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ANNEALED LOCAL LIMIT THEOREM FOR SINAI'S RANDOM WALK IN

RANDOM ENVIRONMENT

ALEXIS DEVULDER

ABSTRACT. We consider Sinai’s random walk in random environment (S, )nen. We prove a local
limit theorem for (Sn)nen under the annealed law P. As a consequence, we get an equivalent
for the annealed probability P(S, = z,) as n goes to infinity, when z, = O((logn)?). To this
aim, we develop a path decomposition for the potential of Sinai’s walk, that is, for some random
walks with i.i.d. increments. The proof also relies on renewal theory, a coupling argument, a
very careful analysis of the environments and trajectories of Sinai’s walk satisfying S,, = zn,
and on precise estimates for random walks conditioned to stay positive or nonnegative.
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1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS
1.1. Presentation of the model. We consider a collection w := (wg)zez of i.i.d. random

variables, taking values in the interval ]0, 1], with joint law P. A realization of w is called an
environment. A random walk (Sg)ken in the environment w is defined as follows. Conditionally
on w, (Sk)ken is a Markov chain starting at Sy = 0 and such that for every k € N:={0,1,2,...},
x€Zandy€Z,

W ify=x+1,
Pw(SkH :y\Sk::L‘) = 1-w, ify=z-1, (1)
0 otherwise.

We call P, the quenched law, and S := (S)k is a random walk in random environment (RWRE).
The annealed law is defined as follows:

P[] := / P,[]P(dw).

Notice that P is not Markovian. The expectations with respect to P, P, and P are denoted
respectively by E, E,, and E.

One dimensional RWRE have many unusual properties, and have attracted much interest from
mathematicians and physicists. For applications in physics and in biology, see e.g. Cocco et
al. [17], Hughes [47] and more recently the introduction of Padash et al. [55]. Also, (one
dimensional) RWRE are used to define or study some other mathematical models, see e.g.
Kochler [49] (chapter 3) for random walks in oriented lattices with random environments, Zindy
[66] for random walks in random environments with random scenery. Aurzada et al. [6] for
branching processes in random environments, and Devulder [22] for branching random walks
in random environments. We refer to Révész [56] and Zeitouni [65] for a general account on
results on RWRE proved before 2005. For a statistical point of view, see e.g. Diel et al. [26]
and references therein.
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We assume that there exists g €]0,1/2[ such that

P[EO S wo S 1-— 60] =1. (2)

This classical condition is known as the ellipticity condition. We introduce p, := %, x € 7.
Solomon [62] proved that (Sk)j is recurrent for almost every environment w if

E[log po] = 0, (3)

and transient for almost every w otherwise. Throughout the paper, log denotes the natural
logarithm. We only consider the recurrent case (3) in the present paper. Also, in order to avoid
the degenerate case of simple random walks, we assume that

o := (E[(log p0)?])""* > 0. (4)

The asymptotic behaviour of S in the very delicate recurrent case was first analyzed in a cel-
ebrated paper of Sinai [61]. Indeed, Sinai [61] showed that under Hypotheses (2), (3) and (4),
Sy is localized at time n, with large annealed probability, in the neighborhood of some random
quantity b{ogn, which depends only on the environment. More precisely, he proved that for every
e >0,

P[Sn — blogn| < e(logn)?] —pio0 1.

— Ylogn
He also proved that 02biogn/(log n)? converges in law, as n — 400, to some random variable
bso, Which is non degenerate and non gaussian. As a consequence, Sinai obtained the following
convergence in law under the annealed law P:

2

o
Wsn —n—s4o00 Doo-
It was proved independently by Kesten [48] and Golosov [40] that P[bs € dz| = poo(z)dz, where
2 o= (—1)F (2k + 1)%72
(@) == ST ), R.
)= 23 oo (-EE0 ), ee )

This very slow movement of (Sj)ren, of order (logn)? instead of /n for simple random walks, is
due to the presence of some traps which slow down the walk. Due to this result proved by Sinai,
a random walk in random environment (Si)ren satisfying Hypotheses (2), (3) and (4) is often
called a Sinai walk. Some other unusual properties of Sinai’s walk are proved e.g. in Dembo et
al. [20], Gantert et al. [35], [37], Hu et al. [45], [46] and Shi [58]. See also Shi [59] for a general
account about Sinai’s walk before 2001.

1.2. Main results. Throughout the paper, for sequences (d,) and (m,,) with m,, # 0 for large
n, we write dy, ~n_yyoo My if dp/my, — 1 as n — 400, d,, = o(my,) if d,,/m,, — 0 as n — +o0,
and d,, = O(my,) if limsup,,_,, . |dn/my| < co.

Our main result is the following local limit theorem for Sinai’s walk (S,),ecn under the annealed
law PP:

Theorem 1.1. Assume (2), (3) and (4). As n — +o0,
202 o2z 1
sup |P(S, =2z) — <poo< >‘:0<>,
e [P =2) = Giogmpz 2 Giog 2 (log )

where 27, + n denotes the set of integers having the same parity as n.

Notice that S := (Sk)ren only makes +1 jumps and starts from 0 under P, so P(S,, = z) = 0 if
n and z have different parity. Since ¢, > 0 and is continuous on R, we get in particular:
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Corollary 1.2. Assume (2), (3) and (4). Let (zn)nen be a sequence of integers such that
Zn = O((log n)2) as n — 400, and such that z, and n have the same parity for every n € N.

Then,
202 0%z,
P(S =20 e g 7= (o)

Also > 77 2k+1 = arctan(l) = 7/4, hence ¢ (0) = 1/2, so this leads to:

Corollary 1.3. Assume (2), (3) and (4). We have,

0.2

P(SM = 0) ~n—+oo W,

and more generally P(So, = 22) ~pyi0o (107 for every fixred x € 7 since poo 1S continuous
on R. Also, for every fized x € Z,

]P)(SQn =2 L("E/z)(log TL)2J) ~n—+o0

2020 (0%x)
(logn)?

)

where for y € R, |y| denotes the integer part of y.

In order to prove Theorem 1.1, we introduce in Section 2 (see (19)) a random quantity by,
h > 0, depending only on the environment. It is defined differently from the localization point
b}, introduced by Sinai, but plays a similar role. Our by, is defined in terms of left h-extrema,
which are also introduced in Section 2 (see Definition 2.1). In order to prove our Theorem 1.1,
we first prove a local limit theorem for by:

Theorem 1.4. We have as h — +oo,
o? o’z 1
sup [P(bp, = ) — 0o — || = 0| — .
oo [Pl =)~ Faew (55 )| = ()

Even though Theorem 1.4 looks, at first sight, very similar to Theorem 1.1, Theorem 1.1 is
not a direct consequence of Theorem 1.4, because, loosely speaking, the event {S, = z} can be
decomposed into a union of events {S,, = 2z} N {biogr, = ¥}, and we will see that each one has a
non-negligible probability for y ”close” to z. Also, estimating the annealed probabilities of these
events for y close to z, as well as proving that such probabilities are negligible for y ”far” from
z, is not immediate, since we have to decompose each of these events into many different cases,
corresponding to different kinds of environments and trajectories.

The probability P(S,, = z,) for Sinai’s walk seems to have been first studied in a physics
paper in 1985 by Nauenberg [53], by heuristic arguments in some particular cases and numerical
simulations. However the function he obtained instead of our ¢u is  +— (C/2) exp(—C|z|) for
some C > 0, which is not correct This function was also claimed in Nauenberg [53] to be the
density of the limit law of Tos )2 Sy, and Kesten [48] already noticed that this is not the correct

function, although . (z) is equlvalent to some exponential as x — 400.

There have been many papers dealing with local limit theorems for different models of ran-
dom walks in random environments recently. For example, Dolgopyat and Goldsheid [27], [28],
Leskela and Stenlund [52] and Berger et al. [8] prove local limit theorems for transient RWRE
respectively on Z and on a strip, both in the diffusive regime, on Z with only 0 or 1 jumps, and
for some ballistic multidimensional RWRE. See also Dolgopyat et al. [29] for diffusive recurrent
RWRE on a strip, Takenami [63] for random walks on periodic environments, Chiarini et al. [16]
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for some diffusions in random environment, and Andres et al. [5] for the random conductance
model. We refer to the first two sections of Dolgopyat et al. [28] for a recent review of this
subject. However, the previously cited papers consider transient or diffusive random walks or
diffusions, whereas we consider Sinai’s walk which is recurrent and subdiffusive. Also, we obtain
probabilities of order (logn)~2 with a non gaussian limit law, instead of n~Y2 with a gaussian
limit law in their cases. Therefore, to the extent of our knowledge, our Theorem 1.1 is the first
local limit theorem for (recurrent) subdiffusive RWRE.

Also, a similar local limit theorem for the quenched probability, replacing P by F,,, does not
hold. Indeed, P,(S, = 0) almost surely takes very small values compared to (logn)~2 as
n — +o0, since for n €]0, 1], P-almost surely P, (S, = 0) = O(exp(—(logn)'™")) as n — +oo
(see Devulder et al. [24], last inequality of page 6). See also Gantert et al. ([34], Theorem 1.1)
for previous results, Comets et al. ([19], Theorem 2.1 and Corollary 2.1) for estimates for a
related model in continuous time, and Gantert et al. [36] for transient RWRE. So, contrarily
to some of the previously cited papers on local limit theorems for RWRE, our annealed local
limit theorem, Theorem 1.1, cannot be the consequence of a corresponding quenched local limit
theorem.

We also mention that some estimates of P(S,, = z,) when z, is large, more precisely when
n = O(zy,), are given by Comets et al. [18]. For an overview of the vast literature about large
deviations for RWRE, see e.g. Gantert et al. [38] and more recently Buraczewski et al. [13].

Finally, we think that the tools and technics developed in the present paper, in particular the
ones of Section 2, will be useful for future research projects, including [23], which will study the
rates of convergence in Sinai and Golosov localization theorems for Sinai’s walk.

Acknowledgement: I am thankful to Yueyun Hu for asking, after a talk in a conference in
Landela (France) in 2016, if I could give an estimate of P(S2, = 0) as n — 400, which made
me aware that this question was still open. I also thank Francoise Péne for organizing this
conference. Part of this work was done during a six months sabbatical ”délégation CNRS”.

1.3. Organization of the proof and of the paper. In Section 2, we recall the definition and
use of the potential V. We also define left and right h-extrema for V', for h > 0. This allows
us to introduce two path decompositions of the potential V', one with left h-extrema and one
with right h-extrema. We can then define our localization point b,. We describe the law of the
potential V' between two consecutive left (or right) h-extrema z; and ;41 when 0 ¢ [z, x;41],
which uses in particular the law of V or —V conditioned to stay positive, or nonnegative, up to
some hitting time (see Theorem 2.3). The law of V' between the two left h-extrema surrounding
0 is given by a renewal theorem (see Theorem 2.5), and some independence is provided by
Theorem 2.4. A first application of this renewal theorem is that we can give a simple formula
for the law of by, that is, for P(by, = z), x € Z (in Lemma 2.6), which is an important tool in
the proof of Theorem 1.4.

Section 3 is devoted to the proof of Theorem 1.4.

In Section 4, we first define an event E(Cn)(z), depending only on the environment and on z. On

this event, we use a coupling argument, which helps us approximate the quenched probability
P,(Sn, = z) by U,(z), where 1, is an invariant probability measure. This enables us to give
an upper bound for the annealed probability that S, = z on EgL )(z) (see Proposition 4.8),
giving the main contribution in the upper bound of Theorem 1.1. To this aim, loosely speaking,
we express the expectation of 7,(z) on each event {biog, = k + 2} N Eén )(z) with quantities
depending only on the laws of the potential V' between consecutive left or right (logn)-extrema;
summing this over k makes appear, after some inequalities and computations using the tools
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developed in Section 2, a formula equal to P(bjogr = 2) by Lemma 2.6. We conclude by applying
Theorem 1.4.

In Section 5, we prove that the environments and trajectories such that .5,, = z which were not
considered in Section 4 have a negligible annealed probability. This covers many different cases,
which often combine conditions on both environments and trajectories of (Sg)i. For example,
z can be far from bj,gp, or the origin 0 can be very close to the maximum of the potential
between two valleys (defined before (20)), or some of the valleys around the origin can have a
height just slightly larger than logn, or the central valley of height at least log n can include one
or several subvalleys of height slightly less than logn. The potentials for some of these cases
are represented in Figures 6 page 43, 7 page 50, 8 page 59 and 9 page 61. In this section, we
prove that all these cases, and some others, with .S,, = z have a negligible annealed probability
(compared to (logn)~2). Combining this with the previous subsection, we get (uniformly on z)
an upper bound of P(S,, = z), which completes the proof of the upper bound in Theorem 1.1.
Even if this section mainly consider negligible events, it is maybe the most delicate of the paper.

Section 6 is devoted to the proof of the lower bound in Theorem 1.1, that is, we give (uniformly
on z) a minoration of P(S, = z). The proof is divided into three cases, depending on z being
negative and far from 0, positive and far from 0, or z being close to 0. This uses results of all
the other sections.

Finally, Section 7 is devoted to some important technical lemmas and their proofs. These lemmas
mainly deal with the potential V', and with V conditioned to stay positive or nonnegative.

Outlines or sketches of proofs of several lemmas or theorems are also provided throughout the
paper.

2. POTENTIAL, PATH DECOMPOSITION AND RENEWAL THEOREM

2.1. Definition and applications of the potential. The potential (V(z), = € 7Z), which was
first introduced by Sinai [61], is an important quantity which depends only on the environment
w. It is defined as follows:

i log 1;—?” if x>0,

V(z):=4¢ 0 ifx =0, (6)
— Z?=z+l logl;—f" if x <0.
We denote by PZ the quenched probability for the RWRE (S ), starting at = € Z instead of 0,
and by ET the expectation with respect to P¥. Also, let
7(y) :=inf{k >0 : Sp =y}, ™(y) :=inf{k >1 : Sy =y}, y € 7L,
where by convention, inf @ = +oco0. In words, 7(y) (resp. 7*(y)) is the hitting time of (resp.
return time to) the site y by the RWRE (Sj)r. We also define for xz € Z and y € Z,

T(z,y) =inf{k €N : S )1 =y}
We now recall some classical estimates, which explain why the potential is very useful. These
formulas will be used throughout the paper. First, we have (see e.g. [65, (2.1.4)],

Pblr(c) < r(a)] = <§ev<ﬂ‘>> <§ev<ﬂ‘>>_l, a<b<e. (1)

Furthermore (see e.g. [21] Lem. 2.2 coming from Zeitouni [65] p. 250), if g < h < ¢,

i—1 k
EM [r(g) A (i)] < I;l;:; eXP[V(]ZL— V()] <epl(i—g)*exp [ggeglgrgl?xl,kzh(v(k) V@), (8)
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where we used ellipticity (2) in the last inequality and with z A y := min(z,y). For symmetry
reasons, we also have

E°[r(a) A7(c)] < g5t (c —a)?exp [agegkgncliii{, r<ht (V () - V(k:))}, a<b<ec. (9)

Moreover, we have (see Golosov [39], Lemma 7, proved for a RWRE on N but still true for a
RWRE on Z),

Pb[r(c) < k] < kexp <€€I[£1’icn1] V() —-V(c— 1)> , b<c. (10)

Also by symmetry, we get (similarly as in Shi and Zindy [60], eq. (2.5) but with some slight
differences for the values of /)

Pb[r(a) < k] < kexp < min V(¢) — V(a)> , a<b. (11)
L€]a,b—1]
Moreover, we have by Devulder et al. ([24], Lemma 4.10), if a # b,
VkeN,  Pjr(a) =k] < Pblr(a) < 7*(b)]. (12)

Finally, we recall that, given w, the Markov chain S is an electrical network where, for every
r € Z, the conductance of the unoriented bond (z,z + 1) is C(y »11) = e~V®) (in the sense of
Doyle and Snell [30]) (see also Levin et al. [51]). In particular, its reversible measure p,, (unique
up to a multiplication by a constant) is given by

pio(z) = e V@) o7 V—l), z €7, (13)

where, for the sake of simplicity, we write p,(z) instead of p,({z}). For any process Y, we
define

Ty(A) := inf{z >0, Y(z) e A}, A CR, (14)
Ty (A) = inf{z >0, Y(z) € A}, ACR. (15)

We sometimes write Ty (a) := Ty ([a, +00[) when a > 0 and Ty (a) := Ty (] — 00, a]) when a < 0.
Due to the ellipticity (2), we have

Vx € Z, V(z) = V(z—1)| <log <1 ;060) =: (). (16)

In particular, thanks to (3) and (16), the following fact follows from the optimal stopping theorem
applied to the martingale (V' (k), k > 0) at time Ty ([z, +o0[) A Tv (] — o0, x]:
_ —x+C
L <P [T ([z o) < T - o] < L,
where PY denotes the law of V starting from y instead of 0. Moreover, these inequalities remain
valid if we replace | — 0o, x] and/or [z, +00o[ by the corresponding open interval | — co, z[ and/or
|z, +00]. Also, there exist constants ¢; > 0 and ¢} > 0 such that (see e.g. Lemma 7.4),

P[Ty (h) < T3 (R_)] ~hossoo €Y, PTy(R) < Ty (RY)] ~hossoo c1h (18)

r<y<z, (17)

2.2. Definition and properties of left and right h-extrema. The point of view of h-
extrema has been used recently in some papers for RWRE or diffusions in a random potential,
either to prove localization results, see e.g. [3], [11], [24] and [33], or to use localization tech-
niques, see e.g. [4], [15], [21] and [19] (where they are called e’-stable points).

However, these studies use h-extrema of a (maybe drifted) two-sided Brownian motion W, and
sometimes transfer results about W to the potential V by Komlos, Major and Tusnady strong
approximation theorem [50]. This is not precise enough to prove our theorems, so we introduce
and study variants of h-extrema directly for our potential V.
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Let h > 0, and v be a function from Z to R. Following Neveu and Pitman [54], we say that y is
an h-minimum for v if there exist integers a < y < 8 such that v(y) = minj, g v, v(a) > v(y)+h
and v(8) > v(y) + h. We say that y is an h-mazimum for v if it is an h-minimum for —v. In
both cases, we say that y is an h-extremum for v.

One of the main differences with h-extrema of Brownian motion is that unfortunately, in the
general case, h-maxima and h-minima for V' do not necessarily alternate. For this reason, we
introduce the following definitions (see Figure 1).

Definition 2.1. Let h > 0 and v be a function from Z to R. We say that y € Z is a left
h-minimum (resp. right h-minimum) for v if there exist « <y < [ such that

e ming,, 1jv > v(y) (resp =),
e ming, 11 5 v > v(y) (resp. >),
e v(a) >v(y) + h,
e v(B) > v(y) + h.

We say that y is a left h-maximum (resp. right h-mazimum) for v if it is a left h-minimum
(resp. right h-minimum) for —v. In both cases, we say that y is a left h-extremum (resp. right
h-extremum) for v.

With these definitions, left h-minima and left A-maxima for v alternate, and similarly right
h-minima and right A-maxima for v alternate. The elementary proof is given in Lemma 7.7.
Also, between two consecutive left h-maxima y; and y2, more precisely in [y1, y2[NZ, there are
one or several A-minima, among which the smallest one is the only left A-minimum, which is y1,
and the largest one is the only right A-minimum, which we will not use in the present paper.

left and right A-maximum &4V (k) left and right A-minimum
z* 1 (V,h) =2_1(V,h) z5(V,h) = zo(V, h)

Figure 1. Schema of the potential V with left h-extrema x;(V, h) (defined before (19))
and right h-extrema x}(V, h) (defined before (46)).

Left and right h-extrema of V' have the disadvantage of not being stopping times. However, we
will see that they allow a very simple definition of the localization point by, (see (19) below, which
can be compared e.g. to (54)), that they have nice independence properties, that the properties
of the law of trajectories of V between consecutive left or right h-extrema are convenient, and
that we can use renewal theory, which enables for example to prove very useful formulas such
as the law of by, (see Lemma 2.6).
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We now focus on left h-extrema. Let ¥ be the set of functions v from Z to R, such that
liminf} v = —oo and limsupy v = 4+oo. If v € ¥ and h > 0, then the set of left h-
minima of v is unbounded from above and below, and so is the set of left h-maxima of v.
Consequently, for v € ¥ for every h > 0, the set of left h-extrema of v can be denoted by
{zk(v,h), k € Z}, such that k — x(v, h) is strictly increasing and xq(v,h) < 0 < x1(v,h). And
also, limy_, 4 (v, h) = +o0o. Notice that due to our hypotheses (3) and (4), V € ¥ almost
surely.

Similarly as in the continuous case (see Cheliotis [14]), we can now define for h > 0,

- { xzo(V,h) if 2o(V, h) is a left A-minimum for V,
h -—

z1(V,h) otherwise. (19)

As already mentioned, the definition of the localization point b}, given by Sinai [61] is not the
same.

Similarly as in the continuous case for h-slopes, we introduce for each function v € ¥ and for
each i € Z and h > 0 the left h-slope T;(v,h) := (v(j) — v[zi(v, h)], zi(v,h) < j < zit1(v, h)).
Its height and its excess height are defined respectively as

H(T;(v,h)] == |v[zis1(v, h)] — v[zi(v, h)]| > h, e[Ti(v,h)] = H[T;(v,h)] — h > 0.

If z;(v,h) is a left A-minimum (resp. maximum), then 7;j(v,h) is a nonnegative (resp. non-
positive) function, it is said to be an upward slope (resp. a downward slope) and its maxi-
mum (resp. minimum) is attained at @;41(v, h), With sup(y, (v 2),2.01 (0,0 ¥ < V[Ti+1(v, h)] (vesp.

nf (g, (0,0), 2540 (0 0) [ V> V[Tis1 (v, B)] ).

Similarly, if y; and ;41 are two consecutive right h-extrema of v, we say that (v(j) —v(v:), vi <
J < yi+1) is a right h-slope of v (see Subsection 2.6 for some properties of right h-slopes and
extrema). More generally, we call a slope each T=(T(j), a < j < ) € R~ with o € Z,
B € ZN]a, +oo|, such that either T'(a) = 0 = ming, gz T < max|y gz T = T(B) or T(B) =
ming, gjnz T < maxp,gnz T = T(a) = 0. Also, for each slope T' = (T(j), a < j < ), we
define its length ¢(T) := B — «, its height H(T) = |T(B) — T'(«)|, and the translated slope
OT) = (T(j +0), 0< j < f - ).

We call valleys of height at least h of V the intervals [x;(V,h),ziy2(V,h)|, i € Z, such that
zi(V,h) and z;12(V, h) are (consecutive) left h-maxima. The bottom of such a valley is the left
h-minimum ;41 (V, h). If its bottom is by, that is, if by, = x;41(V, h), then it is called the central
valley of height at least h of V.

Knowing, for some h > 0, 0[T;(V, h)] for each i € Z* and (0[To(V,h)], zo(V,h)) allows us to
reconstitute totally the process V' since V(0) = 0. The two following subsections will provide
their laws and independence properties.

2.3. Definition and law of 'TJ ,, and T‘i p- Let h > 0. We define by induction the following

notation. Let Tév)(h) := 0 and for ¢ > 0 (see Figure 2),

(k) = min {k: > ), vik) - ming vy 0V > h}, (20)
mirh(h) = min{k = 75 (h), V() = min_ w0 0 V] (21)
i) = min {k 2 T (h), max w0V = VR) 2 b, (22)
m{),(h) = min {k: > 7V (h), V (k) = max, v ) 0 ) v}. (23)
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Notice that that T,L-(V)(h) < 00 P-a.s. for ¢ > 0 since V € ¥ P-as. due to (3) and (4), and that
the Ti(v)(h), i > 0, are stopping times for the natural filtration of (V'(¢), ¢ > 0).

AV(k) ATY(2) .

(T) (T)

Figure 2. Schema of the potential V' with the Ti(v)(h), ml(-v) (h), T‘;h, T‘ih and ml(-v)*(h)

(defined between (20) and (23), in Definition 2.2 and before (47)).

Let | | denote the disjoint union. Notice that, with a slight abuse of notation, each translated
(left h-) slope T = (T(0),T(1),..., T({(T))) belongs to RT+1  So we can consider our
translated slopes (and T‘I p, and T‘i’ , defined below) as random variables taking values into
Llen+ RY, equipped with the o-algebra {| J,cn« A : VE € N*, Ay € B(R")}, where B(R?) is the
Borel o-algebra of R?. The following notations are useful to express the law of left h-slopes in
the next subsection:

Definition 2.2. Let h > 0. We introduce (see Figure 2),
T = (VIm{ ) +2] =V[m{"®)], 0 <z <mi”(h) —m{"(n)),
T, = (VIms () +a] = Vms ()], 0 <@ <mi”(h) —my (n).

In particular, E(T‘jh) = mgv)(h) - mgv)(h) and E(T&h) = mév)(h) - mgv)(h). We sometimes
write ’TJ and T‘}L instead of TJ p, and ’T‘f ;, to simplify the notation when no confusion is possible
for the value of h. The laws of T‘j p and 7'& 5, are given in the following theorem.

Theorem 2.3. Assume (2), (3) and (4). Let h > 0.
(1) The process T‘jh up to its first hitting time T+ ([h,+o0[) of [h,+oo[, that is, (TJh(k‘),
) V,h )
0 < k < Ty ([h,+09)), is equal in law to (V(k), 0 < k < Ty([h,+00[)) conditioned
V,h
on {Ty([h,+o0[) < Ty(] — o0,0[)}. Moreover, it is independent of (TJh(TTT ([h, +o0[) +
) V,h

k) — T‘;h(TT‘;h([h’ +00[)), 0 < k < K(T‘;h) — TT‘;h([h, +00[)), which has the same law as
(V(k),0<Ek< Mg), with MfL = min{k € N, V(k) = max|gz ) V}, where 71(h) := min{k €
N, max[o,k} V- V(k) > h}
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(iii) Also, E(¢(T}},)) < oo and E(¢(Ty,)) < oo

Before proving Theorem 2.3, we introduce some notation. For a slope (7'(i), 0 < i < {(T))
(recall that T'(0) = 0), we define the slope

CT) = (TIUT) — ] — TINT)], 0 < i < (T)), (24)
with ¢ o ¢ being identity (since 7'(0) = 0 when 7T is a slope).

Proof of Theorem 2.3: Let h > 0. Applying ([25], Proposition 5.2, (ii)), (V [m (V)(h) +z] —
V[mgv)(h)], 0<z< Tl(v)(h) — m(lv)(h)), is equal in law to (V(k), 0 < k < Ty([h,+o0[))
conditioned on {7y ([h,+o0]) < Ty (] — 00,0[}, which proves the first part of (i). The second

one follows from the strong Markov property applied to (V(k), k > 0) at stopping time Tl(v)(h),

which is equal to mgv)(h) + TTJh([h’ +00[).

We now prove some more general results, which will also be useful later. Due to Lemma 7.8, the

mg‘iﬂzl(h), 1 > 1, are left h-minima, the mé‘iﬂzz(h), 1 > 0, are left h-maxima, and the mgv)(h),

i > 2, are the only left h-extrema in [Tl(v)(h), +o0o[. However, mgv)(h) is not necessarily a left

h-minimum, depending on the values taken by (V' (k), k <0).

For k > 1, let é( ) (V) = Aff% = (V( (h) z)—V(m (V)(h)) 0<z< m( )(h) T,iv)l(h)) and
Hkrl)z(V) = 0,:,)1 = (V(m,gv)(h) +z) — V(m,gv)(h)) 0<z< T,i )(h) — mév)(h)). According to
([25], Proposition 5.2, (i)), the processes 5(6) (V) and 0 T)(V) are independent. Also, @Z})L(V) =

4 14 \%4 T r 14 \%4 .

00 (0) V(1) +)) and B0) = 00V (0) — VDB + ). 0
follows from the previous result and from the strong Markov property applied at stopping time
Tl(v)(h) that égE,)Z(V) and 6 r)(V) are independent and more precisely that all the trajectories

gl(le(V) and ka,)l(V), k € {1,2}, are independent. Applying the same procedure by induction,
with the strong Markov property applied successively at stopping times T,EV)(h), k > 1, proves
that all the trajectories 5,&31 and 9,:,)1, k > 1, are independent.

In what follows we will ”glue” trajectories. For two trajectories (f(i), a <7 <b) and (g(i), ¢ <

i < d), by gluing g to the right of f, we mean defining a new function j : {a,...,0+d—c} - R
such that

i ~ ] f) ifa<i<b,
](Z):Glue(f’g)(z)’_{f(b)—l—g(i—b—i—c)—g(c) ifb<i<b+d-—ec

Thanks to the previous paragraph, the trajectories

522) = (V(z+m{"®) - V(m (), 0 <z <m)(h

(25)

m"\(h)),  keN* (26

) -
are independent, since the k-th one is obtained by gluing é}f,)l and, to its right, (V(T,gv)(h) +
z) — V(Tév)(h)) 0<z< m,(€+)1(h) — Tév)(h)) (A,(ﬁl ,) (with ¢ defined in (24)), that is,
@Vh) = Glue [A(Th’c( k+1, w]-

Also by the strong Markov property applied at stopping time TZ(Z)(h), 55? +in (V) =taw gyfz(V)

and 622)+z‘,h(v) =law éyh)(V) for every k > 1 and i € {1,2}. Consequently, using the previ-

ous paragraph, %ﬁlh = Glue[ 1 C 05 )] St Glue[0 [T})UC (05))] =81 =T}, and
1% r
aékj)q h= Glue[ 2k+2 th( 21<;+3 1)) =taw Glue[Aé ;)wC(A( ))] 2 h = T for every k € N.
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Finally, by the strong Markov property applied at time Tl(_v)(h), (éﬂ) (=V), 557",)1( V)) is equal
in law to (—61)(V), =0\")(V)). Similarly, (65)(=V),05)(=V)) =taw ( 5‘;,1(1/) —85)(V)).
As a consequence, T—iv,h = Glue[/ﬁ\g%(—V),C(géa(—V))] =10 Glue[ — (V) ¢(— A(Z) (V))]
= —Glue [ggT})L(V), C(g(ﬂl(V))] = —T‘;h. Also, applying this to —V instead Of V gives T—V,h =law

—T‘%h, which ends the proof of (ii).

We now prove (iii). Due to (3) and (4), there exist @ > 0 such that P[V (1) > a] =: b > 0. Let
d := |h/a] + 1. Now, notice that TI(V)(h) < d(Ng + 1), where Ng := min{i € N, VO < k <
d, V(id+ k) — V(id) > ak}. Hence, E(Tl(v)(h)) < d(E(Ng) + 1) < oo since Ny is a geometric
r.v. with parameter P[VO < k < d, V (k) > ak] > b® > 0. Using the strong Markov property, we
get similarly E(Tév)(h) — Tl(v)(h)) < o0o. Consequently, E(E(T‘Ih)) = E(mg/)(h) - mgv)(h)) <
E(Tév)(h)) < oo. Finally, applying this to —V, we get E[E(T‘ih)] = E[E(’Tjwl)] < o0, since
Ty =taw =Tyt by (i). This proves (iii). O
2.4. Independence and law of translated left h-slopes via renewal theory. Notice that

the law of V may be nonsymmetric, so T‘j 5, and —T‘i h =law T_TV ;, may have a different law,

contrarily to what happens for Brownian motion (imagine for example that the jumps of V
belong to [-2, —1] U [4, 5]).

The following theorem is proved simultaneously as the next one. It says that for h > 0, roughly
speaking, conditionally on the central left h-slope Top(V, h) being upward (or being downward),
the translated left h-slopes 0[T;(V, h)], i € Z*, are independent and are independent of the (non
translated) central left h-slope To(V, h), and that the translated left h-slopes 0[T;(V, h)], i € Z*,

have the same law as T‘j ,, (under P) for the upward ones (ie the ones with i € (2Z) — {0} when
To(V, h) is upward, the ones for i € (2Z + 1) when Ty(V, h) is downward) and the same law as
7"} ,, (under P) for the downward ones (the other ones).

We denote by Z(T‘Ih) (resp. X(T&h)) the law of T\Ih (resp. T&,h) under P.

Theorem 2.4. Let h > 0. (i) Conditionally on {V (z1(V,h)) > V(zo(V, h))} (i.e. on the central
left h-slope To(V, h) being upward), the 0[Toi+1(V,h)], i € Z have the law X(T‘%h) whereas the
O[Ty (V, h)], i € Z* have the law Z(T\Ih)’ and (0[To(V, h)], z0(V, h), x1(V, h)), [Ti(V, h)], i € Z*
are independent.

(ii) Conditionally on {V (z1(V,h)) < V(zo(V,h))} (i.e. on the central left h-slope To(V, h) being
downward), the 0[Tai+1(V,h)], i € Z have the law Z(T‘;h), whereas the O[T (V, h)], i € Z* have
the law X(T‘}L’h), and (0[To(V, h)],xo(V, h),z1(V, h)), 0[T;(V,h)], i € Z* are independent.

However the law of the central left h-slope Typ(V, h) is different. It is provided by the following
renewal theorem.

Theorem 2.5. Let h > 0, Ag C Z and Ay C Z. For A € {[,en+ At : Vt € N*, Ay € B(R!,)}
(so that the only slopes in A are upward slopes), we have

PIO(To(V,h)) € A, z0(V, h) € Ao, 21(V, h) € Aq]
E[8{0 <i < (T, (—i) € Ao, ((T3,) —i) € Abligs e
E[U(T],) + 6T )]
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Moreover if A € {| J,en- Ar = VE € N, Ay € B(RL)} (so that the only slopes in A are downward
slopes), then

PO(To(V, h)) € A, wo(V,h) € Do, 21(V, h) € A

E[{0<i <€(Ti)). (=) € Ao, (U(Ty) — i) € A}l ] o)
E[e(Ty,) + £(Ty:5)] ‘
Finally, for all nonnegative function, ¢ : | |,cn- R? — [0, 400, measurable with respect to the

o-algebra {| |,en Ar = VE € N*, Ay € B(RY)},

E [90 [0(To(V, h))] 1{wo(V,h)€Ao}1{zl(V,h)eAl}]
E[t{0<i<0(T,), (=i) € Ao, (£(TL,) —i) € A bo(Tih,)]
E[U(Ty)) + (T,)]

+E[jj{0 < i <U(THy), (i) € Ao, (((Tyr,) — i) € Aryo(Ti)) | (29)

E[E(T\I,h) + E(T&,h)}

Proof of Theorems 2.4 and 2.5: Let h > 0, Ag C Z, Ay C Z, q <0< r,and B; €
{Uen- Ar - VE € N*, Ay € B(RY)} =: G, for ¢ < i < r. We first assume that By € {| |,cn- At :
Vt € N*, A, € B(RY)}, so that By contains only upward slopes.

For t € Z and v € ¥, let, loosely speaking, Ty (¢, v, h) be the left h-slope around ¢ for v, that is,
the left h-slope whose of v domain contains ¢, and denote its domain as [zo(t, v, h), z1(¢, v, h)].
More precisely and more generally, for j € Z, we define Tj(t,v,h) = Tiyj(v, h) if and only
if zi(v,h) <t < ziy1(v,h), and for this unique i, z;(t,v,h) := x;4;(v,h) for j € Z (recall
that the notations x;,;, Ti4; are defined before and after (19)). We also introduce V_¢(k) :=
V(k—t)—V(—t) for t € Z and k € Z. Hence, for t € N,

<{l’0 Vh EA(), :L'l(Vh EAl}ﬂﬂ{e Vh GB}> (30)

i=q

- P

7N

{(zo(t,V_,h) —t) € Ag, (w1(t, Vs, h) — t) eAl}mﬂ{e (t,V_¢, h)] EB})

= P[EB(1)]
= P[Ep(t), m"), 5(h) <] + P[Ep(t), m") (n) > 1], (31)

where Eg(t) := {(zo(t,V,h)—t) € Ay, (z1(t,V,h)—t) € A }NNI_ {9 (t,V,h)] € B;}, because
xj(V,h) = x;(t,V_y,h) —t for j € Z, O[T;(V, h)] = 0[T;(t, V_y, h)] forzGZ andV has the same

law as V.

Let (Yx)rez be a sequence of independent left h-slopes, such that Yo, =i TJ poand Yop 11 =0

T‘}LJL for every k € Z. We glue sequentially (see (25)) Yo, Y1,..., Y%, ... to get a process (Y (i), i €
N), starting from 0 (i.e. Y(i) = Yy(i) for 0 < i < £(Yp)). This process (Y (i), ¢ € N) has the same
law as (V[mgv)(h) +z] - V[mgv)(h)}, z > 0). Indeed, this last process can be obtained from

gluing 5(1;), ég?, o ,5,9;1), ... (see (26)), which are independent and such that éﬁ‘? Zlaw Ye—_1,

k € N* by definition of the Yj and the law of the gl(xl) (see after (26)). We also glue sequentially
the Y, k < 0 in the same way to the left of (Y (i), ¢ € N), so that Y} is followed by Y1,
k € 7Z. The resulting process is denoted by (Y(i), ¢ € Z), with Y(0) = 0. Notice that
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zo(Y,h) =0, for i € N*. We also have z;(Y,h) = £(Yp) + --- + £(Y;_1), and for i € Z* |, we have
£i(Y h) = —6(Y_1) — - — 0(Y).
We can assume without loss of generality that ¢ € (—2N*), so T;(V, h) is an upward slope when
9(To(V, h)) € By. Using, in the second equality, the fact that (V' (:c—l—mgv)(h)) —V(mgv)(h)), x>
0) has the same law as (Y (z), z > 0) (see (26) and below), and is independent of (V(z), z <
mév)(h)) (see the paragraph before (25)), we have for ¢ € N,

t

PlEs(t), m") s(h) <t] = Y P[Es(t), m{"(h) =y, m™) 4(h) <]
y=0
= S P[m{"(h) = y)hs(t —y) (32)
y=0
where hy(p) = P[Ep(p) N {(Yo) + -+~ + £(Y_g_1) < p}], with Ep(p) —{(xo<p,y h)—p) €
Ao, (:rl(p,Y,h) —p) e Abnnk q{Q[ p,Yh] € B} p € N. Indeed, on {m q+3 h) < t},

we have zo(t,V,h) > m(_vl;)Jr?)(h) thanks to Lemma 7.8, thus z4(¢t,V,h) > mgv)(h), so Ep(t)

depends only on (V (z + mév)(h)) - V(mgv)(h)), z>0) = (Y'(z), z>0), with z;(t, V,h) =
xi(t—y,Y' h)+yand 0[T;(t,V,h)] = 0[T;(t—y,Y’', h)] for i > qon {mév)(h) =ylandY’ =, Y.
We want to prove that hp(p) has a limit as p — 4+o00. For p € N| let

a = Pl{UY0) -+ LY g1) — ) € Do, (E(Yo) + - +L(Y_g) —p) € Ay}
0 £ p (1) o = K-y 0) < Y-} 0 VYo € B .

We have for p € N, since g € (—2N*),

hs(p)

= P[Es(p), 6(Yo) + -+ L(Yogo1) <p < U(Yo) + -+ L(Y_g1) + 6(Y_y)] (33)
+P[EB< ), U(Yo) + -+ U(Y_g) < p < £(Yo) + ~-+€<Y_q>+£<Y_q+1>} (34)
+Z ((Y0) + (V1) =y, Ep(p), £(Ya) + -+ £(Y-g41) < p — 9] (35)

= a,+0+ Z P((Yo) +£(V1) = y]P[Ep(p—y), L(Yo) + -+ £(Y_g1) <p—y]
y=0

= a,+ Y P[(Yo)+ (V1) = y]hp(p—y).
y=0

Indeed in the probability in line (33), the image by 6 of the slope Ty(p, Y, h) containing p is Y_,
and the 0 in the second equality comes from the fact that on the set inside the probability of line

(34), 0[To(p, Y, h)| = Y_g41 is a downward slope, whereas By contains only upward slopes, and in
the sets appearing in (35), there exists j > 0 such that z;(p—y, Y, h)] = £(Y2)+- - -+ L(Y_gi14j+i)
and 9[T;(p — y,Y,h)| = Y_g424j4i for i > g and (Yp, Y1) is independent of (Yi42, i > 0), which

has the same law as (Y;, ¢ > 0).

So, hp(p) is solution of the discrete time renewal equation h, = a’ + >0 —o Jrhp— k, p €N,

with h, = hp(p) and fr = P|4(Yy) + 4(Y1) = k. Notlcethata >0 p € N and a, <
P pOp
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E[0(Yo) + -+ + £(Y_g)] + a0 < (gl + DE[E(T;,) +£(Ti#,)] + 1 < 00 by our Theorem 2.3 ().
So, Theorem 2.2 of Barbu and Limnios [7] with its notation X,, = ¢(Yap—2) + £(Y2,—1) > 0,
n > 1sothat fp =P[X; =kland u, :=) . _(PXi1+---+X,, =n]=> " _Pl(Yo)+£(Y1)+

<+ L(Yom—2) + £(Yomm—1) = n] with X; +--- 4+ Xo = 0 by convention, give us that this renewal
equation has a unique solution, which is

hp(p) = hy = (u * a/)p = Zup—ka;w p € N.
k=0

Let n; € N* and ny € N* be such that P[Ty(h) = ny | Tv(h) < Ty(R%)] =: ¢ > 0 and
P(Y1) = ng] =: ¢3 > 0 and let ¢4 := P[Tv(—h) < Ty (]0,00[)] > 0 due to (3) and (4). Hence,
using the law of ’T‘;h (see Theorem 2.3 (i)), P[¢(Yy) = ni] = P[E(T‘Ih) = n1| > cees > 0.
Also, P[{(Yy) = n1 + 1] > eaP[V(1) > 0Jcy > 0. Thus, P[{(Yy) + 4(Y1) = n1 + n2] > 0 and
P[¢(Yo)+£4(Y1) = n1+n2+1] > 0, and then the renewal chain (X; +-- -+ X,,), is aperiodic. It is
also recurrent since X; < oo a.s., e.g. because E(X;) = E[K(T‘I’h) + B(T‘%h)] < oo by Theorem
2.3 (iii). So by the renewal theorem (see e.g. Barbu and Limnios [7], Theorem 2.6), we have
Up —psioo 1/E(X1) = 1/E[( (T‘j R (’T& »)]. Moreover since this renewal chain is recurrent
and aperiodic and Z;io la,| < oo, we have by the key renewal theorem (see e.g. Barbu and
Limnios [7], Theorem 2.7),

p

hp(p) =hp = ) Up—1a), —psioo
kZ:O E[U(T],) + )

Also, let Ako,-~~7kr—q = {p €N, (k() + -+ k_q_l —p) € Ay, (k‘o + -+ k_q - p) € Al} N {0 <
p—ko—-—k_g1 < k:,q} for (ko,...,kr—q) € N"79F1 We have,

o Z a (36)

Nk
’Eg‘

i
o

I
NE

P [ h {¢(Y;) =k;j} n{Yj € Bisgy Ni{p € Ako,...,qu}]

I
=)

p

= > <ﬁ P [{K(Yj) =k} n{Y; e Bj+q}}> i Lakg..ok,, (P)
p=0

(koyeskr—q)ENT—a+1 =0

- > (I elam-sinmenu])

(ko kr—q)ENT—a+1 2 0<j<r—q, j#—q

E <1{£(Y_q):k_q, Y_,€Bo} Z Ty, kr_g (P))

p=0

- > (I el =sinm e )

(kgyeeeskr—q)€ 0<j<r—q,j#—q

(ko ye.orkiy_g)ENT—at1

><E<1{£(Y_q)=k_q, v_,eBo}H{0 < m < U(Y_g), (—m) € Ao, ({(Y—q) —m) € Al})

= < 11 P[Yj € Bj+q}>

0<j<r—gq, j#—q
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XE(l{y_quO}ﬁ{O <m< K(Y_q), (—m) € Ay, (K(Y_ ) — m) S A1}> . (37)

Now, notice that by definition of (Yj)xez and since g € (—2N*), the product in (37) is equal to

( [I Plr.e Bi]> x ( [I Pl7e BZ-D. (38)
q<i<r, i#£0,1€(27) q<i<r,i€(2Z+1)

The second probability in (31) is less than P[m(_vl;lr?)(h) > t] and then it goes to 0 as t = +o0

since m(_‘;)Jrg(h) < T£‘23r3(h) < o0 a.s. since V€7 as.

Combining this with (32), letting ¢ — +o0 and applying the dominated convergence theorem
gives (30) = lim,—, 100 hp(p) (since this limit exists by (36)). This, together with (36), (37), and
(38) leads to

(30) = < H P[T‘IhEBiD X ( H P[T&,hGBiD

q<i<r,i#£0,i€(27) q<i<r,i€(2Z+1)

L0 ,e0) m —-m —-m
E(Eme O S m < Y- (o) € Bon (AT >eA1}>. (39)

Moreover, taking (only here) all the B; equal to | |,y RY, except By in (39), we get
P(ZL’()(V, h) € Ay, IEl(VY, h) S Al, H[To(‘/, h)] € Bo)

_ (17, ey HO < m < AT, (2m) € A, (UT,) - m) € A (40)
E[C(TL,) + €(T)) ’

since Y_, has the same law as 7;|, because q € (2Z). This proves (27). Consequently, (39)
q V.,h

becomes
(30>=( 11 P[TvT,hEBiDX< 11 P[T&hEBZ‘D

q<i<r,i#0,i€(27) q<i<r,i€(2Z+1)
x P({zo(V, h) € Ag, 1(V,h) € A1} N {O[To(V, k)] € Bo}). (41)
This proves Theorem 2.4 (i).

We now prove (28) and Theorem 2.4 (ii). We assume that By € {| J,cn- A¢ @ Vt € N*, A; €
B(RY)}, so that By contains only downward slopes. Notice that z;(=V,h) = x;(V,h) and
O[T;(=V,h)] = =0[T;(V, h)] for i € Z. Then, =By = {—f, f € Bo} € {| Jyen- At : Vt € N*, Ay €
B(RY)}, and for each ¢ < i < r, 8(T;(V,h)) € B; iff 6(T;(—V,h)) € (—B;), for which we can
apply (41) and (40) as follows. We get,

P<{$0(V7 h) € Ag, z1(V,h) € A} N h {0[T3(V, h)] € Bz}) (42)

= P({an(-Vih) € Ao (Vi) € A}V OIT(-V.)] € (-5}

i=q

= < 1T P[ij C (—Bi)D X < 11 P[va,h = (—Bz-)D

q<i<r,i#£0,ic(2Z) q<i<r,i€(2Z+1)
) E(l om0 m < (T ), (—m) € Ao, (UTH,,) —m) € A1}>
E[f(T_Tv,h) + E(ﬁv,h)]
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_ ( I1 P[TvﬁheBli< I1 P[T‘IheBiD
q<i<r,i0,i€(2Z) q<i<r,i€(2Z+1)

E(Lprs ey B0 < m < €T, (=m) € Do, (U(T,) —m) € Ar})
N
E[¢ (T )+€(TVh ]

)

since TTVh =law ’T‘ih and E [/ (TTVh) +£(T¢Vh)] = E[f( n) + ( »)] by Theorem 2.3 (ii).
Taking all the B;, i # 0, equal to | |,cy- R?, this proves (28) Thls in turn proves that

(42) = < [I % heB) ( [T‘;hEBZ—D

q<i<r,i£0,i€(2Z) g<i<r, 26(2Z+1)
XP(I‘()(V, h) € Ay, xl(V, h) € Ay, Q[T()(V, h)] S Bo)7

which proves Theorem 2.4 (ii).

In order to prove (29), we first show that (29) is true for ¢ = 14 for any A € {| |,cn- At = VE €
N*, A; € B(R")} = G. To this aim, let A € G. We introduce S := | J,c- Ry. Applying (27) to
ANSy (resp. (28) to ANS_) proves (29) for ¢ = Lans, (resp. ¢ = lans_), since the second
(resp. first) expectation in (29) is 0 when for ¢ = 14ns, (resp. ¢ = 14ns_), because T&h ¢ Sy
(resp. T‘;h ¢ S-). Also, (29) is true for ¢ = 1 (s, us_) since every term is equal to 0 in (29)
in this case, since when 0[Ty(V, h)] is a downward (resp. upward) slope, it belongs to S_ (resp.
S4) and T‘i p € S_ (resp. T‘I , € S1). Hence, adding (29) in the three previous cases proves
that (29) is true for ¢ = 14, for every A € G.

Then by linearity, (29) is true for every simple function Y 7 _; a;1p, forp > 1, a; > 0 and B; € G,
1 < i < p. Finally, (29) is true for any nonnegative G-measurable function by the monotone
convergence theorem, since every nonnegative G-measurable function is the pointwise limit of a
nondecreasing sequence of nonnegative simple G-measurable functions. O

2.5. A simple expression for P(b, = x). A first application of our renewal Theorem 2.5 is
the following lemma, which contains key formulas to prove Theorem 1.4 and study the main
contribution in Theorem 1.1 (see e.g. (129), (214) and (220)).

Lemma 2.6. For h > 0,

Yz >0 Pb, =) = PU(Tv) 2 ] (43)
=" " E¢(7] )+aT )]

(
PIUTa) > 2]
E[e (7, + (7))

(44)

Proof: Let h > 0 and z € Z. If x > 0, applying Theorem 2.5 eq. (28), with 4 = | |7, R",
Ay = {z} and Ay = —N,

Plbp=xz) = Plbp==x, 21(V,h) =by >0 =P|z1(V,h) =z, 6(To(V,h)) |_|R’]

E({0 <i < ((Ty), U(Tyy) —i==}) _ PlU(Ty )2]
E[6(T,) + (7)) E[L(T,) + (T

W]
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Similarly if z < 0, applying Theorem 2.5 eq. (27) with A = |22, R’ , Ag = {z} and A; = N*,

(ﬁ{0<2<€( ),z:—az}) P[E(T‘;h) >—x]

P(bn, = .
E[£(T3,) + £(T3,)] E[¢(T7,) +€(T3)]
In particular,
PN [ £t I W 1 ;A EL R
E[E(T\j,h) + K(T\},h)] E[E(ij,h) + E(T&,h)] E[K(T\Zh) + E(T&,h)]
so both formulas of Lemma 2.6 are true for z = 0. O

2.6. About right h-extrema and right h-slopes. We have detailed in the previous subsec-
tions, for h > 0, a path decomposition of the potential V', which we cut into different trajectories,
called left h-slopes, between random times which are the left h-extrema. We have also given the
laws and independence properties of these left h-slopes, in particular in Theorems 2.3, 2.4 and
2.5.

We now focus on right h-extrema and provide a similar path decomposition of V' with right
h-slopes and right h-extrema. Similarly as for left A-minima, for v € ¥, for every h > 0, the
set of right h-extrema of v can be denoted by {z}(v,h), k € Z}, such that k — x}(v,h) is
strictly increasing and zj(v, h) < 0 < z7(v,h) (see Figure (1)), the first inequality being strict
and second one being large, contrarily to inequalities for left h-extrema z;(v,h), i € Z, in order
to get relation (46) below. Also, we prove below that the right h-extrema of v can be obtained
from the left h-extrema of v (.) := v_(.) := v(—.) (and in particular, V—(.) := V_(.) := V(—.);
both notations V'~ and V_ will be used throughout the paper, depending on which one is more
convenient). More precisely, we have:

Lemma 2.7. Letv e ¥. For h >0,
Vi € Z, z;(v,h) = —z1_i(v", h). (46)

Proof: Let v € ¥ and h > 0. First, notice that, applying Definition 2.1, —z;(v™, h) is a right h-
extremum for v for each j € Z, so {—z;(v™,h), j € Z} C {z}(v,h), i € Z}. Similarly, for i € Z,
—xz} (v, h) is a left h-extremum for v™, so {z}(v,h), i € Z} C {—zj(v",h), j € Z}, thus these
two sets are equal. Moreover, (z7(v,h))iez and (—x_j(v™,h))jcz are two strictly increasing

sequences, taking the same values, so there exists k € Z such that z} (v, h) = —x;_;(v—, h) for
every ¢ € Z. Since z{(v,h) < 0 < zj(v,h) and —z1(v—,h) < 0 < —zo(v~,h), we have k = 1,
which proves the lemma. O

Let h > 0. Similarly as for left h-extrema, for v € ¥, we introduce for each i € Z the right h-slope
T (v, h) := (v(j) —v[z;(V,h)], 27 (v,h) < j < xj (v, h)). If 25 (v, h) is a right h-minimum (resp.
maximum), then 0[T} (v, h)] is strictly positive (resp. strictly negative) on {1,...,¢(T;*(v,h))}.
and its maximum (resp. minimum) is attained at ¢(T"(v, h)). The notation with a star for
and T corresponds to this fact that the translated slopes 8[T*(v, h)] are non-zero except at the
origin.

Using the previous definition of 7' (h) (see around (20)), we define for i > 0 (see Figure 2, in

which m{"*(h) = m{" (h) and m{"*(h) = m{") (h)),
my i (h) = max{k e [} (n), ng@l( )] NN, V(R) = min o) 00 0 V]
V)* 14 \%4
mila(h) = max {k € [/ (), 7 (0] AN, V(k) = max ) 0 0 0 V-
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Also, similarly as in Definition 2.2, we introduce for h > 0,

75 = (Vm () + 2] —vm{ W], 0 <z <md () —m (), (47
T = (VI ) +a] = Vms "), 0w <m(h) —m (). (48)

Recall Ty, and Ty, from (14) and (15). The following proposition is similar to ([25], Proposition
5.2) with mgv)*(h) instead of mgv)(h). The other main difference is that in (ii), we condition
by {Tv ([h, +o0[) < T} (] — 00,0])}, closed at 0, instead of {Ty ([h,+o0[) < Ty (] — 00, 0])}. Since

we did not find this lemma in the literature (in which our stopping time Tl(v)(h) is generally
replaced by a deterministic time, see e.g. [9]), we give a detailed proof.

Proposition 2.8. Let h > 0. Let V be a random walk given as in (6) by a sequence of partial
sums of i.i.d. r.v. logp;, i € Z, such that Pllogpy > 0] > 0 and P[logpy < 0] > 0 (this result
does not require Hypotheses (2), (3) or (4)). If moreover liminf, ,,~ V(z) = —00 a.s., then
(i) The processes (V[mgv)*(h) —k] - V[mgv)*(h)], 0<k< mgv)*(h)) and (V[mgv) (h)+k| —
V[mgv)*(h)], 0<k< Tl(v)(h) - mgv)*(h)) are independent.

(ii) The process (V[mgv)*(h) + k] — V[mgv)*(h)] 0<k< T(V)(h) - mgv)*(h)) is equal in law
to (V(k), 0 <k < Ty([h,+oc[)) conditioned on {Ty ([h,+oo[) < Ty (] — 00,0])}.

Proof: We fix h > 0, and consider V satisfying the hypotheses. Let 1 and 15 be two nonnega-
tive functions, | J,cn« RY — [0, +-00[, measurable with respect to the o-algebra {| |,y At : VE €

N* A; € B(R")}. To simplify the notation, we set m} := mgv)*(h) and 7] 1= TI(V)(h).
We now define by induction, e.g. as in Enriquez et al. [31] and [32], the weak descending ladder
epochs for V as

eo := 0, ei:=1inf{k >e;_1 : V(k) <V(ei—1)}, 1> 1, (49)

with e; < oo a.s. for each i > 1 since liminf, , . V(z) = —oo. In particular, the excursions
(V(k+e)—V(e), 0 <k <eir1—e€),i>0areiid. by the Strong Markov property. Also,
the height H; of the excursion [e;, e;1+1] is defined as

Hi:= max [V(k)—V(e), i>0. (50)

e;<k<eii1

Notice in particular that m} = er, where L := min{¢ > 0, H; > h} < oo a.s. Hence, summing
over the values of L, we get
E [ (V(mi — k) = V(m}), 0< k < mi)a(V(mi + k) = V(mi), 0< k < i —mf)]
(o)

=D _E[n(Vl{ee = k) = V(er), 0k <o)Ly oy Lmzny
=0

X o (V(er+k) = V(er), 0<k < Ty(pey-viey([h, +o0]))]
= 11 11>,

due to the strong Markov property at stopping time ey, where, applying it again on the second
equality,

Mg

I := ) E[¢n(V(eg—k) —V(er), 0<k<er)l |P[H, > 1]

i—o1H;<h}
0

=Y E[1(V(ee—k) = V(er), 0<k <er)liz—py]

=0

8 T
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= E[y1r(V(mi — k) = V(m]), 0 <k <mj)]
and, since P[Hy > h] = P[Ty ([h, +o0[) < T} (] — o0, 0])],
My = E[a(V(k), 0 < k < Ty ([h,+ooD) | Ty ([h, +00]) < T (] — 00, 0)]-
Since this is true for all ¢1 and 19, this proves the proposition. O
As a consequence, we get
Theorem 2.9. Assume (2), (3) and (4). Let h > 0.
(i) The process TJZ up to its first hitting time T 1« ([h,+00[) of [h,+oc[, that is, (TJ}:(I{:),
) V,h )
0 <k < Th. ([h,+00))), is equal in law to (V(k), 0 < k < Ty([h,+o0])) conditioned on
V,h
{Tv ([h, +o0]) < Ty (] — 00,0])}. Moreover, it is independent of ( 3 (T i ([h, +o0]) + k) —
T ( T ([, —l—oo[)), 0<k< E(T‘I};) TT* ([, +oo[)), which has the same law as (V(k:), 0<
k< Mg), with M,ﬁl = max{0 < k < 71(h), V(k) = max|g 7 )V}, where 71(h) := min{k >
0, maxjg V — V(k) > h}.
(11) 7-_T;k/7h =law _T\%Z and T;L;h =law _T‘j;l
(iii) Also, E(¢(Ty,)) < oo and E(£(Ty),)) < oo.
Proof: The proof of this theorem is the same as the proof of Theorem 2.3, with Proposition

2.8, Tth 4 )*(h) and right extrema instead of ([25], Proposition 5.2), TVh, -V)(h) and left
extrema respectively. O

The following lemma says that ¢, defined in (24), transforms translated left (resp. right) h-
slopes for V' into right (resp. left) ones for V'~ (see Lemma 2.10 below), and upward ones into
downward ones.

Lemma 2.10. For i € Z, C[0(Ty(V, h)))] = 0[T*,(V—, h)].

Proof: Recall that 2} (V,h) = —x1_,(V ~,h) for k € Z by Lemma 2.7. Hence for i € Z,
ClOT(V, h))] = C[(VI[2i (V. h) + 5] = VIz(V, h)], 0 < j < @i (Vo) — 24(V, h))]

= (V7 [z (Voh) +j] = V7 [=zi (Vo )], 0 <j <zipa(Voh) — (Vi h))
= (VT [25,(V7,h) +4] =V [22,(V7,h)], 0<j < —a2,(V7,h)) +21_,(V ", h)))
= [T, (V~,h). (51)

This proves the lemma.

As a consequence, we get the following result.

Theorem 2.11. Theorems 2.4 and 2.5 remain valid if we replace "left” and each xi(V,h),
T (V, h), T\Ih and T\ih respectively by “right”, x3(V,h), T (V,h), TJ’;L and T‘%, and < and <
respectively by < and < in Theorem 2.5.

V)

Proof: Indeed, their proofs remain valid if we make these replacements and also replace m, "’ (h)
by my*(h), k € Z, and Tj(¢, V, h) by T;(t,V, h) = Tf; (V. h) if 25 (V,h) < t < af, (V. h), and
for this unique 1, x;‘f(t,V,h) = x7 (V, h) for j € Z, and as a consequence, replace < and <
respectively by < and < throughout the proof. O
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The following proposition, combined with some other results such as Theorem 2.9, will be useful
to obtain the law of V' on the left of x;(V,h) (for i € Z) conditionally on by, < 0 or by, > 0, in
view of Theorems 2.4 and 2.5.

Proposition 2.12. Let h > 0. Then, (i) C(T‘jh) =law T‘if , and (ii) C(T&h) =law TJf -

Proof: We denote by Z(T‘ﬁ ,) the law of T‘ﬁ , under P. Conditionally on {V[zo(V,h)] <
Viz1(V,h)]} = {V-[z7(V",h)] < V7[z5(V~,h)]} (thanks to (46)), 8[T>(V,h)] has the law
E(T‘;h) by Theorem 2.4 (i), whereas 0[T*,(V ~,h)] has the law X(T&f ,) by the version of

Theorem 2.4 (ii) with stars (see Theorem 2.11) applied to V~. This and (51) prove our (i).
Applying the same arguments to 0[T1(V, h)] and [T, (V~, h)] proves (ii). O

2.7. Relation with another localization point. In this subsection, we recall another way

to define a localization point denoted by bELK), and we prove that bg{] is equal to by, (defined

in (19)) with large probability. The localization point bl(lK) is useful because we will apply the

previous result of Kesten ([48], Thm 1.2) to the limit law of b;zK) /h? (in the proof of Theorem
1.4, see after (66)), whereas our b, is convenient e.g. due to Lemma 2.6 and to the law of the
potential near by, (by Theorems 2.3, 2.4, and 2.5).

To this aim, we define for any process (Z(k), k > 0), similarly as in Hu ([44] from eq. (2.1) to
eq. (2.6)) but for processes indexed by N,

Z(t) := SllchitZ(k:)’ Z(t):= inf Z(k), Z4(t) == sup (Z(s) — Z(s)) t >0,

0< 0<k<t 0<s<t
dz(h) :==inf{t >0, Z*(t) > h}, h>0. (52)
Also, with V_(k) := V(—k) for k > 0 as before, we introduce (see Figure 3)
by (h) = inf{0 <u<dy(h), V(u) =V(dv(h)},  h>0,
bp(h) = sup{0 <u<dy (), V()= V_(dv(h)},  h>0. (53)

The sup instead of inf in the last line will be necessary so that in some cases, —b,(h) is a left
h-minimum for V instead of a right one (as in Figure 3). Finally, we introduce

s if vV Vo
= { 5 laen <o o

Let (W(z), z € R) be a two-sided Brownian motion, and W_ := (W(—z), x > 0). As in Hu

([44] eq. (2.6)), for w = W or w = oW, we define béK’w) by the same formula as in (54), the
previous notations of this Subsection 2.7 being the same, with V' replaced by w, and the inf and

sup being taken for real numbers instead of integers. As already stated by Hu ([44] after eq.

(2.6), his b(1) being a.s. equal to our bgK’W) since the sup in (53) is a.s. a inf when V is replaced

by W), the density of bgK’W) is oo, defined in (5). Indeed, it is easy to check that bgK’W) is a.s.

equal to the r.v. L of Kesten ([48], as expressed in the statement of his Lemma 2.1), which has
density ¢ by ([48], Thm 1.2).

For some choices of P, we have P[bh #+ bgK)] > 0 for some A > 0. Indeed, for example, if
P[V(1) = 2] > 0 for every z € {—2,—1,0,1,2}, we have for h € N*, with non zero probability,
V(-1)=V(0)=V(1)=0,withV(k)=k—1for 1 <k <h+1,V(k)=|k|-1for —h <k < —1
and V(—h —1) = h+ 1, and so b;bK) = b);(h) = 0 whereas b, = —1 # b;bK). However, we prove

that bgK) = by, with large probability. More precisely, we have:
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Lemma 2.13. There exists a constant cs > 0 such that, for large h,

P £ by] < esh™t.

This lemma will be useful to prove Lemma 2.14 and Theorem 1.4. Moreover, we think it will
also be necessary in a work in progress [23].
Proof of Lemma 2.13: Let A > 0. First case: we assume that

max | V[bi>(h)], V[b7, (h)] + h} < V_[dy_(h)] — 2Cy. (55)
Let c_(h) := sup{k < 0, V(k) = V_[dy_(h)]} (which may be —dy_(h) or not). First, by

IZ 2Cy
P Vb ()] 4 b 3

N VA

V_(dv_(h))

Figure 3. Schema of the potential V' for the first case of the proof of Lemma 2.13 when
V by (h)] < V[bj (R)] + h.

definition of b (h), we have V[b{>(h)] = min[b‘t(h)7dv(h)} V. Also for the same reason, V[b{>(h)] <
min, bt (h)-1] V, with min() = +o00 by convention, and since —dy (h) < ¢_(h) < 0, we have
min[c_(h)vo] V> V(C_ (h)) —h—Cy = ﬁ[dv_ (h)] —h—Cy > V[b;(h)] first by definition of dy._ (h)
and ellipticity, then by definition of ¢_(h) followed by (55). So, ming, ;) b (h)—1] V > VI[bi:(h)].
Moreover, by definition, V[dy (k)] > V [b]:(h)]+h. Finally, V[c_(h)] = V_[dv_(h)] > V[b};(h)]+h
first by definition, then by (55). Consequently, b?;(h) is a left A-minimum.

Assume that there exists a left h-extremum in [0,b],(h) — 1]. Since b (h) is a left h-minimum,
and left A-maxima and minima for V alternate by Lemma 7.7, there would be at least one left
h-maximum in this interval, which we denote by a € [0,b>(h)[. Now, denote by ~ the largest
left A-minimum such that 7 < «, so that [y, «] is (the support of) an upward left h-slope of V.
In particular,

V() <V(a)—h and ~<a. (56)
Assume that 0 <+. So, v € [0,a], hence V(v) > inf|g o)V = V(a), and then using (56),

Vi) > V(a) = V(o) > V(a) = V(y) > h.
By definition (52) of dy, this would give dy (h) < «, which contradicts o < b (h) < dy (h).

Hence we would have 7 < 0 < a. Using first the fact that [y, a] is an upward left h-slope, then
a € [0,b7,(h)] and finally (55) would give

supp, o V < V(@) < Vb5 ()] < Voldy. ()] = Vie_ (k).
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So c_(h) ¢ [v,a] and since c¢_(h) < 0 < «a by definition, this gives c_(h) < v < 0. Using
ellipticity (16), then (55), we get
Vie—(h) + 1] > V[c_(h)] — Co = V_[dv_(h)] — Co > V[b]> (k)] + Co.
Thus, using (56) in the second inequality,
Vie—(h) +1] = V(y) 2 V[by(h)] + Co — V(7)

>
since V[b},(h)] > V() because a € [0,b];(h)]. So, V_
|c—(h)| — 1, which gives dy._(h) < |c_(h)|—1< | _(h

Vbl (h)] 4+ Co+h—V(a) > Cy + h,

(le —( ) =1) =V_(ly]) > h with 0 < |y| <
)| < dy._(h), which is not possible.

Hence there is no left h-extremum in [0,b{;(h) — 1]. Since b;(h) is a left h-minimum, this
gives z1(V,h) = bi>(h) if bj,(h) # 0 and xo(V,h) = bi>(h) if bj,(h) = 0, and by definition
(19) of by, it follows that b, = b (h). Since V[dy(h)] < max [V[b;}(h)],max[b‘t(h)dv(h)] V] <
max [V[lf‘;(h)}, V[b;(h)]+h+co} < V_[dy._(R)] by ellipticity and (55), we also have b\"*) = b} (h)
by (54). Hence, by = b when (55) holds.

Second case: we assume that

max [ﬁ by (R)], V- [by ()] + k| < Vdy (h)] — 2C,. (57)

This case is nearly the symmetric of the previous one, the only asymmetry being the sup in (53)
(which is necessary for —by,(h) to be a left h-minimum instead of a right one). So we prove

similarly as in the first case that b, = —b,(h) = b;lK) when (57) holds.

Third step: Consequently, if b, # b;tK) then neither (55) nor (57) hold, and so
V_[dv_(h)] —2Cy < max [V[b)-(h)], V[bi(R)] + h] < V]dy (h)]
< max [V_[by;(h)], V_[by; (h)] + h] +2Cy < V_[dy_(h)] + 2Cy,
where we first used the negation of (55), then the definitions of dy (h) and b;(h), then the

negation of (57) and finally the definitions of dy._(h) and by, (h). In view of these inequalities,
we define

By = {=2C, < max [VIb}(h)], V[b{ (h)] + k] = V_[dy_(h)] < 2Co},
Ey = {V[bj:(h)]+h < Vb (h)]},
so that P[b, # b)) < P[E,].

First, notice that on E1 N Fy, writing here 8 := [dv (h)] to simplify the notation, we have
B —2Cy < V[bj>(h)] < B+ 2Cy, and so V[b],(h)] < B+ 2Cy — h thanks to E,. Hence, Ty ([8 —
2Cy, +o0[) < bi7(h) and V[. + Ty ([8 — 2Cp, +00[)] hits V[bj>(h)] €] — o0, B + 2Cy — h] before
[B + 2Cp, +00[. Thus, since V_ is independent of (V(z), x > 0), the strong Markov property,
and then (17) lead to, if h > 4C),

P[E1NEy | V_]

E(PTv{lv=2Co-+2eD [y, (] — 00,y + 2Co — h]) < Ty ([y + 2Co, +00])]jy=p | V-)
5Co(h + Co)™*

Consequently, P[E N Es] < 6Coh~! for large h.

<
<

Similarly, notice that on E; N ES, once more with the notation 8 := V_[dy_(h)], we have
5 - 2C() < V[b$(h)] +h < ﬁ + 200. SO, Tv(] — 00,5 + 200 - h]) < b$(h> AAISO7 min[07dv(h)} V=
Vb (h)] > B—2Co—h and V{dy (h)] > V[bi(R)]+h > B—2Cy, thus V].+Ty (] — 00, B+2Co—h))
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hits [8 — 2Cp, +00| before | — 0o, f — 2Cy — h]. Hence as previously, since V_ is independent of
(V(z), x > 0), by the strong Markov property, and then by (17), if h > 4Cj,

P[E1NES | V_]

E(PTv(=e0wt2C0=hD Ty, ([y — 2Cq, +o00]) < Ty (] — 00,y — 2Co — h])]y=p | V)

5Co(h 4 Co) L.

Consequently, P[E; N ES] < 6Coh~! for large h. Finally, P[b, # 0] < P[E)] < 12Coh~" for
large h, which proves the lemma. O

<
<

Lemma 2.14. There exists a constant cg > 0 such that

P[bh > O] —h—s+00 1/27 P[bh = 0] ~h—s 400 CGhiz.

Proof: For the equivalent, observe that by (19), b, = 0 if and only if 0 is a left A-minimum for
V, that is if and only if V' and V(—.) =: V_(.) hit [h, +o00[ before going back to | — oo, 0] for V_,
and before hitting | — oo, 0[ for (V' (k), k£ > 0). So by independence of (V(k), k > 0) and V_ and
(18) (or (235)),
Plb = 0] = P[Ty([h, +o0]) < Ty (] — 00, 0))]P [T ([h, +0]) < T (| — o0, 0])]
~hostoo Ceh ™2 (58)

with ¢ > 0 being the product of ¢} (for the law of V_) and of ¢; (for the law of V) with the
notation of (18) (and (235)). This proves the second claim in Lemma 2.14. Notice that this
constant cg depends on the law of wq, that is, cg depends on P.

For the first limit of the lemma, notice that P[by, > 0] = P[b,(lK) > 0] + O(1/h) as h — 400 by

Lemma 2.13, so we just have to prove that P[bELK) > 0] —h—too 1/2. We now consider a two
sided Brownian motion (W (z), = € R), and consider W_(z) := W(—xz) for x > 0, and define
W, W_, dw, dw_, as explained after (54). By (54), we have for h > 0,

Pl > 0] = P[Vidv(h)] < V-[dv_(h)], b(h) # 0]
= P[Vidv(h)] < V-ldv ()] + O(1/h) (59)
since P[b{7(h) = 0] = P[Ty ([h, +oc[) < Ty (]—o0,0[)] = O(1/h) as h — +o0 similarly as in (58).
By the theorem of Donsker, the limit of the probability in (59) as h — +oo is P[oW [dyw (1)] <
oW_[dow_(1)]], which is 1/2 by symmetry and because P[oW [dow (1)] = cW_[dyw_(1)]] =0
since the r.v. ocWldsw(1)] and cW_[dsw_(1)] are independent and have a density (by Hu [44]
Lemma 2.1 and by scaling). Hence P[bﬁlK) > 0] —hotoo 1/2 and so P[bh > 0] —hotoo 1/2. 0O

<V_
<V_

Lemma 2.15. There exists a constant c7 == (2¢) ™1 > 0 such that

E[E(T )] ~hossoo EL(TE)] ~hos oo erh2.

Proof: Applying (45), and Theorem 2.5, using (27) with A = S = [ )2, R}, A; = N* and
A = —N, we have, since b, < 0 if and only if (Tp(V, h)) € St by (19),

1 ~ E[UT)]

A =T R T R = TTe s R T T

Consequently, E[K(TJh)] = :282583 ~hosioo h?/(2c6) by Lemma 2.14. Similarly, we obtain

E[E(T&h)] = iggzzg; ~h—s+o0 h%/(2¢6), which proves the lemma. O
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2.8. An inequality for the excess height of left h-slopes.

Lemma 2.16. There exists a constant cg > 0 such that, for large h,
A
VieZNCy<A<h,  P(e[T(V,h)] < Alb, <0) < s> (60)

This remains true if by, < 0 is replaced by by, > 0.

Proof: Let h > 0 and Cp < A < h. Applying Theorem 2.4 (i) since {V(x1(V,h)) >
V(zo(V,h))} = {bp, < 0}, then Theorem 2.3 (i), and then (17), we have for ¢ # 0, since
Co<A<h,

P(e[Tn:(V, h)] < Alby, < 0) = P(H[G(Tgi(v, W) —h < Alby < o) - P(H(TQh) —h< A)

) A+Cy _2A
< — < < < —.
<P(Ty(~h+8) < A(h) <Ty (A +oo)) < Tomr <5 (61)
Similarly, applying Theorem 2.4 (i), then T‘i h =law —T_TV », by Theorem 2.3 (ii),
2A
P(elTairn (Vih)) < Ao < 0) = P(H(T,) —h < A) = P(H(T!,) —h<A) < ==

similarly as before for i € Z and Cp < A < h. This proves (60) for ¢ # 0.

The proof is similar when conditioning by by, > 0, applying Theorem 2.4 (ii) instead of (i).

We now consider the case i = 0. We have, by Theorem 2.5 eq. (27) applied with Ay = Ay =Z,
P(elTo(V, )] < AV (21(V, 1)) > V(wo(V, 1))

B E[Z(T\;h)l{H(T‘I’h)*hSA}} (62)
E[0(TL,) + (TP [V (@1 (Vo ) > V(xo(V, b))
Notice by Theorem 2.3 (i) and since H(T‘Zh) = T‘Ih[ﬁ('ﬁ; )], TT$h([h’ +oof) < E(T‘;h) and
A — h <0, and finally by (17), |

E [TT‘;,L([h’ +OO[)1{H(T$,h)—h§A}]

IN

E [TTT ([h, +OO[)1{H(T$,h)_T$,h(TT$ . ([hﬁ-oo[))SA}]

= E[Tpy ((h+ooD]PIH(T,) = T(Try (b +o0]) < A]
E[0(T)]P(Tv(—h + A) < Ty (]A, +o0]))
< E[(T,)]2A07 " (63)

IN

Finally, once more by Theorem 2.3 (i) with its notation,
E[(UT]) = Ty (400D L ) peny] < EIMiLmm<rvga o))
< B[Rl m<rygasecpy]-  (64)

Notice that Xj := (V(k))2 — 02k, k € N is a martingale for the filtration Fvi =o(V(1),...,
V(k)), k € N. Moreover, the stopping time 71(h) A Ty (A, +o0o[) has finite expectation, since
E[7i(h) A Ty (A, +oo))] < EF(M)] = E[r(h) =7 ()] < EW(TL,) +€(T,)] < oo by (20),
(22), Definition 2.2 (see also Figure 2) and Theorem 2.3 (iii). Also, for every k € N,

E[|Xir1 — Xi| | Fvx] = E[|[(V(k+1))2 = (V(k))? — 02| | Fua] < 2C0(A + h+ Co) + o
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a.s. on {k < 71(h) ATy (JA,4+00[)}, since V (k) and V(k+ 1) belong to [—h — Cp, A + Cp] on this
event and |V (k+1) — ( )| < Cp. Hence by the optimal stopping time theorem (see e.g. [41],
(9) p. 492), we have E[X~ (WATy (A 4oo])] = E[Xo] = 0. This gives
E[(VAEMP =AML my <ty 0aroc] + E[X Ty 18 00p 1 0570 08 0cD] =0
since 71(h) # Ty (JA, 4+00])
B[R ()17 <1y (2 400}

a.s. Consequently, using X; < (V(k))? and ellipticity (16),

E[[V @ DI L ez <ty 08 ool)] + ELXT 02 400 15 ()50 04,000}
(h+ Co)*P[Tv (—h+ A) < Ty (JA, +00])] + (A + Cp)?

(h+ Co)?2Ah 1 4 (A + Cp)?,

as before since Cyp < A < h. This and (64) give for large h for every A €]Cy, h],
E[(«(T,) - Tpy (b, +oo))1 (TS ) <a)) S 077(3AR +3AR).

This together with (63) gives

<
<

E[0(Ty,)1 () )-neay) S60AR+ E[¢(Ty,)]2Am7 (65)

Moreover, P[V (z1(V, h)) > V(zo(V,h))] = P(b, < 0) — 1/2 as h — +oo by Lemma 2.14, so
(62), (65) and Lemma 2.15 give for large h for every A €]Cp, hl,

60 2Ah A
P<TV,h < Alb <o> 20 ah L 52
elTo(V h)] < Albn Soanzi3 0 h S %%
with ¢g := 902 /c7 4+ 5. The proof is similar if we replace by, < 0 by b, > 0, using Theorem 2.5
eq. (28) instead of eq. (27) and since T&h =law —Tth by Theorem 2.3 (ii). This proves (60)
in the case ¢ = 0, which ends the proof of the lemma. Il

3. PROOF OF THEOREM 1.4

The proof relies mainly on the expression of P(by, = ) provided by Lemma 2.6, the monotonicity
of x — P(bp, = z) on N and —N due to Lemma 2.6, the uniform continuity of ¢.,, Donsker’s
theorem, Kesten [48]’s result and some estimates on the laws of left h-slopes. The proof is
divided into three steps, depending on whether z is far from 0, close to 0, or in between.

Proof of Theorem 1.4: Let 0 <e < 1/2.

First step: Notice that by Lemma 2.6 and Markov inequality, for h > 0,

P[E(T‘ih) > 1] E[E(T\ih)] 1

Vo >0 P(bp, =) = ’ < : <=
; 7 ) T )
E[0(Ty,) +0(Typ)] — 2E[U(Ty,) +4(Tv,)]
and similarly P(by, = z) < |71\ for all z < 0. Moreover, lim,_, 4+~ @oo(x) = 0, so we can fix some
A > 0 such that, for every h > 0, for all z € Z such that |z| > Ah?, we have
o? o’z o? o’ 1 o2
P(bh = x) - ﬁS%o (hg>' < P(bh = x) + ﬁ%ooo <h2> + w2 |ySUP Yoo (Y)

= |>Ac?

1 (1 9 €
< = | = o < —=. 66
S 2 (A + o \y|szufl)02¢ (?D) =72 (66)

Second step: By Donsker’s theorem, bEIK) /h? converges in law as h — +o0 under P to bgK’UW)

(defined after (54)), which has the same law as U*2b§K’W) by scaling. Also, the law of bgK’W) is
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Poo(x)dz by Kesten [48] as explained after our (54). Also, P[bj, # b;lK)] —h—+4oo 0 by Lemma
2.13, so o2by, /h? converges in law under P to oo (z)dx as h — +oo.

Since oo is continuous on R and lim,_, 4 Yoo () = 0, o is uniformly continuous on R. Hence,
there exists n > 0 such that

Vz € R, Vy € R, lz —y| <N = o) — Poo(y)] <&, (67)

and we can choose 7 > 0 small enough so that 5no=2 < A, 567_1 exp[—90~1n~1] < e0? and
351 < 1, where ¢; > 0 is a constant introduced in Lemma 2.15. We can now fix Ny € N such
that [—A, A] C [~Nono—2, Nono~2]. Since 02by,/h? converges in law under P to oo (7)dx as
h — 400, for all j € {—Ny—3,...,Nop + 3},
) o (+Dn
P(o% /17 € [, (G + D) nvioe [ i
Jn

Hence there exists hg > 0 such that no=2h3 > 2,1 < [(1 —¢)~! —1|no2h%, 1 < [1 — (1 +
)" Yno=2h3 and

(+Dn

2p
> B0, € =No =3 Mo 3k PGt elin G al) = [ pn(ua
an

< e

This, combined with (67), gives for all j € {—Ny —3,..., No + 3},

Vh > ho,  nlpe(jn) — €] = ne < P(o®bn/h? € [jn, (7 + 1)nl) < nlpoo(in) +e] + 7. (68)
We consider b > hy. Due to Lemma 2.6, = — P(by, = x) is nonincreasing on N, and nondecreasing
on —N. Hence, for 0 < j < Ng + 3,

P(o®bn/h* € [jn, (j + Vnl) = > P (b, = i)
i€[jno—2h2,(j+1)no=2h2[NN
< (1- 5)_1770_2h2P(bh = Lj’na_QhQJ),
due to the second inequality defining hy. This and (68) give for such j,

P(on = Lino 1)) = TN ot () — 22l 0 o
2

> 0%[oo(jn) — 3elh 2, (69)
since oo (u) € [0,2/7] for all w € R. Similarly for such j,
P(0bn/h* € [jn, ( + ) = [no~2h* = 1]P(by = | (j + no~*h?|).
This and (68) give, using the third inequality in the definition of hy,

P(on = [+ Do 2n)) < MERODEELEIE (1)) + 220

< *[pso(iin) + 4elh 72, (70)
since 0 < € < 1/2 and ¢ (u) € [0,2/7] for all u € R.

IN

Now, let j € {2,...,No} and = € N such that jno=2h? < z < (j + 1)no—2h%. We have since
P(by, = .) is nonincreasing on N and = < | (j + 1)no—2h?], then by (69) and finally by (67),

P(bn =) > P(on = |(j+ 1o h?]) > 0*[pe((j + 1)) — 3e]h ™
> o2 [(poo (a;th*Q) — 45] h2.
Similarly, using (70) applied to 7 — 1 > 1 instead of (69), followed by (67),
P(by, =x) < P(by = [jno*h?))
< 0pes((j — 1)) + 4e]h 2 < 0?[poo (w0*h72) + 6] H 2.
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Since this is true for all h > hg, every j € {2,..., No} and for every z € N such that jno—2h? <
x < (j 4 1)no—2h? for such j, and A < Ngno 2, this gives

o 27 -2\ 27 -2 2, -2
Yh > ho, xe[2na§i?§fAh2]mZ‘P(bh =12) — poo(x0°h )" h?| < 6e0°h 7. (71)

We get similarly

Vh > hy, |P(bn, = z) — oo (x0°h2)0*h 2| < 6e0”h™2. (72)

max
xE€[—Ah2,—2no—2h2|NZ

Third step: Now, for —5n0~2h? < x < 0, we have by (44) and (45),
- PI(TY,) < —a] _ PLUTV,) < 5no2?)
E[E(T\Ih) + E(T\%h)] - erh?

(uniformly) for all —5no—2h2 < o < 0 for large h, since E[(T;},)] ~nostoo E[0(T54)] ~hostoo
c7h? by Lemma 2.15.

(73)

We know from Theorem 2.3 (i) that up to its first hitting time of [h, 4+o00]), T‘Ih has the same
law as (V(k), 0 < k < Ty([h,+o0]) conditioned by {7y ([h, +o0[) < Ty (] — 00,0[)}. Thus for
a > 0, applying the strong Markov property in the last equality, and ellipticity (16) in the last
line (for h large enough so that Cy < h/6),

PIE(T,) < al’] < P[Ty (htoc]) = Ty ([h/2, o) < ah?]
P[Tv ([h, +00]) — Ty ([h/2, +00]) < ah? Ty ([h, +oo]) < Ty (] — o0, 0[)]
P [Ty ([, +o0[) < Ty (] — 00, 0[)]
E 17y (/21000 <Ty (—c0,0ny P TV (/242D [T ([h, +00[) < (ah?) ATy (] — 00,0])] ]
P[Tv ([h, +oc[) < Ty (] — 00,0)]
P[Tv([h/2,+oc]) < Ty (] — 00,0])]
P[T ([, +o0]) < Ty (] — 00, 0[)]

Using P [Ty ([h, +00[) < Ty (] — 00,0[)] ~p—+00 c1h™! (see (18)) and Donsker’s theorem, the last

line is equivalent, as h — 400, to

2P[Tow ([1/3,4)) < a] = QP[sup(aW) > 1/3] =2P[o|W (a)| > 1/3]
[0,0]
= 2P[[W(1)| > (Bova)™'] < dexp[-(30va) /2]
if 30y/a < 1, where (W (x), x € R) is a two-sided Brownian motion as before. Since 3v/5n < 1,
this and (73) give for large h,

max  |P(by = 2) — P(by = 0)| <5¢; h~2exp [~ (3v/5n)7/2] < ea?h?

—5no—2h2<x<0

P[Tv ([h/3, +o0) < ah?].

by the second inequality after (67). Since we have a similar result for 0 < x < 5no~2h?, using
(43) instead of (44) and e.g. Z(T‘ih) =law K(T_TVh) (see Theorem 2.3 (ii)), there exists h; > hg
such that

— ) — _ 2, -2
Vh > hq, —5770*%%?%5770*%2 |P(by, = ) — P(b, = 0)| < e0”h™>. (74)

We already know, from (69), that Yh > hy > ho,P(by, = 0) > 02[¢s(0) — 3g]h=2. Moreover,
using (74), (71) and then (67),

P(b, =0) < P(by = [4n02h2|) 4+ e0?h™2 < [poo (|40~ 2h2 |02 h™2) + Te]o?h 2
< [poo(0) + 11g]0?n 2
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for h > hy. So,

Yh > hy, IP(b, = 0) — 029 (0)h 2| < 11e0®h ™2 (75)
Finally, once more by (67), |poo(20%h™2) — poo(0)| < 5 for z € Z such that |z < 5no—2h%,
This, combined with (74) and (75) and the triangular inequality yields to

Vh > hy, . IP(br, = ) — oo (xz0°h %) 0*h 2| < 17e0?h 2. (76)

max
z€[—5no—2h2,5n0~2h2]N

This, together with (71) and (72) leads to

Vh > h, P(by, = ) — 0o (z6?h™2)0?h 2| < 17ec®h 2. 77
= ze[—AI}zl%ﬁhQ]ﬂZ‘ (bn =) = (:w )U {_ =7 (77)
This, combined with (66), proves Theorem 1.4. O

4. COUPLING ARGUMENT WHEN bjog, IS CLOSE TO 2

In this section, we use a coupling argument, in order to approximate the quenched probability
P,[S, = z] by the invariant probability measure at z of a RWRE reflected inside the central
valley of the potential. In order to make this approximation, we require some conditions, mainly
for the environment.

4.1. An inequality related to hitting times of (Sy);. Before dealing with the coupling
argument, we prove a useful inequality about hitting times. This lemma is in the same spirit as
([24], Lemma 4.7), but is more general. We will use this lemma with different values of £;. See
Figure 4 for the schema of the potential V' under the hypotheses of this lemma.

Lemma 4.1. Assume (2). Let & > 0, & > 0 and a > 0. There ezists Eg = Eg(fl,gg) > 1
such that, for almost every environment w, for every a < b < ¢ and h > /HQ such that (i)
V(b) = max|, q V, (ii) maxp<i<p<c—1 (V(k:) — V(E)) < h—¢&logh, (iii) maxg<p<k<p—1 (V(ﬁ) —
V(k)) <h—&logh and (iv) |c — a| < 2h*, and for every a < x < ¢, we have

PZ[r(a) AT(c) > e < 24651 e 2R3 0T84 ge TR, (78)

and is, in particular, uniformly less than h™* for all h > ﬁg if a =3 and & > 19.

Proof: We cannot apply directly (8) or (9) to E,[7(a) A 7(c)], because the max(...) which
appear in these inequalities can be much too large, since they can be respectively nearly as large
as V(b) —V(a) or V(b) —V(c), which can be much larger than our h. Consider hs > 1 such that
h — (& — 8)logh > 0 for every h > /ﬂg. We fix h > /fzz, and assume that the hypotheses of the
lemma are satisfied for this h. We define (see Figure 4), with z V y := max(x, y),

A” = aV (max{y <b, V(b) = V(y) >h— (& —8)logh}),
At = e (min{y > b, V(b) = V(y) > h— (& — 8)logh}).

First case: we assume that ¢ < x < A~. We start with the sub-case a < < A~, which
implies that A~ = max{...} # a in the definition of A~. Then, by Markov inequality, (9) and
Hypotheses (iii) and (iv),

Pilr(@) AT(h) = &e"/2) < 26 e b—a)exp | max  (V(0) = V(R)]
< 8¢ te e h* ™ exp(h — €1log h) = 86, ey T2 (79)

Also, notice that since a < A~ < b, using Hypothesis (iii),

[1(3’123(} V < V(A7) + poibax (V(0) = V(k))
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<h-—=¢&logh

Figure 4. Schema of the potential V for Lemma 4.1 between a and ¢ when ¢ = AT,

< V(b)) — (h— (& —8)logh) + (h — & logh) < V(b) — 8log h. (80)
Hence using (7), a < x < A~ < b, then Hypothesis (iv), ellipticity (2) and (80),
PJlr(b) <7(a)] < (7v—a)expmaxy, 1V —V(b—1)] < 2h%egth8,
Consequently, this and (79) lead to
Pilr(a) A7(c) = &a¢"/2]
P[7(b) < 7(a)] + P2[r(a) AT(c) > &xe/2,7(a) < 7(b) < 7(c)]
265 '8 4+ P2{r(a) A T(b) > 9l /2] < 265 R84 8¢5 tey th2 L, (81)

This remains true if x = a, whether a = A~ or a # A™, and so for every a < x < A~. This
already proves (78) in this case.

<
<

Second case: we now assume that AT < x < ¢. This case is similar as the first one, so we get
by symmetry, using (ii) instead of (iii) and (8) instead of (9),

PZ[r(a) AT(c) > &e/2] < 265 ho8 4 8¢5 ey A6, (82)
This already proves (78) in the this case.
Third case: We now assume that A~ <z < A*. Using Markov inequality, (8) and Hypothesis
(iv) and a < A~ < A* < ¢ < a+ 2k in the first line, then maxgs- 4+ V = V(b) (due to
Hypothesis (i) and b € [A~, A*] C [a,¢]) and minj4- 4+]V > V(b) — (h— (£ —8) log h) —log g5t
(by definition of A* and ellipticity (16)), we have

PI[r(AT) AT(AY) > &e"/2] < 26 e eg (20%)  exp [[A@%] V- min V}

IN

85516_%61}12& exp [h — (&1 — 8)log h + log 561}
= 8¢y leg2pRamas,
Consequently, we have by the strong Markov property applied at time 7(A~) A 7(A™),
PZlr(a) AT(c) > &e] < PI[T(A7) AT(AT) > &e/2] + P [1(a) AT(c) > &ae/2]
+P [1(a) AT(c) > Eael /2]



ANNEALED LOCAL LIMIT THEOREM FOR SINAT’'S RANDOM WALK 31

< 86 e PR £ 2(2e Th TR 4 8 e TR
< 24551662h2a—§1+8 + 4€alhcx—8

by (81) and (82) applied respectively at A~ and A*. This proves (78) in this third case, so
(78) is proved in every case for every h larger than some constant hy > 1. Finally, when o = 3
and & > 19, we have 24¢, 'eg2h2e=8F8 4 4o Tha=8 < (24¢, ey ? 4+ 451 )h ™ which is o(h ™) as
h — +0o0, so, up to a change of hg, the right hand side of (78) is less than A~ for all h > ﬁg,
which ends the proof of the lemma. O

4.2. Some events useful for the coupling argument. In order to evaluate the probability
P(S,, = z), we decompose the event {S, = z} into smaller ones, and to this aim we introduce
some conditions on the environment w. First, we fix C; > 20, Cy > 9, and §; €]0,2/3[. For
n > 3, we introduce

hy :=logn — C1logyn, Iy = hyy — Cy logy n, Iy, == | (log n)4/3+51J,
where for x > 1, log, z := log logx We also fix an integer n3 = 3 such that, for all n > ns,
logyn > Cy+ 1, logn > max [250 ,h2(2C'1, 1/10), hg(Cl, 1/10), h2(2C’1, ),p5], hn — C1logyn >
max{3Cy + 10logy n, (logn)/2 + (2C1 + Cy + 2)logy n}, (logyn)® < logn, n > (logn)©1*+* and

I’y > p4, with ps and ps defined in Proposition 7.3 and hs in Lemma 4.1. We also define for
n > ng and z € Z,

E™ = {biogn < 0} = {biogn = z0(V,logn)}, (83)
EM = {biogn > 0} = {biogn = 21(V,logn)} = (E™)",
E?En) = z——lO{H /(V, hyy — Cylogy n)] > logn + Cylogyn},
E{V(z) = {V(2) = V(bogn) = 5logy n}
U(E(,n) N { [bgﬁ},(o] V < Viz1(V,logn)] — 9log, n})
U(Esrn) N { [Or,?fgxn] V < Vizo(V,logn)] — 9log, n}),
Eén) = { — (log n)2+51 < z_12(V,logn) < x12(V,logn) < (log n)2+61},
EM = {max{V(bogn +1) — V(bogn), il < T} < logn},
E{(z) = {lbogn — 2| < Tu}. (84)
Finally, let
EM(z) = BV nEM () nEMY nEMY n EM(2). (85)

Remark 4.2. For w € E , for every =9 < i <10, H(T;—1(V, hy, — Cilogyn)) > logn and

H(T;(V, hy, — C1loggn)) 2 logn, so x;(V, hy, — C1logyn) is also a left (logn)-extremum. So,
z;(V,logn) = x;(V, hp,—C1logy n) for every —9 < i < 10, and as a consequence, H[T;(V,logn)] =
H[T;(V, hy, — C1logg n)] for every —9 < i <9.

The previous events depend only on the environment w and on z. They are useful for the
coupling argument used in this section. More precisely, we saw in Remark 4.2 that Eén) ensures
that x;(V, hy, — C1logyn) = x;(V,1logn) for |i| <9, and as a consequence, there is no subvalley
of height slightly less than logn in the (logn)-central valley (defined after (87)), so (Sk)x is
not trapped a long time in such subvalleys, which helps (Sk); to go quickly to biog, with large

quenched probability.
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Also, Ez(ln)(z) is useful to prove a technical lemma, Lemma 4.6. Eén) says that the |z;(V,logn)|
are quite small, which will often be useful in applying inequalities such as (7), ..., (11) to prove

that some events are negligible. Finally, Eén) and Eén) (z) will imply in particular that z is inside

the (logn)-central valley (see (107)).

We will use, in the proof of Theorem 1.1, left h-extrema of V for three different values of h. In
particular, left (logn)-extrema are useful to define biogp, left En—extrema are useful e.g. to use
Eén) as explained previously, and the proof of Lemma 5.9 uses left h-extrema with two different
values strictly less than log n, which are h,, and 71%; left h,-extrema are used in Lemma 5.11 (in

view of (164) and Lemma 5.10), whereas left hy,-extrema are also used in Lemma 5.13 and in
the proof of the lower bound of Theorem 1.1 (see Section 6).

In the rest of the paper, the n;, 3 <i < 19, denote some integers with n; < n;1q for 3 < i < 18,
which are useful to get the uniformity in Theorem 1.1 (n3 being defined before (83)).

4.3. Definition of the coupling. We fix an integer n > ns3, z € Z, and an environment w €
Eg”)(z). In all the remaining of Section 4, we set z; := z;(V,logn), i € Z (defined before (19)),
to simplify the notation. Notice that, since w € Eén), x; = zj(V,logn) = z;(V, hy, — C1logyn)
for every —9 < ¢ < 10 by Remark 4.2. We also introduce

b(n) 1= 2|biogn/2] + Lawy1(n), (86)
which belongs to {biogn — 1, biogn, blogn + 1} and has the same parity as n. We define
- r_p if blogn <0, + . vy if blogn <0,
M™= { 10 ifbign >0, 0 T\ am if bogn > 0. (87)

Since biogn, = To When biog, < 0 and biog, = @1 When bigg, > 0, M~ and MT are the two
left (logn)-maxima surrounding biogy, respectively on its left and on its right. For this reason,
[M~—, M™"] is called the (logn)-central valley (see Figure 5); also 0 € [M~, M*].

Figure 5. Schema of the potential V for w € Egl)(z) in the case biggpn < 0.

Similarly as in Brox [12] and Andreoletti et al. [3] for diffusions in a random environment, and
as in Devulder et al. [24] and [25] for RWRE, but with some adaptations, we use a coupling
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between S = (Si)i (under Pf(n)) and a reflected RWRE S defined below. To this aim, we
define, for fixed n, (@x)m -

Wp- =1, Op = wy if v ¢ {M~, M}, Wpr+ = 0.

as follows:

We can now introduce, for fixed w and n, a random walk S = (,§k) in the environment

keN
starting from y € [M~, M}, and denote its law by PZ. So, S satisfies (1)

W= (‘A"I)M—gngH

with w and S replaced respectively by @ and S. In words, S is a random walk in the environment
w, starting from y € [M~, M ], and reflected at M~ and M. We also define the measure i,
on Z by

In(M™) = e VM (M) = VM)
fin(z) = e V@ p Ve M~ << M, (88)
and fip(z) := 0 for z ¢ [M~, M ] (where fi,(z) denotes fi,({x}) for simplicity).
Observe that for fixed n and w, jiy(.)/1in(Z) is an invariant probability measure for S.

Consequently, similarly as in ([25] eq. (55)), for every fixed n and w, the measure 7, defined by

Sp) e D () e 4 Pn(®)12z(2) /1 (22) if n € (2N),
)=o) = F U Ga e ) ne Oy, TR )
m pen- This means that Pg\(s\% =) = () for all
x € Z and k € N, where PZ(.) := > yez U(y)P4(.). Observe that @, S, fin, V» and some other

notation of this subsection defined below, depend on M~ and M+ and so on n and w, but we
often do not write the subscript n in the following to simplify the notation.

is an invariant probability measure for (§2k)

We now have all the ingredients to build, for fixed n and w, our coupling @, of S and S as
follows and similarly as in ([25] around eq. (56)):

Qu(Se)=PL(Sec), Qu(Se.)=PM(se), (90)
so that under @, the two Markov chains S and S move independently until

Tg_g:=inf{£ >0, Sy =S},

which is their first meeting time, then §k = S}, for all Tg_g < k < Texit, Where

Texit := inf {£ > To_g St ¢ [M~, M}
is the first exit time of S from the central valley [M~, M T] after the meeting time T5_g> and
then S and S move independently again after Texit.

4.4. Approximation of the quenched probability measure. The next step is to prove that,
under @, S and S meet quickly, and more precisely that 75_g < n/10 with large probability.

For this purpose, we define, for n > ng, in view of Eén),
L™ = max{k < bign, V(E) = V(biogn) > hn}, (91)
LT = min{k > biogn, V(k) — V(biogn) > hn}- (92)
Loosely speaking, L~ and L* are useful because V(Ei) — V(biogn) is approximatively h, and
then is quite lower than logn, so L~ and LT will be hit quickly by S under @, (see Lemma 4.3

below), but V(Ei) — V(biogn) is also chosen quite large because the invariant measure ¥ outside

of [E*, Z*] needs to be small (see Lemma 4.4). We introduce the notation u V v := max(u, v).
We prove the three following lemmas, which are uniform on z since they do not depend on z.
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Lemma 4.3. We have, with 7(.) denoting the hitting times by S as before,
Vn > n3, Yw € E?()n) N Eén), Qu [T(Ei) Y T(EJr) >n/10] < (logn) 3.

Proof: Assume that n > ng and w € Eén) ﬂEén). Since V(M) =V (biogn) > logn+Cologyn >
hn +Co > V(E“‘) — V(biogn) by Eén) (see also Remark 4.2) and using ellipticity (16), and since
hy, > 0 by definition of ng, we have bjogp < Lt < M+. Moreover,

max _ [V(k) = V()] < max V- min V < V(L) =V (biogn) < hn + log(eg?)
M~ <U<k<L+k>b(n) (b(n),L+] [M~,L+]

by ellipticity, i.e. by (16), and because [M~, M| is the (logn)-central valley, its bottom be-
ing biogn. Consequently, using (8) and Markov’s inequality since M~ < b(n) < LT because
V(M™) > V(L) > V(biogn) + hn > V(biogn) +3Co > V (b(n)), then [M~,L*] C [z_1,zs[C
[—(logn)?, (logn)3[ because w € Eén) and 01 €]0,2/3[, this leads to
PE(") [T(M™) A T(E+) >n/10] < 10n eyt (2(log n)3)2ey teln

= 4052 (logn)8~ " < (logn)~3/4,
since n > ng and C7 > 20. Moreover, applying (7), then w € Eén) and the definition of L* and
finally using V(M%) — V(biogn) > logn + Calogy n on E:gn) as before,

[b(n),L+ 1]
2(log n)3 exp [V(blogn) + hy — (V(biogn) + log n)]
2(logn)*~“* < (logn)~*/4,

since n > ng and C] > 20. As a consequence, using (90),

pE(n) [r(M™) <7(IY)] < [E* —/l;(n)] exp { max V — V(Mf)}

<
<

Qu[r(L*) >n/10] = PX[r(L%) > n/10]
< PO [r(M7) < 7(E5)] + PXO [r (M) Ar(EF) > n/10]
< (logn)™3/2. (93)
We prove similarly that Q. [T(E_) > n/lO] < (logn)=3/2 for all n > nz and w € E?(,n) N Eén),
using (9) instead of (8). This, together with (93), proves Lemma 4.3. O

We now prove that the invariant measure outside ]E_, ZJF[ is small for n > ng.

Lemma 4.4. We have,

Vn>ng, Ywe ESYNES,  p([MT, L)) +9([LY, M*]) < (logn) % (94)

Proof: Let n > n3 and w € E:.En) N Eén). As explained in Remark 4.2, due to Eén), xi(V, hy —
Cilogyn) = z;(V,logn) = x; for every i € {—1,0,1,2}. So when bipsp, < 0, there is no left
(hn — C1logy n)-extremum in |zo(V, hy, — C1logy n), 1 (V, hy, — C1logy n)[=]z0, 21 [=]blogn, M T|.
Similarly, when bjog,, > 0, there is no left (hy, — C logy n)-extremum in ]z, z2[=]biogn, M T|.

We first prove that

min V> V(bgn) + C1 logy n. (95)
[L+,M+]

Assume that ming, 4V < V(biogn) + C1logyn, and let u € [E*, M™] be such that V(u) =
minz, oV, oand y = min{l € [bogn, u], V() = maxp,, .V} soy = L*. Notice that
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V(y) > V(E+) > V(blogn) + hy, and V(y) > V(blogn) +hy > V(u) — Cylogg n + hy, so y would
be a left (h, — C1logyn)-maximum for V. Since biogn, < y < u < M™T, this contradicts the
remark before (95). So, (95) is true. We prove similarly that

min V> V(bogn) + C1 logy n. (96)
(M~,L~]
We have by (95) and since w € Eén) and [1,(22) = (1, (2Z + 1) = M;/[_l V(@) > ¢=V(biogn)
ﬁ([i+7 Mﬂ) < [M+ _ It + 1] max (e—V(m) + e—V(I—l))eV(blogn)
we[L+,M+]
< 3(logn)*(1+¢e;")(log n)~ < (logn)~*/2 (97)

since n > ng and Oy > 20, and where we used —V (z — 1) < =V () + log(ey '), = € Z by (16).
We prove similarly that 7([M~, E_D < (logn)=*/2 for all n > n3 and w € E:gn) N Eén) thanks
0 (96). This, together with (97) proves (94). O

We can now prove that, with large enough probability, the coupling (i.e. S=25 ) occurs quickly,
and lasts at least until time n.

Lemma 4.5. We have,
Vi >ng, Vwe BSVNEM,  Qulre_g > n/10] < 2(logn)~?, (98)

and
Vn > ng, Yw € Eén), Quw [Texit < n] < (logn)~3. (99)

Proof: Let n > ng, and w € E(n) N Eén). We have by Lemma 4.3,
Qu [Tg g > n/lO]

Qu[r(L7) V(L) <75 g] + Qu[r(L7) v r(L*) > n/10]

< Qulr (A ) < Tg_gs So < b(n)} + QulT ( ") < 1o_s So > b(n)} + (logn) 3.
Now, observe that a.s. under Q,, So = b(n) by (90) and has the same parity as n by (86), and
So also has the same parity as n by (90) and (89). Hence the process (Sk Sk) starts at
TG_g — 1it
is < 0 (resp. > 0) on {§0 < 3( )} (resp. on {§0 > /l;( )}), and in particular at time T(E_) on
{T(L ) < Tg_gn So < b(n )} (resp. at time T(L+) on {T(L+) < Tg_g So > b(n (n)}={r (L+)

IN

(5’0 — b( )) € (2Z), and it only makes jumps belonging to {—2,0,2}, so up to time

SO > b(n } for the last equality, notice that 7g_o = 0 on {So = b )} ) So,
Qu |5 g > n/lO]
< Qulr(L7) <75 Sy <L)+ Qul[r(L7) <7g_g0 8,z1y > Lt] + (logn) ™
< Qul[r(L7) <7gogs Sypimyyey S L]+ QuT(TF) <o Syirzeyje) 2 L7]
(10gn)
< ([M7 L)) +2([LF, MT]) + (logn) 2. (100)

Indeed, the last inequality is a consequence of the fact that @, (§2k = m) = Pg (§2k = ac) =v(x)
for all x € Z and all (deterministic) k € N (see (90) and the explanations after (89)), and from
the independence of S with S (and its hitting times 7(.)) up to time Hence, (100) together

with Lemma 4.4 prove (98).

T§:S'
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Finally, (90), followed by (10) and (11) give for every n > ng and w € Eén),
Qu [Texit < 1] < Qulr (M) AT(M*Y) < n] = PEO[r(M™) A +(M7T) < n]
< POfr(M7) < n) + PYO[(MT) <
< 2(n+ 1)ey 2 exp[—(logn + Cylogy )] < 4eg?(logn) =2 < (logn) ™3,  (101)
since minpy- gV = ming,_ V= Vi(biogn), V(M) — V(bogn) > logn + Calogyn on
Eén), |blog n —bn)| <1, [V(u) = V(u—-1)] < log(gg!) for u € Z by (16), logn > 2, since
n > ng > 3, and Cy > 9. This proves (99). O

Also, the following lemma will be useful to prove Lemma 4.7 (see (110)).

Lemma 4.6. We have,
Vn > ng, Vz € Z, Yw € ESYNEN()NED,  Du(2)Py[r(B(n)) > n/10] < (logn) 3. (102)

Proof: Let n > n3, 2 € Zand w € E:gn) N Ein)(z) ﬁEén). We treat separately the three different
cases defining Ein)(z).

First case: if in addition w € {V(2) — V(biogn) > 5log, n}, we have by ellipticity,
Dn(z) < (e—V(Z) + e_V(Z_1)>6V(blogn) < (1+ 661)6—[‘/(»2)—V(blogn)] < 2e5 (logn) ™ < (logn)~3

since n > ng, which proves (102) in this case.

Second case: if w € Eﬁn) N {max[blogmo} V < V(x1) —9log, n}, we have bjog,, = 29 < 0 and
either b(n) = 1, or —(logn)3 — 1 < g(n) <0< x; < 29 since w € Eén) and ‘Z(n) — biogn| < 1.
We start with this second sub-case b(n) < 0. We have by (7),

P,[r(z2) < T@(n))] < (‘E(n)| + 1) exp [maX[E(n),o] V = V(z1)]
< 2(logn)*exp [ —9logyn +logey '] < (logn)™ (103)

by ellipticity since ’g(n) — blogn‘ <1 and because n > n3 so logn > 2, 1>9.

Also, by Lemma 4.1 applied with & = 2C; > 19, & = 1/10, @ = 3, a = g(n) <0<b=
x1 < ¢ = x9, h = logn > he(2C1,1/10) because n > ng, and z = 0, since its hypothesis
(i) is satisfied because biog, < 0 and so z1 is a left (logn)-maximum, and there is no left
(h — & logh) = (hy, — C1logy n)-extremum in |z1, z2] nor in |xg, x1[ by Eén) (as explained after
(94) since xg, z1 and x9 are consecutive left (h, —Cj log, n)-extrema) and so hypotheses (ii) and
(iii) of this lemma are satisfied (e.g. if (ii) was not satisfied, there would be a left (h,,—C1 logy n)-
maximum in |z, z3[), and hypothesis (iv) is satisfied with o = 3 thanks to Eén) and 61 < 1,
SO

Yw € E?()n) ﬂEén), (biogn < 0 and g(n) <0)=PF, [T@(n)) AT(z2) > n/10] < (log n)~4. (104)

This and (103) lead to P, [T(I;(n)) > n/10] < 2(logn)~* < (logn)~? for every w of this second
subcase since n > ns.

We now turn to the other subcase, that is, we assume that /b\(n) = 1. Then, bjogn, = To = 0 since
we E™ and ‘Z(n) — biogn| < 1. In this subcase we have, using (7), Markov inequality and (8)
in the second inequality,

P,[7(b(n)) > n/10] = P,[r(1) > n/10]
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< Rufr(eo) < 7(U)] + Rafr(e-) AT(1) 2 n/10]

< eXp[ (20) = V(z—1)] + 100" g (1 — 1) exp[V(0) — min, , g V]

< nt+40e5'n (logn)® < (logn)~* (105)
for every w of this subcase since n > ng, H[To(V,logn)] = V(z_1) — V(xg) > logn, |z_i| <
(logn)? since w € Eén) and miny,_, oV = ming,_, .V = V(zg) = ( ) = 0. So, (102) is
proved in this second case (whenever b(n) = 1 or not), since v,(z) < 1, for all n > n3, z € Z

and w € E™ N {max[blog 0V <V(r1)—9logy n} N E(n) N Eé ),

Third case: finally, the proof is similar when w € E ) n {max[o bogn] V' < V(xg) — 9log, n}
with x_; instead of x9 and x7 exchanged with g, Wthh ends the proof of the lemma.

We now have all the ingredients to approximate the quenched probability P, (S, = z) by the

invariant probability measure v, (z) for w € E(n)( ) (defined in (85)), uniformly for n > nj
(recall that P, (S,, = z) and 7,(2) are equal to 0 if z and n do not have the same parity by (89)).

Lemma 4.7. We have,

Vn > ng, Vz € Z,Vw € EW(2), | Pu(Sn = 2) — Pa(2)| < 5(logn) . (106)

Proof: Let n > n3, z € Z and w € Egl)(z). For u € Z, we define V,, = V,© and V, by
V() :==V(u+.)—V(u) and V.5(.) := V(u=+.) — V(u). Since w € Eé. ") ij: (logn) > T'y,.

log n

Also, |biogn — 2| < Ty, because w € Egn) (2), so (M* being defined in (87)),
2 < biogn + I'n < biogn + T+ (logn) < M. (107)

log n

Thus z < M, and similarly, 2 > M~ and so z €|M~, M.
Observe that for k € [n/10,n] N (2N),

PE(”) [Sk = Z] = Qw[Sk = Z] > [Sk =2z, Tg_g < n/lO <k<n< Tex1t]
= Qul[Si= Tg <110 <k <1 < Texit]
> Qu [Ak ] B [T§:S > n/lO] — Qu [Texit < n]
> (z) — 3(logn) 7, (108)

where we used (90) in the first equality, S = Sk for k € [ngsaTexit[ in the second one, and
Qu [gk =z| = Py [S’\k = x| = U(x) for all z € Z since k is even (see (90) and the remark after
(89)), and Lemma 4.5 in the last line since n > ng and w € Eg) (2).

Similarly, for every k € [n/10,n] N (2N),
PE(”) [Sk = 2] <Qu[Sk = 2, To_g < 1/10, Texit > 1] + Qu[Tg_g > 1/10] + Qu[Texit < 1
<Qu[Sk = 2] + 3(logn) ™ = D(2) + 3(logn) > (109)
We have, applying the strong Markov property in the second line,
P,[S,=2] > w Sp = z, 7'(\ <n/10

b(n) _
Eo[X Gy enpioy P 1% = e+ iy
> Bu[1, Gy <njioy (P(2) = 3(logn) )]
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o~

v(z) —v(z)P, [7’( (n)) > n/lO] — 3(logn) ™3
D(z) — 4(logn) 3 (110)

AVARLY,

where we used (108) in the second inequality since (n — T@(n))) € [9n/10,n] N (2N) because
b(n), and then T@(n)), has the same parity as n by (86), and Lemma 4.6 in the last inequality,

since n > n3 and w € E((j?)
Similarly, using (109) instead of (108), we get

Sn =2, 7(b(n)) <n/10] < Eu[l; Gy ensio (P(2) +3(logn) )]
< D(2) +3(logn) 3. (111)

We now assume that biog, < 0, and so bipgy,, = 9 and M T = 21. Also, we have once more
P,[7(b(n)) A7(z2) > n/10] < (logn) ™™ (112)

Indeed this is proved in (104) when /I;(n) # 1 since n > ng, whereas when /I;(n) =1, the left hand
side of (112) is equal to P, [T@(n)) > n/10], which is < (logn)™* by (105) since b(n) =1 < x2
in this case.

Moreover for 0 < k < n, using 2 < MT = z1 < x2 (see (107)), we have by (11) and ellipticity
(16), and since V(z1) — miny, ,,)V = H[T1(V,logn)] = H[T1(V,h, — C1logyn)] > logn +

(n) (

C3logy n because w € Ey 7 (see also Remark 4.2),

P22 (S =2) < P2[r(x1) < k] < nexp[—H(T1[V,logn)] + log 661]
< c5l(logn)C2 < (logn)

since C > 9 and logn > ¢ ! because n > n3. Hence by the strong Markov property,

P. [Sn =z, 7(x2) < n/lO] =E, [1{T(x2)<n/10}P$2 (Sk = Z)‘k:n_q_(m)] < (log n)_g. (113)
Finally, (111), (112) and (113) give

Pu(Sh=2) < PB,[r(b(n)) Ar(x2) > n/10] + P,[S, = z, 7(b(n)) < n/10]
+Py[Sh = 2, T(z2) < n/lO] (114)
< D(2) +5(ogn)~3. (115)

We prove similarly this inequality P, (S, = z) < D(z) +5(logn) ™3 by symmetry when bjog,, > 0,
exchanging xo and z; and replacing xo by x_1 in (112) and (113) since z > M~ =x9 > z_; in
this case, and using (10) instead of (11).

Combining this with (115) and (110) proves (106). O

4.5. Upper bound of the annealed probability: main contribution. The aim of this
subsection is to give an upper bound of the annealed probability of {S,, = z} on the event for

(n)

which we used the coupling, that is, on E"(z). More precisely, we prove the following estimate.

Proposition 4.8. We have, under the hypotheses of Theorem 1.1, as n — +0o0,

o (g )| <ollomn™. 0

logn

2
(n) 20
sup |P(Sn, =2 E~"(2)) —
2€(2Z+n) ( ¢ ( )) (10g n
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The strategy of the proof is to use Lemma 4.7 to dominate ]P’(Sn =z, Eg)(z)) by some quantity
expressed in terms of left (logn)-slopes T;(V,logn) for —1 <i <1 (see e.g. (121), (122), (124)
and T
logn Vd]ogn’
then Lemma 2.6 to make appear the quantity P(blogn =zt ) for some 2, & z, which, in turn,

can be approximated by the expression with ¢, in (116) thanks to Theorem 1.4.

and (125)), then use our Theorems 2.4 and 2.5 to obtain an expression with ’TJ

Proof: We assume that the hypotheses of Theorem 1.1 are satisfied. Let n > ng and z € (2Z+n).
Using Lemma 4.7 in the last line, Eg)(z) being defined in (85), we have

Ty
P(Snzszg)(z)) = Z E[1E<C">(z)n{blogn:z+k}Pw(S":Z)]
k=—T4,
Iy
= filn,2)+ > Jolkn,2), (117)
k=—Tp,

where |f1(n,2)| < 5(logn)~® and (writing EZ-(n)(z) instead of Ez(n) even for ¢ # 3 for simplicity),

Jo(k,n,z) :=E[1 =E1 (118)

E(Cn) (2)N{brog n=2-+k} Yn (Z)] ﬁ?:3 Ei(n> (2){brog n=2+k} Yn (Z)] :

Notice that, using (107) and in the remark below, we have if w € E(Cn)(z) N{biogn = 2z + k} with
|k| < T, (M* being defined in (87)),

M~ <z=bogn— k<M. (119)

Hence, we have on Egl)(z) N {biogn = z + k} with |k| < T, using the definitions of 7}, and i,
(see (89) and (88)),

al2) in(2) Fn(brogn — ) e~V 0osn) 4 o=V (uoga b
v == = ~ = ,
T (22 + Lawia(n) M V() SMI T ev()
since z and n have the same parity, and [1,,(2Z) = u,(2Z + 1) = ij\g\r/;l e~V @ and where we

used the definition (88) of fi, on JM~, M T [ and (119) in the last equality.
Now, we define for j € {0,1},

e_V(blog n_k_j)

j: . e e —
Sy (kon,z,5) =B\ Lpon g g M V) |
=M

(120)

Notice that for k € Z such that |k| < Ty, if £ < —2z then {bjogn, = 2 + k} C {biogn < 0} = B,
so Jo(k,n,2) < Jy (k,n,2,0)+J5 (k,n,2,1), whereas if k > —z, then {biogr, = 2+k} C {blogn >
0} = E(ﬁ), so Jo(k,n,2) < JF(k,n, z,0) + J5 (k,n, 2,1). So we have, thanks to (117),

}P’(Sn = 2, Eg)(z)) < J3(n,z,0) + J3(n,z,1) + 5(logn) 3, (121)
where for j € {0,1},

I'n

J3(n7zaj) = Z |:J2_(k>nvz>j)1{k+z§0} + J;(k7nvzaj)1{k+z>0}]' (122)
k=-Ipn

We first consider k < —z, with |k| < I';,. Hence on {biogn, = 2z + k}, we have bioe,, < 0, s0
w € E(,n), thus M~ = x_1, biogn = 2o and M+ = zy (recall that z; = z;(V,logn), i € Z



40 ALEXIS DEVULDER

in this section). So for j € {0, 1}, recalling that for u € Z, V,(.) := V(u+.) — V(u), and
Voo () :=V(u—.)—V(u), we have

u

e_V(xO_k_j)

JQ_ (kv n, z, ]) =E |:1E(_n>ﬁ{x0:z+k}ﬁEén) W
=T _1
e*Vzo(fk’*J)]_{xO:z_"_k,}

=E|1 .
{VIO (z1—x0)>logn, Ty, (logn)>Ty, TV[O (logn)>Fn} Zf;;f?:io e~ Vo (1)

(123)

Notice that (Vi,(i), 0 < i < 1 —x0) = 0(Tp(V,logn)) and that (V (i), 0 <i<axo—21) =
(V(zo — i) = V(zo), 0 <i < wo—a1) = (Vo (@0 —a—1 — i) = Vo (w0 —2-1), 0 <@ <
xo — x_1) = C[0(T-1(V,logn))], with ¢ defined in (24). Also, on the event in (123), |k| < T,
implies that —k —j < I'y + 1 < Ty, (logn) < @1 — x¢ = £[0(To(V,logn))], and similarly
k4+j<axo—xz_1 =L[C(O(T-1(V,logn)))]. Hence, with the following notation for slopes v and ¢,
e D1 coy + e ED 1 gy
ng’l) e—v(i) 4 ng())fl _
in which we do not write the dependency on n, k, j to simplify the notations, we have for our
fixed n, k and j since |k| < T,

Jy (kyn, 2, 5) = E[@cior, (vViogm) [0(To(V; 10g 1)1 gy—z 4k} ] - (125)

In the rest of this section, all the slopes considered, such as TJ o TVh, 'TJ_* 5, etc, are with

va(t) = l{t(ﬂ(t))ZIOgn, Ti(log n) ATy (logn)>I'p} ) (124)

h = logn, and we remove this subscript A to simplify the notation. That is, TT denotes T‘Ibg n
'T‘L denotes TVlogn, etc. Due to Theorem 2.4 (i), conditionally on g™ , C[O(T-1(V,1logn))] is
independent of (0[Ty(V,logn)],zo) and has the same law as ((Ti) (under P) and so as 'TJ_ by

Proposition 2.12. Hence, we get, since ¢,[0(Tp(V,logn))|1 = 0 for any v,

e
JQ_(k7 n, Z7j) =E |:E(¢U [9<T0(‘/7 IOg n))]l{x0:Z+k}) |U:T\Ii:| ’

Thus, applying the (renewal) Theorem 2.5 eq. (29) with h = logn, ¢ = ¢, Ao = {z + k},
Ay = Z (notice that ¢,(t) = 0 if ¢ is a downward slope whereas Liiet))>1ogny = 1 when t is an

upward (logn)-slope), we get, T‘j and ’T‘;j being here independent,
E(G0<i <U(T), —i=2+keu(T))) op-

E _
[ E[¢(Ty) +¢(T)] ]

Jy (k,n,z,5) =

Ef1
( {TT‘; (log n)ATT$i (log n)>Fn}

(s ~TY (kg
e RNy e V*(+J)1{k+j>0} Realer)) ) (126)
T* *
ST @ s e BT + (7))

Whereweusedﬁ{0§i<€(7"j), —i=z+k}=1 when z + k < 0.

{—z—k<t(T))}
We now assume that k& > —z, with |k| < T',,. We have bz, > 0 on {biogn, = 2 + k}, and so
w € Esrn), thus biogn, = 21, M~ = zo and M = 5. So by (120), for j € {0,1},

_Vacl(_k_j) :|

Vo, (wo—z1)>logn, z1=2+k, Ty, (logn)AT. _ (logn)>T Tr—z1—1__V,
{ 1 (wo—z1)2logn, z1=2+k, Ty, (logn) Vzl(Ogn) R}Zz e ey (1)

J;(k,n,z,j):E 1



ANNEALED LOCAL LIMIT THEOREM FOR SINAI'S RANDOM WALK 41
Notice that (V, (i), 0 <i < z9 —x1) = 6(T1(V,logn)) and that (V,(—i), 0 < i < x; —x) =
(V(zy —i) = V(z1), 0<i<x;—z0)=C[0(To(V,logn))]. Hence, with

o—v(—k=j) t(k+)

Likj<oy €77 g0
Sl et 4+ 3 e
in which we do not write the dependency on n, k, j to simplify the notations, we have

J;(k, n, z, j) = E [SDZ[Tl(V,logn)] [C(Q(TO(VY’ IOg n)))]1{$1:z+k}] .

Since due to Theorem 2.4 (ii), conditionally on ES:"), 0(T1(V,logn)) has the law .Z (TJ), and is
independent of (0(Ty(V,logn)), z1), we have,

J;(ka n, Zaj) =E [E(ij [C(G(TO(‘/’ 1Og n)))]1{$1zz+k}) \U=TJ] s

since ¢ [C(0(T0(V; logn)))]1 yoo)

h=logn, ¢ =@} o(, Ag =7, Ay = {z+ k} (we use once more that ¢} o ((t) =0 when ¢ is a
(translated) upward slope, since in this case ((t) is a downward slope), we get

E(f{o<i< 6(7'&), K(T‘i/) —i=z+k}pl o C(T\i))w:ﬂj
E[¢(T) + (7)) '

Recall that, by Proposition 2.12 (ii), C(T‘i) =law TJ:k Hence, TJ and TJj being independent,

and using K(T&) = K(C(T&)), we get

@i () = Lige())>logn, Ty (log n)ATy(logn)>Tn}

)

= 0 for any v. Thus, applying the (renewal) Theorem 2.5 with

I (kyn,z,j) = E[

5 ' El1 1
JQ (k;nyza.j) ( {TT$i(logn)>Fn} {TTJ(logn)>Fn}

. —T j
e oo -1 Terk<arioy ) (127)

ST 0 Tt i E[UT) + 4]

where we used {0 < i < E(T&), Z(T&) —i=z+k}=1 which becomes 1

{z+k<6(TH)} {2+k<O(TI )}

since z + k > 0 and Lgyg))>togny = 1 for ¢ = C(T&). Notice that the only difference between

this formula and (126) is that 1 is replaced by

{—z—k<t(T])} 1{Z+’féf(75f )}

We now define

z+ 1, if z<-TI,,

PARNEES 0 if —T',<z<T,,
=T, ifz>T,,
Lo heury ?f z< =Dy,
(T8 T 2) = Lio<ecrin if —Tp <z<Ty,
1{z+k§€(TJj)} if z >Fn-

Notice that in the case z < —TI',,, we have z + k < 0 for every k in the sum in (122), so, using
(126), we have for each j € {0,1} (the inequality being an equality in this first case z < —I',),

Jg(n,Z,j) < E(

1 {TTJ (log n)>1"n} 1 {TT‘;i (log n)>1"n}
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. gt ; %
St g, (eTTPCEED LG gy e TV‘(k+])1{k+j>0})¢k(TJ’TBZ)) (128)
N , 0TS gt ’
(S e 4 S0 Ve () + o)

When z > T, we have z+k > 0 for every k in the sum in (122). So, combining (122) and (127),
inequality (128) remains true in this case (and is actually an equality in this second case).

2—k<e(ryyy Which
which appears in (127) for k+2z > 0

Finally, assume that —I',, < z < T',,. In this case, notice that the quantity 1 (-

appears in (126) for k42 < 0, and the quantity 1{z+k<e(TT* 3
— V_

: _ _ ot , - ~ ~
are both dominated by 1 = 1{0<£(TJ)} = g (’TV, Tvi,z) P-a.s., so Jy (k,n,2,j) and J5 (k,n, 2, j)
are dominated by the same formula. So for j € {0,1}, (128) also remains true in this case. So,
(128) holds for every z € Z and every j € {0,1}.

Now, we notice that for every —I'y, < k < I'j;, we have (TT,TT_*,Z) <

i YL i)
— T T —
1{—z—Fn<e(T‘I)} = 1{—zf{<€(7’$)} when z < —I'y,, also ¢, (’TV,TVJZ) = 1{—2?{<€(TJ)} when —TI, <

T _ _
z < T, whereas 9 (TV, ’Tvi,z) = 1{z+k§Z(TJj)} < 1{z—1‘n§€(TJj)} = 1{zi§€(7}3ﬁ)} when z > T',,.

Hence, (128) leads to, for every j € {0,1}, n > ng and z € (2Z 4 n), as explained below,
P[— 2t < o(T] Pl <(T")

[ 1 ( ‘1)] l{zSFn} + [ 4 4 i] 1{Z>Fn} = P(bbgn = Z’r—r) (129)
E[(Ty) +¢(Ty)] E[(Ty) +¢(Ty)]

Indeed, we first used I', +1 < T4 (logn) < E(TJ) and similarly T',, + 1 < E(’TJ*), so that
7 a

1) (T
i;irn(. )< (ng\/) L Zizlv‘ ...) in (128) to get the (first) inequality. Then,

to get the following equality, we used eq. (44) of Lemma 2.6 when z < T',, and ¢ (TJ_*) =law
E(((T‘i)) = E(T‘i) by Proposition 2.12 (ii) and eq. (43) of Lemma 2.6 when z > T',.

JS(na Zaj) S

Now, let ¢ > 0. By Theorem 1.4, there exists nq > ng3 such that, for every j € {0,1}, n > ny
and z € (2Z + n),

; + o 0?2y -2
Jg(n,z,a)gP(blognzzn)g(logn)gsooo (logn)? +e(logn) .

Now, recall that ¢ is uniformly continuous on R since ¢ is continuous on R and lim4 s oo =
0. Also, sup,¢z |02z (logn) =2 — 022(logn)~2| — 0 as n — +o00 because &; < 2/3. Thus, there
exists ng > ny such that for all n > ns, sup,cz |@oo(022, (logn) ™2) — oo (022(logn) ~2)| < o~ 2.
Hence,

Vn > ns, Vz € (2Z+n),Vj € {0,1}, Js(n,z,5) < o’ o’z % (130)
= Ti5, y V] 3 ) 3\n,z,7) > (logn)Q%o (logn)2 (logn)2

Finally, (121) and (130) lead to, for all n > ns,

2 2
(n) 20 o4z 4e 5
27 P(S, = 2, E < N .
ez, B == B < e () + g o
This gives (116), which proves the proposition. O

5. PROVING THAT SOME ENVIRONMENTS OR TRAJECTORIES ARE NEGLIGIBLE

The aim of this section is to prove that sup,cz ]P’(Sn = z, (E(c?)(z))c) is negligible compared
to (logn)~2 as n — +oo (recall Egl)(z) from (85)). To this aim we give upper bounds of the
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probabilities of different events, most of them depending both on the environment and on the
walk, except the event considered in Lemma 5.1.

5.1. Contribution of (Ezin)(z))c. As a warm up, we start with following estimate.

Lemma 5.1. There exists cg > 0 such that

Vn > ns, Vz € Z, P[(Ein)(z))c N E?()n) N Eén) N Eén)(z)] < cy(logy ) (logn) 3.

Proof: Let n > n5 and z € Z. We introduce
E{(2) = (B (2) N BV n BV n BV (), E{(2) = B 0 E(Y(2).

We first assume that w € Eéi)(z) (see Figure 6). Hence, w € E™ N (Ein)(z))c, S0 blogn =
zo(V,logn),

V(2) = V(biogn) < 5logyn (131)
and

[bmaxo] V> V]zi(V,logn)] —9loggn = V(biogn) + H[To(V,logn)] — 9logy n
log ns

> V(biogn) +1logn + (Ca —9)logyn > V(biogn) + logn, (132)
since H[Tp(V,logn)] = H[To(V,hy, — Cilogyn)] > logn + Cylogyn by Remark 4.2 because
w E E:,En), and where we used Cy > 9.

z+ T+ (logn — 5log, n)

logn — 5logyn
blogn + Fn

\ lzlog n
T T
: Z

\

Figure 6. Schema of the potential V on w € Eén_)(z), with x; = x;(V,logn) and

Yy = max[, o V.

Also, w € Eén) N Eén)(z), so as in (107), using (132) in the last inequality,
blogn — Tvb* (logn) < z < blogn + Tvb+ (logn) <0, (133)

logn log n
where for x € Z, VF(k) = V(z £ k) — V(x), k € N, as before. This and (132) also lead to

maxV = max V > V[z1(V,logn)] — 9logyn. (134)
[Z,O} [blog n 70}
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We now introduce, for y > 0, V4, (k) := V[k+ Ty (y)] — V[Tv(y)], k € N, and
Eéni)(z) = {TVZ:!: (logn — 5logyn) < T+ (—5logy n)},

Bip'(w) = {Tv,(~logn) < Ty, (10logy )}
where logn — 5logoan > h, > 0 since n > ns > ng and C; > 20. Due to (131) and (133) and

since biogy, is a left (log n)-minimum, we have w € Eé"l (z)N Eé”}r(z)

Also, notice that, using (134), Viz1(V,logn)] = max 4, (viegn) V = MaXp, ., os(Viegn) V =
max(y, . o] V' = max[, o V and H[Ty(V,logn)] = H[T1(V,h, — Cilogyn)] > logn + Cylogyn
with Cy > 9 (by Remark 4.2 since w € Eén)) So, after hitting [max[%o} V, +oo[, the potential
(V(u), u > 0) cannot take values larger than V[z1(V,logn)] < maxp, o V + 9logyn (see (134))
before going (down) to zo(V,logn) with V[ze(V,logn)] = Vizi(V,logn)] — H[T1(V,logn)] <
V[z1(V,logn)] — logn — Caloggn < maxp, gV — logn by (134) and since Cy > 9. Hence,
w € E%)(max[zm V).

Finally, z + T} +(log n — 5logy 1) < biogp +Ty+  (logn) < 0 by (131) and (133), and Eén_)(z) N

log n

E(n +(z) N{z + T+ (logn — 5logy n) < 0} depend only on V= = (V(k), k < 0). Hence, condi-
tlonlng by V'~ to get the third line, using (17) for the forth, the independence of V;  and V"
and Cy < logyn since n > ns > ng for the fifth, and once more (17) for the sixth, we get for
every n > ns and z € 7Z,

PIE! (2)]

< [E(" N E9 1(2) N {z + T+ (logn — 5logon) <0} N Egg)(max[%o] V)]

= E[a E§" (2)NEg") (:)N{z+T,, 1 (log n—5 log, n)SO}P(E%) (max.,0) V) [V7)]

< E[1 E(") L) ( )(1010g2n+00)(10gn+ 10logy n + C’g)_l]

< P[ ] [E(n)( )](1110g2 n)(logn) ™

< (6 10g2 n)%(111og, n)(logn) 3. (135)

We show similarly that P[Eénl(z)] < 396(log, n)3(logn) =3 for every n > ns and z € Z. This,
combined with (135), ends the proof of the lemma. O

5.2. Case when by, is far from z without subvalleys or small valleys. In this subsection,
we prove that the event constituted by environments and trajectories such that by, is far from

z and S, = z while E:.En) N Eén) holds is negligible. More precisely, we prove the following
proposition.

Proposition 5.2. There exist c19 > 0 and ng > ns such that, for all n > ng,

V2€Z,  P(Sy =22 —biogn| > Tn, ES”, EY) < cro(logn)—2701/2, (136)

Before giving a complete proof, we first introduce the different cases considered.

Organisation of the proof: We consider separately the case 7(biog,) < n (see Lemma 5.3) and
the case 7(biogr) > n (see Lemmas 5.4, 5.5 and 5.6) since in this second case, we prove (see (150))
that with large enough probability, 7[z2(V,logn)] < n on E™ and similarly 7[x_1(V,logn)] <n

on E(j‘). So in the first case 7(bjogn) < 1, S goes before time n to the bottom bjeg y, of the central
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valley of height at least log n, whereas in the second case 7(biogpn) > 1, S goes before time n to
the bottom of a neighbour valley of height at least logn with large probability. Figure 7 gives
the schema of a potential for which S can go before time n, with relatively comparable quenched
probability, to each of the bottoms of the two valleys ”surrounding” the origin, zo(V,logn) and
x2(V,logn) in this figure.

5.2.1. Case when 7(biogn) < n. In this subsection, we consider the case 7(biogrn) < n of Propo-
sition 5.2, since for this case we can use an inequality coming from the reversibility of S. More
precisely, we prove the following lemma.

Lemma 5.3. There exists c11 > 0 and ng > ns such that for all n > ng,

V2eZ,  P(Sh=2|bogn — 2| > Do, T(biogn) < n, BSY, EYY) < c11(logn) ~270/2. (137)

Proof: In this proof, TJ and T& denote respectively T‘j and T‘}L

Jogn Jogn®
with h = logn, there exists ng > ns such that for all n > ng, E[K(TJ) + E(T&)} > cr(logn)?.
Let n > ng and z € Z. We separate the proof into different cases, first when z ¢ [M~, M ],
then when z € [M~,M*] — ]E‘,E*[ and finally when z € ]E‘,E* [, this last case being cut
into four subcases, depending on the signs of bjog, and of z — biog -

By Lemma 2.15 applied

First step: we have, conditioning by w and applying the strong Markov property at stopping
time 7(logn), recalling M* from (87) (with x; = x;(V,logn), see Figure 5),

IP’(Sn =2, |blogn — 2| > I'n, T(biogn) < n E(”),Eén),z ¢ [M‘,Mﬂ)

S E( E(n)l{T(blogn <n}P Ogn(S ¢ [M M ])|k:n_7—(blogn)))
< E[1 P r(M7) AT(MY) < n]] < (logm) ™, (138)
where we used (101), which is still valid on E( ") for n > ng with b( ) replaced by biog p, recalling

that ng > ns.

Second step: By reversibility (see (13)), we have for ally € Z, k € N and a.s. every environment
w?

6_V(y) + e_v(y_l)

PL (S5 = ) = PU(S, = biggn) o) < crape V0=V )

,uw(blogn) - e_v(blogn) —+ e_V(blOgn_l)

with c19 := (1 + ¢, ') by ellipticity. Hence, recalling M* from (87) and L* from (91) and (92),
conditioning by w and applying the strong Markov property at time 7(bjogr),

P(Sy = 2, |brogn — 2| > Ty T(biogn) < n, ESY B 2 € (M, M)

bO n
= E{1{|b10gn—z|>Fn}1{T(b10gn)§n}]-Eé")mEén)1{z€[M*,M+]}Pwl *"[Sk = 2] jk=n—1(brogn)

<E [1{“’10@;n*Z|>Fn}1E§")mEén) 1{Z€[M77M+]}01267[V(Z)7V(b10gn)]:| ) (139)

We cut the expectation in (139) into several parts. We first notice that since n > ng > ns,
E [1{z€[M—,Z—]U[E+,M+]}1E§”)QE§")ClQe_W(Z)_V(blog")]} < ¢12(log n)—(h < (logn) -3 (140)
by (95) and (96), and since C7 > 20 and logn > 2¢,' because n > ng > ns.

Third step: Hence, there only remains to treat the case z G]E* Lt [, which we divide into 4
subcases, depending on the signs of z and z — bjogy,. In this step, we write 7; := 0(T;(V,logn))
for —1 < i <1 to simplify the notation. First, we have, using T; (h,) < T7 (logn) and the
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fact that {z — biogn, > I'n, blogn > 0} depends only on biyg,, and so is measurable with respect
to (7o, zo(V,logn)) in the first inequality, using the law ’TJ of 71 and its independence with
(7o, z0(V,logn)) conditionally on {bjogr > 0} (i.e. on Ty(V,logn) being downward) by Theorem
2.4 (ii) in the first equality, then the law of TJ (T‘I p With h = logn) by Theorem 2.3 with
Elogn = {Tv(logn) < Ty(R)} as defined in (230) in the second inequality, then Proposition
7.3 in the third one since I';, > py because n > ng > n3 and n3 > exp(ps), we get

[ [V (2)=V (biogn
E_1{Z>blogn+Fn}l{blogn>0}1{ze}f—,f+[}1E§")0Eén>e [V(2)=V(blog )]}

g E l{z_blogn>rn}1{blogn>0} E |:1{yn<TT1 (log n)}e_’Tl (yn) ‘0-(7-0’ xo(‘/’ log n)):| Yn=2 bl :|
L n=2"0logn
— ~T (yn
= E _]-{szlogn>l“n}1{blog ,L>0}E {1{yn<TTJ (logn)}€ vy )} yn:Z_blogni|
< E 1{Z*blog n>Fn}E |:1{yn<TV (log n)}er(yn) |Elog n] }
L yn:Z_blogn
S Bl b (lognya/aanyci3(z — blogn)_?’/ﬂ < cia(logn) 270N/, (141)

Also, using zo(V,logn) = biggpn < 2 < Lt = 20(V,logn) +Tr; (hy,) with h,, < logn (on the event

of the second line below) and Eén) in the first inequality, we have

E| T st Pl Lo <0} Ly ) 1 gt V=V (142)
—[V(z)-V
= ZE[1{Z>y+rn}1{blogn:y}1{ze]f/—,2+[}1E§">mEé")e [V(2) (y)]}
y<0
—To(z—
< D Lot E Loy Lot Gosmy L ey <atogmirye Y|
y<0
E[l T oo y<r (ogn)} Lypert 246 efTJ(Z’y)]
1 {—u(Th<y ) Emy<Tr (oem)} Hu(T) <2(logm)*+01 )
= {Z_y>rn} )
4 E[(Ty) +¢(Ty)]

where we used, in the last equality, eq. (29) of Theorem 2.5 with Ay = {y}, Ay = Z and
h =logn and §{0 < i < E(T‘j), —i =y} = 1{*£(T$)<y}’ for which we recall that for y < 0,
blogn = y means that zo(V,logn) =y and To(¢(7o)) > 0, i.e. Ty is an upward slope.

Then, using the definition of ng and y > —E(TJ) > —2(logn)?*9 and the law of slopes provided

by Theorem 2.3 (i) in the first inequality, and Proposition 7.3 in the second inequality since
I';, > pg and logn > ps because n > ng > ng, we get, with cy4 := 307_1013,

1 0
c V(r—) |
(142) < (103?771)2 > L yora B[l yery qogmye™ 7Y [Eiogn]
y=—T2(log n)2+01
et 0
(log77n)2 > Loy (ogmystanycis(z = y) /2

y=—[2(logn)>*+1]

IN

¢ (logn) "2 [2(log n)>T0 + 1] 13 ((log n)/301) ™% < ¢4 (logn)~2-01/2. (143)

Notice that ¢(7-1) = (V(zo — i) — V(z0), 0 < i < xg — x_1), with z; = z;(V,logn), j € Z.
Moreover, by Theorem 2.4 (i), conditionally on Ty(V,logn) being upward, i.e. on {bjogrn < 0},
¢(7-1) is independent of (7o, zo(V,logn)) and has the same law as C(’T‘}), so is equal in law,
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by Proposition 2.12, to T‘ji logn’ which law is given by Theorem 2.9 (i) applied to V'~ (with ¢
defined in (24)). Using this in the second inequality, then Proposition 7.3 in the third one, we
get since n > ng, with Z) = {Ty- (logn) < T}, (] — 00,0])}, similarly as in (141),

[ —[V(2) =V (biog n
E_1{Z<blogn*r'n}1{blogn§0}1{ze]Z*,Z+[}1E§")mEén)e [V(2)=V (biog )q

)

S E _1{Z<blogn_rn, blog nSO}E [1{yn<T<(7—71)(log n)}e—C(T—l)(yn) ‘0(767 I‘O(V, log n))]

yn:blog n—%

[ =V~ (yn) |=x—
< E 1{b10gn_Z>Fn}E [l{yn<va (logn)}e w )“_‘10gn:| Yn=by —z:|
L n=Vlogn
S E 1{blogn—z>rn}cl3(bbgn - Z)_3/2:| S 013(10g n)_2_351/2‘ (144)

Also, using z1(V,logn) = biggn > 2 > L = z1(V,logn) — T¢(15)(hn) with hy, <logn and Eén)

in the first inequality, we have

[V (2)—V (brog n
E[1{Z<blogn*Fn}1{blogn>0}1{ze]ﬁif+[}1E§">QE§)")e [V(2)=V (biog )]} (145)

—C¢(To)(y—=
< Z1{z—y<—rn}E[1{blogn:y}1{y—z<TC<TO><logn)}l{zm)gz<logn)2+61}€ <ot )}
y>0

cw)(y—z)}

E [1{yse<7é>} l{y—z<T<<fr¢ (log ), £(TH)<2(logn)2+01}€

= Z 1{z—y<—Fn} : >

V=0 E[(TY) +4(Ty)]
where we used, in the last equality, eq. (29) of Theorem 2.5 with Ay = Z, A; = {y} and
h =logn and #{0 < i < E(T‘}), 6(7"}) —i=y} = Lo <oy for y > 0, for which we recall that

Sty
for y > 0, biogr, = y means that z1(V,logn) =y and To(¢(7p)) < 0.
Then, using the definition of ng, y < E(T‘i) < 2(logn)?t9 and Proposition 2.12 in the first

inequality, then Theorem 2.9 (i) in the equality, and Proposition 7.3 in the second inequality,
we get since logn > ps and I';, > py because n > ng > ng, concluding as in (143),

1 [2(logn)**1]

- ~T0 (y—=2)
(145) < (logn)? Z 1{zfy<an}E[1{y*Z<TTT* (ogmye v }
y=1 Ve
1 [2(logn)?to1] c
e V= (y—2) =¥~ .t
= (]0gn)2 Zl 1{y—Z>Fn}E[1{y—Z<va (logn)}€ Y “—‘logn] = (logn)2+51/2' (146)
y:

Combining (141), (143), (144) and (146) ensures that, with c;5 := 2c14 + 2¢13,

E [1{|blogn*2|>rn}1E§">mEé”) 1{Z€]E,’ZJr[}e*[V(Z)*V(blogn)]] < ¢15(log n)72751/2'

This, combined with (140), proves that the right hand side of (139) is < ¢y6(logn)~27%/2 for
all n > ng and z € Z with ci16 := (c15c12 + 1). This together with (138) gives (137) since
0 € (0,2/3),With c11 :=c1g + 1. O

5.2.2. Case with biogr, far from z, without subvalleys and small valleys when T(bogpn) > n. The
aim of this subsection is to prove the following lemma.

Lemma 5.4. There exists a constant c17 > 0 such that, for all n > ng and all z € Z,

P(Sn =z, ‘blogn - Z| > FmT(blogn) >n, E:()’n)’ Eén)) S c17(log2 n)3(]og n)—?,' (147)
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We start with the case bjogp, < 0. We first make the following simple remark.

Lemma 5.5. We have,

Vn > 3,Vz € Z, P(Sn = 2, biogn <0, 2 < biogn — I'n, T(biogn) > n) = 0. (148)

Proof: On {bogn <0, 2 < biogn, — I'n, T(biogn) > n}, we have z < bipgp, < 0, so for S starting
from 0 (under P, or P), 7(z) > 7(biogp) > n and thus S, # 2. This leads to (148). O

In order to prove Lemma 5.4, we also have to give an upper bound for the probability of F’ 1(n) (2),
where

F"(2) := {8 = 2, biogn < 0, 2 > biogn + Ty T(blogn) > n} N ESY N EM.

Loosely speaking, on Eén) by Remark 4.2, there are no subvalleys of height larger than h, —
C1logyn in the (logn)-central valley [M~, M*] and in the two neighbor valleys (of height at
least logn) on its left and on its right, and the height of these three valleys is quite larger than
logn. In particular, we prove:

Lemma 5.6. There exists a constant cig > 0 such that

Vn>ng, V2 eZ,  P[F"(2)] < cis(logyn)?(logn) > (149)

Outline of the proof: See Figure 7 for a schema of the potential. Assume for example that
blogn < 0, 50 g = biogpn, With z; := x;(V,logn), i € Z, and that Fl(n)(z) holds. Since 7(z¢) > n,
we first prove that, by Lemma 4.1, with large probability, 7(x2) < n. Second, if z is not in the
valley [x1,x3], then after first hitting zo, S has to leave this valley before time n (so that S, =
z & [z1,x3]), which has negligible probability since the height of this valley [z, z3] is quite larger
than logn on E?gn). Third, if z belongs to the valley [z1, z3] with V(2) > V(z2) + 4logy n, then
the probability that .S,, = z is negligible by reversibility, which we can apply to S started at zs by
strong Markov property. Finally, if z belongs to the valley [z1, x3] with V(2) < V(z2) +4logy n,
then V(z 4 .) — V(z) goes up logn before going down 4logs n on the left and on the right, and
conditionally on (V(k), k > 0), max(,, o V — max)y ;) V = maxp,, gV — V(21) € [-9logyn,0]
(otherwise 7(x2) < 7(z¢) would have small probability which would contradict our first step).
Since all these three conditions have probability less than c(logs n)(logn)~! for some ¢ > 0 with
some independence, this last case is also negligible compared to (logn)~2. We now prove this
rigorously.

Proof: Let n > ng and z € Z. In all the proof, we write x; for z;(V,logn) for every i € Z.
First step: Applying Lemma 4.1 with h = logn, {& =1, a = 29 < b = 21 < ¢ = z2 (s0
that (i) is satisfied for w € E(,n)), & = 2Cq (so (ii) and (iii) are satisfied since there is no left
(logn — 2C} logy n)-extremum in |xg, z1[ nor in |z, zo[ for w € E™ n E:gn) by Remark 4.2),
a =3 (so (iv) is satisfied for w € EE()") since 0 < &1 < 2/3) and = = 0, we get since n > ng > n3
and so logn > hy(2C1,1),

Vwe E™n Eén) N Eé”), P, [7(z0) AT(z2) > n] < (log n)~4. (150)

As a consequence, using 7(zg) = 7(bogn) > 1 on Fl(n)(z), we get

P[F™(2) N {r(x2) > n}] <E[1 (r(z0) A 7(m2) >n)] < (logn)~*.  (151)

E(_”)mEg")mEé”)P w
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Second step: There only remains to consider Fl(n)(z) N{7(z2) < n}. This second step focuses
on the case z ¢]zy, x3[. We start with the case z < x1 (see Figure 7 with z = 2(?)). In what
follows we prove that in this case, the probability that, after hitting zo, S goes or goes back to
z €] — 00, x1] before time n is negligible.

To this aim, using z < x; < xg, then (11) and ellipticity (16) in the second inequality, we have
for every w € E(,") N E?()n) N{z <z} and k € {0,...,n},
PRSk=2 < PRr(z1) <7(2) <K
< (k+ 1)551 exp(—H[T1(V,logn)]) < 2561(10g n)~ < (logn)™*
since V'[x1] —miny,, .1V = H[T1(V,logn)] > logn+Czlogyn on Eén), Cy > 9and n > ng > ns.
Hence, conditioning by w then applying the strong Markov property at time 7(z2),

P[F{”(2) N {r(22) < n} N {z < 21}]

< E[]'E(_")ﬂEén)ﬂ{zgxl}ﬁ{r(azg)<n}Pf’2 [Sk = Z]Ik:n—f(wa)]
< (logn)™™. (152)
Similarly, using (10) instead of (11), we have for large n,
P[F™ (2) N {r(x2) < n} N {z > 23}] < (logn) ™. (153)

Third step: Now, on {z; < z < z3} N{V(z) > V(x2) +4logyn} N g™ (see Figure 7 with
z = 2), we have by reversibility (see (13)) and ellipticity (16), for k € N,

—1
o

(logn)t

P22(Sp =2) < ::((:2)) <eptexp[V(ze) — V(2)] <

As a consequence, once more conditioning by w and applying the strong Markov property,
proceeding as in (152),

P[F™ (2) N {r(z2) < n} N {1 < 2z < 23} N{V(2) > V(22) + 4logy n}]
E{1

IN

EM™n{z1 <2<z }n{V(2)>V (z2)+4log, n}ﬂ{T(z2)<n}P£2 [Sk = Z]|k=n—r(wz)]
ey H(logn) ™. (154)

IN

Forth step: Finally, we study (see Figure 7 with z = z(4)),
F"(z) = F"(z)n{r(z2) <n}n{zs <z <23} {V(z) < V(az) + 4logyn}.
This set is empty for z < 0 because 1 > 0, so we can assume that z > 0.

We once more define V*(k) := V(2 + k) — V(2), k € Z, and notice that V.~ and V" are
independent. We also introduce

B o= {r(e2) <vlao)l, Bl = { maxV < Vi) - 9logan .
x0,

We have by (7), for large n, for all w € E™n Eg()n) N Eg),

-1 V(@) 1 2+61 vV
P(E) = Zim o < (8 ORIy VT s
S, eV exp[V/(x1)]

Consequently, since Fl(n)(z) N{r(z2) <n} C EYf),
PR (2) nEW] <P[E™ nEM nEY n EW] < (logn) 6. (155)
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5(3) Ty 2@ m L
1 1 1 i >

> loign—l—C'gloan :

> logn + Calogyn

> 4logon < 4logsn

Figure 7. Schema of the potential V with z; = ;(V,logn), and z equal to z(?), z(3)

and 2 respectively for step 2, 3 (on Fl(")(z)) and 4 (on 7™ (2)).

There remains to study ]P’[FQ(")(Z) N (Eg))c] For a process (v(k), k € N) and y € N, we define
vy(.) ==wv(y+.) —v(y) and
By (v) = {Ty(] — o0, ~logn]) < T,(9logy n)}.
Efz)(z) = {TVZ+(log n) < Ty+(—4logy n)} N {Tvzf(log n) < Ty-(—4log, n)}
ﬁ{TV;(logn) <z}
Also for a > 0, let Vi 4(k) :=V ™[k + Ty-(a)] — V™ [Ty~ (a)], k € N. We claim that
FQ(n) (Z) N (Eg))c - E%Z) (Z) N E%g) (Vvl,max(O,maX[O@] V—9log, n)) . (156)

Indeed on FQ(N)(Z) N (Eg))c, we have biog, = 0 < 0, 2z €|w1, 23], ming, 4,V = V(z2) >

V(z) —4logyn, and V(1) > V(xz) + logn + Calogyn > V(z) + logn due to Eén) and since
Cy > 9, the same being true also for V(x3) instead of V(z1). So V;* hits [logn, +oo[ before
| — 00, —4logy n], so FZ(n)(z) N (Eg))c is included in the first two sets in E{Z)(z).

Also on Fz(n)(z), Ty = blogn < 0, thus maxp, .,)V = V(z1), so maxjgV = V(x1) if 21 <

z < 9. Assume now that zo < z < z3 and FQ(n)(z) holds. If maxp,, .V > V(z1), then
min{u € [z2,2], V(u) = max, .} V'} would be a left (logn)-maximum (because its potential

would be greater than V(x;) > V(xz2) + logn + Cyloggn > V(z) 4 logn due to E:gn) and
Cy > 9 as before, and greater than V(z2)+logn), belonging to |z, z3[, which is not possible, so
maxi,, .1 V < V(z1). Hence maxy ) V = V(x1) > V(2) +logn in both cases, so maxy . V,” >

logn, thus FQ(n) (z)N (Eg’))c is included in the third set in Eﬁ) (2).

Finally on FQ(n)(z) N (Eg))c, we have max,, o) V < V(r1) = max,, ;,) V by definition of the x;
and of E(_n)7 and max, o) V' > V(x1) —9logyn > V(z0)+logn by definition of (Eg))c and since

H[Ty(V,logn)] > logn + Cylogy n with Cy > 9 on E?(,n). Also, we just proved that maxp ) V =
V(z1). Hence, starting from 0, V'~ first hits [maxy .} V —9logy n, +00|, then goes down at least

log n before |zg| and so before going up 9logs n, so w € Eg) (VLa) with a = maxpg ;) V —9logy n
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if maxp ;V — 9logyn >
Vizg) =V (z1) — [ (V logn)] < —logn + (9 — Cq)logyn < —logn since Cy > 9 due to Eén),
SO w € E( )(V ) ()

0. Otherwise, max(, oV < V(z1) = maxp,;V < 9logyn, with

% a) with @ = 0. So (156) is proved in every case.
We have in part1cular by (17), since n > ng > ng so logan > Cj,
PE( (V)] = P(Ty- (] — 00, — logn]) < Ty—([91ogz n, +00])) < 10(logy n)(logn) ™. (157)

Also, using first the independence between V" and V,~, which have the same law as V and V'~
respectively, then applying (17) again, we have since n > ng > ns,

P(E{(2)) < P[Tys(logn) < Ty (~4logyn)|P[Ty- (logn) < Ty,- (—4logyn)]
< 25(logy n)?(logn) 2. (158)

Hence using (156), then conditioning by V* = (V(k), k > 0), noting that Eﬂl)(z) and max(g ;) V'

depend only on V* and for every a € R, Eg) (Vi,a) only on V—, which is independent of V'

and has the same law as V; 4, then applying (157) and (158), we get
P [FQ(n)(Z) N (Eg))c] < P [Eﬁ) (Z) N E%g) (Vl,max(O,maX[O’Z] V —9log, n))]
_ (n)
= E [1E§2) (2) P [E13 (‘/17max((),ma)([0’z] V—9log, n)) |V+H

PlE;

= E []'EY” 13) (‘/Yl,a)] |a=max(0,max[g . V —9logy n)]

4 (2)
10(logy n) (log n) P(E(2)) < 250(logy 1) (log n) 3.
This, together with (155) gives P(FQ(H) (z)) < 251(logyn)3(logn)~® for all n > ng and z € Z.

Conclusion: Combining this with (151), (152), (153), (154) proves (149). O

IN

Proof of Lemma 5.4: We prove, similarly as in Lemmas 5.5 and 5.6 (replacing in particular z,
x1, 2 and x3 respectively by x1, xg, x_1 and x_y respectively in its proof, nearly by symmetry)
that for every n > ng and every z € Z,

]P’(Sn = Zablogn >0,z > b]ogn + Fm'r(blogn) > n) =0,
P(Sn =z, blogn > 07 z < blogn - FnaT(blogn) >n, E:)(,n), Eén)) < CIB(IOgQ n)3(10g n)_3'
Combining this with Lemmas 5.5 and 5.6 proves Lemma 5.4 with c¢17 := 2¢1s. Il

Proof of Proposition 5.2: This proposition follows directly from Lemmas 5.3 and 5.4 with
c10 := ¢11 + ¢17, since (logyn)3 < (logn)'/? for n > ng > nz and §; €]0,2/3]. O

5.3. Case with at least one subvalley or small valley. We now focus on the case where
some of the valleys (of height > logn) close to the origin can be small (i.e. with height <
logn+ C3logy n), or can contain subvalleys of height less than but close to logn. More precisely,
the aim of this subsection is to prove the following estimate.

Proposition 5.7. There exists ng > ng and c19 > 0 such that

Vn > ng, Vz € Z, P(S, = 2, (Eén))c) < c19(logy n)3(logn) 3.

This case can be divided into many different subcases. For example, there can be, or not, a
subvalley of height close to logn inside the (logn)-central valley, either at the right or at the
left of biog r, or there can even be two such subvalleys. There can also exist, close to the (logn)-
central valley, one or two valleys with height close to logn, larger or smaller than logn, which
can trap the random walk (Sg); for some time. Also, the height of the (logn)-central valley
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can be close to logn, which can enable S to escape it before time n with not so small quenched
probability. Taking into account the indexes of the left (h,, — C logy n)-slopes considered, i.e.
with height less than log n+ C5 log, n, and their height, larger or smaller than logn, the indexes
i of the first left h,-minimum b;(V, h,) (defined in (160)) visited by S before time n, of the
second one etc, the fact that z is close or far from these left h,-extrema, this makes dozens
of cases. However we will combine together some of these cases, for example with the help of
Lemma 5.9 and of the notation Zj defined in (164) below.

On (Eén))c, there exists some i € {—10,...10} such that H[T;(V, h, — C1logyn)] < logn +
Cslogy n. Also, we prove that with large probability, there are no more than two such . To this
aim, we define

B = {#{i € Z, —99 < i < 99, H[T,(V,hy — Cylogyn)] < logn + Cylogy n} < 2}.

More precisely, we prove the following estimate.

Lemma 5.8. There exist ny > ng and cog > 0 such that,
Yn > nr, P[(E%))C] < eg0(logy n)3(logn) 3. (159)
Proof: Due to Lemma 2.16, we have P[E%Z) (1) | by, < 0] = O((logyn)(logn)™1), i € Z, where
l~1n = h, — C1logyn as before and
E%Z) (i) := {H[T;(V, hy, — C1 logy n)] < logn + Cologyn}, i €Z.

Hence, using the independence of the translated left n-slopes conditionally on {b~hn < 0} (see
Theorem 2.4 (i)), we have

PI(EE) by <0] = P(U—gocii<in<is<on By (i1) N B (i2) N By (is) | b < 0)
3
< > TIPIER i) | b7, <0] = O((logyn)*(logn) )

—99<i1 <i2<i3<99 k=1
as n — +o00. We prove similarly the same inequality with b7 < 0 replaced by b7 > 0, which
proves the lemma. O

We define, for h > 0 and ¢ € Z (this definition being different from that of [24]),

x9;(V, h) if zo(V, h) is a left A-minimum,

bi(V, h) = { x2i—1(V,h) otherwise. (160)

So, the b;(V,h), i € Z, are the left h-minima for V', such that bo(V,h) < 0 < by(V,h) and
bi(V,h) < bit1(V,h), i € Z. We also denote by M;(V,h) the unique left h-maximum for V'
between b;(V, h) and b;41(V, h). Hence, M;(V, h) = xj41(V, h) if bj(V, h) = x;(V, h).

We now prove that the probability that z is ”close” (in terms of potential) to the bottom b;(V, h,,)
of a valley of height h,, and that w € (Eén))c is small. More precisely, we define, for h > 0,

ED (b, 2) == {M;_1(V,h) < 2 < M;(V, h), V(2) < V[b;(V,h)] +4logyn}, jeZ

We now have the following lemma, which is useful to prove Lemma 5.12 (in which we take
h!, = hy,) and Lemma 5.13 (in which we take h), = h,) and then Lemma 5.11.
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Lemma 5.9. There exist co1 > 0 and ng > ny such that, whether hl, = h, or hl, = hp =
hy, — C1logyn, we have

Vn > ng, Vz € Z, P[(Eén))c N U§:_8E£?) (4, by, 2)] < co1(logy m)®(logn) .

Loosely speaking, in the case hl, = En, on E{?) (7, En, z), V;' and V7 go up En — 4log, n before
going down —4log, n, which has probability O(log, n)?(logn)~2). Also, on E?En) one of the left
hp-slopes around the origin has an excess height less than some C'log, n, which has probabil~ity

O((logy n)(logn)~!), with some independence, which leads to Lemma 5.9 in the case h], = hy,
the second case being nearly a consequence of the first one. We now prove this rigorously.

Proof of Lemma 5.9: Let n > ny and z € Z. We start with the case hl, = En On the
one hand, we notice that for —13 < j < 13, on (Eén))c N E%?) (j,ﬁn,z), z belongs to the
support [mk(VJLn),wkH(Vﬁn)] of a left ﬁn—slope T = Tk(V,iNLn) with 25 — 2 < k < 25,
the value of k£ depending on zg (V, ﬁn) being a left ﬁn—maximum or minimum for V and on
z < b;(V, %f,) or z > bj (VLﬁn), with T} (z) — infye[gcvk(vﬁn),xkﬂ(Vﬁn)} Tév(y) < 4log,n. Hence,
using xi(V, hn) =T, i (VZ, hn) 4+ 2,1 € Z on {xk (V, hn) <z < TR (V, hn)} and the definition

of E:gn), we get

P [(E?En))c N U}iwag?) (4, hn, 2)]

< PO s {on(Viln) < 2 < e (Vihn) } 0 {Th(2) = onf, 0(T) < dlog, n}
AL
Nul |, {H[T;(V, ﬁn)] < logn + Calog, n})
< pP({ inf Vo > —dlogyn } NUR Ly {H[Tj(Vz,hn)] < logn + Cylogyn}),

[20(Vashn) @1 (Vs o))

where V, has the same law as V, so the last probability does not depend on z.

Now, mnotice that, with V¥ = (V(4y), y € N) as before, and Vi(k) := VIk+ Tv([ﬁn -
4logy n, —i—ooD], k € N, we have

Eiso N {b;, <0} C Bfy), n By n By, (161)
where for i € Z and h > 0,
(m) _ g 7
Eig; = {1nf[x0(vﬁn)yx1(w~m)} V > —4logyn, H[TZ (V, hn)] < logn + Cslog, n},
EWR), = {Tys ([l —4logyn, +o0[) < Tys(] - 00, —4logyn])},
Eég) = {Ty,(] — oo, logn + Cylogyn — ) < Ty, ([logn + Calogyn, +00[) }.

Using (17) and n > n7 > ng, we have P(E;g?i) < 10(logy n)(logn)~! and P(Eég) | V(k), k <
Tv([ﬁn —4logyn, +00 D) < (logn+C’2 logy n— (%n—éllogz n) +Co) (Entho)_l < 2(2C1+Cyr+
5)(logy n)(logn) . Hence, using (161), conditioning by o (V (k), k < Ty ([hn — 4logy n, +00])
then using the independence of V1 and V~, we have, with cg2 := 200(2C + Cy + 5),

P(Efg?o, b < ) < caa(logyn)?(logn) 2.

We get similarly the same result with bﬁn < 0 replaced by b~hn > 0.
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Finally, for i # 0, using Theorem 2.4 (i) since H[é’(Tz (V, ﬁn))] = H[TZ (V, Tzn)},
PR by, <0)

= P( _inf V> —dlogyn, by < 0>P(H[Ti(V, hn)] <logn+ Cylogyn | by < 0)
[zo(Vihn),z1(Vihn)] " n

< 200c8(2C) + Co + Cp)(logy n)3(logn) >

for large n since the first probability in the second line is < P(Eg’)_) P(Eg) +) and the second

one is < Cg(log n+ Calogyn —%n) (i:n)_l for large n by Lemma 2.16. We get similarly the same
result with b; < 0 replaced by b; > 0, using Theorem 2.4 (ii) instead of (i). Thus, there
)

exists some co3 > 0 and some ng > n; such that P(Efgl) < co3(logy n)3(logn) =3 for all n > ng

and all —37 <17 < 38.

Finally, for all n > ng for all z € Z,

38
P(ES)) NUE_uBE (j,hn,2)] < S P(EWR) < T6ess(logy n)* (logn) 2, (162)
1=—37

which proves the lemma in the case h/, = hy,.

We now turn to the case h], = h,,. Let z € Z. To this aim, we introduce some notation, which
will also be useful in the proof of Lemma 5.10 below. For j € Z, let

Aj = t{k € Z, x,(V,hy) € [25(Vy ), i1 (Vb)) [} (163)

which belongs to (2N + 1) since left hn-maxima and minima alternate and hy, < hy,. If for j € Z,
Aj = 2k + 1 with & > 1, then [z;(V, hy),zj41(V, hn)| = [ajg(V,En), Tpiokil (V,iNLn)[ for some
¢ € 7Z. Also for each 0 < i < k, H[TH%H (V, %n)] < hy,, otherwise, if moreover ;Ug(V, En) is
a left hp-minimum (resp. maximum), then % := min {u € [l’@(V, ﬁn),$£+2i+1 (V, %n)}, V(u) =
[me(%ﬁn)ﬁugzﬁziﬂ(Vﬁn)] V} would be a left h,-extremum (since V(ﬂ) > V[$g+2i+2 (V, En)]
+hy, > V[xg(V, hn)] + hy, ), belonging to |z;(V, hy),z;41(V, hy)[, which is not possible (resp.
similar argument with max replaced by min).

Hence on Eig), Ag < 5, otherwise the support of Ty(V, hy,) would contain the support of at

least (A9 — 1)/2 > 3 slopes Tp(V, En) with height H[TP(V, ﬁn)} < hy < logn + Cylogy n, with
at least three of them such that |p| < 5, which is not possible on Eg) Also, notice that for
j>1 z;(V.h,) = xg(V,ﬁn) with 1 < ¢ < Ag + -+ Aj_1. Thus by induction, A; < 5
for every 0 < j < 17, for which we use for 0 < j < 17 the same argument as for Ay with
1<p<Apg+---+Aj_1+5 (<5 +1) <90 by hypothesis of induction). Similarly on Eg),
A; <5 for every —17 < j <0, and so for every —17 < j < 17.

max

Consequently, for the same reasons, on EYSL), if for —17 < j <17, A; = 3 (resp. Aj = 5), then the
support of T;(V, hy,) contains the support of at least one (resp. at least two) slope(s) T, (V, ﬁn)
with height H[Tp(V7 ﬁn)] < hyp, < logn + Cylogy n with |p| < 99. Thus, Ag+---+A; <j+5
for every 0 < j <17 and Aj +---+ Ay < |j| + 5 for every —17 < j < 0.

Notice that for —8 < 5 < 8, on Eg)ﬂE:&?) (4, hn, 2), we have b;(V, hy,) = z1(V, hy,) with k € {2j—
1,27} by (160), 50 bj(V, hy) = ¢(V, hn) with 1 < £ < Ag+---+Agj1 < (25 —1)+5<20if 1 <
J<8 and [] < Agj_1+---+Ag < |25 —1|+5 < 22if -8 < j <0, using the previous paragraph.
So b;(V, hy) = :Bg(V, 7Ln) = bj, (V, En) with £ € {2jp—1,2jp}, thus —11 < jy < 10. Consequently,
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there exists ji € Z such that z € [Mj,_1(V,hn), Mj, (V,hy)] € [Mj_1(V, hy), M;(V, hy)] C
[:cg,g)(‘/',ﬁn),xg%(v,ﬁn)] C [m_27(V,ﬁn),x25(V,7Ln)] (so that —13 < j; < 13), with V(z) <
Vb (V, hy)] + 4logan < V[, (V, En)] + 4logy n, so the conditions defining E%?) (jl,%n, z) are
satisfied. Hence,
PL(ESY)" MU S EL7 (G fon, 2)]
<P[(EXNT] +P[(ES) N B NUE__13EW (i, hny 2)] < (ea0 + T6¢23) (logy n)? (log n)
by Lemma 5.8 and (162) since n > ng > ny, which proves the lemma when A/, = h,,. O

We now introduce some notation. Recall that 7[b;(V,h,)] < oo P-a.s. for every i € Z since
S = (Sk)k is P-almost surely recurrent. We define by induction

L= Loy (Vb)) <rlbo(Vika)l}

I = > ¢ 11 L (Vi) <rbs(Viba))}s k=20 (164)
LeZ—{T;,1<j<k} i€Z,i¢{L;, 1<j<k}U{l}

In words, Z; is the index £ of the first by[V, hy] visited by S, so that Z; = 0 if 7[by(V, hy)] <
T[01(V,hy)] and Z; = 1 if 7[b1(V, hy,)] < 7[bo(V, hy)], which are the only possible cases since
bo(V,hpn) <0 = 5o < b1(V, hy,) P-a.s. Similarly, Z is the index ¢ of the second by(V, hy,) visited
by S, so Iy # I;, and more generally Z; is for k € N* the index ¢ of the k-th by(V, h,,) visited
by S, so that Zy ¢ {Z1,Zs,...,Zx_1}. Notice that 7[bz, (V, hy)] = 7[bo(V, hp)] A 7[b1(V, hy)] is
a stopping time under P,, with the natural filtration of S, and more generally 7[bz, (V, hy,)] is a
stopping time for every k > 1.

Recall that 0 € [bo(V, hy,), b1(V, hy)[, that bo(V, hy,) and b1(V, h,,) are consecutive left h,-minima,
and My(V, hy,) is the only left h,-maximum between them. So, applying Lemma 4.1 with
h = logn, & = 1/10, a = by(V, hy,) < b = My(V,h,) < ¢ = b1(V, h,) which satisfy (i)
due to the previous remark, £ = Cj so that (ii) and (iii) are satisfied since there is no left
(hyn, = logn — C logy n)-extremum in |[Mo(V, hy,), b1(V, hy,)[ nor in |bo(V, hy,), Mo(V, hy)[, @ = 3
(so that (iv) is satisfied for w € Eén), since |z;(V, hy,)| < |zi(V,logn)| for every ¢ € Z and
91 < 2/3) and x = 0, we get for n > ng (which implies that n > ng3 so logn > EQ(Cl, 1/10)), for
almost all w € Eé"),

P, [T(bzl (‘/7 hn)) > n/lO] =P, [T(bo(V, hn)) A T(bl(‘/a hn)) > n/lO] < (log 77,)74.
Consequently, using Lemma 7.1, for n > max(ng, p3) =: no,

P[7(bz, (V, hn)) > 1/10] < Pr(bz, (V, b)) > /10, ESV] + P[(ES)] < 2(logn) ™. (165)

We now prove several lemmas which are useful to prove Proposition 5.7. In what follows, for
i € Z, we write B; and M; respectively for b;(V, hy) and M;(V, h,) (which are defined in and
after (160)). We first prove that, with large enough probability, S only visits up to 3 different
B; before time n:

Lemma 5.10. There exists cog > 0 such that,

Vn > ng, P[T(BZ4) < n] < c94(logs n)3(log n)_3.

The main idea is that, loosely speaking, on Eg), S has to cross, before 7(Bz,), at least one

slope with height at least logn 4+ C5logy n, which takes more than n units of time with large
probability. We now prove this rigorously.
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Proof of Lemma 5.10: Let n > ng. First, for every 1 < k < 3, using Bz, < Mz, < Bz, 4+1 <
Bz,., when 7 < Zp,1 in the first inequality, then conditioning by w then applying the strong
Markov property at time 7(Bz, ) in the following line, and finally (10) and ellipticity in the last
line, we have

PLin = P[r(Bz,,Bz,.,) <n,V(Mg)—V(Bg,) >logn + Calogyn, Iy > Iy
< P[T(sz, Mzk) <n, V(MIk) — V(sz) > logn + Cy 10g2 n]
B
= E[L{v(az,)-v(sz,)2logn+Calogy P [T(Mz,) < ]
< 2e5t (logn) =2 < (logn)™ (166)

since Co > 9 and n > ng > n3. Similarly, using (11) instead of (10) and Bz,,, < Bz, 1 <
MIk—l < Bz, when Ik+1 < 1, we have

P2k = P[T(Bz,.Bz,,) <n,V(Mg,_1)—V(Bg,) >logn+ Calogyn, I < Ij)
< (logn)™* (167)
for every 1 < k < 3 since Co > 9 and n > ng > ng.
We now prove that on Eg),
H{—6 < j <6, H[T(V,hy)] < logn + Cylogyn} < 2. (168)

To this aim, we use (163) and the following paragraphs. We claim that on E{g), if for some

—6 < j <6, H[T;(V,hy)] < logn + Cylogyn, then the support of T;(V, hy,) contains at least
the support of one T} (V, hn) with H[Tk (V, hn)] < logn + Cylogyn with |k| < 99. Indeed, on
Eg), zj(V, hy) = zi(V, ﬁn) with |k| < Ag+--- 4+ A; <35 and the support of T;(V, h,,) contains
the support of T}, (V, hy,), so H[Ty(V,hy)] < H[T;(V, hy)] < logn + Cylogy n. Since there are
at most two slopes H[Tk (V, %n)], |k| < 35 with height < logn + C2logyn on EY;), there are at
most two j € {—6,...,6} such that H[T;(V, hy,)] < logn + Calogy n, which proves (168).

Also, {Z;, 1 < j <k} C {1 —k,...,k} for every k& € N* by induction, since for k > 2,
min{Z;, 1 < j < k} —1 <7, < max{Z;, 1 < j < k} + 1, because S only makes £1 jumps.
So by (160), Bz, = z; (V, h,) with iy € {=5,...,6} when 1 < k < 3. Hence, each height
V(Mz,) — V(Bg,) or V(Mz,—1) — V(Bgz,) with k € {1,2,3} is equal to some H[T;(V,hy)] with

|7] < 6, so at most two of them are less than logn + C5log, n on E%) by (168).

Hence, for n > ng, using (166) and (167) in the last inequality,
P[T(BL;) < n,EYg)]
<P[M3_, {r(Bz,,B1,,,) < n}NU_,({V(Mz,) — V(Bz,) > logn + Calogyn, Tpp1 > I}
U {V(MIk—l) — V(sz) > logn + Cz log2 n,Ik+1 < Ik})]

3
<> (Prkm + Prkn) < 6(logn) 4, (169)
k=1
This together with Lemma 5.8 proves Lemma 5.10 since ng > ny > ns. O

In the following lemma, we study separately the cases in which z € [Bz, _1,Bz, 1] for 1 <k <3
(in view of Lemma 5.10 since S; € U}_,[Bz, 1, Bz, +1] for i < 7(Bz,)).

Lemma 5.11. There exists cos5 > 0 such that, for all n > ng, for all z € Z, for all 1 <k < 3,

P(Sn =2,B7,-1 < 2 <Br,41,7(Bz,) <n, Eén), (E?()n))c) < co5(logs n)3(logn)=3.



ANNEALED LOCAL LIMIT THEOREM FOR SINAT’'S RANDOM WALK 57

Before proving Lemma 5.11, we introduce some notation. For i € Z, let (see Figure 8),

D = min{j > M;, V(j) < V(B;) + 4logyn}, (170)
Dy = max{j < M;—1, V(j) <V(Bi) + 4logyn},

so that, by ellipticity, V (j) > V(B;) + 4logyn + log g for each j € ([D;, M;—1] U [M;, D}f]).

We cut the proof of Lemma 5.11 into two main parts. First we consider the case z € [ka, D}k]

in Lemma 5.12, then z € ]D}k, BIk+1] in Lemma 5.13, the case z € [sz_l, Dz, [ being obtained
by symmetry in (198).

Lemma 5.12. There exists cog > 0 such that, for all n > ng, for all z € Z, for all 1 <k < 3,

P[S, = 2 D5, < 2 < D ,7(8z,) < n, (E)°] < casllogyn)*(logm) ™. (171)

Proof: The proof is divided into two cases, one for which we use Lemma 5.9 if V(2) — V(Bg, ) is
small enough (< 4log, n), and one for which we use reversibility if it is larger. More precisely,
let n > ng and z € Z. First, recall that {Z;, 1 < j <k} C {1—k,...,k} for every k € N*. So by
Lemma 5.9 with hl, = h,,, since n > ng > ng, we have for every 1 < k < 3, taking into account
all the possible values j of Z;, (see Figure 8 with z = 2(9),
P[S, = 2, Mg,y < 2 < Mz, V(z) < V(Bg,) + 4logy n, (ES)]
< PI(ESY) NUL_,{M;_ < 2z < Mj,V(2) < V(B;) + 4logy n}]
< e (logyn)(logn)~>. (172)
Second, conditioning by w, then applying the strong Markov property at stopping time 7(Bz, )
in the first equality, we get (see Figure 8 with z = 2(%)),
P[S, = 2,V(z) > V(Bz,) + 4logy n + logeg, 7(Bz,) < n]

B
= E[1{v(2)>V(oz,)+4logs ntlogeo} Lr(eg, )<n) P (St = 2)jt=n—r(vz,)]
< (1+e%)eyt(logn) ™, (173)

since P,k (Sr=2) < ““(’7(2) < (14 %) exp(—[V(z) — V(Bg,)]) for all £ € N by reversibility

- Hw Bl'k)

and ellipticity (see (13) and (16)).

Finally, notice that if D7 <z < D;k, then either V(z) > V(Bz,) + 4logyn + logep, either
Mz, 1 <z < Mz, and V(z) < V(Bg,)+4logy n (by the remark after (170) and since logeg < 0).
Hence, combining (172) and (173), we get (171), since n > ng > ng. O

We now consider the case z € }D;k, BIkH] (notice that this interval may be empty). We prove

the following lemma.

Lemma 5.13. There exists co7 > 0 such that, for all n > ng, for all z € Z, for all 1 <k <3,
P[Sn =z, D}k < 2z <Bg41,7(Bz,) < n,Eén), (Eén))c] < co7(logy n)3(log n)f?’. (174)

Before giving the proof, we introduce some notation. Let n > ng and z € Z. We define for : € Z
(see Figure 8),

m™(z,1) := min {D:‘ <j<z V() =mingps V}, (175)

with by convention, min) = +o00, so m™(z,7) is defined in every case, even if we use it only
when z > D;".
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Idea of the proof: (see Figures 8 and 9 for the different cases). First, loosely speaking,
if V(2) is quite larger than the minimum of V in [D;k,z] (see EéTfZ) and Figure 8 below)
and n > 7(Bz,), then by reversibility the probability that S, = z is negligible. So we can

assume that V(z) is just slightly higher than min[D+ 2 V. If moreover on the right of z, the
Iy

2)

potential V' goes up ?Ln before going down 4logy n (see Eégk and Figure 8 below)7 we prove

that we are in U§:78E§?) (q,ﬁn,z), so, applying Lemma 5.9, the probability of this case is
also neghglble Thus we can also assume that on the right of z, the potential V' does not go
up hy before going down 4logyn (see E§3 k) below and Figure 9). In this case, if 7(Bg, ) +

7[Bz,,mT(2,Z;)] > n, then S,, # z. Also, we can choose some constant cg such that, applying
(12), 7(Bg,) + 7Bz, m*(z,Zk)] € [n —n(logn)~,n] has a negligible probability. Finally, if
7(Bz,) + 7Bz, mT (2,Zk)] < n—n(logn)~°2, then we prove that quite quickly and in particular
before time n (if some very probable additional condition is satisfied, see (186) and (196)), S
goes to some place zy; with V(zi) < V(z) — 4logy n, and then the probability that S, = z is
negligible, once more by reversibility. We now prove this rigorously.

Proof of Lemma 5.13: Let n > ng, z € Z and 1 < k < 3. The proof is divided into three main
cases, corresponding to the following events, the last one being itself divided into four subcases

(which are defined around (183) and (186)):
ngz) = {D%_k <z <Bg41}N {V(z) > min[D;k’Z] V + 4logy n},

Eégz) = {D}k <z <Bge41p N { (2) < min[D'sz’Z] V + 4log, n}

z

)
N{ Ty ([, +00[) < Ty (] = 00, —4logy n)) },
Eégz) = {D}k <z< BIk+1} N { (2) < min[D;MZ] V + 4log, n}

(-

Q{T +

Z

00, —4logy n|) < TV;([EH, +oo[) }.

where V,F(0) = V(2 + ) — V(2), £ € N as before and hy, := hy, — C1 logyn = logn — 2C4 logy n.
See figures 8 and 9.

(n,2)

First case: We consider the event E,; i

We have, once more conditioning by w then applying the strong Markov property at stopping
time 7(Bz, ) in the first equality, then using Bz, < D}k <m*(z,Z}) < z on ng;) in the second
equality, then the strong Markov property at time 7[m™(z,Zy)],

IP’[Sn =2,7(Bz,) <n, ng Z)]
= E[l{f(sz)Sn}lggngpw (St = 2)jt=n—r(vz,)]
= E[l{r(szk)Sn}lEg:?PEI’“ (Se = 2z, 7[m™ (2,1)] < 0)ji=z,, 1=n—r(s7,)]
= E[Lrg <m L gio B™ (Lot ey P2 (S0 = 2)pmtorton ) iz, mnr(ugy )
< (1+€%)(logn)™ (176)

since PLTWZ’I]“)(S} = z) < Mmﬁi(é)zk)] < (14 e“)exp(—[V(z) = V(mT(2,Ty))]) < (1+

e“0)(logn)~ for all t € N on E§1 k) by reversibility and ellipticity (see (13) and (16)).
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Figure 8. Schema of the potential V, with z represented as z(%) in the first case of the

proof of Lemma 5.12, 2(%) in the second one, and as z(") on Eé?z) and z(® on E;g;) for
the proof of Lemma 5.13.

)

Second case: We now focus on Eég,j . (n.2)

Notice in particular that E,,’.” includes the case where
the potential of z is ”close” to the one of Bz, +1 (with a difference of potential lower than 4log, n).

We now assume that we are on Eg;) Hence we have, by definition (170) of D;k,

mingy, o)V = ming e V > V(z) —4logyn. (177)
%
Also, V(Mz,) = max(n, 5y, )V and [Mz,, 2] C [Mz,,Bz,+1], s0
ax, V =V(Mgz,) > V(Bz,) + hy > V(D7) — 4logon + hy, (178)
)57

since V(Mz, ) — V(Bz,) > hy, and once more by definition of D}Lk

Now, let =24 T Vj([%m —i—ooD. By definition of D}k and due to the first event defining

92k > then due to the last two events defining E;;L’Z), we have

min[MIk 4V = min[D+ 5V = V(z) — 4logy n. (179)
There exists a unique index p € Z such that M,_ 1(Vﬁ ) <z< M, (V?L ) So M, 1(Vﬁ )
is the largest left h -maximum less than or equal to z. Since Mz, is a left h, and then left

h -maximum and is < z, we have Mz, < M,_ 1(V h )
Assume that zn < bp(V, %n) We define

b i=inf {g € Z, ¢> M, 1(V,h,), V(q) = ming, 5 e Ve

We would have M,_1(V, hy) < 2 < zh < by(V, hy,) and so V(2h) > V(2) + hy, > V(bh) + hy, by
definition of z,ﬁz and b?m, and

VM1 (V)] = max V>V > V) + hy.
[Mpfl(vzh’ﬂ):bp(vvhn)]
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Hence, bEL would be a left En—minimum of V, strictly between M,_1 (V, %n) and bp(V, En), which
is not possible because M,_; (V, En) and bp(V, hn) are consecutive left h,-extrema (see (160)
and the comments below). So, bp(V, hn) < zrﬁl.

Thus, Mz, < My_1(V,hn) < by(V,hy) < 2, Hence, V [by(V, hy )] > miny, oV 2 V(z) -
k n

4logyn by (179) for the last inequality, and thus V(z) < V'[b,(V, hy)] + 4logy n. Hence, using

the definition of p, we are in EY;) (p, ﬁn, z) (defined after (160)).
Also, Mz, < z < B, 41 on E(n’z). So, either zEL < Bz,4+1 < Mz, 41, either zg > Bz,+1. In the
k ket 22,k k k = k
iy iV = V(2) —4logyn by (179), s0 V(2) + hn < V(Bz41) +

k? n

B+ 4logyn < V(Bz,41) + hy since Cy > 4, thus o4 < Bry+1 +Ty+  ([hn, +oo[) < Mz, 41 by
BT+1

second case, V(Bz,4+1) > min

definition of zfl and M7, 11. Hence in every case, Bz, < Mz, < bp(V, %n) < zfl < Mz, 41 < Bz, 42,
and so bp(V, hn) €|Bz,, BT, 12[.

We now also assume that w € Eg) We recall that since 1 < k < 3, there exists i, € {—5,...,6}
such that Bz, = z;, (V, hy,) (as proved before (169)).

Also Bz, is a left h,-minimum and since %n < hy,, it is a fortiori a left En—minimum7 so is equal
to a b; (V, ﬁn), with —4 < j < 5 since —2 < 7, < 3 (see before (169)) and on Eg), as already
proved, all the left hyp-minima bg(V, ﬁn) with |¢| < 8 are also left h,-minima except at most two
of them because h,, < logn + Cylog, n, thus the number of left En—minima in ]O, sz] if Bz, >0
(resp. [Bz,,0] if Bz, < 0) is at most |Zx| + 2 (resp. |Zx| + 3). Also for this last reason, there are
no more than three left h -minima in |Bz, , Bz, 42|, interval to which b (V h ) belongs as proved

previously on EéQ i+ 50 |p| < [j]+3 < 8. Since we already proved that we are on Ei?) (p,%n, z),

this gives Esyr) N B c US__gEW (¢, ]y, 2).

Finally, by Lemmas 5.8 and 5.9, we have since n > ng > ng > nr,

PlEGY 0 (V)] < Pl(EE)]+P[EGY nEE N (B)]
< PUEE)T+P(ES) N U B (g, hn, 2)]
< (020+621)(log2n)3(10gn) 3, (180)

Third case: There remains to consider Eégz) We recall m™(z,i) from (175), and the definition

of the return time 7*(y) := inf{k > 1 : Sy =y} for y € Z.

Using (12) (with Bz, < Mz, < m™(2,Zy)) in the first line, the Markov property in the second

)

one, (7) in the third one, we have on Eégz for every £ € N,

P [r(m* (2,1)) = ))i=1,,

IN

P [ (m™* (2,4)) < 7(B:))jiez,

= Wiy Po m™(z,1)) < 7(B4)]ji=z,

exp[V(Bz,) — V(Mz,)]

exp(—hy) = (logn)t /n (181)

T
<
<

since V(Mz, ) — V(Bz,) = H[Ty(V, hy)] > hy, with ¢ such that Bz, = by(V, hy,).
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logy 1
2O = 49 4 vag) (] — o0, —4log, n)) 4logyn

Figure 9. Schema of the potential V, with z equal to 29 on Eégz) N Eg?}k, and z(10)

on EgyE 0 (BG,)”.
Let cog := C1 + 4. The next step is to prove that
IP[S” =z, 7(Bz,) < n, Eég 2) N E( )] < c99(log, n)3(log n)_3 (182)

for some constant ca9 > 0. To this aim, we consider the three following events, defined as

22 Ii) = {T )+ T BI}M (szk)] <n —n(log n)—Czs}’
2? Z) = {T ) + 7[Bg,,m (Z’Ik)] € [n — n(log n)_C%an] }a (183)
Eyy = {r(bg) + 7Bz, m* (2. T)] > n}.

First, we have, conditioning by w then applying the strong Markov property at stopping time
7(Bz, ), then summing (181) for all the integers £ in [t — n(logn)~°s,t] NN,

P[r(Bz,) <n, Egy) N ESw?)]

S (r(m ™ (2,1)) € [t = n(logn)~—*,¢])

E|: {r(Bz, )<n}ﬁE(n P
< [n(logn) = + 1])(logn)t /n < 2(logn) ~*#+1 < (logn) 3 (184)

|i=T, tznfT(BIk )

since C1 — cog = —4 and n > ng > ng.

Also, on Eégz) N{r(Bz,) < n}nN E;Z’Z), m*(z,Z;) < z, and after hitting Bz,, S does not hit
m™(z,Zy) > Bz, before time n, so S, < m*(z,Z}) < z thus S,, # z. Hence,

P[S, = 2,7(Bg,) < n, By NESD| <P[Sn =28, <m*(2,T) < 2] =0. (185)
(1.2)

There only remains to consider E,,’’. To this aim, we introduce

Eé?:li) = {max[m+(z,Ik),z} V< V(Z) +71n} (186)
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We have, conditioning by w then applying the strong Markov property at stopping time 7(Bz, )+
T[Bl—k?er(ZaIk)]?

P[Sn = z,7(Bg,) < naEég:Z) N E(n,z) N E(n,z) N Eén) N E%)]

24,k 27,k
(2.Zx) (S = 2)

|t:n—’r(BI)C )—T[sz ,m+ (Z,Ik)]i| )

(187)

{1 (102 (102 ) ) ) P
{T(BIk)Sn}mE2g:: mE2Z:Z QE;:; OEE’)n mElg “

We introduce z; := 24Ty, +(]—00, —4logy n]). Assume that Eégz) holds and that Bz, 11 < 5. So

we would have z < Bz, 41 < 25 < zb, and then V(Bz,+1) > V(z) —4logyn, so maxg o
k 1“n

V() S V(2) +hn+Cy < V(sz+1)+4log2n—|—ﬁn+00 < V(Bz,41)+ hy since n > ng > n3 and
C1 > 20, thus zfl < Mz, +1. So we would have zﬁ € [Bz,+1, Mz, +1] with V(zi) <V(z)—4logyn <
V(Bz,41) = ming, vy )V S V (z;) which is not possible. So, z; < B7, 41 on Egg;)

Also on Eégz), ming, o)V = Vim*(z,Zy)] > V(z) — 4loggn as in (177), and ming, i, V>
V(z) — 4logy n + log(ep) by ellipticity. So we have on Eég’;),
min 1,V > V(z) —4logyn + log(eo). (188)
[Mzk,zn}
Notice that max, 1V < V(2) + hy on Eég;) So we have on Eégz) N Eé?z)’
max, .oz V <V(2)+ hy. (189)

Now on Eégz) N Eé?z) N Eén) N Eg), by Markov inequality and (8), then by (188), (189) and
—(logn)?® < z_10(V,logn) < x_lg(V,iNLn) < M_5(V,En) < M_3 < Mg, < D;k <m*(z,Z;) <
< o < Bz, +1 < By < bg(V, TLn) < 19 (V, En) < 212(V,logn) < (logn)?® (because on E{g) there
are similarly as previously, in [M_3,0], at most two M;(V,hy,) which are not equal to some
My(V, hy,) so M_5 (V, hn) < M_3 and similarly B4 < bg(V, hn)), we get

PUC”+(Z’I’€) [T(M;) A 7(zt) > 27 n(log n)=es] (190)

[i=Tj,

IN

o1 (log n)czSEO_l (zi — MIk)z exp ( maXy +,7,) .4

4 V — min[MIk%#] V)
< 8(logn) O ter 2 exp (hy, + 4logy n) = 8(logn) s 20141052 < (logn) =3

since cog — 2C1 +10 =14 — C7 < —6 and n > ng > ng. Moreover on E;g’z), we get by definition
(n,z)
of E23’/,C ,

Viz) < minpe 1V 4 4logyn < V[D%rk] + 4logy n,

I}’
(n,2)

and as a consequence, using (178) which remains true on Ezgz ,
V(Mz,) > V(D7) — 4logon + hy > V(2) = 8logyn + . (191)
Hence on Eégi) N Eg;z) N Eén) N Eig), using (7), then (189) and (191),

P IO (M) < 7(23)] (192)

[i=Tj,

IN

A L V(MI'@)}

(zi —m*(2,T)) exp [max[mﬂ

< 2(logn)3exp [En + 8logyn — hy] = 2(log )= < (logn) 3
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since 11 — Cy < —9 and n > ng > ng. Consequently on Eégz) N Eé?,? N Eén) N Eig),
P IO [r(2h) > 27 In(log n) ~¢2] < (190) + (192) < 2(logn) 2. (193)
Notice that for every ¢ € N, by reversibility and ellipticity (see (13) and (16)),
(G, — ! Co ! —1 —4
P (Se = 2) < puo(2)/puo(z) < (14 €7°) exp[=V (2) + V(2;)] < &5 (logn) ™. (194)

On Eégz) HES;’;) N Eén) ﬂEig), for every t > n(logn)™¢8, by (193), the strong Markov property
and (194), since n > ng > ngs,

P eI (S, = 2)

< Pgﬁ(z’I’“) [T(zi) > 2_1n(10g n)_czs] + Pgﬁ(z’z’“) [St = z,T(zi) < 2_1n(10g n)_c28]
— m7T (2,1 2# —

< 2(10g n) 5 + Ew (=:2k) (l{T(Zi)<2—1n(logn)*c28}Pw (SZ B Z)M:t*T(Zriz))

< 2(logn) 3 +e5 (logn)™* < 3(logn) 2.

Finally, this and (187) (on which ¢ > n(logn)~“2® thanks to Eézz)) give

P[S, = z,7(bg,) < n. By NEyD 0BG 0 ESY 0 EY] < 3(logn) . (195)
There only remains to estimate P[(Eé?,’j))c N Eggz)] We define (see Figure 9 with z = 2(10)),
Vo = Vi [-+ Ty ([, +00])] = Vi [Ty ([An, +00])],
Vi = Vaul + Ty, (1 =00, =hal)] = Vo, [Ty~ (] = 00, —hal)];
EW = {T,— ([, +00]) < Ty— (] — 00, —4logy n[) },
EW = {Ty,, (1= 00, —hn)) < Ty~ ([C1logy n, +00])},
ED = {Tvgn([lNzn, tocl) < Ty, (] — 00, ~4logyn — Co)}.

Notice that Eégz) N (Eé?;))c is included in Eég) because max(g . _p+(2,7,) Ve > s by (186)
and min .7, Ve = Vi (2 — mT(2,Tk)) > —4logyn by definitions of m™ (2, ;) (see
(175)) and of Eég)k It is also included in Eég), otherwise there would be a left hj,-maximum
of V in |m™(z,Z}), z[ and so in | Mz, , Bz, 41| which is not possible. Finally, Eggz) N (Eé?,’?)c
is also included in Eég) because minpyy, oV > V(z) — 4logyn as in (177) and V(Mz, ) >
V(2) — 8logyn + hn > V(2) + hyn + Co by (191) and since C; > 20 and n > ng > n3. Using the
independence of Eég), Eég) and Eég), provided by the strong Markov property, then applying
(17), we get

PI(ESN N ERD] < P[ERP[ERP[ER] < cs0(logyn)?(logn) 196

L( 27,k) 23,k]— [Eag|P[Ezy’|P[E3q’ ] < eso(logyn)®(logn) ™, (196)

with ¢3g := 10 x 2(C7 4+ 1) x 12 since n > ng > ng. This, combined with (195) and Lemma 5.8,
gives, where LHS means left hand side and since n > ng > nr,
P[S, = z,7(bz,) < n, Egyy) N Eyyd) 0 B
LHS of (195) + P[(E13)] + P[(Ey )" 0 ]
(3 + 20 + ¢30) (logy m)* (log n) 2. (197)

IN A
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Combining this, (184) and (185) proves (182) with cag := 29 + ¢30 + 4 since n > ng. Finally,
(176), (180) and (182) prove (174) with ca7 := g5 4 c20 + c21 + 29 for every n > ng, z € Z and
1 < k < 3, which ends the proof of Lemma 5.13. O

Proof of Lemma 5.11: We prove similarly as in the proof of Lemma 5.13 that for all n > ng,
z€Zand 1 < k < 3,

P[S, = 2,Bg,_1 < z < D7, 7(Bg,) < n, B, (ESV)] < ear(logy n)*(logn) . (198)
Combining (198), (171) and (174) proves Lemma 5.11 with ca5 := ca6 + 2ca7. O

Proof of Proposition 5.7: Notice that for n > ng and k > 1, on {7(Br,) < n < 7(Bz,_,)},
the random walk S does not reach the B; with ¢ € Z \ {Z3,...,Zy} before time n, and so S,
belongs to | min{Bz,_1,1 < i < k}, max{Bz,41,1 <4 < k}[, which is equal to U¥_ Bz, 1, Bz, 41].
Consequently, using (165) and Lemma 5.10 in the second inequality, for all n > ng and all z € Z,
with c31 := coq + 2,

B(S, = 2, (E5")°)

< Plr(Bz) > n] +P[S, = 2, (EY) N Ui {r(B1,) < n < 7(B1,,,)}] + P[7(Bz,) < n]
3
< ZP(T(BIk) <n< T(BIk-H)’ Sp=2€ Ule]BIi—l, BL—-H[; (E?(,n)>c) + C31m
k;l ; 3
< Z ZP(T(B]k) <n< T(BIk+1)7 Sn =2 G]BIi—17 BIH-l[? (Eign))c) + CSlm
i=1 k=i
: (n)ye (logy n)°
= ;]P’[T(B[i) <n< T(B]4), Sn =z E]BL.,l,BL.Jrl[, (E3 ) ] + Cglw
< cig(logyn)(logn)~?,
with c19 := 3co5 + 3 + ¢31 and where we used Lemmas 5.11 and 7.1 in the last line since
n > ng > max(ng,p3). This proves Proposition 5.7. O

5.4. Proof of the upper bound in Theorem 1.1. Recall E(C?)(z) from (85). We have, for
all n > max(ng, p2) and all z € Z,

P(Sn = 2, (B (2))°)

< P(Sh =2 (BSY)) + P[(ESY)] + P(ES) 0 ESY]
+P[S, = 2, (Y (2)), B, EX] + P[(ES (2)) n ESY 0 ESY B (2)]
< (e19 + 2 + ¢9)(log, n)g(log n)_3 + c10(log n)_2_51/2

by Proposition 5.7, Lemmas 7.1 and 7.2, Proposition 5.2 and Lemma 5.1. This and Proposition
4.8 give, since 61 €]0,2/3],

sup  |P(Sn=2) — 20° @ ( o’z )] < o((log n)*2) (199)
ce@zin) L (logn)? ">\ (logn)? /| = ’
as n — 400, which proves the upper bound in Theorem 1.1. a

6. PROOF OF THE LOWER BOUND OF THEOREM 1.1

Let € > 0. Since lim oo oo = 0, we can fix some Ag > 0 such that sup, > 4, oo (022)| < 072,
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In this section, T‘I and T‘} always denote hp-slopes, that is, 7, = T\jﬁ and T = T‘i}: , where

1

7Ln = logn — 2C 1 logyn = hy, — C}logyn as before. In what follows, we consider independent
slopes ng, -9 <k<9and Z%k_H, —9 <k <9, each ng having the same law as TJ (i.e. T\jﬁn)’

and each ijﬂ having the same law as 7‘& (i.e. T‘ifzn)'

Recall that ¢ is defined in (24). We also introduce Y_T1 =C (Zfl), which is independent of Zg ,
with le =law C(T&) =law T\Iiﬁn =: TJf by Proposition 2.12, and E(le) = E(Zfl).
First case: We start with the case z < —T',,.

Using Lemma 2.6 eq. (44), we have for each z € Z such that z — T',, <0,
P[—2z+T, < £(Z))]

Jo(n,z) :=P(by =z-Ty)= (200)
" E(0(2)) +e(21))
Using the uniform continuity of ¢oc on R and sup.ec|_ . (ogn)?,Aq(logn)?] (1(?;;)2 — 02((;_)1;")

= 0(1) as n — +o0 since & < 2/3 and hy, ~p_ 400 logn in the first inequality, then ||¢os|os =:
SUPR |¢oo| < 00 and Iy ~ns+o00 logn in the second one, and finally Theorem 1.4 in the last one,
there exists nig > max(ng, p2) (with pa defined in Lemma 7.2) such that for all n > nyq, for all
z € [-Ao(logn)?, Ag(logn)?] such that z — T, <0,

02)290%((022 > . 29000<02(Z~_Pn)>—|—5(10gn)_2

(logn log n)? (logn) (m) 2
2 2(, _ T

< Z 2g000<0 (i 2n)> + 2:(log )2

< Jo(n, 2) + 3e(logn) 2. (201)
Also for n > ny, if |z| > Ag(logn)?, then by definition of Ay,
o o2z €

- = = logn) ™. 202
(logn)290 ((logn)2> = Togn)? = Je(n, z) + 3e(logn) (202)

The objective is to approximate progressively this quantity Jg(n,z) by P(S, = z), by using
Theorems 2.4 (i) and 2.5 eq. (29) (see (211) below) and Lemma 4.7. To this aim, we introduce
the following events.

B = {T, (hn) >Tn} N {Ty+ (hn) > T},
By = {Vke [Ty (h) £(2])], Z3(k) 2 9logyn},
B = ke [Ty (), ((Y1))], Y2, (k) 2 91ogyn},
ESY = Nl _o{H(Z],) >logn+ Cologyn} NN)__o{H(Z},.,) = logn + Calogyn},
9 9
B = { S 6@+ Y 1) < o |
k=—9 k=—9

Recall that Zg =law TJ and Y_T1 =law ’T‘If (with h = En) So by Lemma 7.2 eq. (228), there
exists ni1 > nyg such that for all n > nqq,

PL(ES)] < P[Tps (hn) < Tu] +P[Tpre (hn) < T < e(logn) ™ (203)
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Notice that, using Theorem 2.3 (i) with its notation and h = %n, since Zg (TZT (%n)) € [hn, hy, +

0

Co[ by ellipticity (16), there exists ni2 > n11 such that for all n > njo,

PI(E)T] = Pk e [Ty (hn).0(2))]. Z)(k) < 9logyn]

IN

P[Tv (91ogyn — hy) < Mg , min V> —hy — Co, V(Mg ) > 0]

[0,MF ]

< P[Ty (ﬁn —9logyn) < Ty (—9logyn — Cp)] < 22(logyn)(logn)™!,  (204)
by the strong Markov property at Ty (9log, n—ﬁn), (16) and (17) since n > nia > n3. We prove
similarly that P [(Eég))c] < 22(logy n)(logn)~! for all n > nis, using Theorem 2.9 (i) instead of
Theorem 2.3.

Also, using (61) with h = 7Ln, there exists ni3 > mis such that, for all n > ni3, and all
—9 <k <9, since ni3 > ns,
P[H(Z),) <logn + Cylogyn] = P[H(Ty}) — hy < (201 + Cs) logy n]
< 4(2C + Co)(logy n)(logn) L.
This remains true for H(Z;k) replaced by H(Z%,H_l) =law H(T‘}) =law H(’TJV), —-9<k<9

by Theorem 2.3 (ii) (or by the inequality after (61)). Consequently, we get P[(Eéz))c] <
152(2C + C3)(logy n)(logn)~! for all n > ni3.

Moreover, we have P[(E?Eg))c] < 19P[€(TJ) > (logn)?+01 /50] + 19P[€(T&) > (logn)?+01 /50] <
38(logn)~® for all n > ni3 by Lemma 7.1 eq. (223) and (224), since ni3 > ng > ps.

Also, using (200) then P[(EZ-(n))C] = o(1) for 31 < i < 35, there exists ni4 > niz such that, for
all n > nyy and all 2 < T, E(B(Zg) + E(Zf)) > c7(logn)? by Lemma 2.15 and

WZH-1 gt ) oyt
Jo(n, 2) 1{*Z+I‘n<4(Z§)}1ﬂ?231Ef") (Zi:UO e % 437 0 el )> 5
6N, 2) = .
E(0(Z0) +U(2) (Sl -z 4 2O T ) oen)?
(205)

The next step is to deal with the sums in numerator in the previous expectation. Notice that
on E:gg) N Eég), we have K(Zg) < (logn)3 — 1 and so

e~ 200 < [U2]) = Ty ()] tog )~ < (log )™ (206)

T )
Similarly, Y-/ Gy €10 < (togn) 8 on B 1 B since £(YT,) = £(21).
1= le n

Also using Theorem 2.3 (i) since Zg =law T‘i , then applying Proposition 7.3, for large n, for all
i > Ty,

E{GXP (- Zg(i))l{i<TZT(ﬁn)}} - E{eiwi)l{KTv('ﬁn)} | Ty (hy) < TV(Rt)} < 13072,
0

This remains true with Zg and V replaced by Y_T1 =law TJi and V_, and Ty (R*) by Ty, _(R_)
by Theorem 2.9 (i) and Proposition 7.3. So there exists ¢32 > 0 and ni5 > n14 such that, for all
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n 2 nis,
E Yo e A0 Ele cy s cw 207
Z z<T T(TLn)} - Z §3/2 = 74_57 (207)
Ln<i<Tq (hn) i=In 2y =T, (logn)s™2
0

since I'y, = L(log n)% 3+51J. This remains true with Zg replaced by le.

Combining (205) with (206), (207), and the corresponding inequalities for V_ and Y7, ¢(Z]) >
T T > T (n) lf(Zg)*l 7ZT(Z’) > : 1
ng (hn) > I, and E(Y_l) > TYL (hn) >T, on E3y’, > .5 e “0\") > 1 and again E(E(ZO) +
E(Zf)) > c7(logn)?, there exists nig > ny5 such that, for all n > nyg, for every j € {0,1}, for
all z <T', (although Jg does not depend on j),

Jg(n, 2)

1{ z+Fn<£(ZT)} N, B
E(¢(2) +f(Z¢))

(ZFﬁ Le=20(@) 4 yolnt oY1 ())
(S e 4 D 10
J7(j,n, z) + 2¢(log n)72, (208)

) + 2e(logn) 2

IN

where for j € {0,1},
J’?(jvn Z) (209)

_ E( {- z+Fn<€(Zg)} N3, E™

E(e(2)) +¢(21))

( b, AN gy e L >0}])

(S A0+ 3 ) )

3 E( opartzinrizg, 5 (€D g + e_Y‘Tl(k”)l{kHw})).
E(U(2)) + 0(2) (S04 A 4 0 i)

Now, for —I', < k < I'y, applying Theorems 2.4 (i) and 2.5 eq. (29), we have for every
nonnegative measurable function ¢, since {b~hn =z+k} = {xo (V, hn) = z—i—k} ﬂ{@(Tg (V, hn)) €
Lere RE Y = {20 (Vi) = 24k 0 {V (20(Vihn)) < V(21 (Vihy)) } and 8{0 < i < ((T})), —i =
z+k:}:1 for each k£ € Z such that z + k <0,

(210)

<

k=-TIn

{—2—k<t(T{)}
E[p(0(T:(V. ), ~18 <0 < 19) 15, _. ]

L keuzl)y
E(¢(2)) +¢(27))

In the previous equality, 6(7;(V, En)) becomes ZZT or Zj depending on the parity of 7.

—E [gp(zilg, ASYYA NV AN A S 1 0/ SRR A4 (211)

So, since Y_T1 =( (Zf ) and z < —I',, in this first case, we get, as explained below,

79[T0<th>1<f(k+j>>1 (o) + eSO VR Gk 4)

J7(j,n,z) < Z E( 0Tl Vh )—

k=—T1", =0

) Lik+j>0
e=0To(Vihn)(0) 4 ST (Vhn)) o—clo(r oy (Vin))]()
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1{b}~m :z+k}mE§”>mE§”)mEé”>>

(212)

In 7V(blogn7k‘7j)
( — : 1{blog n:Z“"k}mE:g;n)mEén)mEén) )
)

Eazl (Vlogn)—1 e_V(Z-)
i=z_1(V,logn)

for all n > nyg, j € {0,1} and z < —T',. Indeed, when applying (211) to the quantity after
(210), E?()Z) corresponds to (i.e. becomes) a set E?EZ) included in E?En), on which we have in
particular H[TZ (V, hn)] > logn + Calogyn for all =13 < ¢ < 13 and so z; (V, hn) = xz;(V,logn)
for j € {—12,...,12} and so by, = blogn = xo(V,logn) (when by, =z+k< 0); Zg corresponds
to 0(To(Vyhn)) = 0(To(Vilogn)) = (V(biogn + 1) — V(biogn)s 0 < i < z1(V,logn) — big,) and
Y1, t0 C(O[T-1(Vihn)]) = (V(biogn — 1) = Vbiogn), 0 < i < biogy — 2-1(V,logn)) so Ef})
corresponds to a set included in Eén) since ﬁn < logn, Eég) corresponds to a set included in
{‘a:,lg (V, ﬁn) —T19 (V, 7Ln) | < (logn)?t0 }, and the intersection of this and E:gz) is itself included
in {|x,12 (V, log n) — 19 (V,log n)’ < (log n)2+51}, and so in Eén), whereas E?()g) and E?Eg) are
not necessary anymore.

Notice that Zl,;l_ eV (bogn—k—j) < Zflm‘/llof;llz,gn) e V) = Zi\/[;/[} ~V0) on Ef(in) N {blogn <

0} N E?(,n) with M* defined in (87) since V(x+1) — V(x0) > logn + Cy for n > nyg > nz. Thus,
using Lemma 5.1, there exists n17 > nig such that, for all n > ny7, j € {0,1} and z < -T,
(writing Ei(n)(z) instead of E-(n) for i # 3),

Tn  o=V(z—j)

k=T, € 1 RPN
Jr(jsm,z) < E( M+{z1 blji;z )k}mml:BEe (Z)> +e(logn) 2, (213)
P

where we write E(n)( ) for E(") for ¢ € {3,5,6} for convenience. Hence, using (208), then (213),
M~ <z < M" on E 'n {z = biogn — k} for |k| < T, and (88) gives for all n > ny7 and
z € (2Z + n) such that z < —T,,

2J6(n,2) < Jr(1,n,2) 4+ J7(0,n, 2) + 4e(logn) 2

k:*—F fin(2)1 {2=blog n—k}NNS_,E((2)
ogmn =3 -2
( 1 v + 6¢(logn)

= M-

m

- -2
B E n {Iblogn 2|<Ty}NNg_ Elgn>(z))+66(logn) ,

M+ 1 7v(

where we used [i,(2Z) = [in(2Z + 1) = > .7/~ %) and the definition (89) of ), since n and

z have the same parity.

Applying Lemma 4.7, there exists nig > ni7 such that, for all n > nig and all z € (2Z + n) such
that z < —T',,,

2Js(n, z) < E(Pu[Sn = 2] + 5(log n)_?’) + 6e(logn) 2 < P(S, = z) + 7e(logn) 2.

This, (201) and (202) lead t0 7225000 (7527
all z € (2Z 4 n) such that z < —T'),.

) <P(S, = 2)+13e(logn) =2 for all n > nyg and

Second case: We now consider the case z > I';,. We use the same Z2,€7 ZZkH’ _Tl = ((Zfl)

and El( n) as in the first case.
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Using Lemma 2.6 with x = 2 4+ T',,, we have when 2z 4+ T, > 0,
P(z+ T, < U(Z))
E((20) +4(21))

Similarly as in (201), for all n > nisg, for all z €]T,, Ag(logn)?],

o? o2z o? o? (Z + Fn) 2¢ 3e
29000(( 2)S ( )29000( = >+( ZSJJ(n,z)—i—W. (215)

J&(n,2) = P(lrhn =z+0D,) = (214)

Gogm2 >\ logn2) = (7, (i)’ log )
Also (10‘;271)2 Yoo (1(‘)7;;)2 < Jg(n, z) + (10272)2 for all n > nig and all z > max(T',, Ag(logn)?)

as in (202), and so for all z > T,,.
Similarly as in (205) and (208), using 1{z+FnS€(Zf1)} < 1{z+k;§€(Z£1)} A Ta<t(ZD)}
< 1{fsz<e(zg)}’ we get for all n > nig and all z > Ty, Jg“(n, z) < J;”(j,n, z) + 2¢(logn)~2 for

each j € {0,1}, where for j € {0,1},
J7 (j.n. 2) (216)

Z E< {e+h<0(ZE )}nnss, E(")< AL o) + e Yl(k+j)1{k+j>o})>
E((25) + 0(2D) (U e A0 4 SO e h)

Now, applying Theorems 2.4 (ii) and 2.5 eq. (29), we have for every nonnegative measurable
function ¢, since {b; = 2+ k} = {:cl (V, hn) = z+ k:} N {G(TO(V, hn)) € |en Rt_} when
z+k >0,

instead of 1 (

kf_rn

E[p(B(T:(V.hn)), =17 < i < 20) 1, _oyy]

Liorke(zt )y
E(6(Z)) +¢(21)) )

—E|p(Z 15, 250 2 1gr o 200, 20 20 2, Z) (217)

In the previous equality, 6(T;(V, En)) becomes Zz‘t1 or Zi{1 depending on the parity of <.

So, since le = C(Zfl) and z > I'),, we get, similarly as in (212), with by, = blogn = z1(V,logn),
and using the definition (87) of M~ on {bjog, > 0}.

Ty ( e OMWAIRHNT e COOERIER T o
n A\l

JH(Gn,z) < ) E

Mt UT (ViR =1 o[y (Va))(0) 4 5T VIm)) o —clo(To (V)]G

=0

1{b,~m —2+k}NESNEM NE >

Cn _V(blo n_k_j)

( — : : 1{b10g n*Z'i‘kJ}mE;g,n)mEén)mEén) )
)

M- €

for all n > nyg, j € {0,1} and z > T'),.

2

We conclude as in the first case that (logZ)Q gooo((lggfb) ) < P(S, = z) + 13¢(logn)~2 for all
n > nig and all 2z € (2Z + n) such that z > T'),.

Third case: We finally consider the case —I';, < z < T,.
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We use the same notation as in the first case. Notice that (200), (201), (202), (205), (208) and
(210) remain valid when n > nig and —I';, < z < T, with the same definitions of Jg and J7.
However in this third case, that is, for every n > nig and —I',, < z < T, for j € {0,1},

J7(j,m, z) < Jg(4,m, z) + Jo(4,n, 2) + Jio(J,m, 2), (219)
where
Js(j,n, 2)
Y E(l{zkd(ZS 3N, B (efzg(f(kﬂ))l{kﬂgm + e_le(k+j)1{k+j>0}> > :
S\ e ) (S A 3O )
Jo(4,n, 2)
N ( (1= L henzt ) T, 5 (e CERM Ly gy + eVl )1{k+j>0})>
-2 E(U(Z]) + (7)) <Zf(:ZOg)—1e_Z§(i) +Zf(§1) efyjlm) ;
Jiw(j,n, z)
-\ E( {ehe(zt )y s, B0 ( Zg(i(kﬂ))l{kﬂSO} + 6_YTl(kJrj)1{k+j>0}))
e\ ) ) (8 e g ey )

We first notice that, since —Z(Zg) +2< -TI,+1< —24+1<T,< E(Y_Tl) —1on E?(ff) for
-I'y < 2z < T, and using 1{z+Fn§€(Zf1)} < 1{z+k§£(zfl)}’ there exists nig > nig such that, for

all n > ny, all —I',, <2 <T,, and all j € {0,1},

, 1 {z4T, <0(Z+ )} o o
0<Jg(j,m,z) < <E( (ZT)+€(Z¢)) P(b =0) —P(bhn =z+1,)
o2 o(z
S (l~1)< 8000< +F )) +£(10gn)72/4
< e(logn)~?/2 (220)

by Lemma 2.6, then Theorem 1.4, and finally by continuity of ¢, since 6; < 2/3 and |z| < T),.

In order to prove an inequality for Jg(j,n, z), we can do the same proof as in the first case from
the line following (210) to (213), replacing Zgl—rn by > 2_r, since [z| < Ty, (so z +k <0),
which gives, for all n > njg, all —T';, < z <T,, and all j € {0, 1},

V()
Zk:—f‘ne 1{Z blogn_k}mQE:BEegn)(z)

S eV

Js(j,m,z) < E( ) + e(logn) 2 /4. (221)

In order to prove an inequality for Jio(j,n, z), we can do the same proof as in the second case,
between the definition (216) of J; and (218), replacing Zngrn by Zl,;;fzﬂ since |z| < T, (so
z+k > 0), then using once more Lemma 5.1 as in (213), we get for all n > nyg, all -T',, < 2 < T,
and all j € {0,1},

JlO(jvna 2) < E

Ziz—z-&-l e V(=1 6 g
- {z= blogn_k}mméste (2) —2
( M+ L) > + e(logn)~“/4.
.
This, (219), (220) and (221) prove that (213) remains true for all n > nqg, all -I';, < 2 < T,
and all j € {0,1}.
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Since (208), (201) and (202) also remain true, we conclude as in the first case that for all
2 2

n > nig and all z € (2Z + n) such that —I'), < z < T',,, we have (lgg"n)Q gooo((k‘)’g;)Q) < P(S, =

z) + 13e(logn) 2.

Finally, combining the conclusions of the three cases gives for all n > ng,

20 < o2z > 2
sup * _PSnZZ]Sl?)Elon,
2€(2Z-+n) [(log )27\ (logn)?2 ( ) (logn)

which proves the lower bound in Theorem 1.1. This and (199) prove Theorem 1.1. O

7. SOME ESTIMATES CONCERNING THE ENVIRONMENT

7.1. Probabilities of (Eén))c and (Eén))c. The aim of this subsection is to give upper bounds

of some probabilities related to the events EZ-(n), which are defined between equations (83) and
(84).

Lemma 7.1. There exists pg > 2 such that,

Vnzps,  PEM)] < (logn) . (222)
Also, we have for n > ps, with ?Ln = logn — 2C logy n as before,
4 246 -8
PV(TV,ETL) > (logn)*™1/50] < (logn)~®, (223)
T 2+6 _ 1 246 -8
PIU(T, 5.) > (logn)*™*/50] = P[¢(T 77 ) > (logn)*™ /50] < (logn)™.  (224)

Proof: The idea is to approximate V by a two-sided Brownian motion, in order to transfer to
V' some results already known for Brownian motions.

To this aim, we recall the definition of h-extrema introduced by Neveu et al. [54] for continuous
functions. If w is a continuous function R — R, A > 0, and y € R, it is said that w admits an
h-minimum at y if there exists real numbers v and v such that u < y < v, w(y) = inf{w(z), z €
[u,v]}, w(u) > w(y) + h and w(v) > w(y) + h. It is said that w admits an h-mazimum at y if
—w admits an hA-minimum at y. In these two cases we say that w admits an h-extremum at y.
Notice that contrary to Definition 2.1, all the inequalities are large.

It is known (see [14], Lemma 8) that, when w = W or w = ¢ W, almost surely, (a) w is continuous
on R; (b) for every h > 0, the set of h-extrema of w can be written {zy(w, h), k € Z}, where
(xx(w, h))kez is strictly increasing, unbounded from above and below, with xg(w,h) < 0 <
z1(w,h); (c) for all h > 0 and k € Z, xg41(w, h) is an h-maximum if and only if x4 (w, h) is an
h-minimum (we use the same notation as for left extrema of V' since no confusion is possible).

According to a slightly modified version (see e.g. [24], Lemma 4.3, with (logn)® replaced by K
and a single potential V' instead of two) of the Koml6s—Major—Tusnédy strong approximation
theorem (see Komlés et al. [50]), there exist (strictly) positive constants C3 and Cy, independent
of K € N*, such that, possibly in an enlarged probability space, there exists a two-sided standard
Brownian motion (W (t), ¢ € R), such that

Fao(K) = { sup [ V(1t)) ~ oW (1)] < Cylog K}
—K<t<K
satisfies P([E3(K)]¢) < K~ for large K.

Let n > ng and a > 0, and recall that 0 < §; < 2/3. We define h], := logn+3C3(3+8/C4) log, n.
On E36((log n)3+8/ C“), consider, if they exist, two consecutive h/-minima for oW, denoted
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by yi = xi(cW,h!) and y;42 = x;i0(cW,hl), such that |y;| < a(logn)?t and |yiie] <
a(logn)?tor. Let z41 = min{k € [|yi], lyi2)] NZ, V(k) = MAax(|y, | |yial] V }- We have,
using w € Egg((log n)3+8/ C4) in the second and forth inequalities, for n large enough so that
(logn)3t8/¢ > a(logn)?+o,
V(Zi_H) = L ﬁnLaX I \% Z V(|_$1'+1(UVV, h%)J) Z JW[xi_H(UW, h;'z)] - 03(3 + 8/04) log2 n
YilsYi+2
> oW lzi(eW, hl,)] + hi, — C3(3 +8/C4) logyn
> V(3i)) + b, — 233+ 8/Ci) logy n 2 V(i) + log .

We prove similarly that V(ziy1) > V(|yir2]) + logn, and so |yi] < zix1 < |yite]. Since
maxi|y, |z, V < V(zit1) and max,, | 1g..1V < V(2i41), zig1 is a left (logn)-maximum for

3+8/C1) between two consecutive h/,-minima

So we have proved that for large n on Egg((log n)
for oW belonging to the interval [— a(logn)?t9 a(log n)2+51], there is at least one left (logn)-
maximum for V. Notice in particular that for such n, on Ess((log n)3+8/04), if x17(cW,hl)
< a(logn)?t, then in [z1(cW, h), z17(cW, h.,)], there are at least eight consecutive h/,-minima
for oW, and then at least seven left (logn)-maxima for V', and so x13(V,logn) < x17(cW, hl) <

a(log n)2+51, Hence for large n,
P [1‘13(‘/, log n) > Oé(log n)2+51 , Esg ((10g n)3+8/C4)]
Plz17(oW, hl,) > a(logn)*t1]

a(logn)*+o
17 ’

IN

16
<y [é(ﬂ(aw, H) > (225)
i=0
where ((T;(w, h)) := zit1(w,h) — x;(w, h) for i € Z, h > 0 and any continuous function w, is
the length of the i-th h-slope of w.
The length of a non central 1-slope of W, that is, £(T;(W, 1)) for i # 0, has a density, which is (see
[14], eq. (7)) fo(z) == 7> pen(—D)F(k +1/2) exp (— 72(k + 1/2)%2/2) 1g: (z). Also, the length
of the central 1-slope ¢(Tp(W, 1)) has a density, which is (see [14], eq. (10)) equal to fy)(z) =
zfe(z). Notice that fo(z) < (m/2)exp[—m?z/8] for large x. Hence for large x, fyp,)(x) <
exp[—n?x/10] and fy(z) < exp[—n?x/10]. Thus, P[{(T;(W,1)) > u) = O(exp(—m>u/10))
u — +oo for any ¢ € Z, so for large n,
PU(Ti(aW. h1,)) > a(logn)* 1 /17] = P[U(T;(W,1)) > o?a(logn)*** /(17(h},)?)]
< P[UT;(W, 1)) > o*a(logn)™ /20] = O(exp(—r*a2a(logn)’ /200)),

as n — 400, where we used £(T;(cW, h,)) = L(T;(W, k!, /o)) =1aw (R, /0)2€(T;(W, 1)) by scaling.

n

This, (225) and P([E3¢(K)]¢) < K~ for large K lead to
Plz13(V,1logn) > a(log n)2+51]
< O(exp(—m?0*a(logn)® /200)) + P[(Ese((logn)>™8/))°] < (logn)™®  (226)

Q

S

for large n. We prove similarly that P[z_12(V,logn) < —a(log n)2+51] < (logn)~%. Finally,
PI(ES)] < Plasa(Vilogn) > (logn)>*1] + Plz_1a(Vilogn) < —(logn)**] < (logn)T
for large n, which proves (222).
Since 23(V, hy) < 23(V,logn) < z13(V,logn), we get
P[:L‘g(V, En) > (log n)2+51/5()] < P[:plg(V,log n) > (log n)2+51/50] < (log n)_S
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for large n by (226). Since z3 (len) > x3 (V,iNLn) —x1 (V,iNLn), which has the same law as
E(T;E )+ E(T‘ﬁz ), by Theorem 2.4, this gives

P[E(Tvﬁzn) > (logn)*91/50] < P[z3(V, hy) > (logn)*™°1 /50] < (logn)~®

and similarly P[¢ (Th ) > (logn)*™1/50] < (logn)™® for large n. Since E(TT =) =taw

V_ hn
E(ijﬁn) =law K(TVh ) by Theorem 2.3 (ii),

this proves (223) and (224) up to a change of p3, which ends the proof of the lemma. O

We now turn to the probability of (Eén))c N Eén).

Lemma 7.2. Recall that 01 €]0,2/3[. There exist cs3 > 0 and p2 € N such that
Vn > po, P[(Eén))c N Eén)] < exp [ — c33(log n)2/3_51] < (log n)_?’. (227)
We now consider left and right En-slopes. Asn — +oo,

P [TTVL,;:” (fn) <Tu| = o((l0gn)™2), P [TTV;% (Fn) <Tn| = o((logn)™2),  (228)

and T, are defined in (14), Definition 2.2, (47) and (48),

V,h

recalling that T, TT‘;h, T T TTV,*

and that Vi(.) = V(+£.).
Proof: First, for n > n3, b € Z and 0 < |i| < T',, we have by Hoeffding’s inequality (see [43],
Theorem 2),
P[V(b+i)—V(b) >logn] = P[V(i)>logn] <exp[—2(logn)*/(|i|(2Co)?)]
< exp [ — caa(logn)?/|il] < exp [ — csa(logn)?*0]  (229)

with ¢34 := 1/(2C2) > 0, since V(i) is the sum of |i| independent random variables with zero
mean, bounded by +Cy by ellipticity (see (16)).

Notice that on (E (n)) N E( ") , there exists b = bipg, € Z and i € Z such that V(b+1) — V(b) >
logn, |i| < T, and |b] < (log n)2+51 since w € Eé"). Thus by (229),

PIES) nEM] < 3 S P[V(b+i) - V(b) = logn]
[b]<|(log )01 ] [i|<| (log n)*/3+1 |
< 9(log n)5 exp [ — c34(log n)z/g_‘sl],
since 0 < 0; < 2/3. This proves (227), e.g. with ¢33 := c34/2.

Now, notice that, using the law of T‘jg provided by Theorem 2.3 (i), then (18) and once more
Hoeffding’s inequality and ﬁn ~p—stoo lOg N,

P[TT‘IE (hn) < T

= P[Tv(hy) < T, Tv (hy) < Ty (RY) | /P[Ty (hn) < Ty (RY) |

[(logn)*/3+01 |

< 210gnZP h 2121gn Z eXp[—034( ) /z]
i=1
< (2/01)(log n)? exp[—ec34(log n)2/3_51/2]
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for large n. This proves (228) for V, since 0 < 01 < 2/3. The proof for V_ is similar. The proof

for TTT* s the similar, with Theorem 2.9 and ¢} instead of Theorem 2.3 and ¢;. O
Vi ,hn

7.2. Laplace transform of V' conditioned to stay positive or nonnegative. The main

tools of this subsection are local limit theorems for random walks conditioned to stay positive,

by Vatutin and Wachtel ([64], Theorems 4 and 6 and Lemma 12 with a = 2 and p = 1/2).

We define for h > 0, with Ty, and T3, defined in (14), and (15),

= = inf V>0 ={Ty(h) < Ty(R")}, 230
h {[I,Tv(l[%a-‘roo[)] = } { V( ) V( _)} ( )
" {[17Tv(l[rfl%+oo[)]v = O} {Tv(h) <Ty(] — o0, 0])}

The aim of this subsection is to prove the following uniform upper bound:

Proposition 7.3. There exist c13 > 0, pg > 0 and ps > 0 such that
Vx > pyg,Vh > ps, E[e_v(z)l{x<Tv(h)} | Tv(h) < Tv(R*_)] < 01333_3/2.
This remains true when Ty (RY) is replaced by Ty (] — 00, 0]).

Before proving this lemma, we introduce some notation and some technical lemmas. First, let
Gy :={V1<k<uz V(k) >0}, Gy :={V1<k<z V(k)>0}, x > 0. (231)

We know (due to the Spitzer and Rosen theorem, see Vatutin and Wachtel [64] eq. (18), or [10]
Theorem 8.9.23, p. 382) that

P[Gz] ~2st00 cssz 2, PGL] ~2st00 c§5:r71/2, (232)
where c35 > 0 and c35 > 0.
The following (uniform) estimates are maybe already known. However we did not find them in

the literature, so we provide their proof.

Lemma 7.4. For large h > 0, for every 0 < z < h,
z — EZ[V(T\/(R*_))] _ 300(2’ + Co)

Y 2 < P*(ER) < W — (233)
SEVIER)] GG ¢ peeyy o 2= EVTHE) o3

Also, for z =0,
hP[EL] = hot00 —E[V(TV(RY))] =: ¢1 > 0, (235)
hPIE}] —hstoo —E[V(TT(R-))] =: 1 > 0. (236)

Proof: Let h > 0, Up, := Ty ([h, +oo[) ATy (R*), and 0 < z < h. Since (V(k), k£ > 0) is under
P# a martingale starting at z for its natural filtration due to (3), and |V(k A Up)| < h+ Cj ass.
for every k € N thanks to ellipticity (16), the optimal stopping theorem gives

2 = V(U] = BV (T ([h, +00)) 1z, ] + E¥ V(T (R2)) 1z, ). (237)
Since h < V(Ty ([h,4+o0[)) < h+ Cy a.s. by ellipticity, we have
hPZ[Ex] < EX[V(Ty ([h, +00])1z,] < (h + Co)P?[Z4]. (238)

Also, —Cy < V[Ty(R*)] <0 a.s. by ellipticity, thus
E[V(Ty(RY))] < E[V(Tv(RL))1,)] = E*[V(Tv(RY))] — E*[V(Tv(R))1zg, ]
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< EV(Ty(R)] + CoP*(2n). (239)
Hence, using first (238) and (237) and then the first inequality in (239),
hP*[E4] < z — E*[V(Ty (R2))1(g,)e] < 2 — E*[V(Ty(RY))]. (240)

Similarly,
(h+ CoP*[E] > = — B V(T (R iz, ] > = — EV(Tv(R)] - CoP*(Es),
and so for large h for every 0 < z < h, since z + Cy > z — E*[V(Ty(R%))] > z > 0,

e z— E*[V(Ty(RY))] _ z—E*[V(Ty(RY))] 3Co
P*[En] > > 1——
h+2Cy h h
z — E*[V(Ty(R™))] _ 3CoH(z + Cy)
- h h? '
This and (240) prove (233). The proof of (234) is similar. We get (235) and (236) as a conse-
quence. O

In order to apply the results of Vatutin et al. ([64], thm. 4 and 6), we introduce some of its
notation (see its pages 177 and 179). Let x* := V(r1), where 77 := min{k > 1, V (k) > 0} =
Ty (R%), and x;, k > 1 be independent copies of x™. We can now define the (left-continuous)
renewal function

oo
H(U)3:1{u>0}+ZP(x1L+~--+x;<u), u € R.
P

Also it is well known that H(x) < oo for every z € R (see e.g. [64] Lem. 13).

As in [64] (page 180), we say that the random variable log % is (¢, a)-lattice if its distribution
is lattice with span ¢ > 0 and shift a € [0, £[, that is, if £ is the maximal real number such that
the support of the distribution of log 1;% is included in the set (a + ¢Z) = {a + kl, k € Z}.

We say that the random variable log % is non-lattice if its distribution is not supported in
(a + ¢7Z) for any a € R, £ > 0. The two following lemmas are a bit more precise that what is
needed in the present paper. They may be of independent interest and will be useful in a work

in progress [23].

Lemma 7.5. Assume that log 1:}% is non-lattice. We have for p > 0,

E|(V(@)"e™ @DIG5] ~arboo ! Qip L p) =

1 o0
_ uPe” " H (u)du €]0,00[. (241
v, (u)du €0, 0l (241)

The case p = 1 was already proved in Afanasyev et al. ([1], Prop. 2.1) and Hirano ([42] Lemma
5) with different methods.

Proof of Lemma 7.5: We fix p > 0, and define g, := supyzo(ype_y/g) €]0,00[. We first
observe that for large z,

E[(V(m))pe_‘/(x)1{V(x)2910gx}‘G;] < BPE[e_sv(x)/gl{\/(x)29logx}‘G;] < B8 (242)

Our potential V' is a random walk with i.i.d. bounded, non constant and zero mean jumps p,,
x € Z by (2), (3) (4) and (6), and by hypotheses, its jumps have a non lattice distribution. So
we can use the following result ([64], Theorem 4 with « =2, 8 =0 and ¢; ~z—100 01/, as seen
in the line after its eq. (3)) and with go(0) = 1/v/2m: for A > 0,

1 y+A
VAR [V) €y + AL G oo e [7 HOO (213)
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uniformly in y €]0, 0;1/x], where §, — 0 as z — +o0.

We prove that this convergence is in fact uniform in y € [0,d,/x] as © — +o0o. To this aim,
notice that for fixed z > 0 and A > 0, P[V(z) € [y, y + A[| G3] tends to P[V(z) €]0,A] | GE] =
P[V(z) € [0,A]|G3] as y — 0 with y > 0, since P[V(z) = 0| G;] = 0 by definition (231) of
G%. Now, fix some £ > 0. Using the uniformity in y €]0,z'/4] in (243), there exists A. > 0 such
that for all z > A., for all y €]0, z/4],

2P[Gilo/zP [V (z) € [y, y + Al | G
2= [V H(u)du

Letting y | 0 in (244) for fixed x > A, and using the convergence before (244), (244) remains
true with [y,y + A[ and fyy+A replaced respectively by [0, A] and fOA. Hence,

1—

<1+e. (244)

. . Lo
ePlG3loVaP [V (x) € (0,41 O3] —aioe = /0 H(u)du. (245)
Moreover, applying once more (243) with [y,y + A[ replaced by [A — n, A + n[ for fixed A
and 0 < 1 < A gives, for large z, 2P[G}3lo/zP[V(z) = A|GE] < (2/V2r) fAAj: H(u)du <

(4/v/2m)H(2A)7. Since this is true for any n > 0, we get 2P[G}lo/zP[V(z) = A|GE] — 0 as
x — 400. So, (245) remains true with [0, A] replaced by [0, A[. This and (243) prove that the
convergence in (243) is in fact uniform in y € [0, 0,1/2] as © — +o00, where §, — 0 as z — +o0.

So, we have for any € > 0 and A > 0, for large x,

(V(z))? ] \
Bl= v Lv@<otogs) G| = Z E 1{V( y<9logz} LV (@)eka,(k+ 1A} | G
LQA Hog x|
k+1)A)P
< %P[V(:n) € [kA, (k+ 1)A[] G]
k=0 €
(1+2) L‘%fg“ G+ 12" " wdu
ox3/2P[Gx]V/ 27 ks kA
9 [9A7 1ong
(1+¢) ((k:+k1)A) AH[(k +1)A],
C350V 2T 0 e
where we used (232) and since H is nondecreasing. So,
hmiup (J)E[(V(I))pe_v(x)1{V(x)<910gx} ‘ G;D
1+e A k+1 ) (1+¢)2 [~
A kE+1)A] — _— Pe " H(u)du < oo,

since H is a nondecreasmg function and H(z) = O(2?) as * — +o00 e.g. by ([64] Lem. 13 with
a =2 and p = 1/2 as explained at the end of its p. 181, following from Rogozin [57] and from
the Spitzer-Rozen theorem).

This, combined with (242) gives
limsup (zE[(V(2))Pe V@) G* / uPe™ " H (u)du.
xﬁ+oc1>)< [( ( )) | ID - 035(7@ )

Since we get a similar inequality for liminf and H > 1 on |0, 00[, this proves (241) and the
lemma. U
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Lemma 7.6. Assume that log 1;% is (h,a)-lattice for some h >0 and a € [0, h]. We have for
p=0,

h
E[(V(2))Pe™V@IGE] ~osioo mﬂ’p[(a@ mod hj, (246)
35

where Yp(y) = Y jen(y + kh)Pe” WM H (y + kh), y € [0,h], is a function bounded on [0, h]

between two (strictly) positive constants.

Proof: Let p > 0, h > 0 and a € [0, k], and assume that log % is (h,a)-lattice. First, notice
that for every y € [0,h], ¥p(y) < > pen(h + kh)Pe ™™ H(h + kh) = e"y,(h) < oo since H is
nondecreasing and H(z) = O(2?) as ¥ — +00 as in the previous lemma. Moreover, taking into
account only k = 1, we have v,(y) > hPe 2"H(h) > 0 for every y € [0, h], so 1, is bounded on
[0, h] between two (strictly) positive constants.

Let € > 0. Applying ([64], Theorem 6, extending previous results obtained when a = 0 by Alili
and Doney [2]), again with o =2, 8 =0, ¢z ~z—400 0/, and ¢20(0) = 1/v/27:
hH (ax + y)
T 2raP[GY]
uniformly in y €] — az, —ax + dz/x] N (hZ), where §, — 0 as x — +o00. Also, notice that for
y = —azx when x > 0, we have P[V(z) =0 | G%] = 0= hH(0)/[v27rzP(G%)o/x] by definitions
of G}, and H. Hence for large z,
E[(V(J"))peivw)1{V(:L")<9log:r} | G;k:]
= Z (aa: + kh)pei((m+kh)1{am+kh<9logx}P[V(x) = ax + kh | G;]
keZ, ax+kh>0
Z (az + kh)Pe™(@Hkh) (1 4 ¢)
ke€Z, 0<az+kh<9logx
1 142
(1+e)h dpl(az) mod )] < (A +2e)h
2mox3/2P[G¥] cisV2mox
by (247) applied with 6, = 9(logz)/+/z and (232). This and (242) give for large z,
(14 2¢e)h

E[(V(2))’e”V@|G2] < ~——=""¢[(ax) mod h] + Bz 5. (248)
CisV2mox

ozP[V(z) =az +y | Gi] ~ (247)

hH (azx + kh)
2mox3/2P[Gx]

IN

¥yl(az) mod b

Similarly as in (248), for large x,
(1 —2¢e)h

*
C3s5V2mOoX

E[(V(@)"e™ @G = (¢»l(az) mod h] - O(=~)),

SINCe D ez artkh>9logs (0T + kh)Pe (@@ tRM [T (qz 4 kh) = O(2~8) as & — +o0 because H(z) =
O(z?) as in the previous lemma. This and (248) prove (246) since 7% = o(tp[(az) mod h]/ )
as  — +o0 because infg 3 1y > 0.

Proof of Proposition 7.3: Let h > 0 and x € N*. We first provide a relation between
conditioning by =} and by G7. We have, due to the Markov property,

Ele™ 1 aer, 3] Zh] = Ele™ " aar, () Lzy <y @) /PIE)]

= E[€*V(:c)1{v0<k§:1;, 0<V(k)<h}1Vk€[x,Tv(h)] vk >0}]/p[32]
= E[e™ @ ockar, 0cvimem P’ (Tv(h) < Ty(R-))] /PIE]. (249)
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Hence for large h > 0, for every € N*| by (249) and Lemma 7.4 eq. (234),

V(z) —EV® [V(Tﬁ(R))q
hP[=}]

Ele ™™ 1crmylEh] <E [e_v(x)l{v0<k<x7 0<V(k)}

- E[[V(@) - Y@y ®))]eV @ |65 (250)

Also,

E[e™ 1 aur, i) |Zh] < E[e™ D aonEi] < e
Let e > 0. By (250), (232) and (236), then by ellipticity (2), there exists ps > 0 and p7 > 0 such
that for z > pg and h > pr,
(1+e)css

Ele™ D1 per,apylZi] < E[[V(@) - EVO V(TR )]V @6 Y
1

T

(251)

< (L+e)(chs/c)a PE(V(z)e V@|GE) + CoE(e”V@|G2)].
Thanks to Lemmas 7.5 and 7.6, there exists py > pg such that, for = > py, for each p € {0, 1},
E[(V(:c))pe_v(m)|G;] < f?’T(p), with f3(p) := 2f2(p) when 10g1;% is non lattice, and f3(p) :=
2hsupyg ) Vp/ (ci5V2m0) if log % is (h,a)-lattice for some h > 0 and a € [0, h[. This together
with (251) gives for x > py and h > pr,

Ele ™1, romylEh] < (L+e)(chs/ch) [ fs(1) + Cofs(0)] a2, (252)

We now aim to prove a similar inequality, conditioning by =, instead of =} . There exists ¢ > 0
such that P[V (1) € [e,2¢]] > 0, thanks to (3) and (4). For such a (fixed) ¢, there exists pgs > p7
such that for all h > ps, we have h/10 > 2¢, P(Z},,.)/P(En) < 2¢j/c1 (by Lemma 7.4) and
P[Tv(h/10) < Ty (] — o0, —h/10])] > 1/3 (e.g. by (17)). So with Vi(k) == V(k+1)—V(1),
k > 0, using the independence of V(1) and V4, then the independence of (V (u), u < Ty (h)) and
Va, defined by Va(k) := V[Ty (k) + k] — V[T (h)], k > 0, we have for h > pg and for z > py,

E[eV(tD List1<Ty (hi20)} 1 Zhyoe) = E [e7V(=+D) 1{z+1<Tv(h+2c)}1E;+2C] /P(Eh+2c)
—V(1)-Vi(z =
> E[e (1)-1a( )1{V(1)E[C,20]}1{x<T‘71(h)}1Vy€[1’T‘71(h+2c)L \71(y)20] /P(: +2c)
e 2°P[V (1) € [c, 2¢ “Vi(z
> L O L2l e V01, gy ety 20, v
(‘_‘h—i—ZC)
e 2PV (1) € [c, 2¢ “Vi(x
> 'L(é?i)wc)[ ”E[e v )1{x<TV(h)}lEh1T‘~/2(h/10)<T‘72(}—oo,—h/10})]
PIV(1) € [¢,2d]]P(En) [ Lz<rv ()} | = h h
> E ZR|PlTyv | — T — - .
= P (S} ,,.) @ =P Tv g ) <Tv|| =g

So, using the definition of pg then (252), we get with czs := 6e*ct/(c1P[V (1) € [e,2c]]), for
every x > py and h > pg,

Ele™" 0 acry my | 2] < escBle MV Laiiary 20y |Thaad < crs™?
for some constant cj3 > 0. This and (252) prove Proposition 7.3, up to a change of c;3. U
7.3. Two lemmas about left h-extrema. For the sake of completeness, we prove the two

following lemmas. We recall that ¥ is defined before (19).

Lemma 7.7. Let v € ¥, and let h > 0. The left (resp. right) h-minima and left (resp. right)
h-maxima for v alternate.



ANNEALED LOCAL LIMIT THEOREM FOR SINAT’'S RANDOM WALK 79

Proof: Assume that y; and ys are two left h-minima for v, with y; < ys. It is enough to prove
that there exists at least a left h-maximum for v between y; and y2. By Definition 2.1, for each
J € {1,2}, there exists a; < y; < f; such that ming,, 1) v > v(yy), ming, 16,0 > v(yy),
v(aj) > v(y;) +h and v(B;) > v(y;) +h. We define z := min{u > y1, v(u) = maxy, ,, v} The
goal is to prove that z is a left A-maximum for v.

Assume that yo < 51. If e < y1, then as < y;1 < y2 < S5y, so v(y2) > ming, 118, v > v(y1)
and v(y1) > mingg, 4,1 v > v(y2), which contradicts v(y2) > v(y1). So as > yi, thus y; <
ag < y2 < B1. We have v(z) = maxp, ,,v > v(az2) > v(y2) + h and v(z) > v(y2) + h >
ming, 41,10 +h > v(y1) + h.

Now, assume that y2 > 1 and ag < y1. Thus, ag < y1 < f1 < Y2, 50 v(y1) = mingg, 4,1 v >
v(y2). We have v(x) = maxp, ,,jv > v(81) > v(y1) +h > v(y2) + h.

Finally, assume that yo > 81 and az > y1. Hence, y1 < S1 < y2, 50 v(x) = maxy, ,,1 v > v(81) >
v(y1) + h. Also, y1 < ag < y2, s0 v(z) = maxp, ,, v > v(az2) > v(y2) + h.

So in every case, we have v(x) > v(y1) + h and v(x) > v(y2) + h, with h > 0, thus by definition

of z, y1 < x < ya, maxy, , 1) < v(x) and maxp 4,1 v < v(x), so x is a left h-maximum for v
such that y1 < x < ys.

Applying this to —v proves that, if y; and yo are two left h-maxima for v with y; < yo, there
exists at least a left h-minimum for v between y; and ys, which concludes the proof of the lemma
for left h-extrema. The proof is similar for right ones by symmetry. O

For the following lemma, see definitions (20)—(23), represented in Figure 2.

Lemma 7.8. Assume that V € ¥ (which has probability one if (2), (3) and (4) are satisfied).
(V)

(i) Fori > 1, my;[,(h) is a left h-minimum for V, and there is no other left h-extremum for
Vin [72(2 )(h),Tz(xr)l(h)[. (ii) Fori >0, mg‘QQ(h) is a left h-mazimum for V', and there is no
other left h-extremum for V in [Téﬁl(h), TZ(ZF)Q(h) [.

Proof: Let ¢ > 1. First, mé‘z/)(h) < mg‘gl(h) < 7'2(2:_)1(}7,) by definition. We also have
V(s () = V(my (b)) + h by (20) and (21) and V(m$)(R)) > V(&) (h)) + b >

V(mY), (h))+h since i > 1 by (23), (22) and (21). Also, min V>V (myl (h)

[mSy ) (R 1,75 ()]

by (21), ming w0 vy Vo> V(r(m) = V(miy) (k) by (22), (23) and (21), and
min[Tg(V)(h)m(QQl(h)—l] V> V(mgy_gl(h)) by (21). So, mg‘gl(h) is a left A-minimum for V.

First case: Assume that there exists a left h-minimum y # mgﬁl(h) for V in [7'2(;/ )(h),
TQ(,}/Jr)l(h) [, and let o < y and 8 > y be as in Definition 2.1 with v = V. Assume first that y €
(s (), m ) (W[ 1 5 < m$), (k) then V(8) > V(y) + h with 75 (h) <y < § < 74}, (h).
which contradicts the definition of Tz(y_gl(h). If g > méﬁl(h)a then y + 1 < mg/_zl(h) <pB
S0 V(mgv_gl(h)) > minp, 13V > V(y), which contradicts V(y) > min W) V>

[r$)) () m&Y) () —1]
;
v (m$), () by (21).

Soy € ]mgﬁl(h)ﬁz(;i)l(h) [ Ifa> mgﬁl(h) then V(a) > V(y) + h > V(leJrl ) + h

with Téy)(h) < miY) (h) < a < TZ(iVJr)l(h), which contradicts the definition of 7'2Z+1( ). If

2i+1
V) V) V)

a < my;(h), then, since y > méiﬂ(h), we have V(my, /4 (h)) > miny, 11V > V(y) by
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definition of o, which contradicts V' (y) > min V= V(méﬁl(h)) by (21). So there

[r3i (). 2,+1<h>]
is no left A-minimum for V in |7, (V)(h) TQH_l ) - {mQH—l )}

Second case: Now, we assume that there exists a left h-maximum y for V' in [TQ(ZV ) (h), TQ(ZVJr)l(h) [,

and let & < y and § > y be as in Definition 2.1 for left h-maxima. If a > TQ(ZV)(h), then
V(y) > V(a) + h with TQ(V)(h) <a<y< TQ(ZVJr)l(h), which contradicts the definition of TQ(Xr)I(h).

If a < 7)) (), then V(a) < V(y) — h < V(7)) (h)) by definition of 7.\, (h) since 3} (h) <
y < TQ(ZVJF)I(h). So if mg/)(h) <a< TQ(ZV)(h), then V(a) < V(TQ(ZV)(]’L)) contradicts V(Tz(;/)(h)) <

[méim(hmm(h)[v < V(a), coming from (22) and (23) since ¢ > 1. Finally if o < mg‘i/)(h),
(V)

then o < mgy)(h) < T( )(h) <y by (22) and (23) since i > 1, s0 V(my, ’(h)) < maxy, , 1V <
V(y) < V(TQ(ZV)(h)) +h by definition of @ and (20) since y € [TQ(ZV)(h), 7’2(;/_’_)1(h) [, which contradicts
V(TQ(:/)(h)) < V(mg/)(h)) — h coming from (22) and (23) since i > 1. So there is no left h-

maximum for V in [TZ(Z/)(h)JQ(Z_)l(h)[ for i > 1.

min

Thus (i) is proved. The proof of (ii) is similar. O
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