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Abstract :   
 
We use an analog method, based on displacements of Argo floats at their parking depth (nominally 
located around 1,000 dbar) from ANDRO dataset, to compute continuous, likely trajectories and estimate 
the Lagrangian dispersion. From this, we find that the horizontal diffusivity coefficient has a median value 
around 500 m2 s−1 but is highly variable in space: reaching values from 100 m2 s−1 in gyre interior to 
40,000 m2 s−1 in a few specific locations (in the Zapiola gyre and in the Agulhas Current retroflection). 
Our analysis suggests that the closure for diffusivity is proportional to Eddy Kinetic Energy (or square of 
turbulent velocity) rather than (absolute) turbulent velocity. It is associated to a typical turbulent time scale 
of 4 to 5.5 days, which is noticeably quite constant over the entire globe, especially away from coherent 
intense currents. The diffusion is anisotropic in coherent intense currents and around the equator, with a 
primary direction of diffusion consistent with the primary direction of horizontal velocity variance. These 
observationally based horizontal diffusivity estimations, and the suggested Eddy Kinetic Energy closure, 
can be used for constraining, testing, and validating eddy turbulence parameterization. 
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1 Introduction

Horizontal ocean mixing by mesoscale eddies and submesoscale processes has a wide vari-

eties of impacts from the dispersion of pollutants, to nutrients and ecosystem resources, to

sequestration of heat and (anthropogenic) carbon, to variation in ocean heat content, to dis-

tributions of water mass properties, to the maintenance of the large scale ocean circulation

(Wunsch, 1999). Consequently, mixing process imprint occurs from the large scale ocean

current (e.g., abyssal circulation, de Lavergne et al., 2016) to water mass transformation

and ventilation (e.g., Upper Circumpolar Deep Water and global ocean, Zika et al., 2020;

Portela et al., 2020a,b), to regional and local dynamics (e.g., coastal upwelling systems,

Capet et al., 2013). Hence evaluating the horizontal mixing in the ocean is one of the over-

arching question of current ocean physics, with consequences for climate dynamics and for

biogeochemical tracer dynamics.

The whole subject of dispersion of fluid particles from fixed origin, the so called absolute

dispersion, originates from Taylor (1921) who showed the link between the dispersion and

the Lagrangian velocity correlation function. Batchelor (1949) formalized the result in sev-

eral dimensions and showed how to relate the particle statistics and the diffusion equation

for a passive tracer when the probability distribution of the displacements of a fluid particle

is Gaussian. A modern discussion of these issues is provided by Davis (1987, 1991) within

the context of oceanic float observations. This framework was further used to describe ocean

eddy flux closure with the use of Lagrangian float velocities (Garrett, 2006). More recently,

Klocker et al. (2012) discussed the link between float-based and tracer-based estimates of

lateral diffusivity. An example of this diffusivity computation based on surface oceanic ob-

servations can be found in Klocker and Abernathey (2014) and Zhurbas et al. (2014). In

parallel to these studies, Ying et al. (2019) suggested the use of Bayesian approach to infer

diffusivity from Lagrangian trajectories in an idealized ocean circulation setting. There has

also been a large range of numerical studies, using Lagrangian particles within high resolu-
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tion ocean modelling, whose goal is to assess the ocean (sub-surface) diffusivity coefficients

(e.g., Balwada et al., 2021) and to test different closure schemes (e.g., Chen et al., 2015).

We refer the reader to van Sebille et al. (2018) for an exhaustive review on Lagrangian

ocean analyses and to LaCasce (2008) for a thorough review on diffusivity computation, the

different methodologies, and their shortcomings.

Following the use of Lagrangian floats for the MODE Experiment in 1973 (located in

the southwest of the North Atlantic subtropical gyre), local estimates of horizontal eddy

diffusivities started to be obtained from the rate of dispersion of floats at depth ranging

from 700 m to 1,500 m (Freeland et al., 1975; Riser and Rossby, 1983; Rossby et al., 1983;

Böning, 1988, for a summary). Overall, these studies reported values from slightly below

1,000 m2 s−1 to almost 5,000 m2 s−1, with a large degree of uncertainties. Ollitrault and

Colin de Verdière (2002) reported values of the same magnitude, but suggested a high spatial

variability (i.e., 5,000 m2 s−1 and 2,200 m2 s−1 west and east of the Mid-Atlantic Ridge,

respectively). Other regions have also been explored. In the Southern Ocean, west of the

Drake passage (i.e., upstream of the Antarctic Circumpolar Current), LaCasce et al. (2014)

and Tulloch et al. (2014) reported 800±200 m2 s−1 (at 950 m depth) and 710±260 m2 s−1

(at 1,500 m depth), respectively. It is interesting to note that these Southern Ocean values

are relatively low compared to the values reported for the North Atlantic Western basin,

whereas the, a priori, eddy activity is similar, if not more intense, in the former region than

the latter region.

There also exists indirect estimates of horizontal diffusivity coefficients. For instance,

Cole et al. (2015) used a mixing length argument (obtained through salinity anomalies and

mean gradient) to infer diffusivities at the base of the mixed layer. They reported highly

spatially-varying values from a few 100 m2 s−1 to several 10,000 m2 s−1. This particular

study has the advantage of a global coverage, but the diffusivity coefficients are inherently

dependent on the validity of the mixing length argument.
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Thus, a full description of the diffusivity coefficients at depth, must rely on direct in situ

observations either passive tracers or particle trajectories. However, this presents difficul-

ties, which comes in twofold. On the one hand, tracking the evolution of the release of a

passive tracer concentration requires repeated observations over a large oceanic region (e.g.,

Tulloch et al., 2014) and accurately sampling the concentration is challenging, requiring a

vast amount of resources (in terms of scientific cruises). On the other hand, the diffusiv-

ity can be obtained using the spread of an ensemble of Lagrangian float trajectories with

a high degree sampling obtained from acoustic navigation (see review by LaCasce et al.,

2014), but this method requires the use of a large number of acoustic floats (e.g., SOFAR or

RAFOS) dedicated to the study. An other limitation of these methods is that their results

are local and impossible to generalize at basin scales. Here we circumvent these issues by

using the Argo deep displacements, which is a huge database with a global coverage. This

approach has already been suggested by Roach et al. (2018) for computing decorrelated pair-

dispersion. However to assess the diffusivity from the Argo observations a major difficulty

must be overcome, namely the fact that Argo floats subsample the path of water parcels at

10-day intervals only. Despite being fully acknowledged, this important difficulty was not

treated in Roach et al. (2018). Here we suggest a new methodology to overcome it.

In this study we apply an analog method (Ayet and Tandeo, 2018) to reconstruct pseudo-

trajectories that are continuous (in space and time) and possess the local statistical properties

of Argo float displacements. The dispersion of these “likely”, continuous trajectories is used

to infer the horizontal diffusivity coefficients at 1,000-m depth. We find that diffusivities

vary significantly between hot spot regions, with values ranging from 1,000 m2 s−1 to several

10,000 m2 s−1, and gyre interiors, with values ranging from a few 100 m2 s−1 to 1,000 m2 s−1.

Testing turbulent closures, we find that the diffusivity scales well with the Eddy Kinetic

Energy (squared velocities), giving a turbulent time scale of 4 to 5.5 days nearly constant

globally. We also show that the regions of high Eddy Kinetic Energy are associated with
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anisotropic diffusion, the primary direction for diffusion being aligned with the primary

direction of horizontal velocity variance (i.e., the main eigenvector of the horizontal velocity

covariance matrix).

The manuscript is organized as follows. The observational data, the analog method used

to reconstruct continuous Lagrangian pseudo-trajectories, and the method for deriving the

diffusivity coefficients are described in section 2. Section 3 presents the geography of diffu-

sivity coefficients and the possible scaling with two classical turbulent closures. Discussions

and conclusions are included in section 4.

2 Data and Method

a. The ANDRO Dataset

The horizontal turbulent diffusivities is computed through the dispersion of Lagrangian parti-

cles following horizontal deep displacements of Argo floats. These displacements are obtained

from the ANDRO dataset (Ollitrault et al., 2019). For details on the ANDRO dataset we

refer the reader to Ollitrault and Rannou (2013), Ollitrault and Colin de Verdière (2014),

Colin de Verdière and Ollitrault (2016), Sévellec et al. (2017), and Colin de Verdière et al.

(2019). The ANDRO dataset gives access to 1,041,054 displacements prior to 31st October

2017. Numerous checks are used to validate and correct Argo parking pressure in order to

determine the reference parking pressure and to remove incorrect nominal parking depth

recorded in the metadata. Additional control is performed to report float grounding that

prevent accurate estimation of parking depth and drift velocity. The dataset is particularly

well suited for estimating displacement at depth by providing the last surface transmitted

position and time before diving, the first transmitted position and time after surfacing.

From this dataset, the first step of our study was to eliminate data flagged as erroneous

and to restrict displacements lasting ∼10 days and located at ∼1,000 dbar. This leads to a

total number of displacements of 675,575 (Fig. 1).
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Despite having a consistent set of displacements, there are still a few sources of error:

• Parking pressures are selected within the range between 950 and 1,150 dbar. However

most of the displacements occur close to 1,000 dbar with a standard deviation of only

22 dbar. Thus we assume this error to be negligible.

• Drifting time periods at depth (∆tdeep) are estimated as the differences between ti

and tf (the last position time before diving and the first position time after surfacing,

respectively). They are selected in a finite range between 8.5 and 10.5 days leading to

standard deviation of only 0.36 days. In the following we will consider that periods as

the mean of that distribution, that is 9.74 days exactly.

• However, since both ti and tf are determined at the surface, the actual drift at depth

will be biased due to the current shear between the surface and the parking depth.

This leads to an error of a few km (less than 5 km for 90% of the displacements), using

both the surface and deep approximate velocities (Ollitrault and Rannou, 2013). There

is also on average an error of 1 to 2 km due to typical one hour delay between the last

surface position time and the diving time or between the surfacing time and the first

surface position time (most floats are positioned by the Argos satellite system). In

conclusion, we can assume on average a possible error on an individual displacement

of 5 km, which remains small compared to the 10-day typical displacements.

• Beyond that, the 10-day displacements lead to the undersampling of motions above

the Nyquist frequency of 1/(2∆tdeep)'1/20 cycles per day.

Before using the data set it is important to look at the coverage density of Argo float

displacements (Fig. 1c). Displacements are recorded everywhere in the ocean, but the cov-

erage remains inhomogeneous: there is relative undersampling in the Southern Ocean and

equatorial Pacific and a relative oversampling in the subtropical gyres of the Pacific, Atlantic
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and Indian oceans. The density of selected Argo float displacements for our 3◦×3◦ grid has

an average value of 171 per 3◦×3◦ with a standard deviation of 36 per 3◦×3◦, but can locally

go up to 732 per 3◦×3◦.

Difference between two float displacements starting from two close locations could be

due to (permanent) spatial difference between the flow of the two starting locations, to time

variations of the flow between the first displacement and the second displacement, or to both.

In this study, these types of displacement differences are aggregated in the same statistics.

A complete error estimation of a subset of the ANDRO dataset used here (i.e., a prior

version) was provided in Sévellec et al. (2017). They demonstrated the good accuracy for

experiments on timescales of a few months, relevant for our current study.

The ANDRO dataset, also provides corrected zonal and meridional deep velocities com-

puted from the individual displacements and their time periods at depths (Ollitrault and

Rannou, 2013; Ollitrault et al., 2019). This corresponds to a set of localized 10-day in-

tegrated velocities. From these, the mean velocity can be computed each 1◦×1◦ using a

running average of all velocities over a 3◦×3◦ grid as:

ū(x0, y0) =
1

n

n∑
j=1

uj (x, y)|O(x0,y0)
, (1a)

v̄(x0, y0) =
1

n

n∑
j=1

vj (x, y)|O(x0,y0)
, (1b)

where ū and v̄ are the zonal and meridional mean velocities, respectively; uj and vj are

the zonal and meridional velocities from the ANDRO dataset, respectively; x and y are the

longitude and latitude, respectively; O(x0, y0) defines a box centered at longitude x0 and

latitude y0 such as: x∈[x0− 1
2
∆x, x0 + 1

2
∆x] and y∈[y0− 1

2
∆y, y0 + 1

2
∆y] with x0 and y0 are

evenly space every 1◦, and ∆x and ∆y are the zonal and meridional extend of the spatial

mean corresponding to 3◦×3◦ box, respectively; n is the number of zonal and meridional

velocity sample available in this O box; and j is the index of these individual velocities. It is

important to acknowledge that this Lagrangian velocity mean slightly differs from the more
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classical Eulerian velocity mean (Wang et al., 2020).

The mean velocities show the expected circulation at this depth (Fig 2a and b). The

circulation is dominated by an intense eastward flow in the Southern Ocean, characteristic

of the Antarctic Circumpolar Current. The flow also shows signature of intense boundary

currents such as the Gulf Stream, Kuroshio, and Falkland Current, for instance.

The turbulent velocities and covariance velocity can also be estimated at each 1◦×1◦ as

the standard deviation of all the velocities recorded in the ANDRO dataset within a 3◦×3◦

grid. This reads:

ũ(x0, y0) =

√√√√ 1

n

n∑
j=1

[
uj (x, y)|O(x0,y0)

− ū
]2
, (2a)

ṽ(x0, y0) =

√√√√ 1

n

n∑
j=1

[
vj (x, y)|O(x0,y0)

− v̄
]2
, (2b)

c̃2(x0, y0) =
1

n

n∑
j=1

[
uj (x, y)|O(x0,y0)

− ū
] [
vj (x, y)|O(x0,y0)

− v̄
]
, (2c)

where ũ and ṽ are the zonal and meridional turbulent velocities, respectively; and c̃2 is

the covariance velocity. It is worth noting that ũ2+ṽ2 is twice the Eddy Kinetic Energy.

Note that with this definition the turbulent velocities are not strictly restricted to mesoscale

eddy turbulence and submesoscale processes, there could be a component linked to slower

variability.

For both turbulent velocities, the computation shows intensification in western boundary

currents and along the Antarctic Circumpolar Current (Fig. 2c and d), as expected in regions

of active turbulent mesoscale activity. The regions of the Zapiola Gyre and of the Agulhas

Current retroflection are also particularly noticeable. For the zonal turbulent velocities, the

equatorial band also appears to be quite active. We interpret that as the signature of the

meridional shear of zonal velocities induced by the succession of, possibly steady, equatorial

currents and countercurents in the vicinity of the equator and of waves propagating along the

equator at depth (Delpech et al., 2020). For the meridional turbulent velocities an interesting
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region is the Somali Current (Schott et al., 2009). The intermittent behavior of the current

is reflected in the meridional turbulent velocities (which does not distinguish between spatial

and temporal variability).

Note that zonal and meridional mean and turbulent velocities, as well as the covariance

velocity, appear independent of the tested grid resolution (i.e., ∆x and ∆y varying from 2◦

to 5◦), beyond the typical smoothing expected with larger grid representation. It is also

interesting to note that, as expected (Wunsch and Ferrari, 2018), the ratio of the mean to

the standard deviation is almost always small, suggesting the small Péclet number (i.e., ratio

of the mean advection to the turbulent advection) of the coarse 3◦×3◦ 1,000-m depth flow.

b. The Analog Method for Lagrangian Trajectories

Given that Argo floats resurface every ∼10 days (which is of the order of the Lagrangian

integral time scale, as suggested by local in situ observational analyses of the North Atlantic,

Freeland et al., 1975; Rossby et al., 1983; Ollitrault and Colin de Verdière, 2002), the record

of their journey at depth is discontinuous. This is problematic for estimating horizontal diffu-

sivities, which require continuous trajectories. To overcome this central difficulty, continuous

pseudo-trajectories are reconstructed in the following way. We use the analog methodology

which has been applied successfully in various fields from solar irradiance forecast (Ayet

and Tandeo, 2018) to interannual climate prediction (Sévellec and Drijfhout, 2018), for in-

stance. The objective of the method is to produce continuous, likely trajectories, whose

10-day displacements are analog to those recorded in the ANDRO dataset. To this purpose

the displacements of likely trajectory will come in two parts, one deterministic accounting

for the mean flow and the other random acknowledging the turbulent part of the flow. To

sample the randomness, 100 trajectories are computed from each starting position, evenly

spaced on a 1◦×1◦ grid. (100 trajectories were shown to be enough to capture accurately

the ensemble mean and variance of the trajectories.)
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The mean zonal and meridional displacements are computed as the average zonal and

meridional displacements, respectively, recorded within the ANDRO dataset over a 3◦×3◦

box centered at the location of the estimation. For the random components the possible

outcomes follows the meridional and zonal variance. We assume that they are fully inde-

pendent between time iterations and member realizations, but we acknowledge the observed

covariance between the zonal and meridional displacement components. This choice assumes

that the distribution of the zonal and meridional displacements follow a normal distribution

(as suggested by Ollitrault and Colin de Verdière, 2002; LaCasce, 2008, and fully tested

later in the section 2c.), which is well captured by only knowing the mean and the standard

deviation. The standard deviation is also estimated over the same 3◦×3◦ box centered at

the location of the estimation. Hence both mean and random components of a displacement

are estimated using the neighboring flow properties changing along the trajectory path of

the analog particle.

Other strategies exist to set the range of analog displacements. It is sometime set to

a constant number, regardless of the distance. Alternatively, one could set a spatial range

linked to dynamical parameter, such as the Rossby deformation radius. Here, and as men-

tioned above, we simply set a spatially constant range of 3◦×3◦. (Note that we have also

tested 5◦×5◦, as discussed later.)

Following our suggested uniform-grid framework, the position of likely trajectories can

be expressed mathematically as:d̂xi
d̂yi

 =

dx
dy

+ L

rxx
rxy

 , (3a)

xnewi

ynewi

 =

xoldi

yoldi

+

d̂xi
d̂yi

−
 1

N

∑N
i d̂xi

1
N

∑N
i d̂yi

 , (3b)

where d̂xi and d̂yi are the reconstructed longitude and latitude 10-day displacements of the

ith reconstructed trajectory, respectively,, xoldi , yoldi , xnewi , and ynewi are the old and new
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longitude and latitude prior and after the 10-day displacement of the ith reconstructed tra-

jectory, respectively, N (=100) is the number of ensemble member, i the index of the ensem-

ble member, dx= 1
n

∑n
j=1 dxj|O(xold

i ,yoldi ) and dy= 1
n

∑n
j=1 dyj|O(xold

i ,yoldi ) are the local mean of

zonal and meridional displacements with a starting location within a 3◦×3◦ box centered at

(xoldi ,yoldi ), respectively (where dxj and dyj are individual zonal and meridional displacements

as recorded by ANDRO dataset, respectively), rxx and rxy are two independent random out-

comes of two centered unit-variance normal distributions that impact only the zonal and

both zonal and meridional displacements, respectively, and L is a lower triangular matrix

outcome of the Cholesky factorization of the symmetric positive definite covariance displace-

ment matrix (D), such that D=LL† (where † denotes the transpose operator). The covariance

displacement matrix reads:

D =

Dxx Dxy

Dxy Dyy

 ,

=


1
n

∑n
j=1

(
dxj − dx

)2∣∣∣
O(xold

i ,yoldi )

1
n

∑n
j=1

(
dxj − dx

) (
dyj − dy

)∣∣
O(xold

i ,yoldi )

1
n

∑n
j=1

(
dxj − dx

) (
dyj − dy

)∣∣
O(xold

i ,yoldi )
1
n

∑n
j=1

(
dyj − dy

)2∣∣∣
O(xold

i ,yoldi )

 .

We can therefore write the Cholesky factorization as:

L =

√Dxx 0

Dxy√
Dxx

√
Dyy −

D2
xy

Dxx

 .

This ensures that the variances of the zonal and meridional displacements, as well as their

covariance, are consistent with values observed in the ANDRO database.

The mathematical procedure described in (3) implies that the new position will be given

by the sum of the old position, the mean displacement measured in the 3◦×3◦ box neigh-

borhood, a random component varying for each trajectory and based on the covariance

displacement measured in the 3◦×3◦ box neighborhood, and substracting the mean displace-

ment of the trajectory ensemble (see discussion below).
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Hence, replacing (xoldi , yoldi ) by (xnewi , ynewi ) sequentially and reevaluating (dx, dy, rxx,

and rxy) in (3) provide a continuous trajectory. Through this analog method we can repro-

duce continuous, likely trajectories (Fig. 3) with statistical properties, in term of zonal and

meridional displacements, virtually identical from those of Argo floats during their journey

at depth. Since the 3◦×3◦ box neighborhood, used to compute the statistical properties of

the displacements, evolves with the trajectory increment, this analog method is adaptative

in time. This differs from the transfer operator method, used in a previous study by the

authors (Sévellec et al., 2017), which had a fix grid and potentially lead to spurious diffusion,

making it less reliable to measure accurately the observed diffusion.

As mentioned above, the ensemble mean displacement is removed from each individual

displacements. This allows the mean ensemble to remain at the same location and restrict

the evolution of the ensemble to its spread alone. This facilitates a more robust use of

the diffusion equation (∂tC=∇ · K · ∇C, where C is a concentration and K is a horizontal

diffusivity tensor) central to our diffusivity estimations, which should be modified in presence

of a mean flow into an advection-diffusion equation (DtC=∇·K·∇C, where Dt is the material

“mean” derivative). (Note that we also accurately assume the absence of source terms in

both formulations.) Hence, by removing the mean displacement, we compute a diffusivity

specific to a local area. Also it allows us to compute the diffusivity coefficients in both

horizontal directions without being restricted to the cross-mean flow direction. The along-

mean flow direction is often more difficult to extract because of the impact of the shear of

the mean flow (LaCasce et al., 2014). However, as discussed in the previous subsection the

flow is mostly dominated by its turbulent component rather than its mean component, on

the coarse 3◦×3◦ gridded dynamics. Hence, our tests suggest that, despite allowing the more

accurate computation of local diffusivities (vs diffusivities computed along the track of the

mean flow), the removal of the mean ensemble displacement is not fundamental, in most

places, and does not modify significantly the quantitative results discussed in the rest of the
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study. (We refer the readers to section 4 for a discussion on the Southern Ocean, an example

of regions where this choice matters.)

c. Test of the Normal Assumption and of the Spatial Discretization Resolution

As mentioned above, this analog computation procedure implies a fundamental assump-

tion: the displacements can be represented by a normal distribution. To test it, we define

the Shannon Entropy (H) and Kullback-Leibler divergence (DKL). The former measures

the information of the observed probability density distribution of the zonal or meridional

displacements (PdX or PdY , respectively) as

H(dX) = −
∑
j

PdX(dxj) ln [PdX(dxj)] , (4a)

H(dY ) = −
∑
j

PdY (dyj) ln [PdY (dyj)] , (4b)

where ln is the natural logarithm, and dX and dY are the discrete random variables of

possible outcomes dxj and dyj for the zonal and meridional displacements, respectively. The

distributions are evaluated through 20 bins evenly space within plus/minus the maximum

absolute displacements. Whereas the latter measures the missing information from theoreti-

cal Gaussian fits (QdX or QdY , respectively, representing a normal distribution of equivalent

mean and standard deviation than PdX or PdY ) to the observed probability density distri-

butions. It reads:

DKL(PdX ||QdX) =
∑
i

PdX(dxi) ln

[
PdX(dxi)

QdX(dxi)

]
, (5a)

DKL(PdY ||QdY ) =
∑
j

PdY (dyj) ln

[
PdY (dyj)

QdY (dyj)

]
. (5b)

Hence we can define the relative Missing Information index (MI) as MI=DKL/H. This error

estimation demonstrates that the assumption of a normal distribution appears to be highly

adequate both for the zonal and meridional directions. The relative error is weaker than 5%

over almost the entire globe, except a few specific locations and along coastlines (Fig. 4).
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This coastal issue is likely to come from the lack of observations over the 3◦×3◦ box centered

at these coastal locations (i.e., lack of recorded displacements over land and in regions of

bathymetry higher than 1,000 dbar).

Previous studies have suggested the deviation of the velocity distribution from the normal

distribution, particularly related to rare but energetics events (e.g., Bracco et al., 2000;

Pasquero et al., 2001). In our dataset such deviation appear to be weak (Fig. 4), however if

such deviation exist it would have implication in the formulation of (3), which would need

to be revised to acknowledge higher order statistical moments

To test the robustness of the discretization (or spatial range over which analogs are com-

puted) at the heart of the analog method, a 5◦×5◦ grid has also been tested. It did not show

significantly different results from the 3◦×3◦ grid. (The difference in computed diffusivities is

discussed in section 3b.). This does not show major impact of the discretization, beyond the

expected smoothing linked to the use of coarser/larger grid. It is worth noting that, with our

analog method, the discretization is not a spatial-averaging but a spatial-range over which

the statistical properties of the observed trajectories are aggregated (especially to compute

the second central moment). Hence the discretization for Argo displacements does not act

as a spatial-filter of physical processes, as typically done in numerical modelling with eddy-

less/laminar model (e.g., 2◦×2◦), eddy-permitting model (e.g., 1/4◦×1/4◦), or eddy-resolving

model (e.g., 1/12◦×1/12◦).

d. Computing the Horizontal Diffusivity Coefficients

Now that we have continuous, likely trajectories from analog displacements. We will compute

the dispersion of trajectories initialized at the exact same location to infer the diffusivities at

that depth. To this purpose, we first need to identify a relation between the trajectories, or

their evolution, and diffusivities. This particular derivation strongly follows Batchelor (1949)

and is described here for completeness to give the readers the full details of the calculations.
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Hence, to determine the diffusivities, we restart from the diffusion equation described earlier

which governs the tracer concentration simulated by our trajectories: ∂tC=∇ ·K · ∇C. The

horizontal diffusivity tensor can be represented by a symmetric matrix as:

K =

κxx κxy

κxy κyy

 ,

where κxx, κyy, and κxy are the zonal, meridional, and cross diffusivities. Assuming that

the diffusivity coefficients do not spatially-vary over the region of evaluation (i.e., the region

over which our simulated concentration spread) we have:

∂tC = κxx∂
2
xxC + 2κxy∂

2
xyC + κyy∂

2
yyC. (6)

This local homogeneity assumption is essential to our study.

To compute the spread we will used a spatial integral defined over the spreading of the

concentration and denoted by 〈.〉. Since there is no concentration or flux away from the

concentration/spreading-area we have 〈∂x(. . .)〉=〈∂y(. . .)〉=0 and 〈∂2xx(. . .)〉=〈∂2yy(. . .)〉=0,

respectively. Although less straightforward, we also have the useful properties:

〈x2∂xxC〉 = 〈∂xx
(
x2C

)
〉 − 2 〈x∂xC〉 ,

= 〈∂xx
(
x2C

)
〉 − 〈∂x (xC)〉+ 2 〈C〉 ,

= 0− 0 + 2 〈C〉 ; (7a)

〈y2∂yyC〉 = 〈∂yy
(
y2C

)
〉 − 2 〈y∂yC〉 ,

= 〈∂yy
(
y2C

)
〉 − 〈∂y (yC)〉+ 2 〈C〉 ,

= 0− 0 + 2 〈C〉 ; (7b)

〈xy∂xyC〉 = 〈x∂x (y∂yC)〉 = 〈∂x (xy∂yC)〉 − 〈y∂yC〉 ,

= 〈∂x (xy∂yC)〉 − 〈∂y (yC)〉+ 〈C〉 ,

= 0− 0 + 〈C〉 . (7c)
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Finally, defining the zonal and meridional distance to the steady (by construction) center

of mass as x̃=(x− x0) and ỹ=(y− y0), respectively, we can define the zonal, meridional and

co- variance as varxx (C)=〈x̃2C〉 / 〈C〉, varyy (C)=〈ỹ2C〉 / 〈C〉, and varxy (C)=〈x̃ỹC〉 / 〈C〉,

respectively. Using these definitions and (7), we can derive from (6) the evolution of the

variances, which reads:

∂t 〈x̃2C〉 = κxx〈x̃2∂2xxC〉,

= 2κxx〈C〉,

∂tvarxx (C) = ∂t
〈x̃2C〉
〈C〉

= 2κxx; (8a)

∂t 〈ỹ2C〉 = κyy〈ỹ2∂2yyC〉,

= 2κyy〈C〉,

∂tvaryy (C) = ∂t
〈ỹ2C〉
〈C〉

= 2κyy; (8b)

∂t 〈x̃ỹC〉 = 2κxy〈x̃ỹ∂2xyC〉,

= 2κxy〈C〉,

∂tvarxy (C) = ∂t
〈x̃ỹC〉
〈C〉

= 2κxy. (8c)

To apply these formulas in the context of our Lagrangian pseudo-trajectories, we have

initialized 100 trajectories each 1◦×1◦ all over the ocean and track them for 3 months. Then

the estimation of the diffusivities has be done in two steps: (1) computation of the variances

and (2) computation of the diffusivities.

1. From the trajectory dispersion, we compute the variances of ensemble trajectories along

the zonal and meridional directions, and for the cross term. These variances read:

σ2
xx(x0, y0, t) =

1

N

N∑
i=1

[xx0,y0
i (t)− x0]2 , (9a)

σ2
yy(x0, y0, t) =

1

N

N∑
i=1

[yy0,y0i (t)− y0]2 , (9b)
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σ2
xy(x0, y0, t) =

1

N

N∑
i=1

[xy0,y0i (t)− x0] [yy0,y0i (t)− y0] , (9c)

where σ2
xx,yy,xy are the zonal, meridional, and co- variance, t is time (=k∆tdeep, where

k∈N0), x0 and y0 are the longitude and latitude of the initialization location, and xx0,y0
i

and yx0,y0
i are the longitude and latitude of the ith trajectory member, initialized at

[x0, y0]. Note that, in this formulation, we use the property that the mean ensemble

position is constant and sets by construction of the continuous, likely trajectories at

the location of the initialization (x0 and y0).

2. Then, using (8) and (9) together, the computation of the zonal, meridional, and cross

diffusivities reads:

κxx(x0, y0) =
1

2

d

dt
σ2
xx(x0, y0, t); (10a)

κyy(x0, y0) =
1

2

d

dt
σ2
yy(x0, y0, t); (10b)

κxy(x0, y0) =
1

2

d

dt
σ2
xy(x0, y0, t). (10c)

This last step is done through a best linear fit using 11 values uniformly distributed

over a ∼3-month period since the initialization (i.e., k going from 0 to 10), which

implicitly assumed the stationarity of the diffusivities over this timescale.

3 Results

a. Horizontal Diffusivities

Applying this methodology to compute the diffusivities (κxx, κyy, and κxy) to a starting loca-

tion at 30◦N, 40◦W shows the horizontal spreading of the 100 pseudo-trajectories (Fig. 5a).

This spreading is monotonous along the zonal and meridional directions (Fig. 5b and d,

respectively), but not for the cross-direction (Fig. 5f). The best linear fit of the spread of

variances and covariance, following (10), gives a zonal, meridional, and cross diffusivities of

494 m2 s−1, 535 m2 s−1, and −37 m2 s−1 (Fig. 5c, e, and g), respectively.
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We now reproduce this computation systematically all over the globe with starting points

every 1◦×1◦ to compute the zonal, meridional, and cross diffusivities everywhere (Fig. 6).

The first striking result is the inhomogeneity of the zonal, meridional, and cross diffusivities,

with high values in the western boundary currents, the equatorial band, and the Antarctic

Circumpolar Current, which is confirmed by regional averages (Tab. 1). Except at the equa-

tor, zonal and meridional diffusivities look alike. Their patterns correspond to high values

of a few thousands to up to a few 10,000 m2 s−1 along western boundaries and within mid-

latitude large, coherent ocean currents (e.g., Antarctic Circumpolar Current, Gulf Stream,

North Atlantic Current, Agulhas Current, Kuroshio, and Zapiola Gyre). The maxima occur

for the zonal diffusivities within the Zapiola Gyre and within the Agulhas Current retroflec-

tion, which reach up to 40,000 m2 s−1 and are also regions of turbulent velocity maxima

(Fig. 2c and d). To a lesser degree the Kerguelen and Campbell plateaus appear to be two

others locations of strong zonal diffusivity. These hot spots of zonal diffusivity are also hot

spots for the meridional diffusivity, but with weaker values (∼10,000 m2 s−1), except for the

Campbell plateau which exhibits higher meridional diffusivity than zonal diffusivity. On the

other hand, the diffusivities in the basin interior are much less with values of only a few

hundred of m2 s−1 (Fig. 6a and b). Along the equator, meridional diffusivity is weak (from a

few hundred to a thousand of m2 s−1) whereas zonal diffusivity is intense (several thousand

of m2 s−1), consistently with low and high values of meridional and zonal turbulent velocities

(Fig. 2c), respectively (the latter being due to the succession of zonal currents and counter-

curents, as well as propagating equatorial waves). The high value of meridional diffusivity

along Eastern Africa (Fig. 6b) is consistent with the local maximum of meridional turbulent

velocity (Fig. 2d), imprinted by the Somali Current intermittent behaviour. Overall the

zonal and meridional diffusivities show intensification in regions which have a high level of

turbulent activity (Fig. 2c and d, also see section 3b. for further investigations on that). The

cross diffusivity shows positive values of up to 10,000 m2 s−1 along the western boundaries,
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whereas negative values of down to −10,000 m2 s−1 occur in most place along the Antarctic

Circumpolar Current (Fig. 6c). The global mean values of the zonal, meridonal, and cross

diffusivities are 1,324 m2 s−1, 969 m2 s−1, and −8 m2 s−1 (Fig. 6).

To test the robustness of our results, we have computed the accuracy of the linear re-

gression between the time evolution of the (co-)dispersion and time. For the zonal and

meridional directions the fit is extremely accurate, with error of a few percents (estimated as

the residual of explained variance) in most of the regions, reaching values, at worst, ranging

from 10 to 20% in a few specific locations (Fig. 7a and b). For the cross direction, the error

is one order of magnitude above, with error that can often reach 100% (Fig. 7c). This is

consistent with the analysis located at 30◦N, 40◦W (Fig. 5). However, this error is weaker

in region of intense cross diffusivities (often less than 20%). This means that the fit is less

accurate where the cross-diffusivities is weak anyway. The scatterness of the local error in

those regions, suggests that large-scale consistency of the cross-diffusivities (as the overall

weak values in the basin interior) is probably still accurate.

To quantify the variations of zonal, meridional, and cross diffusivities, we compute his-

togram of their spatial-density distribution (using uniform 50 m2 s−1 bins, Fig 8). We find

that the zonal and meridional distributions have a significant skewness toward high diffu-

sivity values. Consistently with this type of distributions, we see that, for both zonal and

meridional diffusivities, the most common value (i.e., the mode) is lower than the most typ-

ical value (i.e., the median) which is lower than the expected value (i.e., the mean). Thus,

we find a most common value of 250 m2 s−1 and of 250 m2 s−1, a most typical value of

650 m2 s−1 and of 450 m2 s−1, and an expected value of 1,324 m2 s−1 and of 969 m2 s−1 for

the zonal and meridional diffusivities, respectively. It is interesting to note that for these two

distributions, despite most values are restricted to weak diffusivities (below 1,000 m2 s−1),

extreme values (of several 1,000 m2 s−1 or above) still occur.

For the cross diffusivities the distribution follow a bell curve with a most common value

18
Accepted for publication in Journal of Physical Oceanography. DOI 10.1175/JPO-D-21-0150.1. Brought to you by IFREMER/BILIOTHEQUE LA | Unauthenticated | Downloaded 04/08/22 12:39 PM UTC



of −50 m2 s−1 (closely followed by +50 m2 s−1), a most typical value of −25 m2 s−1, and

an expected value of −8 m2 s−1. Overall, this suggests that it is a symmetric distribution

centered around 0. As for the zonal and meridional diffusivity distributions, extreme values

reach beyond ±1,000 m2 s−1, despite most of the values remain within a few ±100 m2 s−1.

Beyond the quantitative values, the cross-diffusivity is also indicative of the diffusion act-

ing along directions that are not co-aligned with the longitudes and latitudes (e.g., Rypina

et al., 2012). This property is especially visible in region of strong diffusivity (where the

cross-diffusivity is also important). To investigate the properties of the diffusivity tensor, we

compute its eigenvectors and eigenvalues. The eigenvectors give the natural directions of dif-

fusivity, whereas the eigenvalues give the diffusivity coefficient acting along these directions.

Hence the diagonalization of K reads:

K =

κxx κxy

κxy κyy

 =

px sx

py sy


κp 0

0 κs


px py

sx sy

 , (11)

where κp and κs are the primary and secondary diffusivities acting along the horizontal

directions defined by (px, py) and (sx, sy), respectively, px and py are the zonal and meridional

vector coordinates of the primary diffusivity direction, respectively, and sx and sy are the

zonal and meridional vector coordinates of the secondary diffusivity direction, respectively.

These vectors are normalized such as p2x+p2y=s
2
x+s2y=1. Because K is represented by a

symmetric matrix (normal operator), its eigenvectors are orthogonal (pxsx+pysy=0). The

primary and secondary diffusivities act orthogonally to each other.

This diagnostic reveals that there is indeed a primary direction for diffusivity (Fig. 9).

The global average along this primary direction reaches 1,672 m2 s−1, whereas the global

diffusivity acting along the secondary direction is only 621 m2 s−1 (Tab. 1). This means that

the diffusivity is almost 3 times as strong along its primary direction as along its secondary

one, whereas it was quite well balanced when measured along the zonal and meridional

directions (albeit a slight dominance of zonal over meridional diffusivity). This property
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is also visible for regional averaged values (Tab 1). As expected, the primary (as well as,

by construction, the secondary) direction varies significantly spatially. Within the gyre

interior, the weak difference between diffusivities acting along the primary and secondary

direction, as well as the lack of consistency of the natural directions, suggests the isotropy of

diffusivity (Fig. 10a, this was also the region where the cross-diffusivity was weak, Fig. 6c).

On the other hand, this rotated framework shows regions with strong diffusivity and coherent

natural directions for diffusivities. For instance, the equatorial region as a well coherent

primary direction along the zonal direction (and a meridional secondary direction). Southern

Ocean, western boundary currents, and gyre recirculations also exhibit organized primary

direction (Fig. 9). In these regions, since the primary and secondary natural direction are not

aligned with zonal and meridional directions, this allows for a better amplitude separation

between the primary and secondary diffusivities (vs zonal and meridional diffusivities). This

leads, for instance, to values of up to 74,000 m2 s−1 along the primary direction within the

Agulhas current retroflection and within the Zapiola gyre (Fig. 9), whereas it remains below

4,000 m2 s−1 along the secondary direction at the same locations (which corresponds to

almost a factor 20 between the two directions). Regions with strong difference in primary

and secondary diffusivities correspond to regions of strong diffusivity anisotropy (Fig. 10a).

We could cite the equator, the western boundary currents, and the Antarctic Circumpolar

Current. On the other hand, regions away from the coast, and in particular away from the

western boundary currents, and gyre interiors appear to experience an isotropic diffusivity.

To test the sensitivity to the resolution, we have carried out this full analysis with a lower

resolution of 5◦×5◦ (instead of 3◦×3◦) to compute the statistical properties of the analog

trajectories (as described in section 2b.). The area distributions of the zonal, meridional,

and cross diffusivities for the 5◦×5◦ resolution have a similar shape than the ones for the

3◦×3◦ resolution (Fig. 8). The most common value (mode), the most typical value (median),

and the expected value (mean) of the distributions remain also similar. The main difference
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is a slight tightening of the distribution that reduces the occurrence of extreme values at

the advantage of more typical ones. This is consistent with the smoothing or averaging

properties expected from the use of a larger resolution.

b. Diffusivity Scalings

As mentioned previously, there is a degree of agreement between the regions of enhanced

turbulent activity and the patterns of intense zonal and meridional diffusivities, such as the

Antarctic Circumpolar Current, the Zapiola Gyre, the Agulhas Current retroflection, and the

equatorial region. Hence, we further investigate this relationship. To this purpose, we can

scale the zonal, meridional, and cross diffusivities with the zonal and meridional turbulent

velocities, and the covariance velocities (Fig. 2c and d) computed in (2).

We test two classical turbulent scalings relating the diffusivities to either the turbulent

velocities or their squared value (Vallis, 2006). The scaling of diffusivity with turbulent

velocities predicts a length scale, whereas the scaling of diffusivity with the velocity variance

predicts a time scale. Hence we diagnose the turbulent length and time scales, such as:

κxx = ũ lxturb, (12a)

κyy = ṽ lyturb, (12b)

and

κxx = ũ2 txxturb, (13a)

κyy = ṽ2 tyyturb, (13b)

κxy = c̃2 txyturb, (13c)

where l
{x,y}
turb are zonal and meridional turbulent length scales, respectively, effectively a mixing

length; and t
{xx,yy,xy}
turb are the zonal, meridional, and cross turbulent time scales, respectively,

which is effectively the Lagrangian integral time scale (Taylor, 1921; Riser and Rossby, 1983).

21
Accepted for publication in Journal of Physical Oceanography. DOI 10.1175/JPO-D-21-0150.1. Brought to you by IFREMER/BILIOTHEQUE LA | Unauthenticated | Downloaded 04/08/22 12:39 PM UTC



It worth noting that a range of studies have described the effect of mean flow acting to

suppressed the cross (i.e., orthogonal to the mean flow) term mixing (Ferrari and Nikurashin,

2010; Klocker et al., 2012). Similarly the mixing has been suggested to be enhanced along

the mean flow (Nummelin et al., 2021). In these contexts, the closures suggested above

would need to be modified to account for that. However, in our study we have avoided

this difficulty by suppressing the action of the mean flow [cf. (3)]. Hence, we kept the more

classical closure schemes described in (12) and (13), consistently with pioneering studies of

Prandtl (1925) and Taylor (1921), respectively. The main hypothesis of these studies is the

homogeneity, which is assumed to hold locally in our study.

It appears that the turbulent length scales still show a lot of large scale structures that

could be associated to gyres or coherent currents (Fig. 11). Indeed the turbulent length

scales decrease inside gyres and increase in the equatorial region, in western boundary cur-

rents, and in locations of intense circulations, such as in the North Atlantic with the North

Atlantic Current or in the Southern Ocean with the Antarctic Circumpolar Current. This

is confirmed by regional averages (Tab. 1). Unlike previously suggested (e.g., Ollitrault and

Colin de Verdière, 2002), in our study the turbulent length scales do not scale with the

Rossby deformation radius. On the other hand, the turbulent time scales associated with

the zonal and meridional directions do not show large scale structure and are overall quite

constant (Fig. 12a and b, respectively). This suggests that a time scale is a better scaling

factor than length scale, and that (13) appears more valid than (12) to extract the essence

of the zonal and meridional diffusivity coefficients.

This result is further confirmed by comparing the linear relationship between the diffu-

sivities and the turbulent velocities or the squared turbulent velocities (Fig. 13). This last

analysis suggests that, despite a broad degree of uncertainty, the quadratic scaling from (13)

is more robust than the linear one from (12), with a percentage of variance explained by the

time scale closure of 62% and 56% for the zonal and meridional diffusivities, falling to only
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49% and 53%, respectively, for the length scale closure.

Regarding the cross diffusivities, we can apply the same scaling principle to find the

cross turbulent length scale (13c). The uncertainty appears larger than for the zonal and

meridional directions. Cross turbulent time scale shows large variations and no clear patterns

(Fig. 12c), whereas the best linear fit (Fig. 13e) explains only 12% of the relationship between

cross diffusivities (κxy) and the covariance velocities (c̃2).

Despite variable in space, we can build an area distribution of the turbulent length and

time scales to see if any prevalent values emerge (Fig. 14). The turbulent length scale is

strongly varying with a most common values in the range between 10-12 km, for both zonal

and meridional directions (Fig. 14a). Given the skewness of the distributions, the expected

values (24 and 19 km, respectively) are different and larger than the most common values.

The inconsistency of these most common values with the linear fit between diffusivities and

velocities (37 km and 30 km for zonal and meridional directions, respectively, Fig. 13) further

suggests the inaccuracy of the turbulent closure through the turbulent length scale described

in (12). On the other hand, the area distribution of the turbulent time scales is sharper with

a relatively lower standard deviation and skweness (Fig. 14b). The most common values are

4.5-5 days, for both zonal and meridional directions. This is consistent with the best linear

fit between diffusivities and turbulent velocity variances of 5.3 days and 4.5 days for zonal

and meridional velocities (Fig. 13), respectively. This overall consistency and the tighter

area distribution suggest the usefulness of the time scale closure for turbulent diffusivities

described in (13). It is worth noting that there still exists potentially significant variations of

the regionally averaged turbulent time scales (Tab .1), with values reaching almost the year

in the subtropical North Pacific interior and the Southern Ocean. For the cross diffusivity,

the most common value is 2-4 days (Fig. 14c). Despite the consistency with 3.7 days found

for the best linear fit (Fig. 13e), the cross turbulent time scale is not as robust as the

zonal and meridional turbulent time scales because of the large spread of the distribution
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(Fig. 14c). This spatial area distribution analysis confirms the result of the previous analysis

on the geographic distribution of the turbulent length and time scales and on the prevailing

accuracy of the turbulent time scale closure over the turbulent length scale closure.

To further test the relationship between the turbulent flow and the diffusivity, we check if

the natural diffusivity directions (i.e., eigenvectors of the diffusivity operator) are consistent

with the natural directions of the turbulent velocity variance [consistently with the closure

of (13)]. These latter natural directions are computed as the eigenvectors of the turbulent

velocity covariance matrix (Σ) and are the Empirical Orthogonal Functions (EOFs) of the

local turbulent velocity. This decomposition reads:

Σ =

ũ2 c̃2

c̃2 ṽ2

 =

p̃x s̃x

p̃y s̃y


ũ2p 0

0 ũ2s


p̃x p̃y

s̃x s̃y

 , (14)

where ũ2p and ũ2s are the primary and secondary turbulent velocity variance acting along

the horizontal directions defined by (p̃x, p̃y) and (s̃x, s̃y), respectively, p̃x and p̃y are the

zonal and meridional vector coordinates of the primary turbulent velocity variance direc-

tion, respectively, and s̃x and s̃y are the zonal and meridional vector coordinates of the

secondary turbulent velocity variance direction, respectively. These vectors are normalized

such as p̃2x+p̃2y=s̃
2
x+s̃2y=1. As for K, Σ being a symmetric matrix (normal operator), its

eigenvalues are orthogonal (p̃xs̃x+p̃ys̃y=0), so that the primary and secondary turbulent ve-

locity variances act orthogonally to each other. This property is quite useful to compare

the directions of the turbulent flow and of the diffusivity, since comparing their primary

direction, is also, virtually, comparing their secondary direction. Finally, it is interesting to

note that Eddy Kinetic Energy remains conserved through the rotation of the coordinates

from zonal-meridional to EOFs, since the trace of the matrix is constant (ũ2+ṽ2 and ũ2p+ũ
2
s,

respectively). Hence to set the quantitative comparison between natural direction of diffu-

sivity and of the turbulent flow, we define the angle from the north as θ=arctan (px/py) and

θ̃=arctan (p̃x/p̃y) for the primary diffusivity direction and for the primary turbulent velocity
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variance direction, respectively. To further test the impact of the flow dynamics on the

diffusivity we also defined the mean flow direction as: θ̄=arctan (ū/v̄).

To test the relation between θ and θ̃ or θ̄, we plot them against each other (Fig 10b

or c, respectively). This reveals that indeed, despite a degree of uncertainty, a one-to-

one relation exists between the natural diffusivity directions and the natural turbulent flow

direction (Fig 10b). On the other hand, there is no obvious relationship between the primary

diffusivity direction and the mean flow direction (Fig 10c). This differs from the widely used

hypothesis stating that the mean flow enhances and suppresses the diffusivity along and

across its direction, respectively (Ferrari and Nikurashin, 2010; Klocker and Abernathey,

2014; Groeskamp et al., 2020; Nummelin et al., 2021). However, we remind the reader that

we have removed the effect of the mean advection in (3), which could explain this apparent

disagreement. Hence, we conclude that the natural diffusivity direction is set by the natural

direction of the turbulent flow (i.e., Eddy Kinetic Energy or variance of the velocities). Note

that testing the relationship by only keeping region of high diffusivities, where the diffusivity

directions are well organized, does not improve the relationships.

4 Discussions and Conclusions

The observed ocean circulation is the result of the action of several physical processes and

their interactions. One of this process is turbulent mixing quantified by the horizontal

diffusion. It is crucial for the ocean circulation from local to global scale, as well as for

water mass transformation and ventilation (Abernathey and Ferreira, 2015). Diffusion is

not only important for the physical properties of the ocean, but also for carbon and nutrient

distribution and evolution, especially in region of intense eddy activity (Wunsch, 1999).

In this study we have computed the horizontal diffusivity coefficients of the ocean at

∼1,000 m depth from observed Lagrangian displacements. These observations are recorded

by Argo floats through their 10-day journey at parking depth and gathered and validated in
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the ANDRO dataset (Ollitrault et al., 2019). Because they are the cycling between surface

drift and transmission, drift at parking depth, and water column profiling, the Argo floats do

not provide continuous trajectories. Furthermore, the initial position of Argo floats are not

co-located. These discontinuity and initial position issues must be cared for to discuss the

spreading as actual Lagrangian floats over a few months. To do so, we have reconstructed

likely pseudo-trajectories, which are continuous in time and in agreement with the statistical

properties of the Argo float displacements at depth. This has been done using an analog

method, whose efficiency has been demonstrated in a range of previous studies (e.g., Ayet

and Tandeo, 2018; Sévellec and Drijfhout, 2018).

Using this method, we obtain the dispersion of pseudo Lagrangian particles and can infer

the diffusivity coefficients along the zonal, meridional, and cross directions. This analysis

reveals that the diffusion is anisotropic and that the diffusivity coefficients are highly varying

in space. We find values ranging from a few 100 m2 s−1 in the ocean interior to several

1,000 m2 s−1 in western boundary currents or along the Antarctic Circumpolar Current,

up to several 10,000 m2 s−1 in a few specific hot spots (Zapiola gyre and Agulhas Current

retroflection). For the zonal diffusivity coefficient, values ranging from several 1,000 m2 s−1

to a few 10,000 m2 s−1 are also found at and in the vicinity of the equator. Overall the global

mean zonal diffusivity coefficient reached 1,324 m2 s−1, where it is slightly below 1,000 m2 s−1

for the meridional diffusivity. In comparison the cross-diffusivity averages out, and reached

values of 10,000 m2 s−1 within intense boundary currents and in the Southern Ocean.

To further characterize the diffusivity coefficients, we have tested two empirical closures:

one relates the coefficients to the local turbulent velocities and the other to variance of

the local velocities (the latter being the square of the former). Linear regression allows us

to compute the turbulent length and time scale, respectively. We find that the zonal and

meridional turbulent length scales have a globally average values of 24 and 19 km, but vary

quite significantly spatially. These variations bear a resemblance with the turbulent velocities
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(i.e., intensification along western boundary, in the Southern Ocean, and at the equator).

On the other hand, we find that the zonal and meridional turbulent time scales show quite

spatially-uniform values with a most common value of 4.5-5 days. The nearly spatially-

constant turbulent time scale is particularly striking given the huge spatial variations of

the diffusivity coefficients. This suggests that the Eddy Kinetic Energy captures well the

spatial variations of the diffusivity coefficients at this 1,000-m depth. From this analysis,

we conclude that the turbulent velocity variance closure is favored, leading to an almost

universal turbulent time scale of 4.5-5 days.

In this study, we have also taken advantage of the computation of the cross diffusivity

coefficient to rotate the diffusivity along its natural directions. This rotation is not important

within the ocean interior (where diffusivity is mainly isotropic) but is more crucial along

western boundaries and in the Southern Ocean. Within this new framework, the diffusivity

coefficient reached up to 74,000 m2 s−1 (in the Zapiola gyre and in the Agulhas Current

retroflection). This increase of diffusivity coefficients is expected, since the rotation boosts

the diffusivity along the primary direction (and decreases it along the secondary direction)

when compared to values along the zonal and meridional directions (and further demonstrate

the anisotropy of the diffusion). This property is a natural outcome of the conservation of

the trace of the diffusivity operator, which follows the rotational invariance of Eddy Kinetic

Energy, given the accuracy of the turbulent time scale closure discussed in the paragraph

above. We also show that primary direction is well aligned, with a degree of uncertainty, to

the primary direction of horizontal velocity variance, but is not particularly aligned to the

direction of the mean flow.

There has been a range of local eddy resolving in situ experiments in the North Atlantic

from which the horizontal diffusivity coefficients have been estimated. Using SOFAR floats

(Lagrangian floats positioned by acoustic), Freeland et al. (1975) in the Mode region found

κyy=710 m2 s−1 around 28◦N, 69◦W at 1,500 m depth. Riser and Rossby (1983) measured
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diffusivity coefficients of κxx=4,500 m2 s−1 and κyy=1,800 m2 s−1 (with ±50% uncertainties)

at 700-m depth and within the 25-30◦N and 67-75◦W region. Böning (1988) reported unpub-

lished values from Price (also reported in Rossby et al., 1983) of κxx=1,500±1,000 m2 s−1

and κyy=1,500±500 m2 s−1 at 1,300 m depth from the Local Dynamics experiment in the

North Atlantic. All these reported values are in the range of our own estimations for the re-

gion, validating, a posteriori, our study and inherent assumptions. At the same location and

700-m depth, Ollitrault and Colin de Verdière (2002) showed an interesting property of the

diffusivity, whereas west of the Mid-Atlantic ridge they reported values of 5,000 m2 s−1, east

of the Mid-Atlantic Ridge they found values of only 2,200 m2 s−1. This spatial variation is

qualitatively and quantitavely consistent with our analysis that reveals changes in the diffu-

sivity coefficients between region of active turbulence (e.g., west of the Mid-Atlantic Ridge)

and the more laminar ocean gyre interior (e.g., east of the Mid-Atlantic Ridge). Alternative

methods diagnosing diffusivity through turbulent advection, either along the 27.9 kg m−3

isopycnal (Chapman and Sallée, 2017) or for full ocean depth (Groeskamp et al., 2020), show

at ∼1,000-m depth consistent values to our estimates.

More recently, a dedicated experiment using both passive tracer and Lagrangian acoustically-

positioned floats was achieved under the Diapycnal and Isopycnal Mixing Experiment in the

Southern Ocean (DIMES, Naveira Garabato, 2010; Meredith, 2011). The release of passive

tracer and floats was located at 57◦S, 105◦W, east of the Drake Passage. The two meth-

ods found a meridional (cross-mean flow) diffusivity of 710±260 m2 s−1 (at 1,500-m depth,

Tulloch et al., 2014) and 800±200 m2 s−1 (at 950-m depth, LaCasce et al., 2014), respec-

tively. To quantitatively test our method, we have reproduced this analysis by initializing

the pseudo-trajectories at the location of DIMES tracer and float releases. To make the

comparison more accurate, we have aligned our estimation protocol with the one of LaCasce

et al. (2014) and Tulloch et al. (2014). Hence, we have removed the constrain on the mean

flow [i.e., allowing mean advection by removing the last term in the righ handside of (3b)] and
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computed the diffusivity coefficient over 1 year. We obtain ∼950 m2 s−1 for the meridional

diffusivity coefficient at 1,000-m depth, which confirms the quantitative skill of our method

(i.e., trajectory reconstruction by the analog method). However, we argue that these two

previous studies suffer from inherent methodological limitations. First, three months is

more appropriate than one year to sample the turbulent diffusive regime. Indeed compu-

tation over too long timescales underestimates the diffusivity (because the tracer variance

increase is partially computed over the saturated regime). The decrease of cross-diffusivity

with longer integration time scale have also been reported by Zhurbas et al. (2014) in the

context of surface drifters. Secondly, because the estimation is done along the mean flow

pathways (which is significant in the region), it is not a local estimate but it represents an

integral along the pathway (which is long for a 1-year estimation). Since we can correct for

both limitations in our setting, we obtain instead:

• ∼1,575 m2 s−1, for estimation over 100 days, and

• ∼1,570 m2 s−1, for estimation over 100 days and with removing the ensemble mean

advection.

Hence, we consider the last value to be the more accurate estimation at that location. [Note

that removing the mean flow affects particularly the along-mean flow estimation (zonal

direction at DIMES location), which was not discussed in Tulloch et al. (2014) and LaCasce

et al. (2014)]. It is a demonstration or confirmation, if needed, that the diffusivity coefficients

computed along a path [Lagrangian view: κ̃(x(t), y(t))] or at a fixed point [Eulerian view:

κ(x, y)] can differ by more than 50% because of the high spatial variability of the coefficient.

This argument highlights the difficulty of the comparisons between the two estimations.

There also exists global studies of estimation of the lateral diffusivity coefficients. For

instance, Cole et al. (2015) found values from only a few 100 m2 s−1 (subpolar gyre interior) to

several 10,000 m2 s−1 (western boundary currents) at the base of the mixed layer (described
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at ∼100-m depth, except in high latitudes where it reaches a few 100-m depth). Once

again this study is qualitatively consistent with our results (i.e., spatial variation of the

diffusivity with intensification near intense boundary currents), however the difference in

depth location (mixed-layer vs intermediate depth) prevents us from further quantitative

comparisons. Maybe the most straightforward comparison is with the results of Roach

et al. (2018). Although they use the same observations (Argo deep displacements), their

method and related assumptions completely differ from ours. They reported cross-mean-

flow diffusivity of 543±155 m2 s−1 in agreement with our estimations, with spatial variation

comparable to our secondary-direction diffusivity.

Beyond the purely quantitative estimation of the diffusivity coefficients, we have also

shown that the diffusivity scales best with the turbulent velocity variance (vs its standard

deviation, as sometime hypothesized), a result consistent with Taylor (1921). In our anal-

ysis we found that the closure is especially robust in homogeneous and isotropic regions

(i.e., ocean gyre interior), assumptions at the base of Taylor’s results (1921). Beyond the

usefulness of the closure with the turbulent velocity variance, we show that the covariance

function time integral (leading to the Lagrangian integral time scale) is mainly spatially

uniform with a value of 4.5-5 days (despite it is more accurately described as a distribution).

This universal time scale contrasts with the high resolution model estimations of the La-

grangian integral time scale by Griesel et al. (2010), which was found to be highly spatially

varying. However values from other regional observational studies are consistent with ours.

Hence, Lumpkin et al. (2002) found a spatially uniform Lagrangian timescale of ∼6 days at

700-2,000 m depth in the mid-latitudes of the North Atlantic. In the same region, Ollitrault

et al. (2005) suggested a Lagrangian integral time scale of 7-10 days and 5-6 days at the

west and the east of the mid-Atlantic ridge, respectively. These two values are quite close

(and notably consistent with our estimates of ∼7 and ∼5 days for these regions, ST-NA-WB

and ST-NA-I in Tab 1, respectively), despite the wide difference in the Eddy Kinetic Energy
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between the west and the east (pleading in favor of a universal time scale). In the Mode

region, Riser and Rossby (1983) reported values between 7 to 18 days, whereas (Freeland

et al., 1975) reported values between 10 and 12 days. Despite being in the upper range of our

estimation distribution (Fig. 14b), these values remain within our local and regional estima-

tions (Fig. 12a, b and Tab 1, respectively). Also, both studies suggest the spatial anisotropy

of the Lagrangian integral time scales in the studied region. This is consistent with our local

and regional estimations showing that boundary regions are where the universality of the

Lagrangian integral time scale breakdown (Fig. 12a, b and Tab 1).

We have seen that our diffusivity estimates do not exhibit a suppressed direction across

the direction of the mean flow, as suggested by Ferrari and Nikurashin (2010), Klocker

and Abernathey (2014), and Groeskamp et al. (2020). At the opposite we find that the

natural directions of the diffusivity have no distinct relationship with the direction of the

mean flow. This could be linked to the diffusivity estimation method used in our study, which

deliberately removes the direct action of the mean flow on Lagrangian tracer ensemble (albeit,

the turbulence is still derived from a circulation where the mean flow exists). Alternatively,

this could be linked to the isotropic diffusivity assumption at the heart of the enhanced

and suppressed diffusivity hypothesis (Nummelin et al., 2021). Indeed, we have shown that

the diffusivity coefficients in the absence of mean flow are strongly anisotropic following

the natural directions of the horizontal velocity variance. Hence, it is possible that the

suppressing and enhancing effects are second order effects of an anisotropic diffusion. In

particular, our closures fully acknowledged both directions independently (13), unlike the one

suggested by Ferrari and Nikurashin (2010) and Groeskamp et al. (2020), for instance, where

a single measure of turbulent velocities (i.e.,
√
ũ2 + ṽ2) is used. However, our closures exhibit

zonal and meridional turbulent time scale longer and shorter than average, respectively, in

the Gulf Stream and in part of the Antarctic Circumpolar Current (Fig. 12a and b). Hence

rationalizing the role of the mean flow in an anisotropic turbulent field will be the subject
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of a follow up study.

Let us now list the shortcomings of our study. The primary one is the discontinuity of

the Argo float displacements. Hence, and despite having been fully assessed in our study,

the assumptions behind the analog method used to reconstruct pseudo-trajectories remain

a source of uncertainties and errors. In particular this ignore the motions above the Nyquist

frequency of ∼1/20 cycles per day. Also it would be interesting to test more sophisticated

method based on more advanced artificial intelligence procedure, such as deep learning,

for comparison and to test the robustness of the results. In particular, we would like to

account for the memory of the Lagrangian trajectories (e.g., Berloff and McWilliams, 2002)

and to acknowledge non-normal displacement distribution related to extreme events (e.g.,

Bracco et al., 2000). Another difficulty is that, by design of the Argo float/network, the

displacement observations are only made at a single depth level (1,000 m). This does not

allow the computation of the horizontal diffusivity coefficients for the full 3D ocean and to

track how they change with depth. Other methodologies would be needed for this purpose.

The current study and developed methodology offer a range of future applications. For

instance, focusing at the surface, flotsam dispersion can be estimated using surface drifters

(which are not discontinuous, but are not co-located), with natural implication for ocean

plastic pollution. It would be particularly interesting to investigate the role of new physical

mechanisms at play at the surface, such as Ekman transport or surface-wave Stokes drift,

and to determine their respective impact on the dispersion. More generally our study and the

estimation of diffusivity coefficients can be used for parameterization of passive tracer diffu-

sion in eddy-less model (simply following K'Σ×5 days, which can be estimated from direct

observations of Eddy Kinetic Energy, similar to the suggestion of Holloway, 1986). Following

the same logic, these coefficients can be used as a benchmark to validate eddy-permitting

and eddy-resolving ocean models. When these models will be able to reproduce surface and

1,000-m depth dispersion they will become useful to estimate the vertical variations of the
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diffusion coefficients. All these will be directions for future work.
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Figure 1: Argo float deep displacement selection. Distributions of (a) pressure and (b)
period of Argo float deep displacements. Distributions are estimated from the entire ANDRO
dataset (black) and after selecting displacements at a pressure between 950 and 1,150 dbar and
with a period from 8.5 to 10.5 days (red). There are 1,041,054 displacements in the dataset and
675,575 displacements after selection. (c) Number of displacements from ANDRO dataset per
3◦×3◦ grid boxes for the selected 675,575 displacements (i.e., between 950 and 1,150 dbar and
between 8.5 and 10.5 days).
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Figure 2: Mean and turbulent zonal and meridional velocities. Colors show (a and b)
zonal and meridional mean and (c and d) turbulent velocities (cm s−1), following (1) and (2),
respectively. (d) Contours shows covariance of zonal and meridional velocities (cm2 s−2), following
(2). Velocities are computed each 1◦×1◦ as the velocity mean, standard deviation, and covariance
within 3◦×3◦ grid boxes. Black, grey, and blue contours correspond to positive, zero, and negative
values, with contour interval of 20 cm2 s−2. (c) The red and black lines show the latitudes and
longitudes separating the regions used in Tab. 1. The blue lines show the limits between western
boundaries and interiors.
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Figure 3: Examples of 4 reconstructed pseudo-trajectories. (a-d) The four continuous,
likely trajectories are obtained using the analog method base on the ANDRO dataset (providing
disconnected displacements from Argo floats during their journey at depth). They are initialized at
30◦N, 40◦W and used a 3◦×3◦ grid to define the range of analogs. Crosses denote initial positions
and lines denote displacements of both reconstructed continuous, likely trajectories (color) and
observed disconnected Argo float displacements (grey). The color scale reflects the time evolution
of the trajectories from 9.7 days to 97.4 days.
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Figure 4: Error estimation of the Gaussian fit approximation for the displacement
probability density functions. (a and b) Probability density function of longitudinal and lat-
itudinal deep displacements (black bar), respectively, located at 30◦N, 40◦W. (red crosses) The
Gaussian fits are computed using the mean and the variance of the distribution displacement. To
compute the error of the Gaussian fits, we compute the Missing Information (MI). The Missing
Information measures the error of the fit by computing the ratio of the Kullback-Leibler divergence
to the Shannon Entropy. (c and d) Maps of the error of the Gaussian fits for longitudinal and
latitudinal displacements, respectively.
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Figure 5: Trajectory spread for initialization at 30◦N, 40◦W and computation of the
diffusivity coefficients. (a) 100 individual pseudo-trajectories (blue crosses – separating 10-day
transition – linked by lines), their mean position (white cross) and their plus/minus zonal and
meridional standard deviation (horizontal and vertical thick lines, respectively, with colorscale –
indicating the 10-day transition). The grey crosses and lines indicate the observed Argo float deep
initial locations and displacements in the region, respectively. (b, d, and f) Time evolution of
the spread of the 100 trajectories measured by plus/minus the standard deviation of the zonal
distances, by plus/minus the standard deviation of the meridional distances, and by the square of
the zonal-meridional cross-distance, respectively. Distance of the trajectories are measured from
the point of origin every ten days (cross, connected by dashed lines), following (9). (c and e) as (b
and d) but for the variance and (f) is equivalent to (g). The dashed red lines is the best linear fit,
which coefficient measured the diffusivities for the respective direction and is indicated in the title,
following (10).
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Figure 6: Diffusivity estimation from Argo floats. (a-c) Zonal, meridional, and cross dif-
fusivity coefficients (×103 m2 s−1). Note the non-linearity of the color scale reflecting low (below
2×103 m2 s−1) and high (above 2×103 m2 s−1) absolute values of diffusivities (i.e., linear from 0 to
2×103 m2 s−1 and from 2 to 20×103 m2 s−1 absolute values). The global mean values are indicated
in the title.
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Figure 7: Error in the diffusivity estimation from the linear fit. (a-c) Error for the zonal,
meridional, and cross diffusivity coefficients (% or ×10%). Except in a few specific locations the
zonal and meridional errors remain below a few percents. The error for cross diffusivity coefficient
is more important.
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Figure 8: Area distributions of diffusivity coefficients. (a-c) Zonal, meridional, and cross
diffusivity values (×103 m2 s−1). Red and black histograms reflect distributions using 3◦×3◦ grid
and 5◦×5◦ grid, respectively; solid black and dashed dark red lines reflect the expected values
(means) using 3◦×3◦ grid and 5◦×5◦ grid, respectively; solid grey and dashed light red lines reflect
the most typical values (medians) using 3◦×3◦ grid and 5◦×5◦ grid, respectively
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Figure 9: Rotated diffusivity estimation from Argo floats. (a and b) Primary and sec-
ondary diffusivity coefficients (×103 m2 s−1) with their respective direction (lines, spaced by 3◦ for
legibility). Note the non-linearity of the color scale reflecting low (below 2×103 m2 s−1) and high
(above 2×103 m2 s−1) diffusivities (i.e., linear from 0 to 2×103 m2 s−1 and from 2 to 20×103 m2 s−1).
The global mean values are indicated in the title.
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Figure 10: Diffusivity anisotropy measured by the ratio of primary to secondary dif-
fusivity. Values close to 1 show local isotropy of the diffusivity; values significantly higher than
1 show the significant dominance of the primary direction over the secondary one for diffusivity,
and the local anisotropy of the diffusivity. (b and c) Scatter plots (dot) and density (contours), in
term of the angle in radians from the north, of the primary diffusivity direction with the primary
turbulent flow direction and with the mean flow direction, respectively. Density is computed as a
normalized density on grid of 0.1π×0.1π radian angle. Contour interval are 0.1, thick purple lines
are 0.5, and thin cyan and magenta lines are higher and lower values.
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Figure 11: Turbulent length scales. Colors show (a-b) zonal and meridional turbulent length
scales (km), following (12).
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Figure 12: Turbulent time scales. Colors show (a-c) zonal, meridional, and cross turbulent
time scales (day or ×4 days), following (13).
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Figure 13: Fit of turbulent closures. (a-b) Scatter plots (dots) of zonal and meridional
diffusivities (κxx and κyy, respectively) as a function of zonal and meridional turbulent velocity (ũ
and ṽ, respectively). (c-e) Scatter plots (dots) of zonal, meridional, and cross diffusivity (κxx, κyy,
and κxy, respectively) as a function of zonal, meridional, and co- turbulent velocity variance (ũ2, ṽ2,
and c̃2, respectively). Red lines are the best linear fits (crossing zero), which coefficient (indicated
in the title) estimates the best (a) zonal and (b) meridional turbulent length scale, following (12),
or the best (c) zonal, (d) meridional, and (e) cross turbulent time scale, following (13). In each
panel, the coefficient of determination of the linear fit (R2 – the proportion of variance explained
by the fit) is indicated in the title.
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Figure 14: Area distributions of turbulent length and time scales. (a) Area distribution
of the (black) zonal and (red) meridional turbulent length scales as defined by (12) and shown in
Fig. 11. (b) Area distribution of the (black) zonal and (red) meridional turbulent time scales as
defined by (13) and shown in Fig. 12. (c) as in (b) but for the (grey) cross turbulent time scale.
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Table 1: Regional values of diffusivities and closure. Values are averaged over the globe
(global) and 18 regions : SubPolar North Atlantic Western Boundary and Interior (SP-NA-WB and
SP-NA-I, respectively); SubTropical North Atlantic Western Boundary and Interior (SP-NA-WB
and SP-NA-I, respectively); SubTropical South Atlantic Western Boundary and Interior (ST-SA-
WB and ST-SA-I, respectively); Equatorial Atlantic, Indian Ocean and Pacific (EQ-A, EQ-IO, and
EQ-P, respectively); SubTropical Indian Ocean Western Boundary and Interior (ST-IO-WB and
ST-IO-I, respectively); SubPolar North Pacific Western Boundary and Interior (SP-NP-WB and
SP-NP-I, respectively); SubTropical North Pacific Western Boundary and Interior (ST-NP-WB
and ST-NP-I, respectively); SubTropical South Pacific Western Boundary and Interior (ST-SP-
WB and ST-SP-I, respectively); and the Southern Ocean (SO). The regions are split between
the subpolar, subtropical, and equatorial regions (following 38◦S, 10◦S, 10◦N, 38◦N, and 66◦N),
between the Atlantic, Indian and Pacific region (following 90◦W and 65◦W for the North and South
Atlantic, respectively, 20◦E, and 115◦E and 145◦E for the North and South Pacific, respectively),
and between the ocean western boundaries and interiors (35◦W for the subpolar North Atlantic,
60◦W and 30◦W for subtropical North and South Atlantic, respectively, 50◦E for the subtropical
Indian Ocean, 170◦W for the subpolar North Pacific, and 138◦W and 160◦W for subtropical North
and South Pacific, respectively). The regions are shown in Fig. 2c.

κxx κyy κp κs lxturb lyturb txxturb tyyturb
(m2 s−1) (m2 s−1) (m2 s−1) (m2 s−1) (km) (km) (days) (days)

Global 1324 969 1672 621 24 19 113.5 8.4
SP-NA-WB 2444 1906 3217 1134 35 31 8.5 6.8
SP-NA-I 806 783 1096 493 20 20 25.0 8.8
ST-NA-WB 1227 1055 1703 579 24 22 6.6 6.9
ST-NA-I 614 585 765 435 16 15 5.1 5.0
EQ-A 1322 718 1520 520 23 17 7.1 5.2
ST-SA-WB 1309 1704 2126 887 23 28 5.6 8.2
ST-SA-I 633 557 778 413 15 13 5.2 5.7
EQ-IO 1833 1166 2183 816 27 21 6.2 5.3
ST-IO-WB 5443 4015 7750 1708 64 49 10.4 7.4
ST-IO-I 890 824 1108 607 19 18 5.4 5.1
SP-NP-WB 960 839 1296 503 23 20 10.7 6.4
SP-NP-I 352 233 421 164 11 9 7.3 6.3
ST-NP-WB 925 812 1224 514 22 20 7.5 7.4
ST-NP-I 564 399 636 326 17 13 297.3 6.4
EQ-P 1707 544 1800 450 26 15 5.4 5.3
ST-SP-WB 1195 1860 2228 828 24 28 13.0 6.0
ST-SP-I 313 282 380 215 11 10 5.1 5.0
SO 2234 1784 2936 1082 35 28 333.6 17.8
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