

Multiples inputs neural nets for Medicare fraud detection

Mansour Zoubeirou a Mayaki, Michel Riveill

▶ To cite this version:

Mansour Zoubeirou a Mayaki, Michel Riveill. Multiples inputs neural nets for Medicare fraud detection. SOPHI.A SUMMIT 2021, Nov 2021, Sophia Antipolis, France. hal-03851634

HAL Id: hal-03851634 https://hal.science/hal-03851634

Submitted on 14 Nov 2022

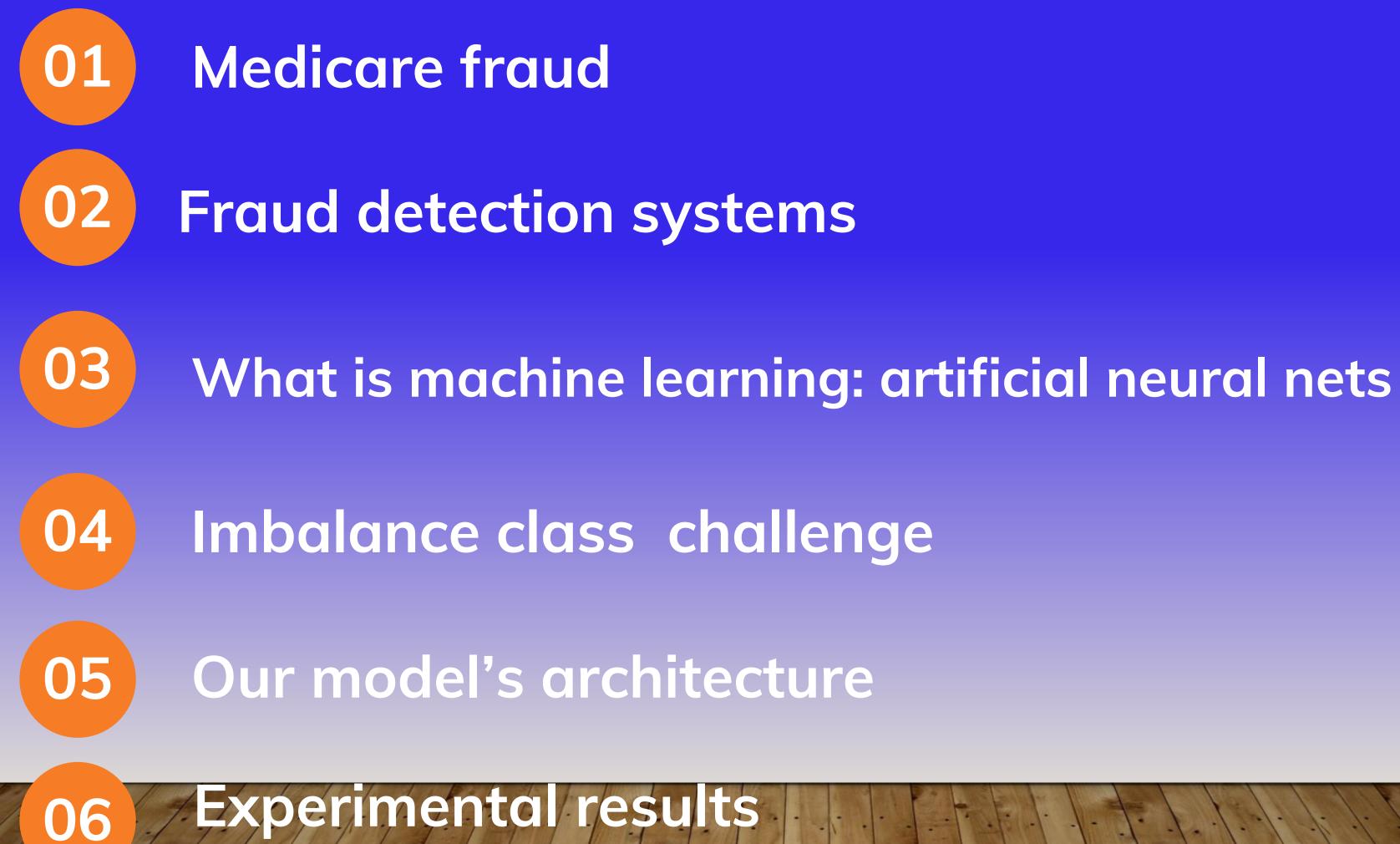
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Sofia Summit 2021 conference

17-19 November 2021 Sophia Antipolis, France

Multiples inputs neural nets for Medicare fraud detection

Mansour ZOUBEIROU A MAYAKI and Michel RIVEILL Phd student, Université Côte d'Azur, CNRS, Inria, I3S, France



What is Medicare fraud:

- billing for appointments that the patient did not keep,
- billing for services more complex than those performed
- billing for services not provided
- billing for unnecessary medical services etc...

In Europe: 13 billion euros per year to European citizens

In France : over 200 billions € public spends per year

- 2018 => 261,2 millions €
- 2019 => 287 millions €
- At least 2.4 billions since 2005

Consequences:

- increase in public funds/Mutual
- Causes an imbalance between contributions and benefits.
- increase in contributions
- interferes with the efficiency of the care of customers who really need it

FRAUD DETECTION SYSTEMS

01

Manual reviews

- slow
- time-consuming
- often unnecessary.

Rules based

02

- uses correlation and logical comparison of data to identify potential fraud based on insights gained from previous (known) fraud incidents. traditional
- They generally use methods of data analysis
- require complex and time-consuming investigations that deal with different domains of knowledge like financial, economics, business practices and behavior.
- Difficult to update: new fraud pattern, new laws etc.

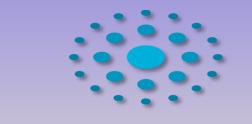
Machine Learning based

 identifies suspicious patterns and behaviors

03

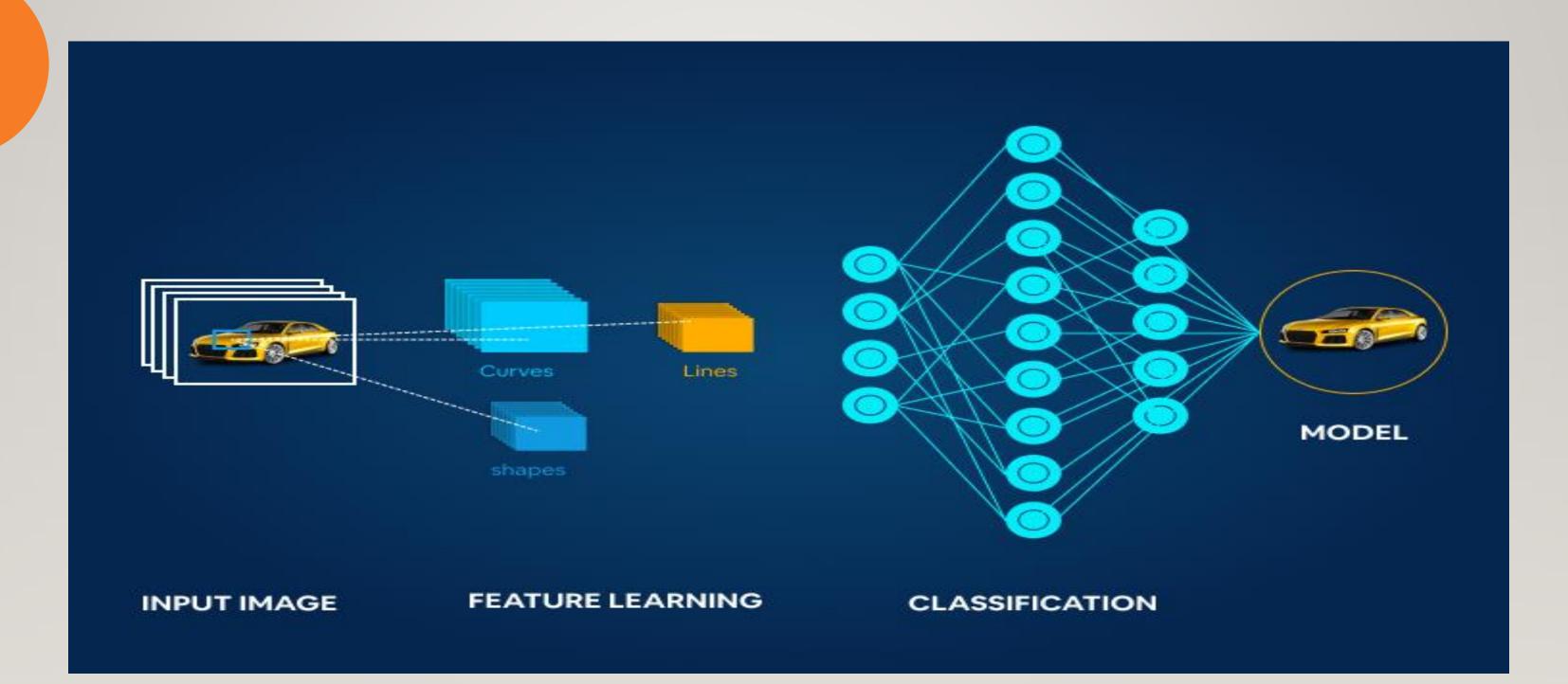
- analyze clients current patterns and transaction methods.
- It can analyze these behaviors faster and more efficient than any human analysis and as a result, it can quickly identify if there is a deviation from normal behavior.
- The final decision is made by human expertise

Machine Learning

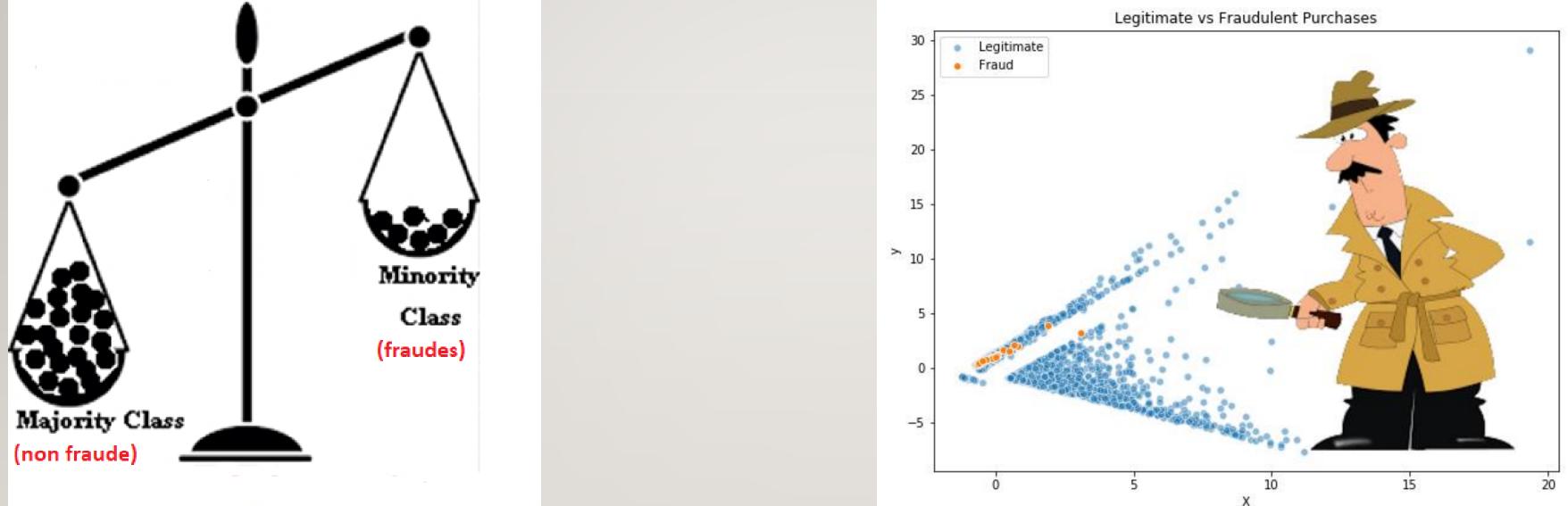


UNIVERSITÉ Côte d'Azur

ARTIFICIAL NEURAL NETS FOR FRAUD DETECTION



IMBALANCE DATA CHALLENGE



Data level methods: random oversampling (ROS), random undersampling (RUS)

Algorithm level methods: Weighted loss, Focal loss, Etc.

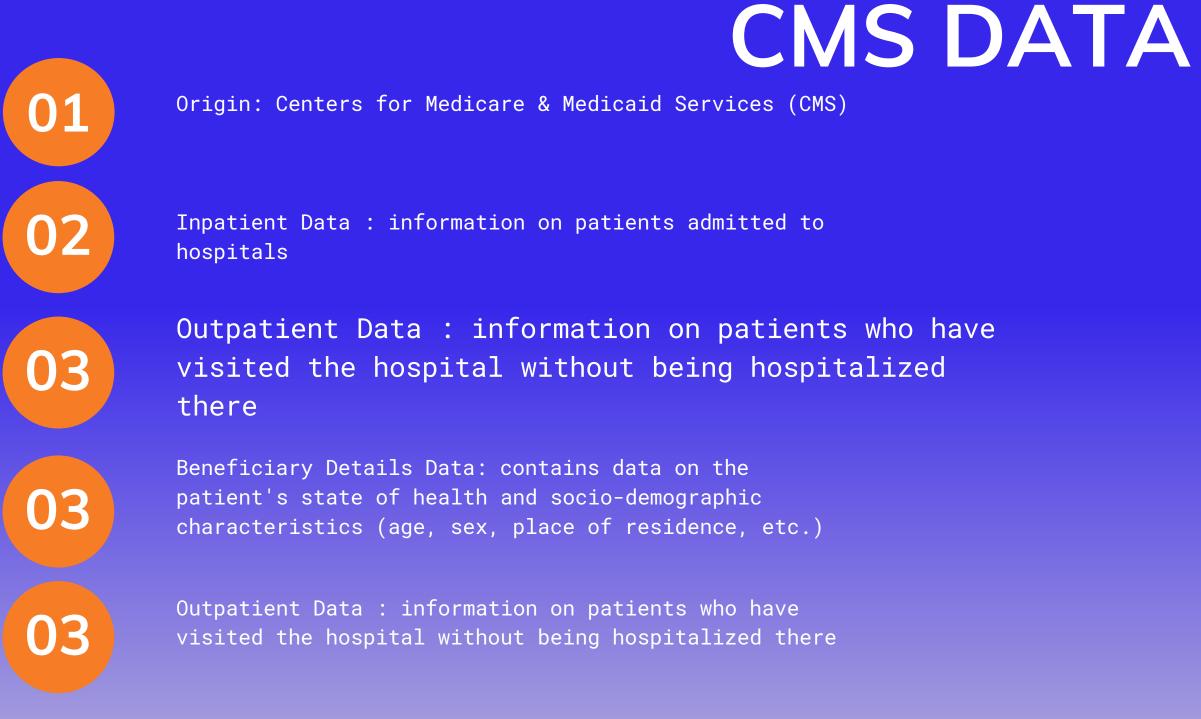
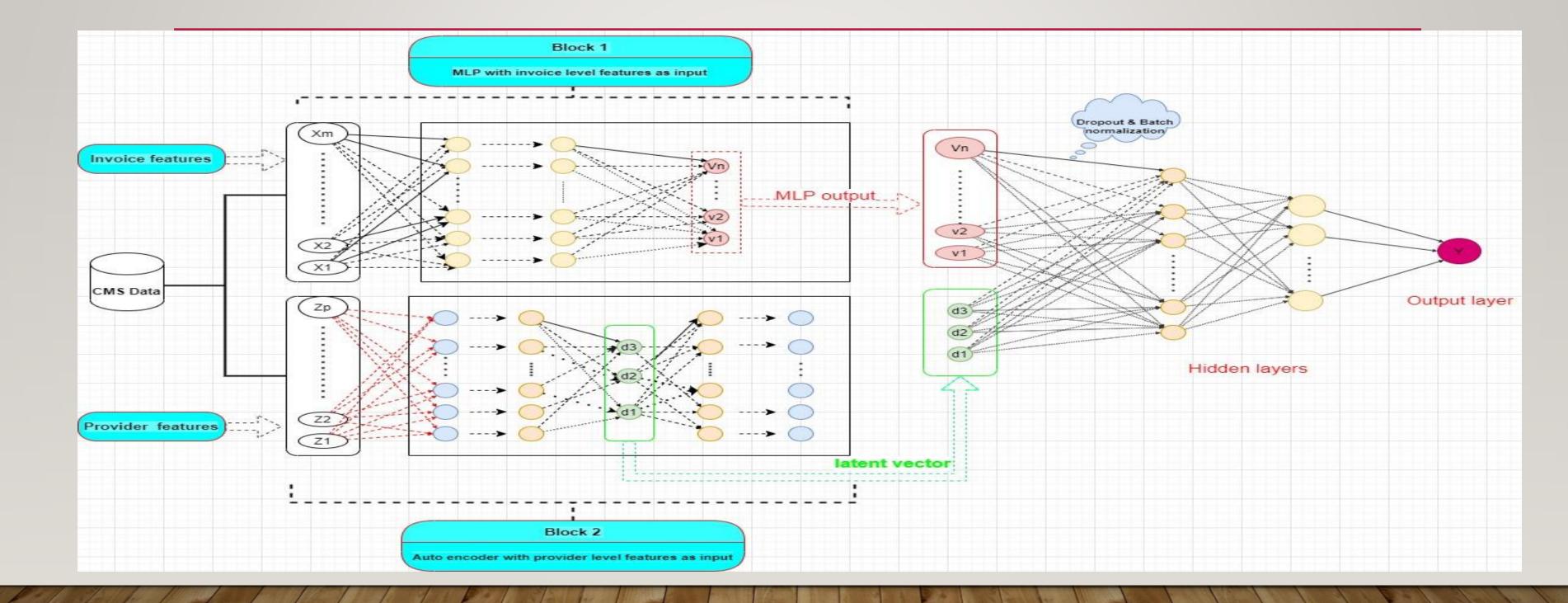


Table 3: Data agregated provider level

Provider	BeneID_count	$DeductibleAmtPaid_mean$	$InscClaimAmtReimbursed_sum$	BeneID_count_trim1	PotentialFraud
PRV51001	24	213.60	104640	8.0	No
PRV51003	117	502.16	605670	39.0	Yes
PRV51004	138	2.08	52170	48.0	No
PRV51007	58	45.33	33710	20.0	No
PRV51008	36	53.86	35630	11.0	No

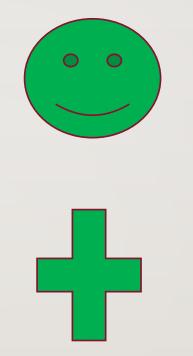
Our model's architecture



EXPERIMENTAL RESULTS

 Table 5: Experimental Results

Models	TPR (Recall)	ROC AUC	Gmeans-score	TN rate score
LR	0.829	0.849	0.849	0.870
RF	0.568	0.769	0.742	0.971
GB	0.401	0.692	0.628	0.984
MLP [9]	0.783	0.821	0.818	0.859
MLP weighted [9]	0.823	0.836	0.833	0.850
MLP focal [11]	0.845	0.815	0.810	0.785
MLP mfe [18]	0.847	0.859	0.857	0.870
ROS [10]	0.726	0.806	0.801	0.886
MINN AE	0.863	0.876	0.876	0.890



Our model outperform the other classifiers:

- Best AUC
- Best recall •
- Best G-means •

Highlights:

- Takes into account the provider level features • Separate sources of information
- Robust to data imbalance:
 - The latent features have strong clustering power that makes it easier to classify fraudulent invoices

We need enough historical data to model the provider behavior: can be difficult for a new provider

Thank you for your attention

