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Abstract

As waves of Coronavirus disease (Covid-19) keep spreading around the world, increasing the throughput of
testing facilities stays a matter of concerns, propelling the interest in group testing. However the matter of finding
optimal group testing designs is difficult; we use in silico experiment to determine efficient designs for two-rounds
group testing, under the practical constraints presented in the literature for single reverse transcriptase-polymerase
chain reaction testing of severe acute respiratory syndrome coronavirus 2. The designs we found out to be most
effective improve throughout the spectrum of positivity rate 𝑝 on all designs we could find in the literature for
this task, and our results can be used to fine-tune the pooling strategy with the positivity rate. We propose a
new family of designs, duals of complete graphs, which performs very well at both medium-high (7%–13%) and low
(≤ .4%) positivity rate, obtaining a twenty-fold reduction in the needed number of tests at 𝑝 < .1%. We also give
a mathematical argument indicating that at small positivity rate, improving on dual of complete graphs would be
likely to imply the use of impractically large designs.
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1 Introduction
Testing and rational optimization of resources are some
of the key elements fostering an efficient response to
the Covid-19 crisis [HDFA+21]. An important idea to
optimize testing is to test pools regrouping aliquots of
several individual samples [Dor43]; it has recently been
widely studied for application to severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) [BMR21,
GRK+20, LTM+21, MSLH+21, MNB+20, SLW+20,
SAKH20, VP20].

In the present article, we are interested in the fol-
lowing question: how to design the pools in the most
efficient way, given the current positivity rate? A sim-
ple computation, provided e.g. in [ACFSL20], enables to
optimize the pool size when performing Dorfman’s orig-
inal single pool strategy. However, strategies involving
overlapping pools can be much more efficient, leaving us
with the difficult task of optimizing the arrangement of
pools.

In this article, we present in silico experiments com-
paring several hundreds of different designs through a
large spectrum of positivity rates. We restrict to designs
that respect the constraints that have been identified by
previous works to make them usable in practice for sin-
gle reverse transcriptase-polymerase chain reaction (RT-
PCR) testing of SARS-CoV-2. Previous articles focused
on one design or on restricted families, and the main
contribution of the present work is to provide a more
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systematic comparison, drawing both from the designs
previously used for group testing for SARS-CoV-2 and
from the wealth of combinatorical structures build by
mathematicians. A new class of designs is introduced,
duals of complete graphs, which bests all others in two
different regimes of the positivity rate (≤ .4% and 7%–
13%).

This article is empirical in nature, and one could ask
why some designs are more efficient than others. In the
Supplementary materials, some heuristic elements of an-
swer based on information theory are given, but this is a
mathematical question deserving further theoretical in-
vestigation and likely to be extremely challenging. The
goal here, though more modest, is also more urgent at
the time: to broaden the wealth of possible designs that
can be used and determine the ones that are the most
effective among them, in order to provide quickly imple-
mentable and efficient strategies.

2 Material and Methods
2.1 Scope of the study and constraints
The present study focuses solely on the two-rounds group
testing with the “trivial algorithm” [Kni95], i.e. aliquots
are drawn from samples to be tested, then gathered in
a specific way (the design) into pools which are tested
in a first round. An idealized framework is considered,
assuming no testing error; a sample is then known to be
negative if it is included in any pool testing negative;
a sample is known to be positive if it is contained in
any pool testing positive all of whose other samples are
already known to be negative; all other samples are of
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unknown status after the first round. The second round
consists in testing all of those samples whose positivity
was left unknown.

E.g. in Dorfman’s single-pool designs, 𝑁 samples are
all contained in 1 pool. The first round consists in a
single test; if the pool is tested negative, then there is
no need for a second round since all samples are known
to be negative, but if the pool is tested positive, then all
samples are of unknown status and must be tested in the
second round. The most interesting designs have sev-
eral pools overlapping each other, so that samples have
aliquots in several pools. This overlaps both increase
the efficiency and introduce some redundancy, allowing
potential detection of testing errors. Only the former as-
pect is considered here, while the latter deserves further
study.

Several parameters are important in a design:

• the total number 𝑁 of samples,

• the number 𝑀 of pools,

• the maximal size 𝐾 of pools,

• the maximal number 𝐿 of different pools containing
any given sample.

For practical applicability, designs are required to sat-
isfy the constraints

𝐾 ≤ 100 (1)
𝑁 ≤ 1000 (2)

The first constraint aims at limiting the decrease
in sensitivity of RT-PCR due to the dilution of many
aliquots in a pool; the value 100 is the highest value
found recorded in the literature for which it is known
to be possible to detect a single positive aliquots in a
pool [MNB+20]. The most efficient designs in the ex-
periments turn out to have much lower 𝐾, so that using
such a high bound actually adds to the strength of the
present results: it means these designs are efficient even
when including competing designs with high 𝐾.

The second constraint limits the number of samples to
be gathered before creating the pools for the first round.
It is easy to produce extremely efficient designs at small
positivity rate if one allows much larger values of 𝑁 , but
gathering millions of samples in a single testing facility
before starting the first round is obviously impractical.
Note that the few designs found in the literature for
SARS-CoV-2 group testing that would be excluded by
constraint (2) are also ruled out by (1).

The selection of designs resulting from these con-
straints are presented in Supplementary material (Sec-
tion 6), and the most efficient ones will be described
briefly below.

2.2 Measure of efficiency
The quantity used to quantify the efficiency of design
is the expected number of test per sample ETS(𝐷, 𝑝),

which depends on the design 𝐷 and the positivity rate
𝑝 ∈ (0, 1). It is assumed that all samples have the
same probability 𝑝 of being positive and are indepen-
dent of each other.1 Since the number of pools 𝑀 is
also the number of test performed in the first round,
ETS(𝑝, 𝐷) = (𝑀 + E(𝑈))/𝑁 where 𝑈 is the number of
unknown samples at the end of the first round, which is
random and depends on both 𝐷 and 𝑝.

One could want to penalize the tests performed in
the second round, since they incur a delay. However,
to avoid long delays it is crucial to ensure the flow of
tests to be tested does not outruns the available capac-
ity; since that flow is measured by ETS(𝐷, 𝑝), it is kept
it as measure of efficiency. To ensure that there are few
samples delayed to the second round, designs are further
required to be 1-perfect, i.e. to be able to detect and pin-
point a single positive sample among the 𝑁 tested (see
Sections 5.3.6 and 6.8 in the Supplementary material),
with an exception: Dorfman’s single-pool designs are
not 1-perfect, but are kept as comparison point.

For each tested design and each value of 𝑝, 100 000 in-
dependent in silico experiments have been performed,
determining how many tests would be needed for a
pseudo-random population of 𝑁 individuals (see Sup-
plementary material, Section 5.4); the average number
of test per sample is used as estimate for ETS(𝑝, 𝐷),
with two digits confidence thanks to the large number
of repetitions.

All computations where performed and data gener-
ated in Sagemath [The20]; source codes are provided
and can be run in Python.

2.3 Optimality and relevance of designs
For each 𝑝 in the tested range, first the design 𝐷0(𝑝)
with the smallest (estimated) ETS(𝑝, 𝐷0) has been de-
termined; then all designs performing almost as well,
precisely all those with ETS(𝑝, 𝐷) ≤ 1.02 ETS(𝑝, 𝐷0(𝑝))
have been selected. Among those, designs that where
outperformed by another selected design having fewer
samples where discarded, so as to eliminate unnecessar-
ily complex designs. To each remaining designs are as-
sociated two ranges of 𝑝: the optimality range, for which
ETS(𝑝, 𝐷) is at most 2% above ETS(𝑝, 𝐷0(𝑝)); and the
relevance range, on which ETS(𝑝, 𝐷) is at most 10%
above ETS(𝑝, 𝐷0(𝑝)). The point of this larger range
is that it might be unpractical to fine tune the choice
of design as the measured positivity rate changes, e.g.
because of uncertainty on 𝑝, and it could be more con-
venient to trade some efficiency (here, up to 10%) for
stability or simplicity of the design.

3 Results
Table 1 gathers the results, listing all designs that are
optimal at some value of 𝑝 in the sense defined above.

1Lack of independence can actually improve group testing.
[BSS+22]
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Among them, as far as we know only Steiner triple sys-
tems had already been proposed, and even inside this
family no systematic comparison had been done to know
how to adjust the choice of parameter depending on the
positivity rate.

Duals of complete graphs turn out to be extremely
efficient in two ranges of positivity rate: for 𝑝 ≥ 7% and
for 𝑝 ≤ .4%. It would be expected from [MT11] that for
small 𝑝, the best designs should have samples included
in more than 2 pools, but the constraint (2) on 𝑁 rules
out these theoretically efficient designs, see Section 7.2
in Supplementary material.

Observe that if one seeks for simplicity to cover a large
range (say 𝑝 ≤ 14%) with few different designs, using the
“relevance” ranges only 4 designs are needed, e.g. 𝐾*

9 ,
4-BIBD*

85, STS*
73 and 𝐾*

44.
While in the 1.2% – 1.6% range the best designs have

a rather large number of pools, if one wants to restrict
to designs with 𝑀 ≤ 93 to fit in a 96-wells plate with 3
controls, one can still cover all values of 𝑝 by paying a
small efficiency cost, using 4-BIBD*

88 and STS*
67 instead

of 4-BIBD*
97, 4-BIBD*

100 and 4-BIBD*
109.

3.1 Description of optimal designs

Let us briefly describe the designs that turned out op-
timal at some range; more details are given in the Sup-
plementary material.

Dorfman’s single-pool designs are considered as a stan-
dard comparison point. This family is named single in
the computer files, while its individual members are de-
noted by SP𝑛 (where the parameter 𝑛 corresponds here
to the size of the pool).

The family complete_n of dual of complete graphs is a
new proposal of this work, and proves both simple and
efficient both at medium-high and low positivity rate.
The member of parameter 𝑛 in this family is denoted
by 𝐾*

𝑛 in accordance with mathematical habits, and can
be described as follow: picture 𝑛 points, and join every
pair of points by an edge. Then each edge represents a
sample, each points represents a pool, and each sample
has aliquots in exactly 2 pools, one for each ends of the
edge represented it. Figure 1 shows 𝐾*

4 .
The family steiner3_n is a selection of particular

dual of Steiner Triple System, denoted by STS*
𝑛 where

𝑛 is subject to constraints; in these design, each sample
has aliquots in 3 pools.

The family BIBD41_v is a selection of particular dual
of (𝑣, 4, 1)-Balanced Incomplete Block Designs, denoted
by 4-BIBD*

𝑣, where each sample has aliquots in 4 pools.
Last, there is one member of the family spc_nm of

square products of duals of complete graphs, obtained by
an algebraic operation combining two designs 𝐾*

𝑛 and
𝐾*

𝑚, where each sample has again aliquots in 4 pools.

3.2 Comparisons with the literature
3.2.1 Single-pool design

Figure 2 compares for each 𝑝 the performance of the best
of Dorfman’s single-pool design with the best design se-
lected in Table 1. There are two ranges where SP𝑛 is
optimal: for 𝑝 & 12%, with 𝑛 = 3, and for very small 𝑝
(< .1%) with large 𝑛: the simplicity of this design is effi-
cient in high 𝑝, and also enables one to satisfy constraint
(2) even for high values of the parameter 𝑛 without even
approaching the limit imposed on 𝑁 . However, it has
the drawback to incur a high number of second-round
tests, a consequence of the lack of 1-perfectness (Sup-
plementary material, Sections 6.8 and 5.3.6).

3.2.2 matrix designs

Figure 3 compares the performance of matrix designs
with the designs selected in Table 1. Matrix designs are
obtained by representing samples by the cells of a 𝑛 × 𝑛
matrix and defining a pool for each row and a pool for
each column of that matrix, and are among the most
classical designs.

Matrix designs’ ETS are within a factor 1.02 of the
lowest one in the 7%–14% range (and within a 1.1 factor
around 𝑝 = .5%), but are not optimal because they are
slightly out-performed by simpler designs, notably duals
of complete graphs.

3.2.3 Hypercubes

Comparison between hypercubes (introduced in
[MNB+20]) and the most efficient designs is given in
Figure 4. Hypercubes are quite far from optimality in
the whole range of 𝑝, doing best at 𝑝 = .4%, where they
are about 17% less effective than the best achieving
designs. Note that the parameter 𝑑 = 6 is excluded:
it would be theoretically quite effective at small 𝑝,
but does not satisfy constraint (1) since each pool has
𝐾 = 281 samples.

This lack of efficency of hypercubes is likely to follow
from the large intersections between pools; if as little as
two samples are positive, there can be up to 2𝑑 samples
of unknown status after the first round. It could be that
a different strategy with more rounds would make them
more efficient than other designs, but they should be
compared to the designs of Table 1 in such a setting.

3.2.4 P-Best and Tapestry

Let us now address two works for which similar com-
ments can be made, [GRK+20] and [SLW+20] intro-
ducing respectively the Tapestry and P-BEST meth-
ods. Both are non-adaptative methods, hence are not
directly comparable to two-round pooled testing; they
necessarily incur the risk of error in diagnosis, and their
point is to try and minimize that risk. However both
are based on specific designs, which are included to ob-
serve how efficient they are for two-round pooled testing.
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Identification Size Range of 𝑝 for Sample performance
Design Family Key 𝑁 𝑀 𝐾 optimality relevance 𝑝 ETS Bound

20% .82 .72SP3 single 3 3 1 3 12% – 30% 9% – 30%
14% .70 .58

𝐾*
6 complete_n 6 15 6 5 10% – 15% 7% – 26% 13% .67 .56

𝐾*
7 complete_n 7 21 7 6 8% – 14% 6% – 21% 10% .57 .48

𝐾*
8 complete_n 8 28 8 7 7% – 12% 5% – 17% 8% .50 .43

𝐾*
9 complete_n 9 36 9 8 6% – 9% 4% – 14% 6% .42 .36

STS*
25 steiner3_n 25 100 25 12 5% – 6% 4% – 9% 5% .36 .32

STS*
27 steiner3_n 27 117 27 13 4% – 6% 2.9% – 8% 4% .31 .28

STS*
33 steiner3_n 33 176 33 16 2.9% – 4% 2.3% – 6% 3% .26 .23

STS*
37 steiner3_n 37 222 37 18 2.8% – 3% 2.1% – 4% 2.8% .24 .22

STS*
39 steiner3_n 39 247 39 19 2.6% – 3% 1.8% – 4% 2.6% .23 .21

4-BIBD*
73 BIBD41_v 73 438 73 24 2.2% – 3% 1.8% – 4% 2.4% .21 .19

4-BIBD*
76 BIBD41_v 76 475 76 25 2.1% – 3% 1.7% – 3% 2.2% .20 .18

4-BIBD*
85 BIBD41_v 85 595 85 28 1.8% –2.5% 1.4% – 3% 2% .19 .17

4-BIBD*
88 BIBD41_v 88 638 88 29 1.7% – 2.4% 1.4% – 3% 1.8% .17 .16

4-BIBD*
97 BIBD41_v 97 776 97 32 1.5% – 2.1% 1.1% – 2.7% 1.6% .16 .14

4-BIBD*
100 BIBD41_v 100 825 100 33 1.4% – 2% 1.1% – 2.6% 1.4% .15 .13

4-BIBD*
109 BIBD41_v 109 981 109 36 1.2% – 1.8% .9% – 2.3% 1.2% .13 .12

STS*
67 steiner3_n 67 737 67 33 1% – 1.1% .6% – 1.6% 1% .12 .10

STS*
73 steiner3_n 73 876 73 36 .7% – 1.1% .5% – 1.4% .7% .098 .076

𝐾*
7 �𝐾*

10 spc_nm (7, 10) 945 70 54 .5% – .7% .4% – 1% .5% .084 .058
𝐾*

38 complete_n 38 703 38 37 .4% .3% – .6% .4% .076 .048
𝐾*

43 complete_n 43 903 43 42 .3% – .4% .1% – .5% .3% .064 .038
𝐾*

44 complete_n 44 946 44 43 .1% – .4% .1% – .5% .1% .049 .015
𝐾*

45 complete_n 45 990 45 44 0 – .4% 0% – .5% → 0 → .045 → 0
SP100 single 100 100 1 100 ≪ .1% ≪ .1% → 0 → .01 → 0

Table 1: List of optimal designs.
Identification include the name used in the present paper to denote the design, as used in Section 6, the
name of the family as per the source code used and provided in Supplementary material, the key specifying
the design inside its family (to be entered as a string). Three of the parameters measuring the complexity
of the design are given: the number of samples 𝑁 , the number of pools 𝑀 and the size of pools 𝐾. The
optimality range is the set of 𝑝 at which the design is at worst 1.02 times more costly than the absolute
best of the experiments, and the relevance range is the set of 𝑝 at which the design is at worst 1.1 times
more costly than the best. Last, performance at one or two value of 𝑝 is provided alongside the best known
theoretical lower bound for two-stage pool testing (this bound does not include the constraints (1) and
(2)).
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Figure 1: graphical descriptions of 𝐾*
4 . Left: the complete graph 𝐾4, its dual has samples 0, 1, 2, 3, 4, 5 and pools

𝑎, 𝑏, 𝑐, 𝑑; right: bipartite graph representation, where each edge means that the sample at its left end has
an aliquot in the pool at its right end.
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Figure 2: Comparison between the best single-pool designs (dots) and the best identified design (thick curve), for
each value of the positivity rate 𝑝 ; the theoretical lower bound is represented by the solid thin curve.
Left: 𝑝 ≤ 30%, right: 𝑝 ≤ 3%

Figure 3: Comparison between the best matrix designs (dots) and the best identified designs (thick curve).

Figure 4: Comparison between the best hypercube designs (dots) and the best identified designs selected (thick
curve). The thin curve gives the best known lower bound.
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Conversely, other designs that prove more efficient than
theirs in two-round pooled testing might also be more
effective in their respective methods.

While Tapestry’s Steiner-based design is not optimal,
being outperformed by simpler designs, it is within a
factor 1.05 of the best designs in the range 1% – 1.4%,
see Figure 5. The performances given in Table 1 of
[GRK+20] are even better than allowed by the informa-
tion bound for the given number of tests, if those tests
where binary. The point is that by taking into account
the quantitative result of each RT-PCR, they manage
to extract several bits of information for each pool. It
would thus be interesting to see how far the Tapestry
method could go with e.g. dual of complete graphs as
designs.

The design used in P-Best is based on an error cor-
recting code and performs relatively well in the range 1%
– 1.5%, but not as close to optimality as Tapestry’s, see
Figure 6. Again, it would be interesting to see whether
the P-Best method can gain from being used with the
best-performing designs found in the present article.

4 Discussion
An extensive comparison of theoretical performances of
two-round group testing was performed for a broad va-
riety of designs, enabling the identification of the most
efficient design at each positivity rate from .1% to 30%.
The new family of dual of complete graphs has been in-
troduced, outperforming all previously proposed designs
in the ranges 𝑝 ≃ 7%–13% and 𝑝 < .4%.

Comparing for a given 𝑝 the performance of the best
tested design to the best design among those previ-
ously described (single-pool, matrices, hypercube, P-
Best, Tapestry), the gain in performance is often quite
small (e.g. of the order of 1% at 𝑝 = 6%). However,
this study still gives important information to optimize
efficiency of group testing.

First, in the regime of small 𝑝, better performance
enhancement is achieved, e.g. for 𝑝 = .5% the design
𝐾*

7 � 𝐾*
10 achieves an ETS of .0844, while the best of

previous design is the 28 × 28 matrix, with an ETS of
.0888, a relative improvement of almost 5%.

Second, in many cases the slightly more efficient de-
signs selected as optimal are quite simpler than the pre-
vious best-performing ones. For example, at 𝑝 = 6%,
while 𝐾*

9 performs only modestly better than the previ-
ous best-performing design (the 8 × 8 matrix design), it
has only 36 samples and 9 pools of 8 while the matrix
design has 64 samples and 16 pools of 8. This makes the
former more flexible, as one has less samples to gather
before starting pooling them. The number of pools is
especially kept low by dual of complete graphs for very
small 𝑝, leaving the possibility of testing up to two first
rounds simultaneously on a typical 96-wells plate, while
still letting room for controls.

Last and most importantly, by comparing a large vari-
ety of designs the present experiments provide a precise

information of which known design is best performing
at each positivity rate. Previously only quite rough or
partial information was available (e.g. [MNB+20] gave
such information, but only inside the hypercube family):
what was mentioned as “the previous best-performing
design” was not known to be so. The information pro-
vided can thus be used to tune two-round group-testing
with the observed positivity rate, and the optimal de-
signs identified here can be tested in other methods such
as P-Best, Tapestry, etc.

Many interesting questions are left open:

• find designs approaching the theoretical bound for
𝑝 & 5%,

• improve the known lower bound for two-round test-
ing under constraints (1) and (2) for small 𝑝,

• study the effect of testing error for the designs
pointed out as optimal.
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Figure 5: Comparison between the best Tapestry designs (dots) and the best identified designs (thick curve).

Figure 6: Comparison between the P-Best design (dots) and the best identified designs (thick curve).
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Supplementary
material
5 Justification of choices and

constraints
Let us justify in more detail the restriction to two-round
group testing, the choice of ETS as measure efficiency,
and the restriction on considered designs.

5.1 First restriction: two-rounds group
testing

Group testing is usually divided into adaptative and
non-adaptative procedures. Non-adaptative group test-
ing proceeds in a single rounds, all pools being tested in
parallel. It is not possible to obtain in this way a com-
plete information on the positivity of each sample unless
we use as many tests as the number of samples, which
defeats the purpose of group testing. One thus has to
accept a possibility of error (on top of all other sources
of error due to the fallibility of the tests themselves)
and will try to minimize that risk. Adaptive group test-
ing proceeds in several consecutive rounds, the pools of
a round being decided depending on the results of the
previous rounds. Two issues appear: first the logistic
is complicated as one needs to take subsequent aliquots
in certain samples to build pools at each round; sec-
ond the results can be delayed a lot if many consecutive
rounds are needed. Two-round group testing as defined
in Section 2 has been identified as a balanced middle
ground [Kni95], and this why we focus on this method.
It is likely that some of our results could be expanded
to other variants of group testing: choices of pools that
are efficient for two-rounds group testing may also be
efficient for other procedures.

5.2 Designs for two-rounds group testing
The restriction to two-rounds group testing still leaves
many ways to proceed: one has to choose how to or-
ganize the pools. This corresponds to a combinatorial
structure know in mathematics as a hypergraph or inci-
dence structure, and sometimes presented as an “algo-
rithm” for group testing. Formally, a hypergraph can be
presented in many ways. One of the most common is to
give a set of vertices 𝑉 and a set 𝐸 of subsets of 𝑉 called
edges. Formally, what we call a design is simply a hyper-
graph for which |𝐸| < |𝑉 | (we use |·| to denote number
of elements); if 𝐷 = (𝑉, 𝐸) is a design, elements of 𝑉
thus represent the samples to be tested and elements
of 𝐸 represent the pools (also called groups) that will
be used in the first round, so that the above condition
means that there shall be less pools than samples. One
reason to use a specific name for designs is that many

hypergraphs that have been constructed in the mathe-
matical field of combinatorics have more edges than ver-
tices, but still yield interesting designs through duality,
an operation that we will explain later on.

5.3 Design parameters and constraints
Several parameters of a design 𝐷 = (𝑉, 𝐸) have to be
constrained to allow the two-rounds group testing to be
realized in practice. These constraints may vary depend-
ing on what is being tested, and we focus here on SARS-
CoV-2 detection through RT-PCR tests.

5.3.1 Size of pools

First, large pools induce a reduction in RT-PCR sensi-
tivity: a single positive sample has to be detected de-
spite its dilution even when all other samples tested in
the pool are free of SARS-CoV-2. The first parameter
of interest is thus the maximal size of pools

𝐾 := max{|𝑔| : 𝑔 ∈ 𝐸}.

This parameter influences the risk of false negative in a
gradual way: the lesser 𝐾, the lesser the loss in sensi-
tivity. We draw the line at the highest value we could
ensure has been checked to still be viable in practice,
namely

𝐾 ≤ 100 (1)

where the value 100 is reported in [MNB+20]. Lesser
values where validated in other works, e.g. 30 in
[LPBG+20]. While we ruled out designs with higher val-
ues of 𝐾, our raw data can easily be used to determine
good designs with lower values of 𝐾, e.g. for situations
where positive samples are expected to have low viral
load.

5.3.2 Regularity

While this is not a strict constraint, most of the designs
we consider and all of the optimal ones are regular, by
which we mean that all pools have the same size and
all samples appear in the same number of pools. Many
mathematical constructions of hypergraphs are regular.
Moreover the size of pools is known to be an important
parameter to tune depending on 𝑝, see e.g. [MT11], and
if some pools are significantly larger than others, they
cannot be both of optimal size.

As counter examples, some matrix designs with a dif-
ferent number of rows and columns (thus not regular)
have been sometimes used in the literature, but we re-
stricted to regular matrix designs.

5.3.3 Overall size

All tests of the first round are to be run in parallel to
avoid unnecessary delays, and to build the pools all sam-
ples have to be available in the preparation phase of the
first round. For small 𝑝, we could easily find designs
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that are close to the theoretical limit in efficiency but
need to manage millions of samples together, i.e.

𝑁 := |𝑉 | > 106

This is obviously impractical, and we choose the follow-
ing constraint:

𝑁 ≤ 1000 (2)

Let us add an argument to motivate constraint (2) on
top of the one given in Section 2: considering that tests
are performed locally to avoid difficult logistic issues, a
medium city of ∼ 100, 000 inhabitants where each day
2% of the population is tested would gather enough sam-
ples to perform a two-rounds group testing procedure
with 𝑁 = 1000 twice each day. Any larger 𝑁 would im-
ply gathering delays over half a day in such a situation.

5.3.4 Number of aliquots per sample

Another parameter that should in principle be controlled
is the maximal number 𝐿 of pools a sample is tested in,
i.e. the maximal number of aliquots from any sample
needed in the first round (an additional aliquot being
posibly needed in the second round). Setting 𝐸𝑠 = {𝑔 ∈
𝐸 | 𝑠 ∈ 𝑔} the set of pools containing (an aliquot of) the
sample 𝑠, we thus consider

𝐿 := max{|𝐸𝑠| : 𝑠 ∈ 𝑉 }

However, several dozen of aliquots are easily drawn from
a typical sample issued from a nasopharyngeal swab
[MNB+20]. We know of no potentially effective design
that satisfies constraints (1) and (2) and comes even
close to that number (we will see that the optimal de-
signs have 𝐿 ≤ 4), making it pointless to constraint 𝐿.

5.3.5 Number of pools

A last parameter of interest is the number of pools

𝑀 := |𝐸|.

It is proposed in [GAR+21] to add the constraint 𝑀 ≤
93, since it is a standard number of tests that can be
run in parallel on a RT-PCR machine (using a 96-wells
plate with three wells used as controls). We choose not
to include this constraint since bypassing it in practice is
a matter of industrial design choice, it does not need new
knowledge or technology. However most of the efficient
designs turn out to satisfy it, and we gave alternative
propositions for the range where they do not.

Even without constraining it, 𝑀 is important as it
influences the efficiency of the design. The first round
indeed consist in 𝑀 tests, so that lesser 𝑀 is better for
very small 𝑝; and if 𝑀 is too close to 𝑁 one cannot
expect much savings.

5.3.6 Perfect identification of single positives

We also mostly restricted to designs that are able
to detect a single positive sample without a second

round, which we call 1-perfect designs (contrary to what
is sometimes assumed in combinatorial group testing
[DHH00], we mean that this detection should be pos-
sible without the knowledge that there is exactly one
positive sample). This property is shared by all designs
found in the literature except Dorfman’s single-pool de-
sign (which we keep as the only exception to this restric-
tion, as a comparison point and because in some regime
it seems difficult to improve upon it). We will see that it
also ensures that in the range where a design is most ef-
ficient, very few samples need to be tested in the second
round.

It is easy to see that a design is 1-perfect if and only
if both following conditions are fulfilled:

i. every sample is in some pool, and

ii. for every two samples 𝑠, 𝑡 ∈ 𝑉 , there exist a pool
𝑔 ∈ 𝐸 that contains 𝑠 but not 𝑡.

Proof. Indeed, assume these conditions are satisfied and
𝑠0 is the unique positive sample. Then every 𝑠 ̸= 𝑠0 will
be detected as negative since it belongs to a pool not
containing 𝑠0, hence not containing any positive sam-
ple. Meanwhile, 𝑠0 belongs to at least one pool 𝑔, which
will appear positive. But all other samples being known
negative, at the end of the first round 𝑠0 will be known
to be positive.

Conversely, if some sample is in no pool then obviously
its status will be unknown at the end of first round;
and if there are two samples 𝑠, 𝑡 such that every pool
containing 𝑠 also contains 𝑡, then the first round cannot
distinguish the situation where they are both positive
from the situation where 𝑠 is positive and 𝑡 negative.

Let us make an observation that will be used later on.
Consider a 1-perfect design where some sample 𝑠 belongs
to only one pool. If this pool contained any other sample
𝑡, the design would not satisfy ii. Therefore this pool
contains only 𝑠, but then removing 𝑠 and its pool can
only improve the design. We can thus restrict 1-perfect
designs to the case when every sample belongs to at least
2 pools.

One situation ensuring ii is when every sample be-
longs to at least 2 pools and every two distinct pools
have at most one sample in common (this is equivalent
to the condition “having girth at least 6” in [MT11]).
This will always be the case in the most effective designs,
a phenomenon explained in [MT11] and that should not
come as a surprise if we take a information-theoretic ap-
proach: while some intersection between pools is neces-
sary to identify some positive samples in the first round,
large intersections would make first-round tests all the
more redundant. Conversely, smaller intersections en-
sure more information is gathered in the first round.

5.4 Evaluation procedure for ETS(𝑝, 𝐷)
To sum-up, we are concerned with finding for each 𝑝
designs 𝐷 = (𝑉, 𝐸) that are 1-perfect, that satisfy the
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constraints (1) and (2), i.e. with no pool grouping more
than 100 samples and with no more than 1000 samples
overall, and which make ETS(𝐷, 𝑝) as small as we can.

While for simple 𝐷 we could compute explicit expres-
sions for the function 𝑝 ↦→ ETS(𝐷, 𝑝), even mildly com-
plex designs make this task daunting, hence the use of
in silico experiments, which we now describe in detail.
Given a number 𝑝 and a design 𝐷, an experiment con-
sists in the following steps:

i. draw a pseudo-random vectors with 𝑁 entries in
{0, 1} (0 for samples not carrying SARS-CoV-2, 1
for carriers) that are independent and have proba-
bility 𝑝 of taking the value 1, representing the pop-
ulation of samples to be tested,

ii. assign to each pool a value 1 or 0 depending whether
it contains a positive sample or not,

iii. construct a new 𝑁 -vector representing the inference
on the population that can be drawn from the pool
values: a sample is given the value 0 (sure negative)
if it belongs to at least one negative pool, the value
1 (sure positive) if it belongs to at least one posi-
tive pool where all other samples are tagged as sure
negatives, and the value ‘?’ (unknown) in all other
cases, as in [Kni95, MT11],

iv. count the number 𝑈 of ‘?’ values in that vector,

v. return the number 𝑀 + 𝑈 of tests needed to deter-
mine the status of all samples over the two rounds.

For each 𝐷 and each value of 𝑝 we repeat this experiment
100, 000 times and use the value 𝑀+�̄�

𝑁 as estimator for
ETS(𝐷, 𝑝), with �̄� the average of 𝑈 over all repetitions.

We consider the following values of 𝑝: first a range
of rather large values {1%, 2%, . . . , 29%}, then a finer
range {.1%, .2%, . . . , 2.9%} for small values. For even
smaller value, one will be mostly reduced to compare
Dorfman’s single pool method to the best designs for 𝑝 =
.1%: it seems indeed difficult, if not outright impossible
to improve on them while satisfying constraint (2), see
Section 7.2.

Let us evaluate the precision of our estimation. The
estimator for ETS(𝐷, 𝑝) contains a constant term 𝑀/𝑁
and a variable term �̄�/𝑁 ; given the number of inde-
pendent repetitions, we can assume �̄� has a Gaussian
distribution. Since 𝑈 compounds for all samples 𝑠 ∈ 𝑉
of the design the probability that 𝑠 is tested in the sec-
ond round, �̄� is the sum of 𝑁 binomial, almost Gaussian
random variables, non independent but identically dis-
tributed since our designs are symmetric. The variance
of �̄�/𝑁 is not greater than the variance of each of these
binomials. Each 𝑠 provides at each repetition a Bernoulli
random variable, with probability of being positive close
to �̄�/𝑁 and thus variance close to �̄�/𝑁(1 − �̄�/𝑁).
We can thus estimate the 95% confidence interval for
ETS(𝐷, 𝑝) as

𝑀 + �̄�

𝑁
± 1.96

√︃
1

100, 000
�̄�

𝑁

(︁
1 − �̄�

𝑁

)︁
.

We obtain a typical error never larger than .31 percent-
age points, about .19 percentage points when �̄�/𝑁 =
10%, and as small as .06 percentage points when �̄�/𝑁 =
1%. In all cases, we can confidently keep 2 significant
digits.

As an example, consider the case of 𝑝 = 8% for 𝐷 =
𝐾*

8 . Our estimation for the expected number of test per
sample is ETS(.08, 𝐾*

8 ) ≃ .5001, while 𝑀/𝑁 = 8/28 ≃
.2857, so that �̄�/𝑁 ≃ .2144 and the size of either half
of the confidence interval is ≃ .0025. We can thus as-
sume with 95% confidence that .4976 ≤ ETS(.08, 𝐾*

8 ) ≤
.5026, justifying our reported value of .50. Moreover the
designs that have been considered not optimal at that
value have ETS(.08, 𝐷) & 1.02 × .50 = .51, almost 8
standard deviations above the value obtained for 𝐾*

8 .

6 Representation and building of
designs

Before presenting in more details the various families of
designs we run our experiments on, let us introduce an
important tool to generate such families.

6.1 Hypergraphs and duality
A hypergraph 𝐻 can be specified by giving the set 𝑉
of vertices and the set 𝐸 of edges (each a subset of 𝑉 ),
or in several alternate ways. One is its incidence ma-
trix 𝑀 = (𝑚𝑖𝑗) where the column index 𝑗 runs over
𝑉 , the row index 𝑖 runs over 𝐸, and 𝑚𝑖𝑗 is 1 when
the edge 𝑖 contains the vertex 𝑖, 0 otherwise. Given
(𝑉, 𝐸) the incidence matrix can easily be recovered, and
given an incidence matrix one can easily rebuild 𝐻 (up
to the naming the vertices, i.e. in mathematical term
up to isomorphism). Another way to present the same
information is to draw a bipartite graph, i.e. a triple
(𝐴, 𝐵, 𝐼) where 𝐴, 𝐵 are sets and 𝐼 is a subset of 𝐴 × 𝐵,
i.e. a set of pairs (𝑎, 𝑏) where 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. Given
𝐻 = (𝑉, 𝐸), the corresponding bipartite graph is given
by 𝐴 = 𝑉 , 𝐵 = 𝐸 and 𝐼 = {(𝑣, 𝑒) ∈ 𝑉 × 𝐸 | 𝑣 ∈ 𝑒}.
Conversely, given a bipartite graph (𝐴, 𝐵, 𝐼) one ob-
tains a hypergraph by defining 𝑉 = 𝐴; for each 𝑏 ∈ 𝐵,
𝑒𝑏 = {𝑎 ∈ 𝐴 | (𝑎, 𝑏) ∈ 𝐼}; and 𝐸 = {𝑒𝑏 : 𝑏 ∈ 𝐵}. In other
words, instead of having edges given as sets of vertices,
we define them as labels and then use 𝐼 to describe the
incidence relation between vertices and edges (see Figure
1, right).

One interest of these constructions is that both make
an important operation, duality, easy to picture. The
dual of a hypergraph 𝐻 = (𝑉, 𝐸) with incidence ma-
trix 𝑀 and bipartite graph (𝐴, 𝐵, 𝐼) is the hypergraph
𝐻* whose incidence matrix is 𝑀𝑇 , the transpose of
𝑀 . Equivalently, 𝐻* is the hypergraph whose bipar-
tite graph is (𝐵, 𝐴, 𝐼*) where 𝐼* = {(𝑏, 𝑎) | (𝑎, 𝑏) ∈ 𝐼}.
In other words, 𝐻* exchanges the roles of vertices and
edges, while the incidence relation only swaps directions.
The dual 𝐻* is of course unique only up to isomorphism.
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In the mathematical literature, one can find many hy-
pergraphs with few vertices and many edges; duality
enables us to build designs out of them, e.g. duals of
complete graphs, duals of Steiner triple systems, etc.

6.2 Duals of complete graphs
Let 𝑛 ∈ N; the complete graph 𝐾𝑛 is the hypergraph
with vertex set 𝑉 = {1, . . . , 𝑛} and edge set 𝐸 given
by all subsets of 𝑉 having exactly 2 elements. We thus
have |𝐸| = 𝑛(𝑛−1)

2 , larger than |𝑉 | = 𝑛 as soon as 𝑛 ≥
4. We shall consider the family (𝐾*

𝑛)4≤𝑛≤45 of duals of
complete graphs. The design 𝐾*

𝑛 indeed has 𝑁 = 𝑛(𝑛−1)
2

samples, smaller than 1000 for 𝑛 ≤ 45, and 𝑀 = 𝑛 pools.
The case 𝑛 ≤ 3 is irrelevant as we get at least as many
pools as samples.

In 𝐾*
𝑛, each sample is included in exactly 𝐿 = 2 pools,

while each pool contains 𝐾 = 𝑛 − 1 samples (in par-
ticular the pool size 𝐾 ≤ 44 is much lesser than the
constraint of 100). Two pools intersect in exactly one
sample, ensuring 1-perfectness.

A good way to picture 𝐾*
𝑛 is to draw 𝐾𝑛 and recall

that the segments representing edges are actually sam-
ples for 𝐾*

𝑛, and vertices of 𝐾𝑛 are actually pools for
𝐾*

𝑛. Figure 1 shows this for 𝑛 = 4. In our code, by
convention 𝑉 = {0, . . . , 𝑁 − 1} and designs are given by
a list of list of vertices: for 𝐾*

4 , we get

[[0,1,2], [0,3,4], [1,4,5], [2,3,5]]

while its incidence matrix is⎛⎜⎜⎜⎝
1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 1 0 1

⎞⎟⎟⎟⎠
6.3 Duals of Steiner triples system
A hypergraph 𝐻 = (𝑉, 𝐸) is called a Steiner triple sys-
tem (sometimes a Steiner triple) of order 𝑛 whenever it
has 𝑛 vertices, all its edges have exactly 3 elements, and
every pair of distinct vertices is contained in exactly 1
edge. As is well-known, these constraints impose that 𝑛
is of the form 6𝑘 + 1 or 6𝑘 + 3 for some integer 𝑘, and
the number of edges is 1

6 𝑛(𝑛 − 1); we restrict to 𝑛 ≥ 9
to avoid trivial cases. It turns out that the above con-
straint is also sufficient to build Steiner triple systems,
but note that there can be different Steiner triple sys-
tems of the same order. We will use the ones provided
in the Sage mathematical software [The20], described in
[AH97] page 32. The dual of that Steiner triple system
will be denoted by STS*

𝑛; it has 𝑁 = 1
6 𝑛(𝑛 − 1) sam-

ples and 𝑀 = 𝑛 pools, all of size 𝐾 = 1
2 (𝑛 − 1), and

each sample belongs to 𝐿 = 3 pools. Every two distinct
pools intersect in exactly one sample, ensuring STS*

𝑛 is
1-perfect. We restrict to 9 ≤ 𝑛 ≤ 75, since larger 𝑛
would entail 𝑁 > 1000. Observe that again, the pools
size is at most 37, well below the limit of 100.

6.4 Balanced Incomplete Block Designs of
higher multiplicity

Steiner triple systems are particular cases of Balanced
Incomplete Block Designs (BIBD), defined as any hy-
pergraph 𝐻 = (𝑉, 𝐸) such that all edges have the same
number ℓ of vertices, all vertices are contained in the
same number 𝑟 of edges and all pairs of distinct vertices
are contained in the same number 𝜆 of edges. Non triv-
ial cases have at least as many edges than vertices, and
our designs will again be obtained by duality. Every two
pools will then have 𝜆 samples in common, and follow-
ing the discussion at the end of Section 5.3 we restrict to
𝜆 = 1; and every sample is contained in the same num-
ber 𝐿 = ℓ of pools. We actuality met BIBD with 𝜆 = 1
already: complete graphs (ℓ = 2) and Steiner triple sys-
tems (ℓ = 3). We further tested ℓ = 4 and ℓ = 5, and
only the former turned out to be optimal in some range
of 𝑝. Since the complexity grows quickly with ℓ, it seems
unnecessary to explore further (see Section 7.2).

More precisely, we considered the following two fam-
ilies. First, 4-BIBD*

𝑛 is the dual of Sage’s implemented
BIBD with ℓ = 4 and 𝜆 = 1 (as described in [Sti07])
over 𝑛 vertices, where 𝑛 must have the form 12𝑚 + 1 or
12𝑚 + 4 for some integer 𝑚; we consider 16 ≤ 𝑛 ≤ 109
to avoid triviality and respect the constraints. 4-BIBD*

𝑛

has 𝑁 = 1
12 𝑛(𝑛 − 1) samples, each in 𝐿 = 4 pools. All

pools have 𝐾 = 1
3 (𝑛 − 1) samples (again much lesser

than 100) and every two distinct pools intersect in ex-
actly one sample, ensuring 1-perfectness.

Second, 5-BIBD*
𝑛 is the dual of Sage’s implemented

BIBD with ℓ = 5 and 𝜆 = 1 (as described in [Smi04])
over 𝑛 vertices, where 𝑛 must have the form 20𝑚 + 1 or
20𝑚 + 5 for some integer 𝑚; we consider 25 ≤ 𝑛 ≤ 141.
5-BIBD*

𝑛 has 𝑁 = 1
20 𝑛(𝑛 − 1) samples, each in 𝐿 = 5

pools. All pools have 𝐾 = 1
4 (𝑛−1) samples (again much

lesser than 100) and every two distinct pools intersect
in exactly one sample, ensuring 1-perfectness.

6.5 Products of designs
There are several operations that have been devised
to produce new hypergraphs out of known ones. Two
particularly relevant ones are the Cartesian product
and the square product. Assume 𝐻1 = (𝑉1, 𝐸1) and
𝐻2 = (𝑉2, 𝐸2) are hypergraphs. Their Cartesian prod-
uct 𝐻1�𝐻2 and their square product 𝐻1 � 𝐻2 share
the same set of vertices, 𝑉1 × 𝑉2, i.e. a vertex is a pair
(𝑥1, 𝑥2) where 𝑥1 is a vertex of 𝐻1 and 𝑥2 a vertex of
𝐻2.

The Cartesian product has an edge for each pair
(𝑒1, 𝑥2) and one for each pair (𝑥1, 𝑒2) (where 𝑥𝑖 ∈ 𝑉𝑖

and 𝑒𝑖 ∈ 𝐸𝑖); the edge associated to (𝑒1, 𝑥2) gathers all
vertices (𝑦1, 𝑥2) where 𝑥2 is fixed and 𝑦1 runs over 𝑒1;
the (𝑥1, 𝑒2) edges are build similarly.

The square product has an edge for each pair of edges
(𝑒1, 𝑒2) (the first of 𝐻1, the second of 𝐻2), given by the
set 𝑒1 × 𝑒2 of all vertices (𝑦1, 𝑦2) where 𝑦1 runs over 𝑒1
and 𝑦2 runs over 𝑒2.
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In the case of designs 𝐷𝑖 with 𝑁𝑖 samples and 𝑀𝑖

pools (𝑖 = 1, 2), the Cartesian product 𝐷1�𝐷2 has
𝑁1𝑁2 samples and 𝑀1𝑁2 + 𝑁1𝑀2 pools, while the
square product 𝐷1 � 𝐷2 has only 𝑀1𝑀2 pools for the
same number of samples. The number 𝑀/𝑁 ∈ (0, 1)
of first-round-tests per sample is thus summed under
Cartesian product and multiplied under square product.
If the 𝐷𝑖 are regular, with pool size 𝐾𝑖 and each sam-
ple belonging to 𝐿𝑖 pools, then in 𝐷1�𝐷2 each sample
is in 𝐿1 + 𝐿2 pools but this design is not regular when
𝐾1 ̸= 𝐾2: it has pools of size 𝐾1 and pools of size 𝐾2.
Meanwhile 𝐷1�𝐷2 is regular, with pool size 𝐾1𝐾2 and
each sample in 𝐿1𝐿2 pools.

Out of the cases we tried, only the square products
of duals of complete graphs produced optimal design in
some range.

6.6 Designs found in the literature on
group testing for SARS-CoV-2

Let us now present the designs that we could found being
proposed in the previous literature on group testing for
SARS-CoV-2.

i. Dorfman’s single-pool designs are of course the first
ones historically. We denote them by SP𝑛 where 𝑛
is any integer ≥ 2; there is 𝑀 = 1 pool of 𝑁 = 𝐾 =
𝑛 samples. Each sample is in 𝐿 = 1 pool, and these
designs are not 1-perfect. Rather than experimental
data, we used for these designs the exact expression

ETS(SP𝑛, 𝑝) = 1 + 1
𝑛

− (1 − 𝑝)𝑛.

ii. The matrix designs are considered in a number of
work, e.g. [LTM+21, SAKH20]; the size 𝑛 matrix
design has 𝑁 = 𝑛2 samples corresponding to the
cells of a 𝑛×𝑛 matrix, each row and each column of
the matrix giving an edge. This is also the Carte-
sian product of two single-pool designs of size 𝑛;
there are 𝑀 = 2𝑛 pools of size 𝐾 = 𝑛, and each
sample is in 𝐿 = 2 pools. Pools intersect in at most
one sample, making the design 1-perfect.

iii. Hypercubes (Hyp(𝑑))𝑑∈N have been proposed in
[MNB+20]; Hyp(𝑑) has 𝑁 = 3𝑑 samples arranged
as an hypercube {0, 1, 2}𝑑, and there are 𝑀 = 3𝑑
pools, one for each “slice” in any of the coordi-
nate: {0} × {0, 1, 2}𝑑−1, {1} × {0, 1, 2}𝑑−1, {2} ×
{0, 1, 2}𝑑−1, {0, 1, 2}×{0}×{0, 1, 2}𝑑−2, etc. Pools
have size 𝐾 = 3𝑑−1 and each sample is contained
in 𝐿 = 𝑑 pools. Two pools intersect in either 0 or
3𝑑−2 samples, and this design can be checked to be
1-perfect.

iv. Tapestry’s designs [GRK+20] are constructed from
particular Steiner triple systems, with some samples
left empty (i.e. some columns deleted in the inci-
dence matrix [GAR+21]), while P-Best [SLW+20]
designs are based on error-correcting codes. We

used the incidence matrices provided by the au-
thors to include them in the comparison, although
the methods presented by these articles are different
from two-round testing.

6.7 Other designs tested
Let us finally quickly present other designs we tested,
although they did not turn out to be optimal in any
range of the positivity rate.

i. The affine designs are mathematical constructs in-
volving both algebra and geometry. They depend
on three integer parameters 𝑛, 𝑑, 𝑞, where 0 < 𝑑 < 𝑛
and 𝑞 is a prime power. We consider the finite
field F𝑞 and build the affine space F𝑛

𝑞 , then consider
the incidence structure given by inclusion between
points and subspaces of dimension 𝑑. This can be
obtained from Sage’s AffineGeometryDesign pro-
cedure. There are more edges than vertices, so
we considered the dual hypergraph as our designs.
Note that some turned out to be optimal in some
range, but those which did actually coincide with
some previous families, e.g. Affine Geometry De-
signs with 𝑞 = 2 and 𝑑 = 1 are in fact complete
graphs.

ii. The projective designs are similar, except that we
use projective spaces instead of affine spaces. It
amounts to only consider subspaces that contain
the origin, and to translate all dimensions by one:
point are replaced by lines, 𝑑-subspaces by (𝑑 + 1)-
subspaces, and F𝑛

𝑞 by F𝑛+1
𝑞 . Again, we used Sage’s

already implemented ProjectiveGeometryDesign,
and again those which where optimal coincide with
previous families (Steiner triple systems, when 𝑞 =
2 and 𝑑 = 1).

iii. In the same vein but conceptually simpler, one can
consider the incidence structure of 𝑘-subsets against
𝑚-subsets in a 𝑝-set (where 1 ≤ 𝑘 < 𝑚 ≤ 𝑝/2).
Namely the design has all 𝑚-subsets as tags for sam-
ples and 𝑘-subset as tags for pools, and each pool
tagged 𝑔 contains precisely the samples tagged 𝑠
such that 𝑔 ⊂ 𝑠. Pools can have large intersection,
and trying to minimize the average intersection
and respect the constraints led us to test the cases
𝑚 = 2, 𝑘 = 4, 𝑝 = 14 and 𝑚 = 1, 𝑘 = 3, 9 ≤ 𝑝 ≤ 20.

iv. For high positivity rate, we tried in several ways
to improve on single-pool designs, without success;
we tested the family of products 𝐾*

16�SP𝑛 (where
𝐾16 is also the Affine Geometric Design with 𝑞 = 2,
d= 1 and 𝑛 = 4), then chains where samples are
consecutive integers and pools are intervals of given
length and given overlap with the preceeding one,
e.g. for 7 pools with overlap of size 1

[[0, 1, 2], [2, 3, 4], [4, 5, 6], [6, 7, 8], [8, 9, 10],
[10, 11, 12], [12, 13, 14]];
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and last a “compact” design constructed by hand to
have 𝐾 = 4 with pools intersecting at most at one
sample (we manage to almost achieve 𝐿 = 3 with
𝑁 = 13, 𝑀 = 10 by letting one sample belong to 4
pools, all others to 3).

v. We tried another kind of product of designs 𝐷1 =
(𝑉1, 𝐸1) and 𝐷2 = (𝑉2, 𝐸2), with again 𝑉1 × 𝑉2 as
vertex set, but with one edge 𝑉1 × 𝑒2 for each edge
𝑒2 ∈ 𝐸2 and one edge 𝑒1 × 𝑉2 for each 𝑒1 ∈ 𝐸1.
This “full” product was applied to pairs of complete
graphs.

vi. Last, we considered “tensors”, generalizations
of matrix designs where we take successive
Cartesian products of single-pool designs :
SP*

𝑛�SP*
𝑛� . . .�SP*

𝑛 =
(︀

SP*
𝑛

)︀�𝑑 where the
square in exponent means that we take a power
with respect to the Cartesian product. They can
be described as higher-dimensional “arrays”, each
sample being identified by a 𝑑-vector of coordinates
with values in {1, . . . , 𝑛}, and pools correspond to
“cardinal lines” where all samples differ by only
one coordinate.

(︀
SP*

𝑛

)︀�𝑑 has 𝑁 = 𝑛𝑑 samples,
each in 𝐿 = 𝑑 pools, and 𝑀 = 𝑑𝑛𝑑−1 pools of size
𝐾 = 𝑛. Since we can freely tune 𝐿 and 𝐾 and
since pools intersect at at most one one samples,
Theorem 3 of [MT11] applies: by choosing 𝑛

and 𝑑 adequatly in term of 𝑝, ETS(
(︀

SP*
𝑛

)︀�𝑑
, 𝑝)

can be made minimal among all designs within a
multiplicative constant tending to 1 as 𝑝 goes to
0. This gives explicit examples of asymptotically
optimal designs, instead of the random designs
proposed in [MT11]. However, tensors are absurdly
large when 𝑛 and 𝑑 increase (e.g. 𝑛 = 10 and 𝑑 = 6
already yields a million samples), and the few ones
that satisfy constraints (1) and (2) did not perform
as well as some other designs.

6.8 Number of second-round tests
A close inspection of the curves of 𝑝 ↦→ ETS(𝑝, 𝐷) shows
an interesting phenomenon: for 𝐷 = SP𝑛 this func-
tion has positive derivative at 0, so that the number
of second-round tests is roughly proportional to 𝑝; but
when 𝐷 is 1-perfect, the derivative is 0 at 0, see Figure
7 (this is also easily proven from the definition of deriva-
tive). Having vanishing derivative at 0 means that for
small 𝑝 the number of second-round test is much smaller
than proportional in 𝑝. In fact, the optimality range of
the designs in Table 1 can be observed to correspond to
the region where the derivative in 𝑝 of ETS(𝑝, 𝐷) starts
to increase steeply, and this is easily understood: for
smaller 𝑝, the number of first-round tests is higher than
for other designs, and for larger 𝑝 the number of second-
round tests increases – this phenomenon is typical when
considering the envelope of a family of curves.

To make this remark quantitative, let us extract from
Table 1 the average number of second-round test per

sample for a selection of values of 𝑝. This is obtained
simply as ETS(𝑝, 𝐷)− 𝑀

𝑁 , since ETS(𝑝, 𝐷) is the average
total number of tests, and 𝑀

𝑁 the number of first-round
tests. The values are given in Table 2. We observe that
at 𝑝 = 13%, while the single-pool-of-three is as efficient
as 𝐾*

6 in terms of ETS, it induces significantly more
second-round tests. Both the number of second-round
tests and their proportion among performed tests de-
crease rapidly with 𝑝, when 1-perfect designs are used.
At 𝑝 = .1%, e.g. when broadly screening a mildly af-
fected population, the design 𝐾*

44 induces a twentyfold
decrease in the overall number of tests needed, while
only incuring second-round-induced delay for .2% of the
individual tested. This show that two-round testing can
be both efficient and quick. For very small 𝑝, while
single-pool designs with large 𝑛 are able to fit into the
constraint (2), they induce a large number of second-
round tests.

7 Heuristics for searching good
designs.

In this closing section we discuss the search for efficient
pooling designs, starting with heuristics provided by in-
formation theory.

7.1 Information theory and efficient designs
The basic tool is the entropy function: if 𝑋 is a ran-
dom variable taking 𝑛 values 𝑥1, . . . , 𝑥𝑛 with probabil-
ities 𝑝1, . . . , 𝑝𝑛 (so that 𝑝𝑖 > 0 and

∑︀
𝑖 𝑝𝑖 = 1), one

defines

𝐻(𝑋) = 𝐻(𝑝1, . . . , 𝑝𝑛) =
∑︁

𝑖

𝑝𝑖 log2
1
𝑝𝑖

.

The main properties of 𝐻 are:

i. if a random variable 𝑌 can be expressed as a func-
tion of 𝑋, then 𝐻(𝑌 ) ≤ 𝐻(𝑋),

ii. if 𝑋 takes only two values, then 𝐻(𝑋) ≤ 1 with
equality when these values are taken with probabil-
ity 1

2 ,

iii. if 𝑋1, . . . , 𝑋𝑘 are random variables, we can
consider the aggregate random variable 𝑋 =
(𝑋1, . . . , 𝑋𝑘) giving the tuple of their outcomes;
then 𝐻(𝑋1, . . . , 𝑋𝑘) ≤

∑︀
𝑗 𝐻(𝑋𝑗) with equality

when the (𝑋𝑗) are independent.

When performing two-rounds group testing, we recon-
struct the random variable 𝑌 giving the status of our 𝑁
individual, positive or negative, from the random vari-
able 𝑋 aggregating the results of both rounds. That
this reconstruction is possible implies that 𝑌 can be ex-
pressed as a function of 𝑋, so that 𝐻(𝑋) ≥ 𝐻(𝑌 ) =
𝑁𝑝 log2

1
𝑝 when the individual are positive with prob-

ability 𝑝 and independent from each other, as in our
model. Meanwhile, 𝑋 consists in a random number of
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Figure 7: The curves 𝑝 ↦→ ETS(𝑝, 𝐷) have positive derivatives at 0 for 𝐷 a single-pool design (left, selection of
SP𝑛), but vanishing derivative at 0 for 1-perfect designs (right, selection of 𝐾*

𝑛)

Design 𝑝 ETS Second-round tests per sample
20% .82 .49SP3 13% .67 .34

𝐾*
6 13% .67 .27

𝐾*
8 8% .50 .21

STS*
25 5% .36 .11

STS*
33 3% .26 .07

4-BIBD*
85 2% .19 .04

STS*
67 1% .12 .03

𝐾*
7 �𝐾*

10 .5% .084 .010
𝐾*

44 .1% .049 .002
SP100 → 0 → .01 ∼ 100𝑝

Table 2: Average number of second-round tests per sample for optimal designs.
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bits of information, on average 𝑁 ETS(𝐷, 𝑝). It follows
that 𝐻(𝑋) ≤ 𝑁 ETS(𝐷, 𝑝), implying

ETS(𝐷, 𝑝) ≥ 𝑝 log2
1
𝑝

which is the information bound we mentioned. This
bound can be strengthened, at least for low 𝑝, for two-
round pooled testing [MT11]. Trying to get as close to
the information bound as possible and taking inspira-
tion from the proof of the improved bound, we can give
good heuristics for important parameters of designs.

First, let us look at the first round. Using a greedy
approach, we can try to have every test provide as much
information as possible, meaning we would like

i. the probability for each pool to be positive to be as
close to 1

2 as possible, and

ii. the results of different pools to be as independent
as possible.

The first condition is realized by pools all of the same
size 𝐾, where 𝐾 should make (1 − 𝑝)𝐾 as close to 1

2 as
possible. Values are shown in Table 3, where we compare
with the designs that performed best in our experiments.
Some discrepancy is expected due to the crudeness of the
heuristic; at very small 𝑝, the constraints we put on the
design seem to have a strong effect toward smaller pools.

The second condition can be fully realized only by
taking disjoint pools; but this prevents 1-perfectness of
the design, and more importantly it will result in too
much loss of information in the second round. Some
intersection being necessary, keeping the intersections
frequently small will get us close to independence. In
particular, asking every two pools to intersect in at most
one sample is a good way to ensure almost-independence
of pool results.

Let us turn to the second round. It could feel ir-
relevant as the number of tests performed then is di-
rectly decided by the results of the first round; but the
information bound tells us that this number must be
large enough to cover the information missed in the first
round. It can only be low if each second-round test
provides a large amount of information, which we can
try heuristically to optimize. Again, we would like each
test to be positive with a probability close to 1

2 , and
all second-round tests to be as independent as possible.
For independence, we want again pools to intersect as
little as possible, so that different sample of unknown
status are not linked too strongly; we are again led to
assume that any two different pools intersect in at most
one sample. To estimate the information provided by
testing an unknown sample, by a slight simplification
we can consider the probability of being tested positive
for a sample 𝑥 of unknown status knowing that the 𝐿
pools containing it are positive. This disregards some
information, but likely a negligible amount at least for
small enough 𝑝 (see again [MT11]). With the assump-
tion just made, and assuming all pools have the same

size 𝐾, this conditional probability is

𝑝

𝑝 + (1 − 𝑝)
(︀
1 − (1 − 𝑝)𝐾−1

)︀𝐿
.

Given 𝐾 (e.g. the heuristically optimal one for the first
round), we can thus optimize 𝐿 to make this as close as
1
2 as possible. For example, we observe that at 𝑝 = 30%,
taking 𝐾 = 2 or 𝐾 = 3 leads to 𝐿 = 1, but 𝐾 = 3 gives
a result closer to 1

2 . This can be seen as an explanation
for the design with a single pool of 3 performing better
than the design with a single pool of 2. However in
general it is difficult to define an optimal pair (𝐾, 𝐿),
since we do not know the relative weight of the first and
second round.

Table 3 compares at different values of 𝑝 the values of
𝐾 and 𝐿 suggested by this heuristic with their values for
the best designs we tested. At low 𝑝, the size of pools is
brought down in practice by the constraint on the size
of designs; observe that using a tensor product, we can
easily realize a 1-perfect design with 𝐾 = 99 and 𝐿 = 7,
but with exceedingly large size 𝑁 = 997 > 9 · 1013.
We also see some discrepancy early on in the number of
pools each sample should be in, which is higher in the
heuristic than in the best design we know of. It rather
seems to be a limitations of the heuristic reasoning since
for example for 𝑝 = 11%, we did test a design with
𝐾 = 6 and 𝐿 = 3 (a tensor design) but it performed
significantly worse than duals of complete graphs.

7.2 The role of constraint (2) at small 𝑝

To better understand why the 𝐾*
𝑛 perform so well at

small 𝑝, let us explain how, for very small 𝑝, the con-
straint (2) kicks in to strongly restrain the available de-
signs.

Theorem 1. Let 𝐷 = (𝑉, 𝐸) be a 1-perfect design where
any two pools intersect in at most one sample, and sat-
isfying constraint (2): 𝑁 ≤ 1000. Then its number of
pools 𝑀 satisfies

𝑀

𝑁
≥ 1 +

√
8001

2000 > 0.045224.

Recall that 𝑀/𝑁 is the limit of ETS(𝐷, 𝑝) as 𝑝 goes
to 0; and 𝐾*

45 has 𝑁 ′ = 990 samples and 𝑀 ′ = 45 pools,
thus

lim
𝑝→0

ETS(𝐷, 𝑝) > .995 × 45
990 = .995 lim

𝑝→0
ETS(𝐾*

45, 𝑝),

i.e. for small enough 𝑝, under the three constraints of
the above theorem, 𝐾*

45 cannot be improved by more
than half a percent. At very small 𝑝, one is thus lead to
either give up on 1-perfectness (but then any increase in
𝑝 will increase sharply ETS and delay many tests to the
second-round); or stick with 𝐾*

45. The most promising
direction to improve on this current state of affairs seems
to seek 1-perfect designs with close to 1000 samples and
less than 40 pools, intersecting pairwise in 2 samples.
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𝑝 heuristic suggested Best known designs
𝐾 then 𝐿 (𝐾, 𝐿)

25% – 30% 2 1 (3, 1)
18% – 24% 3 1 (3, 1)
15% – 17% 4 2 (3, 1), (5, 2)
12% – 14% 5 2 (3, 1), (5, 2), (6, 2), (7, 2)

11% 6 3 (5, 2), (6, 2), (7, 2)
9% – 10% 7 3 (5, 2), (6, 2), (7, 2), (8, 2)

8% 8 3 (6, 2), (7, 2), (8, 2)
7% 10 4 (7, 2), (8, 2)
6% 11 4 (8, 2), (12, 3), (13, 3)
5% 14 4 (12, 3), (13, 3)
4% 17 4 (13, 3), (16, 3)
3% 23 5 (16, 3), (18, 3), (19, 3), (24, 4), (25, 4)
2% 34 5 (28, 4), (29, 4), (32, 4), (33, 4)
1% 69 7 (33, 3), (36, 3)
.7% 99 7 (36, 3), (54, 4)

≤ .6% > 100

Table 3: Heuristic optimization of parameters.
Parameter suggested by the information heuristic, without constraints (1) and (2), are compared with the
experimentally best performing designs (which abide by constraints (1) and (2)).

Proof. As explained in Section 5.3.6, we can assume that
for each sample 𝑠 ∈ 𝑉 , there are at least two elements in
the set 𝐸𝑠 of all pools containing 𝑠 (otherwise either 𝐷
is not 1-perfect, or there is a pool with a single sample
which can be removed while improving 𝐷).

In the bipartite graph representation of 𝐷, we consider
the set

𝐴 = {(𝑠, {𝑔1, 𝑔2}) | 𝑠 ∈ 𝑉, 𝑔1 ̸= 𝑔2 ∈ 𝐸, 𝑠 ∈ 𝑔1, 𝑠 ∈ 𝑔2}

of pairs of incidences (𝑠 ∈ 𝑔) that share the same sam-
ple. We count the number of elements of 𝐴 in two dif-
ferent ways. First, every 𝑠 has at least one incident pair
{𝑔1, 𝑔2} so that |𝐴| ≥ 𝑁 . Second, since pairs of pools
intersect in at most one sample,

|𝐴| =
∑︁

{𝑔1 ̸=𝑔2∈𝐸}

⃒⃒
{𝑠 ∈ 𝑉 | 𝑠 ∈ 𝑔1, 𝑠 ∈ 𝑔2}

⃒⃒
≤

⃒⃒
{{𝑔1 ̸= 𝑔2 ∈ 𝐸}

⃒⃒
= 𝑀(𝑀 − 1)

2 .

Denoting by 𝛼 the ratio 𝑀/𝑁 , combining both counts
we get 𝑁 ≤ 𝛼𝑁(𝛼𝑁 − 1)/2. Simplifying and using 𝑁 ≤
1000 yields

2 ≤ 𝛼(1000𝛼 − 1).

This is a degree two inequality, developing and complet-
ing the square we obtain 𝛼 ≥ (1 +

√
8001)/2000.

A similar computation shows that if we further restrict
to regular designs, to beat 𝐾*

45 at small 𝑝 it is necessary
that 𝐿 = 2; and if we wanted to take 𝐿 ≥ 3 and relax
(2), we would have 𝑁 significantly larger than 2000.
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