 V, h n < h n , otherwise, if moreover x V, h n is a left h n -minimum (resp. maximum), then u := min u ∈ x V, h n , x +2i+1 V, h n , V (u) = max [x (V, hn)≤u≤x +2i+1 (V, hn)] V would be a left h n -extremum since V u ≥ V x +2i+2 V, h n +h n ≥ V x V, h n + h n , belonging to ]x j (V, h n ), x j+1 (V, h n )[,
which is not possible (resp. similar argument with max replaced by min).

Hence on E (n) 15 , Λ 0 ≤ 5, otherwise the support of T 0 (V, h n ) would contain the support of at least (Λ 0 -1)/2 ≥ 3 slopes T p V, h n with height H T p V, h n < h n < log n + C 2 log 2 n, with at least three of them such that |p| ≤ 5, which is not possible on E (n) [START_REF] Cheliotis | Localization of favorite points for diffusion in a random environment[END_REF] . Also, notice that for j ≥ 1,

x j (V, h n ) = x V, h n with 1 ≤ ≤ Λ 0 + • • • + Λ j-1 .
Thus by induction, Λ j ≤ 5 for every 0 ≤ j ≤ 17, for which we use for 0 < j ≤ 17 the same argument as for Λ 0 with 1 ≤ p ≤ Λ 0 + • • • + Λ j-1 + 5 (≤ 5(j + 1) ≤ 90 by hypothesis of induction). Similarly on E (n) 15 , Λ j ≤ 5 for every -17 ≤ j ≤ 0, and so for every -17 ≤ j ≤ 17.

Consequently, for the same reasons, on E (n) [START_REF] Cheliotis | Localization of favorite points for diffusion in a random environment[END_REF] , if for -17 ≤ j ≤ 17, Λ j = 3 (resp. Λ j = 5), then the support of T j (V, h n ) contains the support of at least one (resp. at least two) slope(s)

T p V, h n with height H T p V, h n < h n < log n + C 2 log 2 n with |p| < 99. Thus, Λ 0 + • • • + Λ j ≤ j + 5 for every 0 ≤ j ≤ 17 and Λ j + • • • + Λ 0 ≤ |j| + 5 for every -17 ≤ j ≤ 0. Notice that for -8 ≤ j ≤ 8, on E (n) 15 ∩E (n) 17 (j, h n , z), we have b j (V, h n ) = x k (V, h n ) with k ∈ {2j - 1, 2j} by (160), so b j (V, h n ) = x V, h n with 1 ≤ ≤ Λ 0 + • • • + Λ 2j-1 ≤ (2j -1) + 5 ≤ 20 if 1 ≤ j ≤ 8, and | | ≤ Λ 2j-1 + • • • + Λ 0 ≤ |2j -1| + 5 ≤ 22 if -8 ≤ j ≤ 0, using the previous paragraph. So b j (V, h n ) = x V, h n = b j 0 V, h n with ∈ {2j 0 -1, 2j 0 }, thus -11 ≤ j 0 ≤ 10. Consequently, there exists j 1 ∈ Z such that z ∈ M j 1 -1 V, h n , M j 1 V, h n ⊂ [M j-1 (V, h n ), M j (V, h n )] ⊂ x -5 V, h n , x +5 V, h n ⊂ x -27 V, h n , x 25 V, h n (so that -13 ≤ j 1 ≤ 13), with V (z) ≤ V [b j (V, h n )] + 4 log 2 n ≤ V b j 1 V, h n + 4 log 2 n, so the conditions defining E (n) 17 j 1 , h n , z are satisfied. Hence, P E (n) 3 c ∩ ∪ 8 j=-8 E (n) 17 (j, h n , z) ≤P E (n) 15 c + P E (n) 3 c ∩ E (n) 15 ∩ ∪ 13 j 1 =-13 E (n) 17 j 1 , h n , z ≤ (c 20 + 76c 23 )(log 2 n) 3 (log n) -3
by Lemma 5.8 and (162) since n ≥ n 8 ≥ n 7 , which proves the lemma when h n = h n .

We now introduce some notation. Recall that τ [b i (V, h n )] < ∞ P-a.s. for every i ∈ Z since S = (S k ) k is P-almost surely recurrent. We define by induction

I 1 := 1 {τ [b 1 (V,hn)]<τ [b 0 (V,hn)]} , I k := ∈Z-{I j , 1≤j<k} i∈Z, i / ∈{I j , 1≤j<k}∪{ } 1 {τ [b (V,hn)]<τ [b i (V,hn)]} , k ≥ 2. ( 164 
)
In words, I 1 is the index of the first b [V, h n ] visited by S, so that

I 1 = 0 if τ [b 0 (V, h n )] < τ [b 1 (V, h n )] and I 1 = 1 if τ [b 1 (V, h n )] < τ [b 0 (V, h n )], which are the only possible cases since b 0 (V, h n ) ≤ 0 = S 0 < b 1 (V, h n ) P-a.s.
Similarly, I 2 is the index of the second b (V, h n ) visited by S, so I 2 = I 1 , and more generally

I k is for k ∈ N * the index of the k-th b (V, h n ) visited by S, so that I k / ∈ {I 1 , I 2 , . . . , I k-1 }. Notice that τ [b I 1 (V, h n )] = τ [b 0 (V, h n )] ∧ τ [b 1 (V, h n )
] is a stopping time under P ω with the natural filtration of S, and more generally τ

[b I k (V, h n )] is a stopping time for every k ≥ 1. Recall that 0 ∈ [b 0 (V, h n ), b 1 (V, h n )[, that b 0 (V, h n ) and b 1 (V, h n ) are consecutive left h n -minima, and M 0 (V, h n ) is the only left h n -maximum between them. So, applying Lemma 4.1 with h = log n, ξ 2 = 1/10, a = b 0 (V, h n ) < b = M 0 (V, h n ) < c = b 1 (V, h n ) which satisfy (i)
due to the previous remark, ξ 1 = C 1 so that (ii) and (iii) are satisfied since there is no left

(h n = log n -C 1 log 2 n)-extremum in ]M 0 (V, h n ), b 1 (V, h n )[ nor in ]b 0 (V, h n ), M 0 (V, h n )[, α = 3 (so that (iv) is satisfied for ω ∈ E (n) 5 , since |x i (V, h n )| ≤ |x i (V, log n)|
for every i ∈ Z and δ 1 < 2/3) and x = 0, we get for n ≥ n 8 (which implies that n ≥ n 3 so log n ≥ h 2 (C 1 , 1/10)), for almost all ω ∈ E (n)

5 , P ω τ (b I 1 (V, h n )) ≥ n/10 = P ω τ (b 0 (V, h n )) ∧ τ (b 1 (V, h n )) ≥ n/10 ≤ (log n) -4 .
Consequently, using Lemma 7.1, for n ≥ max(n 8 , p 3 ) =: n 9 ,

P τ (b I 1 (V, h n )) ≥ n/10 ≤ P τ (b I 1 (V, h n )) ≥ n/10, E (n) 5 + P E (n) 5 c ≤ 2(log n) -3 . (165)
We now prove several lemmas which are useful to prove Proposition 5. [START_REF] Barbu | Semi-Markov chains and hidden semi-Markov models toward applications, Their use in reliability and DNA analysis[END_REF]. In what follows, for i ∈ Z, we write b i and M i respectively for b i (V, h n ) and M i (V, h n ) (which are defined in and after (160)). We first prove that, with large enough probability, S only visits up to 3 different b i before time n: Lemma 5.10. There exists c 24 > 0 such that,

∀n ≥ n 9 , P τ (b I 4 ) ≤ n ≤ c 24 (log 2 n) 3 (log n) -3 .
The main idea is that, loosely speaking, on

E (n)
15 , S has to cross, before τ (b I 4 ), at least one slope with height at least log n + C 2 log 2 n, which takes more than n units of time with large probability. We now prove this rigorously.

Proof of Lemma 5.10: Let n ≥ n 9 . First, for every 1

≤ k ≤ 3, using b I k < M I k < b I k +1 ≤ b I k+1 when I k < I k+1
in the first inequality, then conditioning by ω then applying the strong Markov property at time τ (b I k ) in the following line, and finally [START_REF] Bingham | Regular variation[END_REF] and ellipticity in the last line, we have

p 1,k,n := P τ (b I k , b I k+1 ) ≤ n, V (M I k ) -V (b I k ) ≥ log n + C 2 log 2 n, I k+1 > I k ≤ P τ (b I k , M I k ) ≤ n, V (M I k ) -V (b I k ) ≥ log n + C 2 log 2 n = E 1 {V (M I k )-V (b I k )≥log n+C 2 log 2 n} P b I k ω [τ (M I k ) ≤ n] ≤ 2ε -1 0 (log n) -C 2 ≤ (log n) -4 (166) 
since C 2 > 9 and n ≥ n 9 ≥ n 3 . Similarly, using (11) instead of ( 10) and b

I k+1 ≤ b I k -1 < M I k -1 < b I k when I k+1 < I k , we have p 2,k,n := P τ (b I k , b I k+1 ) ≤ n, V (M I k -1 ) -V (b I k ) ≥ log n + C 2 log 2 n, I k+1 < I k ≤ (log n) -4 (167) 
for every 1 ≤ k ≤ 3 since C 2 > 9 and n ≥ n 9 ≥ n 3 .

We now prove that on

E (n) 15 , {-6 ≤ j ≤ 6, H[T j (V, h n )] < log n + C 2 log 2 n} ≤ 2. ( 168 
)
To this aim, we use (163) and the following paragraphs. We claim that on [START_REF] Cheliotis | Localization of favorite points for diffusion in a random environment[END_REF] , there are at most two j ∈ {-6, . . . , 6} such that H[T j (V, h n )] < log n + C 2 log 2 n, which proves (168). Also, {I j , 1 ≤ j ≤ k} ⊂ {1 -k, . . . , k} for every k ∈ N * by induction, since for k ≥ 2, min{I j , 1 ≤ j < k} -1 ≤ I k ≤ max{I j , 1 ≤ j < k} + 1, because S only makes ±1 jumps. So by (160), b

E (n) 15 , if for some -6 ≤ j ≤ 6, H[T j (V, h n )] < log n + C 2 log 2 n, then the support of T j (V, h n ) contains at least the support of one T k V, h n with H T k V, h n < log n + C 2 log 2 n with |k| < 99. Indeed, on E (n) 15 , x j (V, h n ) = x k V, h n with |k| ≤ Λ 0 + • • • + Λ j ≤ 35 and the support of T j (V, h n ) contains the support of T k V, h n , so H T k V, h n ≤ H[T j (V, h n )] < log n + C 2 log 2 n. Since there are at most two slopes H T k V, h n , |k| ≤ 35 with height < log n + C 2 log 2 n on E (n)
I k = x i k (V, h n ) with i k ∈ {-5, . . . , 6} when 1 ≤ k ≤ 3. Hence, each height V (M I k ) -V (b I k ) or V (M I k -1 ) -V (b I k ) with k ∈ {1, 2, 3} is equal to some H[T j (V, h n )] with |j| ≤ 6, so at most two of them are less than log n + C 2 log 2 n on E (n)
15 by (168). Hence, for n ≥ n 9 , using (166) and (167) in the last inequality,

P τ (b I 4 ) ≤ n, E (n) 15 ≤ P ∩ 3 j=1 {τ (b I j , b I j+1 ) ≤ n} ∩ ∪ 3 k=1 {V (M I k ) -V (b I k ) ≥ log n + C 2 log 2 n, I k+1 > I k } ∪ {V (M I k -1 ) -V (b I k ) ≥ log n + C 2 log 2 n, I k+1 < I k } ≤ 3 k=1 (p 1,k,n + p 2,k,n ) ≤ 6(log n) -4 . (169) 
This together with Lemma 5.8 proves Lemma 5.10 since n 9 ≥ n 7 ≥ n 3 .

In the following lemma, we study separately the cases in which z

∈ [b I k -1 , b I k +1 ] for 1 ≤ k ≤ 3 (in view of Lemma 5.10 since S i ∈ ∪ 3 k=1 [b I k -1 , b I k +1 ] for i ≤ τ (b I 4 )).
Lemma 5.11. There exists c 25 > 0 such that, for all n ≥ n 9 , for all z ∈ Z, for all 1 ≤ k ≤ 3,

P S n = z, b I k -1 ≤ z ≤ b I k +1 , τ (b I k ) ≤ n, E (n) 
5 , E

(n) 3 c ≤ c 25 (log 2 n) 3 (log n) -3 .
Before proving Lemma 5.11, we introduce some notation. For i ∈ Z, let (see Figure 8),

D + i := min{j ≥ M i , V (j) ≤ V (b i ) + 4 log 2 n}, (170) 
D - i := max{j ≤ M i-1 , V (j) ≤ V (b i ) + 4 log 2 n}, so that, by ellipticity, V (j) ≥ V (b i ) + 4 log 2 n + log ε 0 for each j ∈ ([D - i , M i-1 ] ∪ [M i , D + i ]
). We cut the proof of Lemma 5.11 into two main parts. Lemma 5.12. There exists c 26 > 0 such that, for all n ≥ n 9 , for all z ∈ Z, for all 1 ≤ k ≤ 3,

P S n = z, D - I k ≤ z ≤ D + I k , τ (b I k ) ≤ n, E (n) 3 c ≤ c 26 (log 2 n) 3 (log n) -3 . (171) 
Proof: The proof is divided into two cases, one for which we use Lemma 5.9 if

V (z) -V (b I k ) is small enough (≤ 4 log 2 n),
and one for which we use reversibility if it is larger. More precisely, let n ≥ n 9 and z ∈ Z. First, recall that {I j , 1 ≤ j ≤ k} ⊂ {1 -k, . . . , k} for every k ∈ N * . So by Lemma 5.9 with h n = h n , since n ≥ n 9 ≥ n 8 , we have for every 1 ≤ k ≤ 3, taking into account all the possible values j of I k (see Figure 8 with z = z (5) ),

P S n = z, M I k -1 ≤ z ≤ M I k , V (z) ≤ V (b I k ) + 4 log 2 n, E (n) 3 c ≤ P E (n) 3 c ∩ ∪ 3 j=-2 {M j-1 ≤ z ≤ M j , V (z) ≤ V (b j ) + 4 log 2 n} ≤ c 21 (log 2 n) 3 (log n) -3 . (172) 
Second, conditioning by ω, then applying the strong Markov property at stopping time τ (b I k ) in the first equality, we get (see Figure 8 with z = z (6) ),

P S n = z, V (z) ≥ V (b I k ) + 4 log 2 n + log ε 0 , τ (b I k ) ≤ n = E 1 {V (z)≥V (b I k )+4 log 2 n+log ε 0 } 1 {τ (b I k )≤n} P b I k ω (S = z) | =n-τ (b I k ) ≤ 1 + e C 0 ε -1 0 (log n) -4 , (173) 
since

P b I k ω (S = z) ≤ µω(z) µω(b I k ) ≤ 1 + e C 0 exp(-[V (z) -V (b I k )]
) for all ∈ N by reversibility and ellipticity (see [START_REF] Buraczewski | Precise large deviations for random walk in random environment[END_REF] and ( 16)).

Finally, notice that if

D - I k ≤ z ≤ D + I k , then either V (z) ≥ V (b I k ) + 4 log 2 n + log ε 0 , either M I k -1 ≤ z ≤ M I k and V (z) ≤ V (b I k )+4 log 2 n (
by the remark after (170) and since log ε 0 ≤ 0). Hence, combining (172) and (173), we get (171), since n ≥ n 9 ≥ n 3 .

We now consider the case z ∈ D + I k , b I k +1 (notice that this interval may be empty). We prove the following lemma. Lemma 5.13. There exists c 27 > 0 such that, for all n ≥ n 9 , for all z ∈ Z, for all 1 ≤ k ≤ 3,

P S n = z, D + I k < z ≤ b I k +1 , τ (b I k ) ≤ n, E (n) 
5 , E

(n) 3 c ≤ c 27 (log 2 n) 3 (log n) -3 . (174) 
Before giving the proof, we introduce some notation. Let n ≥ n 9 and z ∈ Z. We define for i ∈ Z (see Figure 8),

m + (z, i) := min D + i ≤ j ≤ z, V (j) = min [D + i ,z] V , (175) 
with by convention, min ∅ = +∞, so m + (z, i) is defined in every case, even if we use it only when z ≥ D + i .

Idea of the proof: (see Figures 8 and9 for the different cases). First, loosely speaking, if V (z) is quite larger than the minimum of

V in [D + I k , z] see E (n,z)
21,k and Figure 8 below and n ≥ τ (b I k ), then by reversibility the probability that S n = z is negligible. So we can assume that V (z) is just slightly higher than min [D + I k

,z] V . If moreover on the right of z, the potential V goes up h n before going down 4 log 2 n see E (n,z) [START_REF] Devulder | The speed of a branching system of random walks in random environment[END_REF],k and Figure 8 below , we prove that we are in ∪ 8 q=-8 E

(n) 17 q, h n , z , so, applying Lemma 5.9, the probability of this case is also negligible. Thus we can also assume that on the right of z, the potential V does not go up h n before going down 4 log 2 n see E (n,z) 23,k below and Figure 9 . In this case, if τ (b

I k ) + τ [b I k , m + (z, I k )] > n, then S n = z.
Also, we can choose some constant c 28 such that, applying [START_REF] Brox | A one-dimensional diffusion process in a Wiener medium[END_REF], τ (b 28 , then we prove that quite quickly and in particular before time n (if some very probable additional condition is satisfied, see ( 186) and ( 196)), S goes to some place z ↓ n with V (z ↓ n ) ≤ V (z) -4 log 2 n, and then the probability that S n = z is negligible, once more by reversibility. We now prove this rigorously.

I k ) + τ [b I k , m + (z, I k )] ∈ n -n(log n) -c 28 , n has a negligible probability. Finally, if τ (b I k ) + τ [b I k , m + (z, I k )] < n -n(log n) -c
Proof of Lemma 5.13: Let n ≥ n 9 , z ∈ Z and 1 ≤ k ≤ 3. The proof is divided into three main cases, corresponding to the following events, the last one being itself divided into four subcases (which are defined around (183) and ( 186)):

E (n,z) 21,k := D + I k < z ≤ b I k +1 ∩ V (z) ≥ min [D + I k ,z] V + 4 log 2 n , E (n,z) 22,k : 
= D + I k < z ≤ b I k +1 ∩ V (z) < min [D + I k ,z] V + 4 log 2 n ∩ T V + z h n , +∞ < T V + z (] -∞, -4 log 2 n]) , E (n,z) 23,k := D + I k < z ≤ b I k +1 ∩ V (z) < min [D + I k ,z] V + 4 log 2 n ∩ T V + z (] -∞, -4 log 2 n]) < T V + z h n , +∞ .
where V + z ( ) = V (z + ) -V (z), ∈ N as before and h n := h n -C 1 log 2 n = log n -2C 1 log 2 n. See figures 8 and 9.

First case: We consider the event E (n,z) 21,k .

We have, once more conditioning by ω then applying the strong Markov property at stopping time τ (b I k ) in the first equality, then using b

I k ≤ D + I k ≤ m + (z, I k ) ≤ z on E (n,z)
21,k in the second equality, then the strong Markov property at time τ [m + (z, I k )],

P S n = z, τ (b I k ) ≤ n, E (n,z) 21,k = E 1 {τ (b I k )≤n} 1 E (n,z) 21,k P b I k ω (S = z) | =n-τ (b I k ) = E 1 {τ (b I k )≤n} 1 E (n,z) 21,k P b I k ω (S = z, τ [m + (z, i)] ≤ ) |i=I k , =n-τ (b I k ) = E 1 {τ (b I k )≤n} 1 E (n,z) 21,k E b I k ω 1 {τ [m + (z,i)]≤ } P m + (z,i) ω (S t = z) |t= -τ [m + (z,i)] |i=I k , =n-τ (b I k ) ≤ 1 + e C 0 (log n) -4 (176) 
since

P m + (z,I k ) ω (S t = z) ≤ µω(z) µω[m + (z,I k )] ≤ 1 + e C 0 exp(-[V (z) -V (m + (z, I k ))]) ≤ 1 + e C 0 (log n) -4 for all t ∈ N on E (n,z)
21,k by reversibility and ellipticity (see [START_REF] Buraczewski | Precise large deviations for random walk in random environment[END_REF] and ( 16)).

0 V (k) b Ik k 4 log 2 n M Ik ≥ h n D + Ik m + z (7) , I k z (7) ≥ 4 log 2 n h n < 4 log 2 n z (8) m + z (8) , I k h n b Ik+1 ≥ h n M Ik-1 4 log 2 n z (5) z (6) z (8)♯ n Figure 8
. Schema of the potential V , with z represented as z (5) in the first case of the proof of Lemma 5.12, z (6) in the second one, and as z (7) on E

(n,z)

21,k and z (8) on E

(n,z)

22,k for the proof of Lemma 5.13.

Second case:

We now focus on E (n,z) 22,k . Notice in particular that E (n,z) 22,k includes the case where the potential of z is "close" to the one of b I k +1 (with a difference of potential lower than 4 log 2 n).

We now assume that we are on E (n,z) 22,k . Hence we have, by definition (170) of 

D + I k , min [M I k ,z] V = min [D + I k ,z] V > V (z) -4 log 2 n. (177) Also, V (M I k ) = max [M I k ,b I k +1 ] V and [M I k , z] ⊂ [M I k , b I k +1 ], so max [M I k ,z] V = V (M I k ) ≥ V (b I k ) + h n ≥ V (D + I k ) -4 log 2 n + h n , (178) 
[M I k ,z n ] V = min [D + I k ,z n ] V ≥ V (z) -4 log 2 n. (179) 
There exists a unique index p ∈ Z such that M p-1 V, h n ≤ z < M p V, h n . So M p-1 V, h n is the largest left h n -maximum less than or equal to z. Since M I k is a left h n and then left h n -maximum and is ≤ z, we have

M I k ≤ M p-1 V, h n .
Assume that z n < b p V, h n . We define

b n := inf q ∈ Z, q ≥ M p-1 V, h n , V (q) = min [M p-1 (V, hn), z n ] V .
We would have

M p-1 V, h n ≤ z < z n < b p V, h n and so V (z n ) ≥ V (z) + h n ≥ V (b n ) + h n by
definition of z n and b n , and

V M p-1 V, h n = max [M p-1 (V, hn), bp(V, hn)] V ≥ V (z n ) ≥ V (b n ) + h n .
Hence, b n would be a left h n -minimum of V , strictly between M p-1 V, h n and b p V, h n , which is not possible because M p-1 V, h n and b p V, h n are consecutive left h n -extrema (see (160) and the comments below). So, b p V, h n ≤ z n .

Thus, Also,

M I k ≤ M p-1 V, h n ≤ b p V, h n ≤ z n , Hence, V b p V, h n ≥ min [M I k ,z n ] V ≥ V (z) -
M I k < z ≤ b I k +1 on E (n,z) 22,k . So, either z n < b I k +1 < M I k +1 , either z n ≥ b I k +1 . In the second case, V (b I k +1 ) ≥ min [M I k ,z n ] V ≥ V (z) -4 log 2 n by (179), so V (z) + h n ≤ V (b I k +1 ) + h n + 4 log 2 n ≤ V (b I k +1 ) + h n since C 1 > 4, thus z n ≤ b I k +1 + T V + b I k +1 ([h n , +∞[) ≤ M I k +1 by definition of z n and M I k +1 . Hence in every case, b I k < M I k ≤ b p V, h n ≤ z n ≤ M I k +1 < b I k +2 , and so b p V, h n ∈]b I k , b I k +2 [.
We now also assume that ω ∈ E (n) [START_REF] Cheliotis | Localization of favorite points for diffusion in a random environment[END_REF] . We recall that since 1 ≤ k ≤ 3, there exists i k ∈ {-5, . . . , 6} such that b I k = x i k (V, h n ) (as proved before (169)). Also b I k is a left h n -minimum and since h n < h n , it is a fortiori a left h n -minimum, so is equal to a b j V, h n , with -4 ≤ j ≤ 5 since -2 ≤ I k ≤ 3 (see before (169)) and on E 

c + P E (n,z) 22,k ∩ E (n) 15 ∩ E (n) 3 c ≤ P E (n) 15 c + P E (n) 3 c ∩ ∪ 8 q=-8 E (n) 17 q, h n , z ≤ (c 20 + c 21 )(log 2 n) 3 (log n) -3 . ( 180 
)
Third case: There remains to consider E 

P b I k ω [τ (m + (z, i)) = ] |i=I k ≤ P b I k ω [τ (m + (z, i)) < τ * (b i )] |i=I k = ω b I k P b I k +1 ω [τ (m + (z, i)) < τ (b i )] |i=I k ≤ exp[V (b I k ) -V (M I k )] ≤ exp(-h n ) = (log n) C 1 /n (181) since V (M I k ) -V (b I k ) = H[T q (V, h n )] ≥ h n with q such that b I k = b q (V, h n ). 0 V (k) b Ik k 4 log 2 n M Ik ≥ h n D + Ik z (9) m + z (9) , I k < 4 log 2 n 4 log 2 n h n z (9)↓ = z (9) + T V + z (9) 
(] -∞, -4 log

2 n]) m + z (10) 
, 

I k ≥ h n < h n 4 log 2 n z (10 
P S n = z, τ (b I k ) ≤ n, E (n,z) 23,k ∩ E (n) 5 ≤ c 29 (log 2 n) 3 (log n) -3 (182) 
for some constant c 29 > 0. To this aim, we consider the three following events, defined as

E (n,z) 24,k := τ (b I k ) + τ [b I k , m + (z, I k )] < n -n(log n) -c 28 , E (n,z) 25,k := τ (b I k ) + τ [b I k , m + (z, I k )] ∈ n -n(log n) -c 28 , n , (183) 
E (n,z) 26,k := τ (b I k ) + τ [b I k , m + (z, I k )] > n .
First, we have, conditioning by ω then applying the strong Markov property at stopping time τ (b I k ), then summing (181) for all the integers in t -n(log n) -c 28 , t ∩ N, 

P τ (b I k ) ≤ n, E (n,z) 23,k ∩ E (n,z) 25,k = E 1 {τ (b I k )≤n}∩E (n,z) 23,k P b I k ω τ (m + (z, i)) ∈ t -n(log n) -c 28 , t |i=I k , t=n-τ (b I k ) ≤ [n(log n) -c 28 + 1](log n) C 1 /n ≤ 2(log n) -c 28 +C 1 ≤ (log n) -3 ( 
P S n = z, τ (b I k ) ≤ n, E (n,z) 23,k ∩ E (n,z) 26,k ≤ P S n = z, S n < m + (z, I k ) ≤ z = 0. ( 185 
)
There only remains to consider E (n,z) 24,k . To this aim, we introduce

E (n,z) 27,k := max [m + (z,I k ), z] V ≤ V (z) + h n . (186) 
We have, conditioning by ω then applying the strong Markov property at stopping time τ (b

I k )+ τ [b I k , m + (z, I k )], P S n = z, τ (b I k ) ≤ n, E (n,z) 23,k ∩ E (n,z) 24,k ∩ E (n,z) 27,k ∩ E (n) 5 ∩ E (n) 15 = E 1 {τ (b I k )≤n}∩E (n,z) 23,k ∩E (n,z) 24,k ∩E (n,z) 27,k ∩E (n) 5 ∩E (n) 15 P m + (z,I k ) ω S t = z |t=n-τ (b I k )-τ [b I k ,m + (z,I k )] . (187) 
We introduce z ↓ n := z+T V + z (]-∞, -4 log 2 n]). Assume that E 

I k +1 ) > V (z) -4 log 2 n, so max [b I k +1 ,z n ] V = V (z n ) ≤ V (z) + h n + C 0 < V (b I k +1 ) + 4 log 2 n + h n + C 0 < V (b I k +1 ) + h n since n ≥ n 9 ≥ n 3 and C 1 > 20, thus z n < M I k +1 . So we would have z ↓ n ∈ [b I k +1 , M I k +1 ] with V (z ↓ n ) ≤ V (z)-4 log 2 n < V (b I k +1 ) = min [b I k +1 ,M I k +1 ] V ≤ V (z ↓ n ) which is not possible. So, z ↓ n ≤ b I k +1 on E (n,z) 23,k .
Also on

E (n,z) 23,k , min [M I k ,z] V = V [m + (z, I k )] > V (z) -4 log 2 n
as in (177), and min [z,z ↓ n ] V ≥ V (z) -4 log 2 n + log(ε 0 ) by ellipticity. So we have on

E (n,z) 23,k , min [M I k ,z ↓ n ] V ≥ V (z) -4 log 2 n + log(ε 0 ). ( 188 
) Notice that max [z,z ↓ n ] V < V (z) + h n on E (n,z) 23,k . So we have on E (n,z) 23,k ∩ E (n,z) 27,k , max [m + (z,I k ),z ↓ n ] V ≤ V (z) + h n . (189) 
Now on

E (n,z) 23,k ∩ E (n,z) 27,k ∩ E (n) 5 ∩ E (n)
15 , by Markov inequality and ( 8), then by ( 188), (189) and

-(log n) 3 ≤ x -10 (V, log n) ≤ x -10 V, h n ≤ M -5 V, h n ≤ M -3 ≤ M I k < D + I k ≤ m + (z, I k ) ≤ z < z ↓ n ≤ b I k +1 ≤ b 4 ≤ b 6 (V, h n ≤ x 12 V, h n ≤ x 12 (V, log n) ≤ (log n) 3 (because on E (n)
15 there are similarly as previously, in [M -3 , 0], at most two M j V, h n which are not equal to some M (V, h n ) so M -5 V, h n ≤ M -3 and similarly b 4 ≤ b 6 (V, h n ), we get

P m + (z,I k ) ω τ (M i ) ∧ τ (z ↓ n ) ≥ 2 -1 n(log n) -c 28 |i=I k (190) ≤ 2n -1 (log n) c 28 ε -1 0 (z ↓ n -M I k ) 2 exp max [m + (z,I k ),z ↓ n ] V -min [M I k ,z ↓ n ] V ≤ 8(log n) c 28 +6 n -1 ε -2 0 exp h n + 4 log 2 n = 8(log n) c 28 -2C 1 +10 ε -2 0 ≤ (log n) -3
since c 28 -2C 1 + 10 = 14 -C 1 < -6 and n ≥ n 9 ≥ n 3 . Moreover on E

(n,z)

23,k , we get by definition of

E (n,z) 23,k , V (z) < min [D + I k ,z] V + 4 log 2 n ≤ V D + I k + 4 log 2 n,
and as a consequence, using (178) which remains true on

E (n,z) 23,k , V (M I k ) ≥ V (D + I k ) -4 log 2 n + h n ≥ V (z) -8 log 2 n + h n . (191) 
Hence on

E (n,z) 23,k ∩ E (n,z) 27,k ∩ E (n) 5 ∩ E (n)
15 , using [START_REF] Barbu | Semi-Markov chains and hidden semi-Markov models toward applications, Their use in reliability and DNA analysis[END_REF], then (189) and (191),

P m + (z,I k ) ω τ (M i ) < τ (z ↓ n ) |i=I k (192) ≤ z ↓ n -m + (z, I k ) exp max [m + (z,I k ), z ↓ n ] V -V (M I k ) ≤ 2(log n) 3 exp h n + 8 log 2 n -h n = 2(log n) 11-C 1 ≤ (log n) -3 since 11 -C 1 < -9 and n ≥ n 9 ≥ n 3 . Consequently on E (n,z) 23,k ∩ E (n,z) 27,k ∩ E (n) 5 ∩ E (n) 15 , P m + (z,I k ) ω τ (z ↓ n ) ≥ 2 -1 n(log n) -c 28 ≤ (190) + (192) ≤ 2(log n) -3 . (193) 
Notice that for every ∈ N, by reversibility and ellipticity (see [START_REF] Buraczewski | Precise large deviations for random walk in random environment[END_REF] and ( 16)),

P z ↓ n ω (S = z) ≤ µ ω (z)/µ ω (z ↓ n ) ≤ 1 + e C 0 exp[-V (z) + V (z ↓ n )] ≤ ε -1 0 (log n) -4 . (194) 
On E

(n,z)

23,k ∩ E (n,z) 27,k ∩ E (n) 5 ∩ E (n)
15 , for every t ≥ n(log n) -c 28 , by (193), the strong Markov property and (194), since n ≥ n 9 ≥ n 3 ,

P m + (z,I k ) ω S t = z ≤ P m + (z,I k ) ω τ (z ↓ n ) ≥ 2 -1 n(log n) -c 28 + P m + (z,I k ) ω S t = z, τ (z ↓ n ) < 2 -1 n(log n) -c 28 ≤ 2(log n) -3 + E m + (z,I k ) ω 1 {τ (z ↓ n )<2 -1 n(log n) -c 28 } P z ↓ n ω (S = z) | =t-τ (z ↓ n ) ≤ 2(log n) -3 + ε -1 0 (log n) -4 ≤ 3(log n) -3 .
Finally, this and (187) (on which t ≥ n(log n) -c 28 thanks to E

(n,z) 24,k ) give

P S n = z, τ (b I k ) ≤ n, E (n,z) 23,k ∩ E (n,z) 24,k ∩ E (n,z) 27,k ∩ E (n) 5 ∩ E (n) 15 ≤ 3(log n) -3 . ( 195 
)
There only remains to estimate P E

(n,z) 27,k c ∩ E (n,z)
23,k . We define (see Figure 9 with z = z (10) ), Proof of Lemma 5.11: We prove similarly as in the proof of Lemma 5.13 that for all n ≥ n 9 , z ∈ Z and 1 ≤ k ≤ 3,

V - 2,n := V - z [. + T V - z ([ h n , +∞[)] -V - z [T V - z ([ h n , +∞[)], V - 3,n := V - 2,n [. + T V - 2,n (] -∞, -h n ])] -V - 2,n [T V - 2,n (] -∞, -h n ])], E (n) 28 : 
= T V - z ([ h n , +∞[) < T V - z (] -∞, -4 log 2 n[) , E (n) 29 := T V - 2,n (] -∞, -h n ]) < T V - 2,n ([C 1 log 2 n, +∞[) , E (n) 30 := T V - 3,n ([ h n , +∞[) < T V - 3,n (] -∞, -4 log 2 n -C 0 [) . Notice that E (n,z) 23,k ∩ E (n,z) 27,k c is included in E (n) 28 because max [0,z-m + (z,I k )] V - z > h n by (186) and min [0,z-m + (z,I k )] V - z = V - z (z -m + (z, I k )) > -
P E (n,z) 27,k c ∩ E (n,z) 23,k ≤ P E (n) 28 P E (n) 29 P E (n) 30 ≤ c 30 (log 2 n) 3 (log n) -3 , (196) 
P S n = z, b I k -1 ≤ z < D - I k , τ (b I k ) ≤ n, E (n) 
5 , (E 

(n) 3 ) c ≤ c 27 (log 2 n) 3 (log n) -3 . (198 
I i -1 , 1 ≤ i ≤ k}, max{b I i +1 , 1 ≤ i ≤ k} , which is equal to ∪ k i=1 ]b I i -1 , b I i +1
[. Consequently, using (165) and Lemma 5.10 in the second inequality, for all n ≥ n 9 and all z ∈ Z, with c 31 := c 24 + 2,

P S n = z, (E (n) 3 ) c ≤ P τ (b I 1 ) > n + P S n = z, (E (n) 3 ) c ∩ ∪ 3 k=1 {τ (b I k ) ≤ n < τ (b I k+1 )} + P τ (b I 4 ) ≤ n ≤ 3 k=1 P τ (b I k ) ≤ n < τ (b I k+1 ), S n = z ∈ ∪ k i=1 ]b I i -1 , b I i +1 [, (E (n) 3 ) c + c 31 (log 2 n) 3 (log n) 3 ≤ 3 i=1 3 k=i P τ (b I k ) ≤ n < τ (b I k+1 ), S n = z ∈]b I i -1 , b I i +1 [, (E (n) 
3

) c + c 31 (log 2 n) 3 (log n) 3 = 3 i=1 P τ (b I i ) ≤ n < τ (b I 4 ), S n = z ∈]b I i -1 , b I i +1 [, (E (n) 
3 C (z) from (85). We have, for all n ≥ max(n 9 , p 2 ) and all z ∈ Z,

) c + c 31 (log 2 n) 3 (log n) 3 ≤ c 19 (log 2 n) 3 (log n) -
P S n = z, E (n) C (z) c ≤ P S n = z, E (n) 3 c + P E (n) 5 c + P E (n) 6 c ∩ E (n) 5 +P S n = z, E (n) 7 (z) c , E (n) 
3 , E

+ P E 

(n) 4 (z) c ∩ E (n) 3 ∩ E (n) 6 ∩ E (n) 7 (z) ≤ (c 19 + 2 + c 9 )(log 2 n) 3 (log n) -3 + c 10 (log n) -2-
P S n = z - 2σ 2 (log n) 2 ϕ ∞ σ 2 z (log n) 2 ≤ o (log n) -2 , (199) 
as n → +∞, which proves the upper bound in Theorem 1.1.

6. Proof of the lower bound of Theorem 1.1

Let ε > 0. Since lim ±∞ ϕ ∞ = 0, we can fix some A 0 > 0 such that sup |x|≥A 0 |ϕ ∞ (σ 2 x)| < σ -2 ε.

In this section, T ↑ V and T ↓ V always denote h n -slopes, that is,

T ↑ V = T ↑ V, hn and T ↓ V = T ↓ V, hn
, where .

h n = log n -2C 1 log 2 n = h n -C
Recall that ζ is defined in [START_REF] Devulder | Collisions of several walkers in recurrent random environments[END_REF]. We also introduce

Y ↑ -1 := ζ Z ↓ -1 , which is independent of Z ↑ 0 , with Y ↑ -1 = law ζ T ↓ V = law T ↑ * V -, hn =: T ↑ * V -by Proposition 2.
12, and Y ↑ -1 = Z ↓ -1 .

First case: We start with the case z ≤ -Γ n .

Using Lemma 2.6 eq. ( 44), we have for each z ∈ Z such that z -Γ n ≤ 0,

J 6 (n, z) := P b hn = z -Γ n = P -z + Γ n < Z ↑ 0 E Z ↑ 0 + Z ↓ 1 . (200) 
Using the uniform continuity of ϕ ∞ on R and sup z∈ 

[-A 0 (log n) 2 ,A 0 (log n) 2 ] σ 2 z (log n) 2 - σ 2 z
z ∈ [-A 0 (log n) 2 , A 0 (log n) 2 ] such that z -Γ n ≤ 0, σ 2 (log n) 2 ϕ ∞ σ 2 z (log n) 2 ≤ σ 2 (log n) 2 ϕ ∞ σ 2 z -Γ n h n 2 + ε(log n) -2 ≤ σ 2 h n 2 ϕ ∞ σ 2 z -Γ n h n 2 + 2ε(log n) -2 ≤ J 6 (n, z) + 3ε(log n) -2 . ( 201 
)
Also for n ≥ n 10 , if |z| > A 0 (log n) 2 , then by definition of A 0 ,

σ 2 (log n) 2 ϕ ∞ σ 2 z (log n) 2 ≤ ε (log n) 2 ≤ J 6 (n, z) + 3ε(log n) -2 . ( 202 
)
The objective is to approximate progressively this quantity J 6 (n, z) by P(S n = z), by using Theorems 2.4 (i) and 2.5 eq. ( 29) (see (211) below) and Lemma 4.7. To this aim, we introduce the following events.

E (n) 31 := T Z ↑ 0 h n > Γ n ∩ T Y ↑ -1 h n > Γ n , E (n) 32 := ∀k ∈ T Z ↑ 0 h n , Z ↑ 0 , Z ↑ 0 (k) ≥ 9 log 2 n , E (n) 33 := ∀k ∈ T Y ↑ -1 h n , Y ↑ -1 , Y ↑ -1 (k) ≥ 9 log 2 n , E (n) 34 := ∩ 9 k=-9 H Z ↑ 2k ≥ log n + C 2 log 2 n ∩ ∩ 9 k=-9 H Z ↓ 2k+1 ≥ log n + C 2 log 2 n , E (n) 35 := 9 k=-9 Z ↑ 2k + 9 k=-9 Z ↓ 2k+1 ≤ (log n) 2+δ 1 . Recall that Z ↑ 0 = law T ↑ V and Y ↑ -1 = law T ↑ * V -(with h = h n ).
So by Lemma 7.2 eq. ( 228), there exists n 11 ≥ n 10 such that for all n ≥ n 11 ,

P E (n) 31 c ≤ P T T ↑ V h n ≤ Γ n + P T T ↑ * V - h n ≤ Γ n ≤ ε(log n) -2 . ( 203 
)
Notice that, using Theorem 2. 

= P ∃k ∈ T Z ↑ 0 h n , Z ↑ 0 , Z ↑ 0 (k) < 9 log 2 n ≤ P T V 9 log 2 n -h n < M hn , min [0,M hn ] V > -h n -C 0 , V M hn ≥ 0 ≤ P T V h n -9 log 2 n < T V (-9 log 2 n -C 0 ) ≤ 22(log 2 n)(log n) -1 , (204) 
by the strong Markov property at T V 9 log 2 n -h n , ( 16) and ( 17) since n ≥ n 12 ≥ n 3 . We prove similarly that P E

(n) 33

c ≤ 22(log 2 n)(log n) -1 for all n ≥ n 12 , using Theorem 2.9 (i) instead of Theorem 2.3.

Also, using [START_REF] Sinai | The limiting behavior of a one-dimensional random walk in a random medium[END_REF] with h = h n , there exists n 13 ≥ n 12 such that, for all n ≥ n 13 , and all -9 ≤ k ≤ 9, since n 13 ≥ n 3 ,

P H(Z ↑ 2k ) < log n + C 2 log 2 n = P H T ↑ V -h n < (2C 1 + C 2 ) log 2 n ≤ 4(2C 1 + C 2 )(log 2 n)(log n) -1 .

This remains true for H Z

↑ 2k replaced by H Z ↓ 2k+1 = law H T ↓ V = law H T ↑ -V , - 9 
≤ k ≤ 9 by Theorem 2.3 (ii) (or by the inequality after ( 61)). Consequently, we get P E

(n) 34 c ≤ 152(2C 1 + C 2 )(log 2 n)(log n) -1 for all n ≥ n 13 .
Moreover, we have P E

(n) 35 c ≤ 19P T ↑ V > (log n) 2+δ 1 /50 + 19P T ↓ V > (log n) 2+δ 1 /50 ≤ 38(log n) -8
for all n ≥ n 13 by Lemma 7.1 eq. ( 223) and ( 224), since n 13 ≥ n 9 ≥ p 3 . Also, using (200) then P E 

J 6 (n, z) ≤ E 1 {-z+Γn< (Z ↑ 0 )} 1 ∩ 35 i=31 E (n) i E Z ↑ 0 + Z ↓ 1 (Z ↑ 0 )-1 i=0 e -Z ↑ 0 (i) + (Y ↑ -1 ) i=1 e -Y ↑ -1 (i) (Z ↑ 0 )-1 i=0 e -Z ↑ 0 (i) + (Y ↑ -1 ) i=1 e -Y ↑ -1 (i) + ε (log n) 2 .
(205) The next step is to deal with the sums in numerator in the previous expectation. Notice that on E

(n) 32 ∩ E (n) 35 , we have Z ↑ 0 ≤ (log n) 3 -1 and so (Z ↑ 0 )-1 i=T Z ↑ 0 ( hn) e -Z ↑ 0 (i) ≤ (Z ↑ 0 ) -T Z ↑ 0 h n (log n) -9 ≤ (log n) -6 . (206) 
Similarly,

(Y ↑ -1 ) i=T Y ↑ -1 ( hn) e -Y ↑ -1 (i) ≤ (log n) -6 on E (n) 33 ∩ E (n) 35 since Y ↑ -1 = Z ↓ -1 . Also using Theorem 2.3 (i) since Z ↑ 0 = law T ↑ V , then applying Proposition 7.3, for large n, for all i ≥ Γ n , E exp -Z ↑ 0 (i) 1 {i<T Z ↑ 0 ( hn)} = E e -V (i) 1 {i<T V ( hn)} | T V ( h n ) < T V (R * -) ≤ c 13 i -3/2 .
This remains true with Z ↑ 0 and V replaced by Y ↑ -1 = law T ↑ * V -and V -, and T V (R * -) by T * V -(R -) by Theorem 2.9 (i) and Proposition 7.3. So there exists c 32 > 0 and n 15 ≥ n 14 such that, for all

n ≥ n 15 , E Γn≤i<T Z ↑ 0 ( hn) e -Z ↑ 0 (i) = ∞ i=Γn E e -Z ↑ 0 (i) 1 i<T Z ↑ 0 ( hn) ≤ ∞ i=Γn c 13 i 3/2 ≤ c 32 (log n) 2 3 + δ 1 2 , (207) 
since Γ n = (log n) 4/3+δ 1 . This remains true with Z ↑ 0 replaced by Y ↑ -1 .

Combining (205) with ( 206), (207), and the corresponding inequalities for V -and Y

↑ -1 , Z ↑ 0 ≥ T Z ↑ 0 h n > Γ n and Y ↑ -1 ≥ T Y ↑ -1 h n > Γ n on E (n) 31 , (Z ↑ 0 )-1 i=0 e -Z ↑ 0 (i) ≥ 1 and again E Z ↑ 0 + Z ↓ 1 ≥ c 7 (log n) 2 ,
there exists n 16 ≥ n 15 such that, for all n ≥ n 16 , for every j ∈ {0, 1}, for all z ≤ Γ n (although J 6 does not depend on j),

J 6 (n, z) ≤ E 1 {-z+Γn< (Z ↑ 0 )} 1 ∩ 35 i=31 E (n) i E Z ↑ 0 + Z ↓ 1 Γn-1 i=0 e -Z ↑ 0 (i) + Γn-1 i=1 e -Y ↑ -1 (i) (Z ↑ 0 )-1 i=0 e -Z ↑ 0 (i) + (Y ↑ -1 ) i=1 e -Y ↑ -1 (i) + 2ε(log n) -2 ≤ J 7 (j, n, z) + 2ε(log n) -2 , (208) 
where for j ∈ {0, 1},

J 7 (j, n, z) (209) 
:= E 1 {-z+Γn< (Z ↑ 0 )} 1 ∩ 35 i=31 E (n) i E Z ↑ 0 + Z ↓ 1 Γn k=-Γn e -Z ↑ 0 (-(k+j)) 1 {k+j≤0} + e -Y ↑ -1 (k+j) 1 {k+j>0} (Z ↑ 0 )-1 i=0 e -Z ↑ 0 (i) + (Y ↑ -1 ) i=1 e -Y ↑ -1 (i) (210) ≤ Γn k=-Γn E 1 {-z-k< (Z ↑ 0 )}∩∩ 35 i=31 E (n) i e -Z ↑ 0 (-(k+j)) 1 {k+j≤0} + e -Y ↑ -1 (k+j) 1 {k+j>0} E Z ↑ 0 + Z ↓ 1 (Z ↑ 0 )-1 i=0 e -Z ↑ 0 (i) + (Y ↑ -1 ) i=1 e -Y ↑ -1 (i)
. Now, for -Γ n ≤ k ≤ Γ n , applying Theorems 2.4 (i) and 2.5 eq. ( 29), we have for every nonnegative measurable function ϕ, since {b hn

= z +k} = x 0 V, h n = z +k ∩ θ T 0 V, h n ∈ t∈N * R t + = x 0 V, h n = z + k ∩ V x 0 V, h n < V x 1 V, h n and 0 ≤ i < (T ↑ V ), -i = z + k = 1 {-z-k< (T ↑ V )} for each k ∈ Z such that z + k ≤ 0, E ϕ θ T i V, h n , -18 ≤ i ≤ 19 1 {b hn =z+k} =E ϕ Z ↑ -18 , Z ↓ -17 , Z ↑ -16 , . . . , Z ↑ -2 , Z ↓ -1 , Z ↑ 0 , Z ↓ 1 , . . . , Z ↑ 18 , Z ↓ 19 1 {-z-k< (Z ↑ 0 )} E Z ↑ 0 + Z ↓ 1 . (211) 
In the previous equality, θ(T i (V, h n )) becomes Z ↑ i or Z ↓ i depending on the parity of i.

So, since Y ↑ -1 = ζ Z ↓ -1 and z ≤ -Γ n in this first case, we get, as explained below,

J 7 (j, n, z) ≤ Γn k=-Γn E e -θ[T 0 (V, hn)](-(k+j)) 1 {k+j≤0} + e -ζ[θ(T -1 (V, hn))](k+j) 1 {k+j>0} (T 0 (V, hn))-1 i=0 e -θ[T 0 (V, hn)](i) + (T -1 (V, hn)) i=1 e -ζ[θ(T -1 (V, hn))](i) 1 {b hn =z+k}∩E (n) 3 ∩E (n) 5 ∩E (n) 6 = E Γn k=-Γn e -V (b log n -k-j) 1 {b log n =z+k}∩E (n) 3 ∩E (n) 5 ∩E (n) 6 x 1 (V,log n)-1 i=x -1 (V,log n) e -V (i) , (212) 
for all n ≥ n 16 , j ∈ {0, 1} and z ≤ -Γ n . Indeed, when applying (211) to the quantity after (210), E

34 corresponds to (i.e. becomes) a set E

(n) 34 included in E (n)
3 , on which we have in particular H T i V, h n ≥ log n + C 2 log 2 n for all -13 ≤ i ≤ 13 and so x j V, h n = x j (V, log n) for j ∈ {-12, . . . , 12} and so b 

hn = b log n = x 0 (V, log n) (when b hn = z + k ≤ 0); Z ↑ 0 corresponds to θ T 0 V, h n = θ T 0 V, log n = V (b log n + i) -V (b log n ), 0 ≤ i ≤ x 1 (V, log n) -b log n and Y ↑ -1 to ζ θ T -1 V, h n = (V (b log n -i) -V (b log n ), 0 ≤ i ≤ b log n -x -1 (V, log n)) so E (n) 31 corresponds to a set included in E (n) 6 since h n < log n, E (n) 35 corresponds to a set included in x -12 V, h n -x 12 V, h n ≤ (log n) 2+δ 1 ,

and the intersection of this and E

(n) 34 is itself included in x -12 V, log n -x 12 V, log n ≤ (log n) 2+δ
e -V (b log n -k-j) ≤ x 1 (V,log n)-1 i=x -1 (V,log n) e -V (i) = M + -1 i=M -e -V (i) on E (n) 6 ∩ {b log n ≤ 0} ∩ E (n) 3
with M ± defined in (87) since V (x ±1 ) -V (x 0 ) ≥ log n + C 0 for n ≥ n 16 ≥ n 3 . Thus, using Lemma 5.1, there exists n 17 ≥ n 16 such that, for all n ≥ n 17 , j ∈ {0, 1} and z ≤ -Γ n (writing

E (n) i (z) instead of E (n) i for i = 3), J 7 (j, n, z) ≤ E Γn k=-Γn e -V (z-j) 1 {z=b log n -k}∩∩ 6 =3 E (n) (z) M + -1 i=M -e -V (i) + ε(log n) -2 , (213) 
where we write E (n) (z) for E (n) for ∈ {3, 5, 6} for convenience. Hence, using (208), then (213), 

M -< z < M + on E ( 
∈ (2Z + n) such that z ≤ -Γ n , 2J 6 (n, z) ≤ J 7 (1, n, z) + J 7 (0, n, z) + 4ε(log n) -2 ≤ E Γn k=-Γn µ n (z)1 {z=b log n -k}∩∩ 6 =3 E (n) (z) M + -1 i=M -e -V (i) + 6ε(log n) -2 = E ν n (z)1 {|b log n -z|≤Γn}∩∩ 6 =3 E (n) (z) + 6ε(log n) -2 ,
where we used µ n (2Z) = µ n (2Z + 1) = M + -1 i=M -e -V (i) and the definition (89) of ν n since n and z have the same parity.

Applying Lemma 4.7, there exists n 18 ≥ n 17 such that, for all n ≥ n 18 and all z ∈

(2Z + n) such that z ≤ -Γ n , 2J 6 (n, z) ≤ E P ω [S n = z] + 5(log n) -3 + 6ε(log n) -2 ≤ P(S n = z) + 7ε(log n) -2 .
This, (201) and (202) lead to 2σ

2 (log n) 2 ϕ ∞ σ 2 z (log n) 2 ≤ P(S n = z) + 13ε(log n) -2 for all n ≥ n 18 and all z ∈ (2Z + n) such that z ≤ -Γ n .
Second case: We now consider the case z > Γ n . We use the same

Z ↑ 2k , Z ↓ 2k+1 , Y ↑ -1 = ζ Z ↓ -1 and E (n) i
as in the first case.

Using Lemma 2.6 with x = z + Γ n , we have when z + Γ n > 0,

J + 6 (n, z) := P b hn = z + Γ n = P z + Γ n ≤ (Z ↓ -1 ) E Z ↑ 0 + Z ↓ 1 . (214) 
Similarly as in (201), for all n ≥ n 18 , for all z ∈]Γ n , A 0 (log n) 2 ],

σ 2 (log n) 2 ϕ ∞ σ 2 z (log n) 2 ≤ σ 2 h n 2 ϕ ∞ σ 2 z + Γ n h n 2 + 2ε (log n) 2 ≤ J + 6 (n, z) + 3ε (log n) 2 . (215) Also σ 2 (log n) 2 ϕ ∞ σ 2 z (log n) 2 ≤ J + 6 (n, z) + 3ε (log n) 2
for all n ≥ n 18 and all z ≥ max(Γ n , A 0 (log n) 2 ) as in (202), and so for all z > Γ n .

Similarly as in ( 205) and (208), using

1 {z+Γn≤ (Z ↓ -1 )} ≤ 1 {z+k≤ (Z ↓ -1 )} instead of 1 {-z+Γn< (Z ↑ 0 )} ≤ 1 {-z-k< (Z ↑ 0 )} ,
we get for all n ≥ n 18 and all z > Γ n , J + 6 (n, z) ≤ J + 7 (j, n, z) + 2ε(log n) -2 for each j ∈ {0, 1}, where for j ∈ {0, 1},

J + 7 (j, n, z) (216) 
:= Γn k=-Γn E 1 {z+k≤ (Z ↓ -1 )}∩∩ 35 i=31 E (n) i e -Z ↑ 0 (-(k+j)) 1 {k+j≤0} + e -Y ↑ -1 (k+j) 1 {k+j>0} E Z ↑ 0 + Z ↓ 1 (Z ↑ 0 )-1 i=0 e -Z ↑ 0 (i) + (Y ↑ -1 ) i=1 e -Y ↑ -1 (i)
. Now, applying Theorems 2.4 (ii) and 2.5 eq. ( 29), we have for every nonnegative measurable function ϕ, since

{b hn = z + k} = x 1 V, h n = z + k ∩ θ T 0 V, h n ∈ t∈N * R t -when z + k > 0, E ϕ θ(T i (V, h n )), -17 ≤ i ≤ 20 1 {b hn =z+k} =E ϕ Z ↑ -18 , Z ↓ -17 , Z ↑ -16 , . . . , Z ↑ -2 , Z ↓ -1 , Z ↑ 0 , . . . , Z ↑ 18 , Z ↓ 19 1 {z+k≤ (Z ↓ -1 )} E Z ↑ 0 + Z ↓ 1 . (217) 
In the previous equality, θ(T i (V, h n )) becomes Z ↑ i-1 or Z ↓ i-1 depending on the parity of i.

So, since Y ↑ -1 = ζ Z ↓ -1 and z > Γ n , we get, similarly as in (212), with b hn = b log n = x 1 (V, log n), and using the definition (87) of M ± on {b log n > 0}.

J + 7 (j, n, z) ≤ Γn k=-Γn E e -θ[T 1 (V, hn)](-(k+j)) 1 {k+j≤0} + e -ζ[θ(T 0 (V, hn))](k+j) 1 {k+j>0} (T 1 (V, hn))-1 i=0 e -θ[T 1 (V, hn)](i) + (T 0 (V, hn)) i=1 e -ζ[θ(T 0 (V, hn))](i) 1 {b hn =z+k}∩E (n) 3 ∩E (n) 5 ∩E (n) 6 = E Γn k=-Γn e -V (b log n -k-j) 1 {b log n =z+k}∩E (n) 3 ∩E (n) 5 ∩E (n) 6 M + -1 i=M -e -V (i) , (218) 
for all n ≥ n 18 , j ∈ {0, 1} and z > Γ n .

We conclude as in the first case that 2σ

2 (log n) 2 ϕ ∞ σ 2 z (log n) 2 ≤ P(S n = z) + 13ε(log n) -2 for all n ≥ n 18 and all z ∈ (2Z + n) such that z > Γ n .
Third case: We finally consider the case -Γ n < z ≤ Γ n .

We use the same notation as in the first case. Notice that (200), ( 201), ( 202), ( 205), ( 208) and (210) remain valid when n ≥ n 18 and -Γ n < z ≤ Γ n , with the same definitions of J 6 and J 7 . However in this third case, that is, for every n ≥ n 18 and -Γ n < z ≤ Γ n , for j ∈ {0, 1}, J 7 (j, n, z) ≤ J 8 (j, n, z) + J 9 (j, n, z) + J 10 (j, n, z),

where

J 8 (j, n, z) := -z k=-Γn E 1 {-z-k< (Z ↑ 0 )}∩∩ 35 i=31 E (n) i e -Z ↑ 0 (-(k+j)) 1 {k+j≤0} + e -Y ↑ -1 (k+j) 1 {k+j>0} E Z ↑ 0 + Z ↓ 1 (Z ↑ 0 )-1 i=0 e -Z ↑ 0 (i) + (Y ↑ -1 ) i=1 e -Y ↑ -1 (i) , J 9 (j, n, z) := Γn k=-z+1 E 1 -1 {z+k≤ (Z ↓ -1 )} 1 ∩ 35 i=31 E (n) i e -Z ↑ 0 (-(k+j)) 1 {k+j≤0} + e -Y ↑ -1 (k+j) 1 {k+j>0} E Z ↑ 0 + Z ↓ 1 (Z ↑ 0 )-1 i=0 e -Z ↑ 0 (i) + (Y ↑ -1 ) i=1 e -Y ↑ -1 (i) , J 10 (j, n, z) := Γn k=-z+1 E 1 {z+k≤ (Z ↓ -1 )} 1 ∩ 35 i=31 E (n) i e -Z ↑ 0 (-(k+j)) 1 {k+j≤0} + e -Y ↑ -1 (k+j) 1 {k+j>0} E Z ↑ 0 + Z ↓ 1 (Z ↑ 0 )-1 i=0 e -Z ↑ 0 (i) + (Y ↑ -1 ) i=1 e -Y ↑ -1 (i) . We first notice that, since -(Z ↑ 0 ) + 2 ≤ -Γ n + 1 ≤ -z + 1 ≤ Γ n ≤ (Y ↑ -1 ) -1 on E (n) 31 for -Γ n < z ≤ Γ n , and using 1 {z+Γn≤ (Z ↓ -1 )} ≤ 1 {z+k≤ (Z ↓ -1
)} , there exists n 19 ≥ n 18 such that, for all n ≥ n 19 , all -Γ n < z ≤ Γ n , and all j ∈ {0, 1},

0 ≤ J 9 (j, n, z) ≤ E 1 -1 {z+Γn≤ (Z ↓ -1 )} E Z ↑ 0 + Z ↓ 1 = P b hn = 0 -P b hn = z + Γ n ≤ σ 2 h n 2 ϕ ∞ (0) -ϕ ∞ σ 2 (z + Γ n ) h n 2 + ε(log n) -2 /4 ≤ ε(log n) -2 /2 (220) 
by Lemma 2.6, then Theorem 1.4, and finally by continuity of ϕ ∞ since δ 1 < 2/3 and |z| ≤ Γ n .

In order to prove an inequality for J 8 (j, n, z), we can do the same proof as in the first case from the line following (210) to (213), replacing Γn k=-Γn by -z k=-Γn since |z| ≤ Γ n (so z + k ≤ 0), which gives, for all n ≥ n 19 , all -Γ n < z ≤ Γ n and all j ∈ {0, 1},

J 8 (j, n, z) ≤ E -z k=-Γn e -V (z-j) 1 {z=b log n -k}∩∩ 6 =3 E (n) (z) M + -1 i=M -e -V (i) + ε(log n) -2 /4. (221) 
In order to prove an inequality for J 10 (j, n, z), we can do the same proof as in the second case, between the definition (216) of J + 7 and (218), replacing Γn k=-Γn by Γn k=-z+1 since |z| ≤ Γ n (so z +k > 0), then using once more Lemma 5.1 as in (213), we get for all n ≥ n 19 , all -Γ n < z ≤ Γ n and all j ∈ {0, 1},

J 10 (j, n, z) ≤ E Γn k=-z+1 e -V (z-j) 1 {z=b log n -k}∩∩ 6 =3 E (n) (z) M + -1 i=M -e -V (i) + ε(log n) -2 /4.
This, (219), ( 220) and (221) prove that (213) remains true for all n ≥ n 19 , all -Γ n < z ≤ Γ n and all j ∈ {0, 1}.

Since (208), ( 201) and (202) also remain true, we conclude as in the first case that for all n ≥ n 19 and all z ∈

(2Z + n) such that -Γ n < z ≤ Γ n , we have 2σ 2 (log n) 2 ϕ ∞ σ 2 z (log n) 2 ≤ P(S n = z) + 13ε(log n) -2 .
Finally, combining the conclusions of the three cases gives for all n ≥ n 19 , sup z∈(2Z+n)

2σ 2 (log n) 2 ϕ ∞ σ 2 z (log n) 2 -P S n = z ≤ 13ε(log n) -2 ,
which proves the lower bound in Theorem 1.1. This and (199) prove Theorem 1.1. 

∀n ≥ p 3 , P (E (n) 5 ) c ≤ (log n) -7 . (222) 
Also, we have for n ≥ p 3 , with h n = log n -2C 1 log 2 n as before,

P T ↑ V, hn > (log n) 2+δ 1 /50 ≤ (log n) -8 , (223) 
P T ↑ V -, hn > (log n) 2+δ 1 /50 = P T ↓ V, hn > (log n) 2+δ 1 /50 ≤ (log n) -8 . (224) 
Proof: The idea is to approximate V by a two-sided Brownian motion, in order to transfer to V some results already known for Brownian motions.

To this aim, we recall the definition of h-extrema introduced by Neveu et al. [START_REF] Neveu | Renewal property of the extrema and tree property of the excursion of a onedimensional Brownian motion[END_REF] for continuous functions. If w is a continuous function R → R, h > 0, and y ∈ R, it is said that w admits an h-minimum at y if there exists real numbers u and v such that u < y < v, w(y) = inf{w(z), z ∈ [u, v]}, w(u) ≥ w(y) + h and w(v) ≥ w(y) + h. It is said that w admits an h-maximum at y if -w admits an h-minimum at y. In these two cases we say that w admits an h-extremum at y. Notice that contrary to Definition 2.1, all the inequalities are large.

It is known (see [START_REF] Cheliotis | Diffusion in random environment and the renewal theorem[END_REF], Lemma 8) that, when w = W or w = σW , almost surely, (a) w is continuous on R; (b) for every h > 0, the set of h-extrema of w can be written {x k (w, h), k ∈ Z}, where (x k (w, h)) k∈Z is strictly increasing, unbounded from above and below, with x 0 (w, h) ≤ 0 < x 1 (w, h); (c) for all h > 0 and k ∈ Z, x k+1 (w, h) is an h-maximum if and only if x k (w, h) is an h-minimum (we use the same notation as for left extrema of V since no confusion is possible).

According to a slightly modified version (see e.g. [START_REF] Devulder | Collisions of several walkers in recurrent random environments[END_REF], Lemma 4.3, with (log n) α replaced by K and a single potential V instead of two) of the Komlós-Major-Tusnády strong approximation theorem (see Komlós et al. [START_REF] Komlós | An approximation of partial sums of independent rv's and the sample df. I[END_REF]), there exist (strictly) positive constants C 3 and C 4 , independent of K ∈ N * , such that, possibly in an enlarged probability space, there exists a two-sided standard Brownian motion (W (t), t ∈ R), such that

E 36 (K) := sup -K≤t≤K V ( t ) -σW (t) ≤ C 3 log K satisfies P([E 36 (K)] c ) ≤ K -C 4 for large K.
Let n ≥ n 3 and α > 0, and recall that 0 < δ 1 < 2/3. We define h n := log n+3C 3 (3+8/C 4 ) log 2 n. On E 36 (log n) 3+8/C 4 , consider, if they exist, two consecutive h n -minima for σW , denoted by y i := x i (σW, h n ) and y

i+2 := x i+2 (σW, h n ), such that |y i | ≤ α(log n) 2+δ 1 and |y i+2 | ≤ α(log n) 2+δ 1 . Let z i+1 := min k ∈ [ y i , y i+2 ] ∩ Z, V (k) = max [ y i , y i+2 ] V .
We have, using ω ∈ E 36 (log n) 3+8/C 4 in the second and forth inequalities, for n large enough so that

(log n) 3+8/C 4 > α(log n) 2+δ 1 , V (z i+1 ) = max [ y i , y i+2 ] V ≥ V ( x i+1 (σW, h n ) ) ≥ σW [x i+1 (σW, h n )] -C 3 (3 + 8/C 4 ) log 2 n ≥ σW [x i (σW, h n )] + h n -C 3 (3 + 8/C 4 ) log 2 n ≥ V ( y i ) + h n -2C 3 (3 + 8/C 4 ) log 2 n ≥ V ( y i ) + log n.
We prove similarly that V (z i+1 ) ≥ V ( y i+2 ) + log n, and so

y i < z i+1 < y i+2 . Since max [ y i ,z i+1 [ V < V (z i+1 ) and max ]z i+1 , y i+2 ] V ≤ V (z i+1 ), z i+1 is a left (log n)-maximum for V .
So we have proved that for large n on E 36 (log n) 3+8/C 4 , between two consecutive h n -minima for σW belonging to the interval -α(log n) 2+δ 1 , α(log n) 2+δ 1 , there is at least one left (log n)maximum for V . Notice in particular that for such n, on

E 36 (log n) 3+8/C 4 , if x 17 (σW, h n ) ≤ α(log n) 2+δ 1 , then in [x 1 (σW, h n ), x 17 (σW, h n )]
, there are at least eight consecutive h n -minima for σW , and then at least seven left (log n)-maxima for V , and so x 13 (V, log n) ≤ x 17 (σW, h n ) ≤ α(log n) 2+δ 1 . Hence for large n,

P x 13 (V, log n) > α(log n) 2+δ 1 , E 36 (log n) 3+8/C 4 ≤ P x 17 (σW, h n ) > α(log n) 2+δ 1 ≤ 16 i=0 P (T i (σW, h n )) > α(log n) 2+δ 1 17 , (225) 
where (T i (w, h)) := x i+1 (w, h) -x i (w, h) for i ∈ Z, h > 0 and any continuous function w, is the length of the i-th h-slope of w.

The length of a non central 1-slope of W , that is, (T i (W, 1)) for i = 0, has a density, which is (see [START_REF] Cheliotis | Diffusion in random environment and the renewal theorem[END_REF], eq. ( 7)) f (x) := π k∈N (-1) k (k + 1/2) exp -π 2 (k + 1/2) 2 x/2 1 R * + (x). Also, the length of the central 1-slope (T 0 (W, 1)) has a density, which is (see [START_REF] Cheliotis | Diffusion in random environment and the renewal theorem[END_REF], eq. ( 10)) equal to f (T 0 ) (x) := xf (x). Notice that f (x) ≤ (π/2) exp[-π 2 x/8] for large x. Hence for large x, f (T 0 ) (x) ≤ exp[-π 2 x/10] and f (x) ≤ exp[-π 2 x/10]. Thus, P (T i (W, 1)) > u) = O(exp(-π 2 u/10)) as u → +∞ for any i ∈ Z, so for large n, P (T i (σW, h n )) > α(log n) 2+δ 1 /17 = P (T i (W, 1)) > σ 2 α(log n) 2+δ 1 /(17(h n ) 2 ) ≤ P (T i (W, 1)) > σ 2 α(log n) δ 1 /20 = O exp(-π 2 σ 2 α(log n) δ 1 /200) , as n → +∞, where we used (T i (σW, h n )) = (T i (W, h n /σ)) = law (h n /σ) 2 (T i (W, 1)) by scaling. This, (225) and P([E 36 (K)] c ) ≤ K -C 4 for large K lead to

P x 13 (V, log n) > α(log n) 2+δ 1 ≤ O exp(-π 2 σ 2 α(log n) δ 1 /200) + P E 36 (log n) 3+8/C 4 c ≤ (log n) -8 (226) 
for large n. We prove similarly that P x -12 (V, log n) < -α(log n) 2+δ 1 ≤ (log n) -8 . Finally,

P (E (n)
5 ) c ≤ P x 12 (V, log n) > (log n) 2+δ 1 + P x -12 (V, log n) < -(log n) 2+δ 1 ≤ (log n) -7 for large n, which proves (222). Since x 3 (V, h n ) ≤ x 3 (V, log n) < x 13 (V, log n), we get P x 3 (V, h n ) > (log n) 2+δ 1 /50 ≤ P x 13 (V, log n) > (log n) 2+δ 1 /50 ≤ (log n) -8 for large n by (226). Since x 3 V, h n > x 3 V, h n -x 1 V, h n , which has the same law as T ↑

V, hn We now turn to the probability of (E

+ T ↓ V,
(n) 6 ) c ∩ E (n) 5 .
Lemma 7.2. Recall that δ 1 ∈]0, 2/3[. There exist c 33 > 0 and p 2 ∈ N such that ∀n ≥ p 2 , P (E

(n) 6 ) c ∩ E (n) 5 ≤ exp -c 33 (log n) 2/3-δ 1 ≤ (log n) -3 . ( 227 
)
We now consider left and right h n -slopes. As n → +∞, with c 34 := 1/(2C 2 0 ) > 0, since V (i) is the sum of |i| independent random variables with zero mean, bounded by ±C 0 by ellipticity (see [START_REF] Chiarini | Local central limit theorem for diffusions in a degenerate and unbounded random medium[END_REF]).

P T T ↑ V ± , hn h n ≤ Γ n = o (log n) -2 , P T T ↑ * V ± , hn h n ≤ Γ n = o (log n) -2 , ( 228 
)
recalling that T , T T ↑ V,h , T T ↓ V,h , T T ↑ * V,
Notice that on E for large n. This proves (228) for V + since 0 < δ 1 < 2/3. The proof for V -is similar. The proof for T T ↑ * V ± , hn is the similar, with Theorem 2.9 and c * 1 instead of Theorem 2.3 and c 1 .

7.2. Laplace transform of V conditioned to stay positive or nonnegative. The main tools of this subsection are local limit theorems for random walks conditioned to stay positive, by Vatutin and Wachtel ([64], Theorems 4 and 6 and Lemma 12 with α = 2 and ρ = 1/2).

We define for h ≥ 0, with T V and T * V defined in [START_REF] Cheliotis | Diffusion in random environment and the renewal theorem[END_REF], and [START_REF] Cheliotis | Localization of favorite points for diffusion in a random environment[END_REF],

Ξ h := inf [1,T V ([h,+∞[)] V ≥ 0 = {T V (h) < T V (R * -)}, (230) 
Ξ * h := inf [1,T V ([h,+∞[)] V > 0 = {T V (h) < T * V (] -∞, 0])}.
The aim of this subsection is to prove the following uniform upper bound:

Proposition 7.3. There exist c 13 > 0, p 4 > 0 and p 5 > 0 such that ∀x ≥ p 4 , ∀h ≥ p 5 , E e -V (x) 1 {x<T V (h)} | T V (h) < T V (R * -) ≤ c 13 x -3/2 . This remains true when T V (R * -) is replaced by T * V (] -∞, 0]).

Before proving this lemma, we introduce some notation and some technical lemmas. First, let

G x := {∀1 ≤ k ≤ x, V (k) ≥ 0}, G * x := {∀1 ≤ k ≤ x, V (k) > 0}, x > 0. ( 231 
)
We know (due to the Spitzer and Ròsen theorem, see Vatutin and Wachtel [START_REF] Vatutin | Local probabilities for random walks conditioned to stay positive[END_REF] eq. ( 18), or [START_REF] Bingham | Regular variation[END_REF] Theorem 8.9.23, p. 382) that

P[G x ] ∼ x→+∞ c 35 x -1/2 , P[G * x ] ∼ x→+∞ c * 35 x -1/2 , (232) 
where c 35 > 0 and c * 35 > 0. The following (uniform) estimates are maybe already known. However we did not find them in the literature, so we provide their proof. Lemma 7.4. For large h > 0, for every 0

≤ z < h, z -E z [V (T V (R * -))] h - 3C 0 (z + C 0 ) h 2 ≤ P z (Ξ h ) ≤ z -E z [V (T V (R * -))] h , (233) 
z -E z [V (T * V (R -))] h - 3C 0 (z + C 0 ) h 2 ≤ P z (Ξ * h ) ≤ z -E z [V (T * V (R -))] h . (234) 
Also, for z = 0,

hP[Ξ h ] → h→+∞ -E[V (T V (R * -))] =: c 1 > 0, (235) hP[Ξ * h ] → h→+∞ -E[V (T * V (R -))] =: c * 1 > 0. ( 236 
)
Proof: Let h > 0, U h := T V ([h, +∞[) ∧ T V (R * -), and 0 ≤ z < h. Since (V (k), k ≥ 0) is under P z a martingale starting at z for its natural filtration due to (3), and |V (k ∧ U h )| ≤ h + C 0 a.s. for every k ∈ N thanks to ellipticity [START_REF] Chiarini | Local central limit theorem for diffusions in a degenerate and unbounded random medium[END_REF], the optimal stopping theorem gives

z = E z [V (U h )] = E z [V (T V ([h, +∞[))1 Ξ h ] + E z [V (T V (R * -))1 (Ξ h ) c ]. ( 237 
)
Since h ≤ V (T V ([h, +∞[)) ≤ h + C 0 a.s. by ellipticity, we have

hP z [Ξ h ] ≤ E z [V (T V ([h, +∞[))1 Ξ h ] ≤ (h + C 0 )P z [Ξ h ]. (238) 
Also, -C 0 ≤ V [T V (R * -)] ≤ 0 a.s. by ellipticity, thus

E z [V (T V (R * -))] ≤ E z [V (T V (R * -))1 (Ξ h ) c ] = E z [V (T V (R * -))] -E z [V (T V (R * -))1 Ξ h ] ≤ E z [V (T V (R * -))] + C 0 P z (Ξ h ). (239) 
Hence, using first (238) and (237) and then the first inequality in (239),

hP z [Ξ h ] ≤ z -E z [V (T V (R * -))1 (Ξ h ) c ] ≤ z -E z [V (T V (R * -))]. (240) 
Similarly,

(h + C 0 )P z [Ξ h ] ≥ z -E z [V (T V (R * -))1 (Ξ h ) c ] ≥ z -E z [V (T V (R * -
))] -C 0 P z (Ξ h ), and so for large h for every 0 ≤ z < h, since z + C 0 ≥ z -E z [V (T V (R * -))] ≥ z ≥ 0,

P z [Ξ h ] ≥ z -E z [V (T V (R * -))] h + 2C 0 ≥ z -E z [V (T V (R * -))] h 1 - 3C 0 h ≥ z -E z [V (T V (R * -))] h - 3C 0 (z + C 0 ) h 2 .
This and (240) prove (233). The proof of (234) is similar. We get (235) and ( 236) as a consequence.

In order to apply the results of Vatutin et al. ( [START_REF] Vatutin | Local probabilities for random walks conditioned to stay positive[END_REF], thm. 4 and 6), we introduce some of its notation (see its pages 177 and 179). Let χ + := V (τ + ), where τ + := min{k ≥ 1, V (k) > 0} = T V (R * + ), and χ + k , k ≥ 1 be independent copies of χ + . We can now define the (left-continuous) renewal function

H(u) := 1 {u>0} + ∞ k=1 P χ + 1 + • • • + χ + k < u , u ∈ R.
Also it is well known that H(x) < ∞ for every x ∈ R (see e.g. [START_REF] Vatutin | Local probabilities for random walks conditioned to stay positive[END_REF] Lem. 13).

As in [START_REF] Vatutin | Local probabilities for random walks conditioned to stay positive[END_REF] (page 180), we say that the random variable log 1-ω 0 ω 0 is ( , a)-lattice if its distribution is lattice with span > 0 and shift a ∈ [0, [, that is, if is the maximal real number such that the support of the distribution of log 1-ω 0 ω 0 is included in the set (a + Z) = {a + k , k ∈ Z}. We say that the random variable log 1-ω 0 ω 0 is non-lattice if its distribution is not supported in (a + Z) for any a ∈ R, > 0. The two following lemmas are a bit more precise that what is needed in the present paper. They may be of independent interest and will be useful in a work in progress [START_REF] Devulder | Rates of convergence in Sinai and Golosov localization theorems for random walks in random environments[END_REF].

Lemma 7.5. Assume that log 1-ω 0 ω 0 is non-lattice. We have for p ≥ 0, We prove that this convergence is in fact uniform in y ∈ [0, δ x √ x] as x → +∞. To this aim, notice that for fixed x > 0 and ∆ > 0, P V (x) ∈ [y, y + ∆[ G *

E V (x) p e -V (x) |G * x ∼ x→+∞ f 2 (p) x , f 2 
x tends to P V (x) ∈]0, ∆] G * x = P V (x) ∈ [0, ∆] G *

x as y → 0 with y > 0, since P V (x) = 0 G * x = 0 by definition (231) of G *

x . Now, fix some ε > 0. Using the uniformity in y ∈]0, x 1/4 ] in (243), there exists A ε > 0 such that for all x > A ε , for all y ∈]0, Since we get a similar inequality for lim inf and H ≥ 1 on ]0, ∞[, this proves (241) and the lemma.

Lemma 7.6. Assume that log 1-ω 0 ω 0 is (h, a)-lattice for some h > 0 and a ∈ [0, h[. We have for p ≥ 0,

E V (x) p e -V (x) |G * x ∼ x→+∞ h c * 35 √ 2πσx ψ p [(ax) mod h], (246) 
where ψ p (y) := k∈N (y + kh) p e -(y+kh) H(y + kh), y ∈ [0, h], is a function bounded on [0, h] between two (strictly) positive constants.

Proof: Let p ≥ 0, h > 0 and a ∈ [0, h[, and assume that log 1-ω 0 ω 0 is (h, a)-lattice. First, notice that for every y ∈ [0, h], ψ p (y) ≤ k∈N (h + kh) p e -kh H(h + kh) = e h ψ p (h) < ∞ since H is nondecreasing and H(x) = O(x 2 ) as x → +∞ as in the previous lemma. Moreover, taking into account only k = 1, we have ψ p (y) ≥ h p e -2h H(h) > 0 for every y ∈ [0, h], so ψ p is bounded on [0, h] between two (strictly) positive constants. Proof of Proposition 7.3: Let h > 0 and x ∈ N * . We first provide a relation between conditioning by Ξ * h and by G * x . We have, due to the Markov property,

E e -V (x) 1 {x<T V (h)} Ξ * h = E e -V (x) 1 {x<T V (h)} 1 {T V (h)<T * V (R -)} /P[Ξ * h ] = E e -V (x) 1 {∀0<k≤x, 0<V (k)<h} 1 ∀k∈[x,T V (h)], V (k)>0} /P[Ξ * h ] = E e -V (x) 1 {∀0<k≤x, 0<V (k)<h} P V (x) T V (h) < T * V (R -) /P[Ξ * h ]. ( 249 
)
Hence for large h > 0, for every x ∈ N * , by (249) and Lemma 7.4 eq. ( 234),

E e -V (x) 1 {x<T V (h)} |Ξ * h ≤ E e -V (x) 1 {∀0<k≤x, 0<V (k)} V (x) -E V (x) [V (T * V (R -))] hP[Ξ * h ] = P[G * x ] hP[Ξ * h ] E V (x) -E V (x) [V (T * V (R -))] e -V (x) G * x . (250) 
Also, E e -V (x) 1 {x=T V (h)} |Ξ * h ≤ E e -V (x) 1 {V (x)≥h} |Ξ * h ≤ e -h . Let ε > 0. By (250), ( 232) and (236), then by ellipticity (2), there exists p 6 > 0 and p 7 > 0 such that for x ≥ p 6 and h ≥ p 7 , We now aim to prove a similar inequality, conditioning by Ξ h instead of Ξ * h . There exists c > 0 such that P[V (1) ∈ [c, 2c]] > 0, thanks to (3) and ( 4). For such a (fixed) c, there exists p 8 ≥ p 7 such that for all h ≥ p 8 , we have h/10 > 2c, P(Ξ * h+2c )/P(Ξ h ) ≤ 2c * 1 /c 1 (by Lemma 7.4) and P T V (h/10) < T V (] -∞, -h/10]) ≥ 1/3 (e.g. by ( 17)). So with V 1 (k) := V (k + 1) -V (1), k ≥ 0, using the independence of V (1) and V 1 , then the independence of (V (u), u ≤ T V (h)) and V 2 , defined by V 2 (k) := V [T V (h) + k] -V [T V (h)], k ≥ 0, we have for h ≥ p 8 and for x ≥ p 4 , E e -V (x+1) 1 {x+1<T V (h+2c)} |Ξ * h+2c = E e -V (x+1) 1 {x+1<T V (h+2c)} 1 Ξ * h+2c /P(Ξ * h+2c )

E e -V (x) 1 {x<T V (h)} |Ξ * h ≤ E V (x) -E V (x) V (T * V (R -)) e -V ( 
≥ E e -V (1)- ) E e -V (x) 1 {x<T V (h)} 1 Ξ h 1 T V 2 (h/10)<T V 2 (]-∞,-h/10])

V 1 (x) 1 {V (1)∈[c,2c]} 1 {x<T V 1 (h)} 1 ∀y∈[1,T V 1 (h+2c)], V
≥ P[V (1) ∈ [c, 2c]]P(Ξ h ) e 2c P(Ξ * h+2c )

E 1 {x<T V (h)} e V (x) |Ξ h P T V h 10 < T V -∞, - h 10 . 
So, using the definition of p 8 then (252), we get with c 36 := 6e 2c c * 1 /(c 1 P[V (1) ∈ [c, 2c]]), for every x ≥ p 4 and h ≥ p 8 , E e -V (x) 1 {x<T V (h)} | Ξ h ≤ c 36 E e -V (x+1) 1 {x+1<T V (h+2c)} |Ξ * h+2c ≤ c 13 x -3/2 for some constant c 13 > 0. This and (252) prove Proposition 7.3, up to a change of c 13 . 7.3. Two lemmas about left h-extrema. For the sake of completeness, we prove the two following lemmas. We recall that V is defined before [START_REF] Comets | Limit law for transition probabilities and moderate deviations for Sinai's random walk in random environment[END_REF]. Lemma 7.7. Let v ∈ V , and let h > 0. The left (resp. right) h-minima and left (resp. right) h-maxima for v alternate.
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 2 Main results. Throughout the paper, for sequences (d n ) and (m n ) with m n = 0 for large n, we writed n ∼ n→+∞ m n if d n /m n → 1 as n → +∞, d n = o(m n ) if d n /m n → 0 as n → +∞, and

  β]∩Z T = T (α) = 0. Also, for each slope T = (T (j), α ≤ j ≤ β), we define its length (T ) := β -α, its height H(T ) = |T (β) -T (α)|, and the translated slope θ(T ) := (T (j + α), 0 ≤ j ≤ β -α).
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 4 Figure 4. Schema of the potential V for Lemma 4.1 between a and c when c = A + .

  110) where we used (108) in the second inequality since n -τ b(n) ∈ [9n/10, n] ∩ (2N) because b(n), and then τ b(n) , has the same parity as n by (86), and Lemma 4.6 in the last inequality, since n ≥ n 3 and ω ∈ E (n)
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 48 We have, under the hypotheses of Theorem 1.1, as n → +∞, sup z∈(2Z+n)
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  for n ≥ n 3 with b(n) replaced by b log n , recalling that n 6 ≥ n 3 .

  First we consider the case z ∈ D - I k , D + I k in Lemma 5.12, then z ∈ D + I k , b I k +1 in Lemma 5.13, the case z ∈ b I k -1 , D - I k being obtained by symmetry in (198).

  since V (M I k ) -V (b I k ) ≥ h n and once more by definition of D + I k . Now, let z n := z + T V + z h n , +∞ . By definition of D + I k and due to the first event defining E (n,z) 22,k , then due to the last two events defining E (n,z) 22,k , we have min

4 log 2 n

 2 by (179) for the last inequality, and thus V (z) ≤ V b p V, h n + 4 log 2 n. Hence, using the definition of p, we are in E (n) 17 p, h n , z (defined after (160)).

  already proved, all the left h n -minima b V, h n with | | ≤ 8 are also left h n -minima except at most two of them becauseh n < log n + C 2 log 2 n, thus the number of left h n -minima in 0, b I k if b I k > 0 (resp. b I k , 0 if b I k ≤ 0) is at most |I k | + 2 (resp. |I k | + 3). Alsofor this last reason, there are no more than three left h n -minima in ]b I k , b I k +2 [, interval to which b p V, h n belongs as proved previously on E (n,z) 22,k , so |p| ≤ |j| + 3 ≤ 8. Since we already proved that we are on E h n , z . Finally, by Lemmas 5.8 and 5.9, we have since n ≥ n 9 ≥ n 8 ≥ n 7 ,

  . We recall m + (z, i) from (175), and the definition of the return time τ * (y) := inf{k ≥ 1 : S k = y} for y ∈ Z.Using (12) (with b I k < M I k < m + (z, I k )) in the first line, the Markov property in the second one,[START_REF] Barbu | Semi-Markov chains and hidden semi-Markov models toward applications, Their use in reliability and DNA analysis[END_REF] in the third one, we have on E (n,z) 23,k for every ∈ N,

Figure 9 .

 9 Figure 9. Schema of the potential V , with z equal to z(9) on E(n,z) 23,k ∩ E (n)27,k , and z(10) onE (n,z) 23,k ∩ E (n) 27,k c .

184) since C 1 -

 1 c 28 = -4 and n ≥ n 9 ≥ n 3 . Also, on E (n,z) 23,k ∩ {τ (b I k ) ≤ n} ∩ E (n,z) 26,k , m + (z, I k ) ≤ z,and after hitting b I k , S does not hit m + (z, I k ) > b I k before time n, so S n < m + (z, I k ) ≤ z thus S n = z. Hence,

(n,z) 23 ,

 23 k holds and that b I k +1 < z ↓ n . So we would have z ≤ b I k +1 < z ↓ n < z n , and then V (b

4 log 2 n

 2 by definitions of m + (z, I k ) (see (175)) and ofE (n) 23,k . It is also included in E (n) 29 , otherwise there would be a left h n -maximum of V in ]m + (z, I k ), z[ and so in ]M I k , b I k +1 [ which is not possible. Finally, E (n,z) 23,k ∩ E (n,z) 27,k c is also included in E (n) 30 because min [M I k ,z] V > V (z) -4 log 2 n as in (177) and V (M I k ) ≥ V (z) -8 log 2 n + h n ≥ V (z) + h n + C 0 by(191) and since C 1 > 20 and n ≥ n 9 ≥ n 3 . Using the independence of E by the strong Markov property, then applying[START_REF] Cocco | Reconstructing a random potential from its random walks[END_REF], we get

with c 30 :≤ ( 3 +

 303 = 10 × 2(C 1 + 1) × 12 since n ≥ n 9 ≥ n 3 . This, combined with (195) and Lemma 5.8, gives, where LHS means left hand side and since n ≥ n 9 ≥ n 7 ,P S n = z, τ (b I k ) ≤ n, E c 20 + c 30 )(log 2 n) 3 (log n) -3 . (197)Combining this, (184) and (185) proves (182) with c 29 := c 20 + c 30 + 4 since n ≥ n 3 . Finally, (176), (180) and (182) prove (174) with c 27 := ε -1 0 + c 20 + c 21 + c 29 for every n ≥ n 9 , z ∈ Z and 1 ≤ k ≤ 3, which ends the proof of Lemma 5.13.

7 :

 7 ) Combining (198), (171) and (174) proves Lemma 5.11 with c 25 := c 26 + 2c 27 . Proof of Proposition 5.Notice that for n ≥ n 9 and k ≥ 1, on {τ (b I k ) ≤ n < τ (b I k+1 )}, the random walk S does not reach the b i with i ∈ Z \ {I 1 , . . . , I k } before time n, and so S n belongs to min{b

3 , 5 . 4 .

 354 with c 19 := 3c 25 + 3 + c 31 and where we used Lemmas 5.11 and 7.1 in the last line since n ≥ n 9 ≥ max(n 3 , p 3 ). This proves Proposition 5.7. Proof of the upper bound in Theorem 1.1. Recall E (n)

δ 1 / 2 by Proposition 5 . 7 ,

 257 Lemmas 7.1 and 7.2, Proposition 5.2 and Lemma 5.1. This and Proposition 4.8 give, since δ 1 ∈]0, 2/3[, sup z∈(2Z+n)

1 ) 1 ≥ c 7 (

 117 for 31 ≤ i ≤ 35, there exists n 14 ≥ n 13 such that, for all n ≥ n 14 and all z ≤ Γ n , E Z ↑ 0 + Z ↓ log n) 2 by Lemma 2.15 and

n) 6 ∩

 6 {z = b log n -k} for |k| ≤ Γ n and (88) gives for all n ≥ n 17 and z

7 . 1 . 6 )Lemma 7 . 1 .

 71671 Some estimates concerning the environment7.Probabilities of E c . The aim of this subsection is to give upper bounds of some probabilities related to the events E (n) i , which are defined between equations (83) and (84). There exists p 3 ≥ 2 such that,

>,

  (log n) 2+δ 1 /50 ≤ P x 3 (V, h n ) > (log n) 2+δ 1 /50 ≤ (log n) -8and similarly P T ↓ V, hn> (log n) 2+δ 1 /50 ≤ (log n) -8 for large n. Since T ↑ V -by Theorem 2.3 (ii),this proves (223) and (224) up to a change of p 3 , which ends the proof of the lemma.

2 ≤

 2 h and T T ↓ * V,h are defined in (14), Definition 2.2, (47) and (48),and that V ± (.) = V (±.).Proof: First, for n ≥ n 3 , b ∈ Z and 0 < |i| ≤ Γ n , we have by Hoeffding's inequality (see[START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF], Theorem 2),P V (b + i) -V (b) ≥ log n = P V (i) ≥ log n ≤ exp -2(log n) 2 / |i| 2C 0 ) exp -c 34 (log n) 2 /|i| ≤ exp -c 34 (log n) 2/3-δ 1 (229)

5 , 5 ≤P V (i) ≥ h n ≤ 2 log n c 1 (log n) 4/3+δ 1 i=1exp -c 34 h n 2

 55112 there exists b = b log n ∈ Z and i ∈ Z such that V (b+ i) -V (b) ≥ log n, |i| ≤ Γ n and |b| ≤ (log n) 2+δ 1 since ω ∈ E |b|≤ (log n) 2+δ 1 |i|≤ (log n) 4/3+δ 1 P V (b + i) -V (b) ≥ log n ≤ 9(log n) 5 exp -c 34 (log n) 2/3-δ 1 , since 0 < δ 1 < 2/3. This proves (227), e.g. with c 33 := c 34 /2. Now, notice that, using the law of T ↑ V, hn provided by Theorem 2.3 (i), then[START_REF] Comets | Quenched, annealed and functional large deviations for one-dimensional random walk in random environment[END_REF] and once more Hoeffding's inequality and h n ∼ n→+∞ log n,P T T ↑ V, hn h n ≤ Γ n = P T V h n ≤ Γ n , T V h n < T V (R * -) /P T V h n < T V (R * -/i ≤ (2/c 1 )(log n) 3 exp[-c 34 (log n) 2/3-δ 1 /2]

u 5 :

 5 p e -u H(u)du ∈]0, ∞[. (241) The case p = 1 was already proved in Afanasyev et al. ([1], Prop. 2.1) and Hirano ([42] Lemma 5) with different methods.Proof of Lemma 7.We fix p ≥ 0, and define β p := sup y≥0 (y p e -y/9 ) ∈]0, ∞[. We first observe that for large x,E V (x) p e -V (x) 1 {V (x)≥9 log x} |G * x ≤ β p E e -8V (x)/9 1 {V (x)≥9 log x} |G * x ≤ β p x -8 . (242)Our potential V is a random walk with i.i.d. bounded, non constant and zero mean jumps ρ x , x ∈ Z by (2), (3) (4) and (6), and by hypotheses, its jumps have a non lattice distribution. So we can use the following result ([START_REF] Vatutin | Local probabilities for random walks conditioned to stay positive[END_REF], Theorem 4 with α = 2, β = 0 and c x ∼ x→+∞ σ √ x, as seen in the line after its eq. (3)) and with g 2,0 (0) = 1/ √ 2π: for ∆ > 0,σ √ xP V (x) ∈ [y, y + ∆[ G * x ∼ x→+∞ 1 xP[G * x ] √ 2π y+∆ y H(u)du(243)uniformly in y ∈]0, δ x √ x], where δ x → 0 as x → +∞.

≤9∆ - 1 9∆ - 1 uu

 11 x 1/4 ], 1 -ε ≤ xP[G * x ]σ √ xP V (x) ∈ [y, y + ∆[ G * y ↓ 0 in (244) for fixed x > A ε and using the convergence before (244), (244) remains true with [y, y + ∆[ and once more (243) with [y, y + ∆[ replaced by [∆ -η, ∆ + η[ for fixed ∆ and 0 < η < ∆ gives, for large x, xP[G *x ]σ√ xP V (x) = ∆ G * x ≤ (2/ √ 2π) ∆+η ∆-η H(u)du ≤ (4/ √ 2π)H(2∆)η. Since this is true for any η > 0, we get xP[G * x ]σ √ xP V (x) = ∆ G * x → 0 as x → +∞. So, (245) remains true with [0, ∆] replaced by [0, ∆[. This and (243) prove that the convergence in (243) is in fact uniform in y ∈ [0, δ x √ x] as x → +∞, where δ x → 0 as x → +∞.So, we have for any ε > 0 and ∆ > 0, for large x,E (V (x)) p e V (x) 1 {V (x)<9 log x} G * x)) p e V (x) 1 {V (x)<9 log x} 1 {V (x)∈[k∆,(k+1)∆[} | G * x log x k=0 ((k + 1)∆) p e k∆ P V (x) ∈ [k∆, (k + 1)∆[ | G * log x k=0 ((k + 1)∆) p e k∆ ∆H (k + 1)∆ ,where we used (232) and since H is nondecreasing. So, lim supx→+∞ xE V (x) p e -V (x) 1 {V (x)<9 log x} | G * p e -u H(u)du < ∞,since H is a nondecreasing function and H(x) = O(x 2 ) as x → +∞ e.g. by([64] Lem. 13 with α = 2 and ρ = 1/2 as explained at the end of its p. 181, following from Rogozin[START_REF] Rogozin | On the distrbution of the first ladder moment and height and fluctustions of a random walk[END_REF] and from the Spitzer-Ròzen theorem). p e -u H(u)du.

35 √( 1 + 2ε)h c * 35 √( 1 -2ε)h c * 35 √

 35135135 Let ε > 0. Applying ([START_REF] Vatutin | Local probabilities for random walks conditioned to stay positive[END_REF], Theorem 6, extending previous results obtained when a = 0 by Alili and Doney[START_REF] Alili | Wiener-Hopf factorization revisited and some applications[END_REF]), again with α = 2, β = 0, c x ∼ x→+∞ σ √ x, and g 2,0 (0) = 1/ √ 2π:σ √ xP[V (x) = ax + y | G * x ] ∼ x→+∞ hH(ax + y) √ 2πxP[G * x ](247)uniformly in y ∈] -ax, -ax + δ x √ x] ∩ (hZ), where δ x → 0 as x → +∞. Also, notice that for y = -ax when x > 0, we haveP[V (x) = 0 | G * x ] = 0 = hH(0)/[ √ 2πxP(G * x )σ √ x] by definitions of G *x and H. Hence for large x,E (V (x)) p e -V (x) 1 {V (x)<9 log x} G * x = k∈Z, ax+kh≥0 (ax + kh) p e -(ax+kh) 1 {ax+kh<9 log x} P[V (x) = ax + kh | G * x ] ≤ k∈Z, 0≤ax+kh<9 log x (ax + kh) p e -(ax+kh) (1 + ε) hH(ax + kh) √ 2πσx 3/2 P[G * x ] ≤ (1 + ε)h √ 2πσx 3/2 P[G * x ] ψ p [(ax) mod h] ≤ (1 + 2ε)h c * 2πσx ψ p [(ax) mod h]by (247) applied with δ x = 9(log x)/ √ x and (232). This and (242) give for large x,E V (x) p e -V (x) |G * x ≤ 2πσx ψ p [(ax) mod h] + β p x -8 .(248)Similarly as in (248), for large x,E V (x) p e -V (x) |G * x ≥ 2πσx ψ p [(ax) mod h] -O(x -8 ) , since k∈Z, ax+kh≥9 log x (ax + kh) p e -(ax+kh) H(ax + kh) = O(x -8 ) as x → +∞ because H(x) = O(x 2) as in the previous lemma. This and (248) prove (246) since x -8 = o ψ p [(ax) mod h]/x as x → +∞ because inf [0,h] ψ p > 0.

≤ ( 1 + 35 √

 135 ε)(c * 35 /c * 1 )x -1/2 E V (x)e -V (x) |G * x + C 0 E e -V (x) |G * x .Thanks to Lemmas 7.5 and 7.6, there exists p 4 > p 6 such that, for x ≥ p 4 , for each p ∈ {0, 1},E V (x) p e -V (x) |G * x ≤ f 3 (p)x , with f 3 (p) := 2f 2 (p) when log 1-ω 0 ω 0 is non lattice, andf 3 (p) := 2h sup [0,h] ψ p /(c * 2πσ) if log 1-ω 0 ω 0 is (h, a)-lattice for some h > 0 and a ∈ [0, h[. This together with (251) gives for x ≥ p 4 and h ≥ p 7 ,E e -V (x) 1 {x<T V (h)} |Ξ * h ≤ (1 + ε)(c * 35 /c * 1 ) f 3 (1) + C 0 f 3 (0) x -3/2 . (252)

  1 (y)≥0 /P(Ξ * h+2c )≥ e -2c P[V (1) ∈ [c, 2c]] P(Ξ * h+2c ) E e -V (x) 1 {x<T V (h)} 1 ∀y∈[1,T V (h+2c)], V (y)≥0 ≥ e -2c P[V (1) ∈ [c, 2c]] P(Ξ * h+2c

  1 log 2 n as before. In what follows, we consider independent slopes Z ↑ 2k , -9 ≤ k ≤ 9 and Z ↓ 2k+1 , -9 ≤ k ≤ 9, each Z ↑ 2k having the same law as T ↑ V i.e. T ↑

	V, hn	,
	and each Z ↓ 2k+1 having the same law as T ↓ V i.e. T ↓ V, hn	

  as n → +∞ since δ 1 < 2/3 and h n ∼ n→+∞ log n in the first inequality, then ϕ ∞ ∞ =: sup R |ϕ ∞ | < ∞ and h n ∼ n→+∞ log n in the second one, and finally Theorem 1.4 in the last one, there exists n 10 ≥ max(n 9 , p 2 ) (with p 2 defined in Lemma 7.2) such that for all n ≥ n 10 , for all

	-Γn
	2
	hn
	= o(1)

  3 (i) with its notation and h= h n , since Z ↑ 0 T Z ↑ 0 h n ∈ h n , h n + C 0 by ellipticity[START_REF] Chiarini | Local central limit theorem for diffusions in a degenerate and unbounded random medium[END_REF], there exists n 12 ≥ n 11 such that for all n ≥ n 12 ,

	32 P E (n)	c

  1 , and so in E

	(n) 5 , whereas E 32 and E (n) 33 are (n)
	not necessary anymore.
	Notice that Γn k=-Γn

Proof: Assume that y 1 and y 2 are two left h-minima for v, with y 1 < y 2 . It is enough to prove that there exists at least a left h-maximum for v between y 1 and y 2 . By Definition 2.1, for each j ∈ {1, 2}, there exists α j < y j < β j such that min [α j ,y j -1] v > v(y j ), min [y j +1,β j ] v ≥ v(y j ), v(α j ) ≥ v(y j ) + h and v(β j ) ≥ v(y j ) + h. We define x := min{u ≥ y 1 , v(u) = max [y 1 , y 2 ] v}. The goal is to prove that x is a left h-maximum for v.

Assume that

Finally, assume that y 2 > β 1 and α 2 > y 1 . Hence,

So in every case, we have v(x) ≥ v(y 1 ) + h and v(x) ≥ v(y 2 ) + h, with h > 0, thus by definition of x,

Applying this to -v proves that, if y 1 and y 2 are two left h-maxima for v with y 1 < y 2 , there exists at least a left h-minimum for v between y 1 and y 2 , which concludes the proof of the lemma for left h-extrema. The proof is similar for right ones by symmetry.

For the following lemma, see definitions ( 20)-( 23), represented in Figure 2.

Lemma 7.8. Assume that V ∈ V (which has probability one if (2), ( 3) and (4) are satisfied).

2i+1 (h) by definition. We also have V τ [START_REF] Dembo | Valleys and the maximum local time for random walk in random environment[END_REF] and [START_REF] Devulder | Persistence of some additive functionals of Sinai's walk[END_REF] and V m 23), [START_REF] Devulder | The speed of a branching system of random walks in random environment[END_REF] and [START_REF] Devulder | Persistence of some additive functionals of Sinai's walk[END_REF]. Also, min [m (V )

2i+1 (h) by ( 22), ( 23) and ( 21), and min

First case: Assume that there exists a left h-minimum y = m

2i+1 (h) , and let α < y and β > y be as in Definition 2. [START_REF] Devulder | Persistence of some additive functionals of Sinai's walk[END_REF]. [START_REF] Devulder | Persistence of some additive functionals of Sinai's walk[END_REF]. So there is no left h-minimum for V in τ

Second case: Now, we assume that there exists a left h-maximum y for V in τ

2i+1 (h) , and let α < y and β > y be as in Definition 2.1 for left h-maxima. 22) and [START_REF] Devulder | Rates of convergence in Sinai and Golosov localization theorems for random walks in random environments[END_REF] 

2i (h) ≤ y by ( 22) and ( 23) since i ≥ 1, so V m

2i (h) +h by definition of α and (20) since y ∈ τ

2i (h) -h coming from ( 22) and ( 23) since i ≥ 1. So there is no left hmaximum for V in τ (V ) 2i (h), τ (V ) 2i+1 (h) for i ≥ 1. Thus (i) is proved. The proof of (ii) is similar.