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Systems/Circuits
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Two structurally connected brain regions are more likely to interact, with the lengths of the structural bundles, their widths,
myelination, and the topology of the structural connectome influencing the timing of the interactions. We introduce an in
vivo approach for measuring functional delays across the whole brain in humans (of either sex) using magneto/electroence-
phalography (MEG/EEG) and integrating them with the structural bundles. The resulting topochronic map of the functional
delays/velocities shows that larger bundles have faster velocities. We estimated the topochronic map in multiple sclerosis
patients, who have damaged myelin sheaths, and controls, demonstrating greater delays in patients across the network and
that structurally lesioned tracts were slowed down more than unaffected ones. We provide a novel framework for estimating
functional transmission delays in vivo at the single-subject and single-tract level.

Key words: brain criticality; brain dynamics; brain networks; conduction velocities; magnetoencephalography; multiple
sclerosis

Significance Statement

This article provides a straightforward way to estimate patient-specific delays and conduction velocities in the CNS, at the
individual level, in healthy and diseased subjects. To do so, it uses a principled way to merge magnetoencephalography
(MEG)/electroencephalography (EEG) and tractography.

Introduction
Higher-level cognitive functions might be emergent and depend
from the regulated interaction of multiple brain areas (Stam,
2014). Hence, network theory has been used to describe such
large-scale functional interactions within the brain (Bullmore
and Sporns, 2009), as well as the underlying structural

connections (Watts and Strogatz, 1998; Barabasi and Albert,
1999). From the functional standpoint, most studies used
functional magnetic resonance imaging (fMRI), thereby fo-
cusing on the slow-evolving activity (typically in the timescale
of seconds) and using assumptions of stationarity. The pres-
ence of time-averaged spatial patterns of correlated and anti-
correlated activity was consistently reported (Fox et al., 2005),
which also related to the structural topology (Honey et al.,
2009; Tewarie et al., 2019). Per contra, brain activities do not
exclusively generate periodic patterns, but also aperiodic ones
emerge on the large scale (Zalesky et al., 2014). Structural to-
pology imposes constraints on the evolution of brain dynam-
ics, as shown by the fact that the probability of two brain
regions activating sequentially is proportional to the coupling
intensity along the brain tract linking them (Sorrentino et al.,
2021b). However, structural topology alone is necessary, but
not sufficient, to generate the observed dynamics, as delays,
and noise, are also key elements (Niebur, 1991; Atay et al.,
2004; Ghosh et al., 2008; Deco et al., 2009; Cabral et al., 2014;
Petkoski and Jirsa, 2019; Tewarie et al., 2019). The time it
takes two gray matter regions to sequentially activate depends
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on multiple factors, such as the distance separating them, the
properties of the white matter bundle (structural tract) linking
them (such as its diameter and myelination), and the overall
topology of the network embedding them (Purves et al., 2001).
For this reason, estimating a comprehensive map of the delays
poses great challenges, and most modeling studies assume ho-
mogeneous velocities of conduction (typically ranging from 2
to 10 m/s; Sanz-Leon et al., 2015; Breakspear, 2017). Hence, the
delays are conceptualized as purely dependent on distance
(Ghosh et al., 2008; Petkoski et al., 2018; Petkoski and Jirsa,
2019). This is a suboptimal simplification, since we know (e.g.,
from routine examinations such as visual evoked potentials)
that the velocities in highly myelinated, thick tracts can reach
up to 150 m/s (Purves et al., 2001). Combining magnetoence-
phalography (MEG) and tractography one can track the begin-
ning and the spread of a regional perturbation (Sorrentino et
al., 2021b). Building on this framework, we hypothesized that
the time it takes a signal to go from one region to another might
be a candidate proxy for the delay of transmission across
any given structural tract. Shorter delays might relate, among
other factors, to diameter and myelination. This should result
in perturbations spreading with velocities that are not constant
but, rather, rise as a function of the length of the white-matter
tracts (given that longer tracts are typically also the thicker and
more myelinated ones). Conversely, we expected the width of the
distribution of the delays to be much narrower than what would
be expected from the length of the white matter bundles alone
(since the longer tracts are hypothesized to be the fastest). We
further reasoned that, if our measurements are related to myeli-
nation, then lesions in the myelin sheath should increase the
delays. To test this hypothesis, we used source-deconstructed
MEG signals to estimate the delays, defined as the average time it
takes a perturbation generated in region i to spread to region j,
and then estimated the lengths of the white matter bundles in a
cohort of 18 patients affected by multiple sclerosis and 20 healthy
subjects using tractography. We used the delay in the subsequent
recruitment of brain regions as a proxy for the conduction delay
of an impulse between regions and estimated the corresponding
velocities by dividing the tract lengths by the corresponding
delays. First, we explored the distributions of the delays and veloc-
ities in healthy humans. Then, we evaluated the effect of the dam-
age to the myelin sheath on the delays. To further verify the whole
workflow, we applied the same procedure to a publicly available
dataset based on combined electroencephalogram (EEG) recordings
and tractography, and we were able to extract subject-specific delays
and, thus, velocities, which had statistics that were similar to those
obtained via MEG. The findings were further verified on an inde-
pendent MEG/Diffusion Tensor Imaging (DTI) dataset, using a dif-
ferent parcellation and a different source-reconstruction algorithm.

Materials and Methods
Participants
The participants (of either sex) were recruited at the outpatient clinic of
the Institute for Diagnosis and Cure Hermitage Capodimonte. The diag-
nosis of multiple sclerosis was made according to the revised 2017
McDonald criteria (Thompson et al., 2018a). Exclusion criteria were
age,18 years, clinical relapse and/or steroid use in the threemonths
before the study, inability to understand and complete “patient reported
outcomes” and cognitive evaluation, or inability to undergo the MRI scan.
All patients underwent a neurologic clinical examination, Expanded
Disability Status Scale (EDSS) scoring, the Symbol Digit Modalities Test
(SDMT) to measure cognitive impairment, the Fatigue Severity Scale
(FSS), and the Beck Depression Inventory (BDI). The controls for the MS
cohort were selected from among the caregivers and spouses of the

patients. Genetic relatives were not allowed as controls. The subjects for
the second, larger healthy cohort were selected as described previously
(Sorrentino et al., 2021b). The independent EEG/DTI dataset is described
in (Schirner et al., 2018). The demographics and main clinical and radio-
logic features of the MS cohort are summarized in Table 1. The study was
approved by the local Ethics Committee (Prot.n.93C.E./Reg. n.14-17OSS).

MRI acquisition and processing
Each MRI scan was performed immediately after the MEG recording
on the same MRI scanner (1.5 Tesla, Signa, GE Healthcare). Analyzed
sequences included echo-planar imaging for DTI reconstruction (TR/TE
12 000/95.5ms, voxel 0.94� 0.94� 2.5 mm3, 32 equally spaced diffu-
sion-sensitizing directions, 5 B0 volumes) and 3D-FLAIR volume for
WM lesion segmentation (TR/TE/TI 7000/145/1919ms, echo train
length 170, 212 sagittal partitions, voxel size 0.52� 0.52� 0.80 mm3).
Preprocessing of the diffusion MRI data were conducted using the soft-
ware modules provided in the FMRIB software library (FSL; http://fsl.
fmrib.ox.ac.uk/fsl). All diffusion MRI datasets were corrected for head
movements and eddy current distortions using the “eddy_correct” rou-
tine (Smith et al., 2004), rotating diffusion sensitizing gradient directions
accordingly (Leemans and Jones, 2009), and a brain mask was obtained
from the B0 images using the Brain Extraction Tool routine (Smith,
2002). A diffusion-tensor model was fitted at each voxel, and fiber tracts
were generated over the whole brain by deterministic tractography using
the Fiber Assignment by Continuous Tracking (FACT) algorithm imple-
mented in Diffusion Toolkit (angle threshold 45°, spline-filtered, mask-
ing by the FA maps thresholded at 0.2). Two cortical study-specific ROI
datasets were obtained by masking the ROIs available in the AAL atlas
(Tzourio-Mazoyer et al., 2002) and in an MNI space-defined volumetric
version of the Desikan–Killiany–Tourville (DKT) region of interest
(ROI) atlas (Klein and Tourville, 2012) using the gray matter (GM)
probability map available in the Statistical Parametric Mapping software
package (SPM), thresholded at 0.2. This was done to limit the endpoints
of the fibers to cortical and adjacent juxtacortical white matter voxels in
the subsequent ROI-based analysis of the tractography data. The analysis
was replicated twice to ascertain how robust the method was when used
with specific brain parcellations. To obtain the corresponding patient-
specific ROI sets, each participant’s FA volume was spatially normalized
(Friston et al., 1995) to the FA template provided by FSL using SPM12,
and the resulting normalization matrices were inverted and applied to the
two ROI sets. Additionally, for each subject, the MS lesion map was
obtained by segmenting the 3D-FLAIR volume using the lesion prediction
algorithm (Schmidt et al., 2012) implemented in the Lesion Segmentation
Tool (LST toolbox version 3.0.0; www.statistical-modeling.de/lst.html) for
SPM. The 3D-FLAIR volume was then co-registered to the EPI of the
patient (Ashburner and Friston, 1997), and the coregistration matrix was
applied to the correspondingWM lesion volume, which was resampled by
nearest-neighbor interpolation, thus obtaining the patients’ lesion masks,
which would be coregistered with the DTI volume. Finally, for each
patient the average length of the fibers connecting each pair of ROIs and
whether the voxels crossed by those fibers had MS lesions were calculated
separately for the AAL and DKT ROI sets, using an in-house routine writ-
ten in Interactive Data Language (IDL, Harris Geospatial Solutions). To
this end, each tract length was computed, for each subject, as the mean of

Table 1. Features of the multiple sclerosis cohort

Controls MS p-value

Age (years) 45.8 (611) 44.9 (69.9) 0.8
Education (years) 13.6 (63.8) 13.8 (65) 0.9
Gender (m/f) 6/14 6/12 0.3
Disease duration (months) – 187.7 (6131.8) –
EDSS – 4.5 (61.9) –
SDMT – 40.3 (613) –
FSS – 36.1 (614) –
BDI – 12.8 (61.3) –
LL – 12,959 (612,253) mm3 –

EDSS, Expanded Disability Status Scale; SDMT, Symbol Digit Modalities; FSS, Fatigue Severity Scale; BDI, Beck
Depression Inventory; LL, lesion load.
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the physical distances covered by the fibers composing the tract. These in
turns were calculated as the sum of the Euclidean distances between the
fiber subsequent turning points, including the two extremities, which are
the output of the FACT algorithm.

MEG preprocessing
MEG preprocessing and source reconstruction were performed as previ-
ously described (Sorrentino et al., 2018). Preprocessing and source
reconstruction operations were carried using the Fieldtrip Toolbox
(Oostenveld et al., 2011). Each participant underwent a MEG recording,
composed of both eyes-closed resting-state segments of 3’30’’ each. Four
anatomic coils were applied on the head of each participant and their
position was recorded along with the position of four head anatomic
points, to identify the position of the head during the recording. Eye
blinking (if present) and heart activity were recorded through electro-
oculogram (EOG) and electrocardiogram (ECG), to identify physiolog-
ical artifacts (Gross et al., 2013). An expert rater checked for noisy sig-
nals and removed them. An anti-alias filter was applied to the MEG
signals, acquired at 1024Hz, before being filtered with a fourth order
Butterworth IIR bandpass filter (0.5–48Hz). We used principal compo-
nent analysis (Sadasivan and Narayana Dutt, 1996; de Cheveigné and
Simon, 2008) and supervised independent component analysis (Barbati
et al., 2004) to remove the environmental noise and the physiological
artifacts (recorded with EOG and ECG), respectively.

Source reconstruction
Signal time series were reconstructed using both the AAL and DKT
atlases (Tzourio-Mazoyer et al., 2002; Gong et al., 2009), which consist
of 116 and 84 ROIs, respectively. The reconstruction took place using
the volume conduction model proposed by Nolte (Nolte, 2003). Based
on the native MRIs of each subject, the linearly constrained minimum
variance (LCMN; Hillebrand et al., 2016) beamformer was applied to
reconstruct the signal sources based on the centroids of each ROI

(Hillebrand et al., 2016). ROIs belonging to the cerebel-
lum were excluded because of the low reliability of their
source reconstruction (Lardone et al., 2018), for a total
of 90 ROIs in the AAL atlas and 84 ROIs in the DKT
atlas.

Neuronal avalanches and branching parameter
To study the dynamics of brain activity, we based our
analysis on “neuronal avalanches.” First, the time series
for each ROI was downsampled to 512Hz and discre-
tized by calculating the z score; then the positive and
negative excursions beyond a threshold were identified
(Fig. 1). The main results reported here refer to a thresh-
old equal to three standard deviations (|z| = 3), but
thresholds of 2.5 and 3.5 were also tested. A neuronal
avalanche began when at least one ROI went above the
threshold (|z| .3) and ended when all the ROIs were
below the threshold (Beggs and Plenz, 2003; Shriki et al.,
2013). Before proceeding with the analyses, we binned
the data, to ensure that we captured any critical dynam-
ics, if present. To estimate the suitable time bin length,
for each subject, for each neuronal avalanche, and for
each time bin duration, the branching parameter s was
estimated (Harris, 1964; Haldeman and Beggs, 2005). In
fact, systems operating at criticality typically display a
branching ratio of ;1 (Chialvo, 2010). The branching
ratio was calculated as the geometrically averaged (over
all the time bins) ratio of the number of events (activa-
tions) between the subsequent time bin (descendants)
and that in the current time bin (ancestors) and then
averaging the avalanche-specific branching ratio over all
the avalanches (Bak et al., 1987). More specifically:

s i ¼
YNbin�1

j¼1

nevents j1 1ð Þ
nevents jð Þ

� � 1
Nbin�1

(1)

s ¼
YNaval

i¼1
s ið Þ

1
Naval ; (2)

where s i is the branching parameter of the ith avalanche in the data-
set, Nbin is the total number of bins in the ith avalanche, neventsðjÞ is the
total number of events active in the jth bin, and Naval is the total number
of avalanches in the dataset. We tested bins from 1 to 5 and picked three
for further analysis.

Estimation of delay matrices and velocity matrices
The delays were estimated for each avalanche. The procedure is schema-
tized in Figure 1. In an avalanche, from the moment region i activated,
we recorded how long it took region j to activate. These are what we con-
sidered to be delays. Hence, for each avalanche we obtained a matrix, in
which the rows and columns represented brain regions and the entries
contained the delays. We then averaged across all the avalanches belong-
ing to one subject, obtaining an average ijth delay. The average was per-
formed disregarding zero entries, since each avalanche-specific matrix is
very sparse. With this procedure, a subject-specific delay matrix was
built. Averaging across subjects (again discarding zero entries) yielded
a group-specific matrix. Note that it can happen that no delay estima-
tion is available for a specific edge in a specific subject, since the esti-
mation depends on the fact that an avalanche propagated across the
edge. Finally, we obtained a velocity matrix, dividing the tract lengths,
obtained from MRI, by the corresponding delays. Velocities were only
obtained for the edges where a direct structural connection was present.

Experimental design and statistical analyses
To build null models to test the functional delays estimates, we random-
ized the temporal order of the avalanches without changing the spatial
structure. To this end we built a surrogate dataset where the avalanche
time points were randomly shuffled, but the regions recruited at any

Figure 1. Top left, The structural connectome. From the tractography, we obtained an estimate of each tract length.
Averaging across subjects provided a group-level estimate. Top right, Source-reconstructed MEG time-series. The time
points that are below a threshold are represented in blue, while the timepoints above the threshold are in red (the red
dots have been magnified). In the example, after region i rose above the threshold (and, hence, the neuronal avalanche
had started), it took region j three timesteps to be recruited and five timesteps for region z. The entries of the matrix
are expressed in samples. Delays in the manuscript are expressed in seconds. Bottom, Each subject-specific length matrix
was divided element-wise by the corresponding estimated delay to obtain a subject-specific velocity matrix.

Sorrentino et al. · The Topochronic Map of the Human Brain J. Neurosci., November 23, 2022 • 42(47):8807–8816 • 8809



given time point were fixed. By doing this, the time-structure of the
recruitment of regions was disrupted, but the purely spatial component
was retained. After the permutations, the average delays were again com-
puted for each edge. The procedure was repeated 1000 times, yielding a
hundred surrogate delays for each edge. We then used the delays esti-
mated from the random surrogates to compute functional velocities
(dividing the length of the structural edges by the surrogate delay).
Finally, we computed the growth of the velocities as a function of the
length of the structural tracks and compared this with the observed dis-
tribution. To test differences between the distribution of the delays in
the healthy subjects and patients, we used the Kolmogorov–Smirnov
(KS) test. To perform the edge-wise comparison of the delays in the
healthy versus lesioned edges in MS patients, we used permutation test-
ing (Nichols and Holmes, 2002). In short, we tested the null- hypothesis
that lesions in the edges would not have an impact on the delays. First,
we calculated the average edge-wise difference between the delays in
each patient and the average delay in the corresponding edge in the con-
trols. Then, we randomly selected a subset of the differences in the delays
with the same size as the number of lesioned edges and computed its av-
erage. We repeated this procedure 1000 times, building a distribution of
the differences in the delays that are to be expected by randomly drawing
a subsample of the edges. Finally, we compared this distribution to the
observed difference in the lesioned edges to obtain the probability of
observing the data under the hypothesis that the edge-specific lesions
would not slow down the functional transmission.

Data and materials availability
Code is available on GitHub. The MEG data and the reconstructed ava-
lanches are available upon request to the corresponding author, conditional

on appropriate ethics approval at the local site. The availability of the
data was not previously included in the ethical approval, and therefore
data cannot be shared directly. In case data are requested, the corre-
sponding author will request an amendment to the local ethical commit-
tee. Conditional to approval, the data will be made available.

Results
Delay estimation
In this study, we noninvasively estimated the functional delays
in transmission across the network of white matter bundles in
vivo. To this end, we combined source-reconstructed magneto-
encephalography and tractography. An overview of the pipeline
is shown in Figure 1. The upper row of Figure 2 shows the aver-
age structural matrix for the controls (i.e., the tract lengths)
with the corresponding distributions of the tract lengths on the
right. The middle and bottom rows of Figure 2, respectively,
show the matrices and distributions of the delays and the veloc-
ities. Importantly, the structure of the delay matrix is related to
the length of the structural tracts. However, the width of the
distribution of the delays is much narrower than what would be
expected given constant propagation velocities (see below).
When estimating the velocities, we found that a consistent, fat-
tailed distribution emerged. As expected, because of the hetero-
geneity of the tracts, the velocities appeared to be far from
homogeneous, ranging from;2 to;60 m/s. This range appears
to be in accordance with known velocities of major myelin tracts

Figure 2. A, Top, Tract lengths. Rows and columns represent brain regions, and the color code conveys the corresponding length of the tract linking any two regions. Middle, Group average
of the delays. Rows and columns represent brain regions, while the color code represents the average time it took region j to become active provided region i had been active earlier. Values
are in seconds and reported on a log-scale to highlight the texture of the delay matrix, which appears to be strongly correlated to the length matrix. Bottom, As before, brain regions are repre-
sented as rows and columns, while the matrix entries represent the velocities, expressed in meters/s. B, Top, middle, and bottom, Histograms corresponding to the matrices for the lengths,
delays, and velocities, respectively. C, The glass-brain provides an overview on the topography of the functional edges with fast functional velocities. In particular, the blue dots represent brain
regions, and the edges signify the velocities. Only structural connections with transmission speed higher than 15 m/s are shown. The width of the edge is proportional to its velocity.
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(Waxman and Bennett, 1972; Waxman, 1980; Purves et al.,
2001). When plotting the distribution of the fastest edges (see
glass brains in Fig. 2), it appears that these were not evenly dis-
tributed across the brain and that the cross-hemispheric edges
were preferentially selected as the fastest ones, a finding which
agrees with the literature (Shen et al., 2015). We found that the
delays grew as a function of the length of the tracts, as shown by
the Spearman correlation between edge length and delays
(r=0.35, p , 00001; Fig. 3A). The results held using Pearson’s
correlation (r=0.31, p, 0.0001). This relationship held at the
individual level (Fig. 3B). However, while the delays were
related to the tract lengths, they were not only determined by
the lengths. In fact, the tract lengths ranged across an order of
magnitude, whereas the corresponding increase in the delays
was only moderate. For comparison, in Figure 3C, we show the
expected delays given constant velocities and reveal that the
observed delays were remarkably steady despite the difference
in the lengths of the structural tracts.

Statistical validation
First, we compared the delays retrieved from the random times-
eries to the tract lengths, obtaining 100 Spearman’s rs, to which
we compared the observed correlation, p, 0.001. We then used
the random surrogates to compute random velocities, i.e., divid-
ing each edge length by the corresponding delay derived from
the random surrogates and, using the same validation scheme,
we showed that the random velocities appeared to be more

strongly related to the tract lengths than the observed velocities
(p, 0.001). In other words, when we divided the lengths by the
randomized delays, the resulting velocities became a function of
the tract length alone. On the other hand, when we divided the
tract lengths by the observed delays, the longer tracts appeared to
be faster than if the delays were only a function of distance. The
mean (red line) and upper and lower bounds (shaded area) of
the surrogate velocities derived from surrogate delays (grouped
by the percentile of the corresponding tract length) are shown in
Figure 3D. The delays derived from the surrogate data led to a
higher estimate of the velocities compared with the observed
ones. Finally, as shown in Figure 3E, we confirmed, using real
data, that the transmission velocities grew as a function of the
length of the tracts, such that the longer tracts were also the faster
ones. All in all, this part of the analysis showed a finely regulated
relationship between the delays and the lengths of the structural
tracts, which implies nonhomogeneous functional velocities.

Delay estimation in multiple sclerosis patients
Next, we sought to test our framework in patients affected by
multiple sclerosis, which is a prototypical disease in which mye-
lin in the CNS is selectively attacked by the immune system
(Thompson et al., 2018b). We excluded patients with severe
functional impairment (Expanded Disability Status Scale,,7) so
that we could obtain a picture that is likely to be influenced more
by demyelination than by degenerative phenomena (Frischer et
al., 2009). We expected to observe greater delays (and lower

Figure 3. A, Group-level relationship between tract lengths and functional delays. Blue dots represent iso-hemispheric edges, while red dots represent cross-hemispheric edges. B, For each
of the 20 healthy controls, the red dot represents the intensity of the relationship between the tract lengths and delays, calculated using Spearman’s correlation coefficient. For each subject,
the avalanches were randomized by shuffling the time sequence while preserving the spatial pattern of the active regions within each timestep. Based on these newly randomized avalanches,
the edgewise average delay was calculated and then related to the tract lengths. The procedure was repeated 1000 times per subject. The resulting Spearman’s correlations are represented as
blue dots. C, For each subject, the delays were averaged according to the percentile of the corresponding length. Hence, each blue dot represents the average delay across all edges whose
length belonged to the (patient-specific) nth percentile. The colored lines show the delays that would be expected if the velocities were homogeneous across all edges. In this case, the growth
of the delays followed the growth of the tract lengths. D, The red dots represent the observed velocities (averaged according to the percentile of the tract length. The red line represents the av-
erage velocity estimated based on the delays derived from the randomly shuffled avalanches. E, Group-level relationship between the velocities. Blue dots represent iso-hemispheric edges,
while red dots represent cross-hemispheric edges.
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velocities) in the patient population compared with the controls.
As shown in Figure 4A, the average delay per percentile was con-
sistently higher in the multiple sclerosis patients compared with
the controls. The empirical cumulative distribution function
confirmed the difference in the delays in patients compared with
the controls (KS test, p, 0.001; Fig. 4B). Note that, in this analy-
sis, similar to what we did before, we grouped the delays accord-
ing to percentile across the whole group. Hence, the average
value refers to the average delay of all the edges that fall within a
given length percentile, with the percentile defined for each
subject. We then moved on to an edge-wise comparison. To
this end, for each patient, the average delay of each edge was
compared with the average delay of each corresponding edge
in the controls. Hence, we obtained the difference between the
edge-specific delay and the corresponding average delay in the
controls for each patient. To base our findings on a more sta-
ble estimate, we considered only edges for which a delay esti-
mate was available for each of the 20 controls (i.e., a total of
1202 edges). Figure 4C shows the distribution of the differen-
ces between the delays (patients minus controls). The distribu-
tion is not centered around zero, as would be expected if the
patients did not have longer delays. Instead, it is evident at the
visual inspection that the distribution is heavily skewed to-
ward positive values, implying longer delays in the patients
compared with controls. Finally, we investigated edge-specific
lesions. In fact, while it is reasonable to expect globally greater
delays in the patients compared with the controls, the delays cor-
responding to edges that were lesioned might be more length-
ened compared with the delays corresponding to healthy edges.
For each patient, we classified edges as healthy or lesioned, based
on the presence or absence of structural damage (i.e., the tracts
were considered as lesioned if any of the corresponding voxels
was lesioned). Under the null hypothesis that the delays corre-
sponding to structurally lesioned edges do not differ from the
delays corresponding to nonlesioned edges, we calculated the av-
erage delay difference in random samples of nonlesioned edges
(in patients), with the size of the sample equal to the number of
lesioned edges. We repeated this procedure 1000 times and com-
pared the obtained distribution to the observed difference in the
lesioned edges. The results are shown in Figure 4D. The delays in
the lesioned edges slowed more (with respect to the correspond-
ing delays in the healthy population) than the healthy edges.

Hence, selecting a subset of edges based on the structural infor-
mation, we retrieved a difference in the temporal structure of
the functional dynamic. This difference would not be expected
if the structural damage was unrelated to the delays, as shown
by the permutation analysis (p, 0.001).

Replication in independent datasets
The results of the delay estimation were tested using an inde-
pendent dataset based on co-registered MRI and EEG, and all
the main findings were confirmed (Fig. 5). Note that the cleaning
and source-reconstruction algorithms were different in this data-
set as compared with ours, showing robustness to both the tech-
nique used and data processing. Furthermore, we replicated the
main results using different parcellations (AAL and DKT), vary-
ing the z score threshold (2.5 and 3.5 in addition to the 3.0
reported here), varying the binning (see Materials and Methods),
and using yet another source-reconstruction algorithm (i.e., the
“residual variance”method). The residual variance is a particular
dipole-fit approach that involves the minimization of the signal
that remains unexplained by a current source model in which
dipoles are assumed to have fixed position and fixed or varying
orientation. Conversely to LCMV, there is no linear constrain
involved in the minimization process (Grech et al., 2008).
Furthermore, a larger MEG/tractography dataset, involving 47
young healthy subjects, was also used to further explore the
robustness of our findings. These results were replicated using
the AAL atlas. Finally, we varied the minimum size of the ava-
lanches used to compute the delays, from taking all avalanches
into account, up to selecting only those longer than 10/15 sam-
ples (analyses shown in Fig. 5). Finally, we confirmed that the
delay matrices showed convergence as the sample size increased,
as a further check on the validity of our results (Fig. 5).

Discussion
The topochronic map
In this study, we developed a novel method to quickly and non-
invasively obtain an estimate of the time delays that occur when
locally generated perturbations spread to other brain regions.
Our methodology was able to capture the presence of homogene-
ous delays across brain regions, although the length of the struc-
tural tracts grew according to a fat-tail distribution (Sporns and

Figure 4. A, Each dot represents the average delay for each percentile of tract length. Blue dots represent controls, while red dots represent patients. B, Empirical cumulative distributions of
the delays. The blue line corresponds to the average delays of the controls, while the red lines correspond to the average delays of the MS population. C, The violin plot shows the edgewise dif-
ferences between delays in each patient and the average delay across all the controls for the corresponding edge. D, The vertical red line marks the observed average edgewise difference in
the delays calculated only for delays that were lesioned. The distribution to the left shows the average delay difference observed after selecting a random sample based on a thousand random-
izations of edgewise delay differences (i.e., ignoring the information about the structural integrity), with the size of each random sample equal to the number of lesioned edges. The results
enabled us to reject the null hypothesis that edge-specific lesions would not affect the delays.
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Zwi, 2004; Sporns et al., 2005). If the delays were only dependent
on the tract lengths, they should be longer for longer tracts (i.e., it
should take longer to cover a greater distance). This effect should
be major, given that longer white-matter tracts are roughly one
order of magnitude longer than shorter ones (Bullmore and
Sporns, 2009). The fact that the delays do not scale with increased
tract lengths implies one or more compensatory mechanisms.
Such mechanisms might involve varying axonal diameters, myeli-
nation, and network effects. In particular, myelination greatly
affects the velocity of propagation (Waxman and Bennett, 1972;
Waxman, 1980; Horowitz et al., 2015). In fact, given our esti-
mated delays, we found that, in the healthy subjects, the velocities
ranged from;3 to;60 m/s. This observation is in sharp contrast
with the typical simplifying assumptions, made in modeling stud-
ies, that velocities are constant, which would be expected to lead
to a broad range of delays across the network. The fact that the
transmission between the regions connected by the longest edges
is faster than those with shorter edges is likely important in terms
of the unfolding of the dynamics and should not be surprising
considering the experimental results on stimulation, although
until this current study solid measurements of personalized links
on the whole-brain level had been missing. Hence, noninvasive
estimates of the temporal constraints in vivo are highly relevant
for modeling individual dynamics. Furthermore, many of the fast
edges connect regions that are highly central to the brain network,
thus, likely causing reverberations that greatly and nonlinearly
impact the average transit time (He et al., 2007). Although we can
only speculate, we think that it is possible that homogeneous
delays, that is, having perturbations reach wide-spread brain
regions or arrive at a focal point from wide-spread regions simul-
taneously, would be favorable for allowing the brain to have si-
multaneous access to information from multiple locations across
the brain, a concept which fits well into the framework of global
workspace theory (Dehaene et al., 1998). This supposition finds
support in that white matter damage impairs conscious access in
multiple sclerosis patients (Reuter et al., 2009; Rosanova et al.,

2012). A reduction in the complexity of the spatiotemporal
spreading of such perturbations (referred to as “neuronal ava-
lanches” within the framework of critical dynamics) has been
shown to be related to states of reduced consciousness (Tononi
and Sporns, 2003) as well as to neurodegeneration (Rucco et al.,
2020; Sorrentino et al., 2021a). Importantly, our analyses focused
on rare, intermittent, large-scale bursts of activations, which have
been consistently observed in human brains (Shriki et al., 2013).
The importance of such rapid transients to large-scale brain dy-
namics is confirmed by recent findings showing that the patterns
of functional connectivity are shaped by specific, short moments
in time (Zamani Esfahlani et al., 2020). Furthermore, the fact that
avalanches preferentially spread along structural tracts indicates
that functional delays might be used as a proxy to estimate the
velocities across individual tracts (Sorrentino et al., 2021b). As we
investigated the topographic distribution of the fast edges, we
found that they were spatially distributed nonhomogeneously.
Importantly, fast connections seem to be preferentially cross-
hemispheric, a finding that is not surprising from a neuroa-
natomical standpoint, provided that these connections are
mediated, for example, via the corpus callosum (Caminiti et
al., 2013). While our data were based on broad-band data,
the patterns that emerged were not dominated by the occipi-
tal a frequency, as it is often the case with M/EEG data. However,
we wish to stress that such results might have been biased by the
tractography, which may have preferentially estimated tracts in
specific anatomic regions (Shen et al., 2015). Hence, further vali-
dation is needed to confirm this finding, which should be consid-
ered explorative. The replication of our results in an independent
MEG dataset as well as in a publicly available multimodal EEG-MRI
dataset (Schirner et al., 2018) indicates the reliability of our findings
by increasing the probability that they are not modality specific.

Implications in neurologic diseases and multiple sclerosis
As explained, myelination is believed to greatly influence con-
duction velocity and, hence, to modulate delays. To test this, we

Figure 5. Left, Distribution of delays (log-scale). A, Delays estimation with binning = 2. B, Delays estimation with binning = 4. C, Delays estimation using avalanches with size .10. D,
Delays estimation using avalanches with size.15 bins. E, Delays estimation using all available avalanches. F, Replication of the delays estimation based on an independent cohort, based on
source-reconstructed EEG and tractography. G, Delays estimation with a z score.6|2.5|. H, Replication of the delays estimation with a z score.6|3.5|. I, Delays estimation using the “resid-
ual variance” as a source-reconstruction algorithm. J, Delays estimation based on an independent cohort of 47 young healthy subjects, based on source-reconstructed MEG and tractography
(parcellation according to the AAL atlas is shown). Right, Analysis of convergence. On the x-axis, the image shows the number of patients over which the delays have been averaged. The y-
axis shows the mean difference between the average delays (i.e., across all edges) estimated in x subjects and the average delays estimated in x–1 subjects. The differences converge around
zero as the delays were averaged across a growing number of participants.
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measured the delays in multiple sclerosis patients. As expected,
the delays were greater in multiple sclerosis patients than in
matched healthy controls. Selecting MS patients at a fairly early
stage should make the role of demyelinating lesions more promi-
nent than the role of degeneration (Stadelmann et al., 2011).
However, this was not quantified and remains a potential source
of confounds that needs further investigation. To provide edge-
specific information about the time delays, we used subject-spe-
cific lesion masks to separate lesioned edges from nonlesioned
ones in the patients. We focused the analysis on the delays to
avoid potential biases induced by unreliable length estimates
because of the demyelinating lesions (Delettre et al., 2019).
We observed, for both the lesioned and nonlesioned edges, that
functional delays increased in the multiple sclerosis patients,
in accordance with the hypothesis that damage to the myelin
would provoke longer delays. This also provides support for the
claim that our measurements are related to temporal patterns of
delays that are imposed on the overall structural connectome.
The fact that avalanches propagate more slowly along lesioned
edges shows the relevance of the direct pathways in determining
the edge-specific delays given the expected relationship between
the structural integrity of the tract and the velocity of propaga-
tion along it. However, it is important to stress that the role of
network effects cannot be easily disentangled (Bullmore and
Sporns, 2009). In fact, the transmission in patients was slower
even across unaffected tracts. This might be interpreted as an
expression of the fact that the delays likely depend from a combi-
nation of both direct and indirect paths through which a pertur-
bation can potentially travel between two regions. In this sense,
one does not expect two regions that are linked by a healthy edge
that is embedded in a diseased network to communicate as
quickly as two regions that are also linked by a healthy edge as
well as embedded in a healthy network. Other contributing fac-
tors may include the erroneous classification of damaged but
subthreshold edges as healthy.

Cross-dataset validation and limitations
The strength of this study is that the tract lengths and the delays
were estimated using two different techniques, making it unlikely
that the relationship is spurious or tautological. We tested our
results by changing both the binning parameter (see Materials
and Methods) and the z score threshold to define the spreading
of the perturbations and the brain parcellation, again showing
the robustness of our findings. Similar results were obtained
using EEG, using a different preprocessing pipeline, applying
a different algorithm to source-reconstruct, and performing a
further parcellation (see Fig. 5). The fact that the relationship
between length and velocity was maintained at the subject
level is remarkable. One limitation that should be considered,
however, is the fact that we used the DKT and the AAL atlases,
both of which are coarse grained. However, finer grained
parcellations, while optimal for structural MRI, would have
been below the resolution for MEG and, hence, might have
created spurious results. We propose that, beyond the topology
of functional connections imposed by the spatial scaffolding
(Sorrentino et al., 2021b), the conjugate property of connectivity
is temporal in nature and complementary to the structural topol-
ogy (Petkoski and Jirsa, 2020). Together, spatial and temporal
constraints reveal the topochronic framework from which oscil-
latory brain activity emerges. Applying tools from statistical
mechanics and dynamical system theory to “reverse engineer”
the pattern of delays that occur in the living brain, we noninva-
sively measured the large-scale pattern of functional delays that

occurs in the human brain at rest. The pattern of delays is basi-
cally similar across individuals. Hence, the time it takes an (inter-
nally generated) local impulse to affect other regions is not only a
function of the tract length but is also heavily modulated by the
properties of the tract itself and, globally, by the large-scale struc-
ture of the network. Including subject-specific delays provides
the potential to improve virtual, personalized in-silico brain
models (Hashemi et al., 2020). Importantly, the fact that delay
estimation can be obtained from EEG, a widely available tech-
nique, allows nearly every facility to include subject-specific
delays into personalized brain models. Furthermore, large
cohorts will be needed to get normative data from large, strati-
fied cohorts, to create priors to be included in personalized
models, in case subject-specific estimations are not available. In
conclusion, we proposed a simple method for combining multi-
modal imaging within the framework of statistical mechanics,
to derive subject-specific topochronic maps of large-scale brain
dynamics in both healthy and diseased populations.
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