
HAL Id: hal-03851566
https://hal.science/hal-03851566

Submitted on 14 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Local parking procedures on the integers
Philippe Nadeau

To cite this version:
Philippe Nadeau. Local parking procedures on the integers. Discrete Mathematics Days 2022, Jul
2022, Santander, Spain. pp.200–205. �hal-03851566�

https://hal.science/hal-03851566
https://hal.archives-ouvertes.fr

Discrete Math Days, Santander, July 4–6, 2022

Local parking procedures on the integers ∗

Philippe Nadeau†1

1Univ Lyon, CNRS, Université Claude Bernard Lyon 1, UMR 5208, Institut Camille Jordan, 43 Blvd.
du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France

Abstract

We introduce a large class of parking procedures on Z generalizing the classical one. This class
is characterized by natural local constraints that the procedures must satisfy. We uncover some nice
combinatorics attached to such procedures, including a certain universal enumeration formula.

1 Introduction

Classical parking functions (or words) are one of the fundamental objects of enumerative and algebraic
combinatorics, connected to various structures such as noncrossing partitions, hyperplane arrange-
ments, and many others: see for instance the survey [8] and references therein. The corresponding
parking procedure on Z was originally defined as a very simple hashing procedure [4].

We recall their definition informally: r cars want to park on an empty street where the spots are
labeled by 1, 2, . . . , r from left to right. The cars arrive successively, and the ith car has a preferred
spot vi. If its spot is available, it parks there, and if not it parks in the nearest available spot on the
right. The function v : i 7→ vi is called a parking function if at the end, all cars managed to park.

The main result is that the number of parking functions is given by the simple formula (r + 1)r−1.
Another standard result is the following characterization: v : i 7→ vi is a parking function if and only
if for any k = 1, . . . , r, there are at least k indices i such that 1 ≤ vi ≤ k.

In ongoing joint work with Vasu Tewari [6], the authors defined procedures that could be rephrased as
certain parking1 algorithms themselves. This gave the idea to define a general mathematical framework
for these procedures, which is the content of this abstract.

We first describe the local procedures P that we want to consider. We will then see that the
enumeration (r + 1)r−1 is in a sense universal for our parking procedures, see Corollary 9. We also
describe some natural connection with the combinatorics of binary trees via a natural encoding, and
finally define certain extensions of our model.

2 Our setup

We first slightly extend the sequence of desired spots from the cars. Let S be any set, and consider
the alphabet A = Z × S. The set S represents some extra information: in terms of cars, one might
consider its brand or color. We let val : A = Z × S → Z be the projection to the first factor, which
represents the desired spot. As we will see the second factor in S will be carried along nicely in our
construction, and we will focus mostly on the values.

∗The full version of this work will be published elsewhere. This research is partially supported by the project ANR19-
CE48-011-01 (COMBINÉ)

†Email: nadeau@math.univ-lyon1.fr.
1We use parking in a loose fashion in this whole abstract, as we do not focus on any practical application of the

procedures but rather on the combinatorial structures that they give rise to.

Discrete Math Days, Santander, July 4–6, 2022

Remark 1. When S is a singleton S = {•}, we identify A ∼= Z and val is the identity.

A sequence of incoming cars is given by a word a1a2 . . . ar with ai ∈ A = Z × S, read from left to
right. The ith car wants to park in val(ai).

We want to describe certain functions

P : A∗ → Fin(Z) = {I ⊂ Z | #I < +∞}.

P(a1 · · · ar) is the subset of occupied spots after cars with preferences a1, . . . , ar ∈ Z× S have arrived
successively. We define our parking procedures on Z –instead of a finite or semiinfinite interval– in order
to get rid of any boundary effect. For an element of Fin(Z), its (maximal) intervals are its connected
components as an induced graph of Z.

Remark 2. More generally, one can require P to be a partial function, that is, to be defined on a
subset L ⊂ A∗. It is reasonable to require that L be closed under deleting a letter at any position, that
is, that L be closed under taking subwords. For example, one can forbid certain letters in A to occur
more than a certain number of times.

In our models all cars are able to park, and cars do not move again once they’re parked : P(ε) = ∅,
and for any W ∈ A∗, a ∈ A we have P(Wa) = P(W) t {i} for a certain i ∈ Z.

We denote ls(Wa) := i, which is the spot where the last car parks. If W = a1 · · · ar, then the function
πW : {1, . . . , r} → P(W), i 7→ ls(a1a2 · · · ai) is a bijection.

We now define the first two requirements for P, which can be summarized as: If your desired spot
is available, park there, otherwise park to the nearest spot either to the left or to the right.

• (Lucky parking) If val(a) /∈ P(W), then ls(Wa) = val(a);

• (Local move) If val(a) ∈ P(W), let [t, u] be the maximal interval of P(W) such that val(a) ∈
[t, u]. Then ls(Wa) ∈ {t− 1, u+ 1}.

To define P, it thus suffices to determine a “rule” that picks either ls(Wa) = t− 1, left, or ls(Wa) =
u+ 1, right, whenever val(a) ∈ P(W), that is when the desired spot is occupied. We will require such
a rule to be local in some specific way described by the last two conditions.

Remark 3. Note that a recent variation of parking functions, k-Naples functions [1], do not enter our
framework. The rule there is to back up k spots before finding the first available spot on the right, which
sometimes contradicts the previous requirements.

We now come to the remaining two constraints on the functions P. Informally, we require invariance
under translation (shift), and that left/right decisions must depend only on the subsequence of cars
that parked on the encountered interval.

Mathematically speaking, let τ : i 7→ i + 1 be the shift on Z. It extends to subsets of Z. Also, if
a = (i, s), define τ(a) = (i+ 1, s) and extend to words.

• (Shift invariance) For any W , P(τ(W)) = τ(P(W)).

• (Local decision) Consider an interval I that is maximal in P(W) and P(W ′) for two words W
and W ′, such that in both words the subword corresponding to the cars parked in I is identical.
Then for any a such that val(a) ∈ I, ls(Wa) = ls(W ′a).

Definition 4. We declare a parking procedure P to be local if it satisfies Lucky parking, Local
move, Shift invariance and Local decision.

Discrete Math Days, Santander, July 4–6, 2022

All these requirements may not seem completely natural at first sight, but their motivation and use
will become clearer in the next sections.

Example 5. The classical parking procedure Pusual is obtained in the standard case A = Z by always
picking the nearest spot to the right.

Example 6. The CS-parking procedure2 PCS will be introduced and studied in [6]. We consider the
standard case A = Z. To define PCS inductively, let W,a, I such that I is a maximal interval of
PCS(W) and a ∈ I. Let j ∈ {1, . . . , r} be maximal such that aj ∈ I (“last car that parked on the
interval”). Then if a < aj park left of I, and if a ≥ aj park right: this defines PCS(Wa).

So one needs to remember, for each maximal interval, where the last car that parked there had wanted
to park. We indicate this with a red cross above certain cars (= blue dots) in the illustration below for
the word W = 5.11.8.3.9.3.2, which shows PCS(W) = {2, 3, 4, 5, 8, 9, 11}.

0 1 2 3 4 5 6 7 8 9 10 11 12−1

0 1 2 3 4 5 6 7 8 9 10 11 12−1

0 1 2 3 4 5 6 7 8 9 10 11 12−1

0 1 2 3 4 5 6 7 8 9 10 11 12−1

5.11.8.3

9

3

2

3 Enumeration

We consider P any local parking procedure, here and in the rest of this abstract.

Definition 7. A word a1 · · · ar is a P-parking word if P(a1 · · · ar) = {1, . . . , r}.

Let Park(P) be the set of parking words for $P. Classical parking functions/words correspond
clearly to the case Pusual. The case of PCS-parking words is of particular importance in [6], and was
one of the motivations for the present abstract.

Here we fix i ≤ r. Let Ai[r+1] be the set of words of length i and letters with values in [r + 1] =

{1, . . . , r + 1}.

Cyclic parking We define P(r) to be the cyclic version of P, as follows: It is defined on Ai[r+1] for any

i ≤ r and its image is a subset of Z/(r + 1)Z of size i. Suppose P(r)(W) is defined for i < r, and pick
a letter a with val(a) ∈ [r + 1]. If val(a) 6∈ P(r)(W), park it at val(a). If not, one checks readily that
the conditions Shift invariance and Local decision allow us to determine unambiguously to park
left or right, based on any lift of P(r)(W) to Z, and thus to define P(r)(Wa).

If W ∈ Ai[r+1] and k ∈ {1, . . . , r+ 1}, define W [k] ∈ Ai[r+1] to be the word obtained by replacing each

letter (a, s) with ((τk(a) mod r + 1, s). We have the following easy lemma:

2The full procedure has extra information S = N and we only allow words on A = Z× N without repeated letters, in
the sense of Remark 2. Letters in A = Z × N are then ordered lexicographically for comparison (note that a = aj does
not occur in this setting).

Discrete Math Days, Santander, July 4–6, 2022

Lemma 8 (“Pollak’s argument”). Let W ∈ Ar[r+1] and k ∈ {1, . . . , r + 1}.
Then P(r)(W) = Z/(r + 1)Z− {k} if and only if W [k] is in Park(P).

Now for any G ⊂ Ar+1
r , define G[k] = {W [k] | W ∈ G}. From the previous lemma one obtains:

r∑
k=0

Park(G[k]) = |G|. (1)

In particular, if G is stable under cyclic shift, that is G = G[1] and thus G = G[k] for all k, we have

Park(G) = |G|
r+1 . In the standard case A = Z, we can take G = {1, . . . , r + 1}r and get:

Corollary 9. For any standard parking procedure P, the number of P-parking words of length r is
given by (r + 1)r−1.

This shows that the enumeration of parking functions is universal for all such standard procedures.
For instance, the CS-parking functions are enumerated by (r + 1)r−1. Note that however there does
not seem to be any nice characterization of them, in contrast to the one for usual parking functions
recalled in the introduction. More generally, the properties of P-parking functions may differ vastly
depending on the procedures, even if their enumeration is the same.

4 Encoding with binary trees

Clearly the parking procedures P are not injective in general: even if we know πW , which encodes
occupied spots for each prefix of a word W , we cannot reconstruct W . Here we will define a general
lift of the parking procedure that completely encodes the word W .

Recall that a (finite, plane, binary) tree is defined recursively as either empty or consisting of a node,
a left subtree and a right subtree. Its size is its number of nodes. These are well-known to be in bijection
with complete binary trees by attaching extra leaves. A forest is then usually defined as a set of trees.
Here we will always mean indexed forests, as illustrated below: each binary tree is first completed, and
naturally attached to an interval of Z, and these intervals must be the maximal intervals of a finite
subset of Z called the support of the forest. The support in the example is {2, 3, 4, 5, 6, 7, 11, 14, 15}.
Elements of the support correspond bijectively to nodes of the forest, as illustrated by the arrows in
the figure: this is the canonical labeling of the nodes.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17−1

Given a procedure P and a word W , we will recursively attach a pair (P,Q) of labeled forests with
the same underlying forest3 of size r. P will be labeled by the multiset of letters of W , while Q is
decreasing : it has labels {1, . . . , r} and each node has greater label than all its descendants.

Construction Assume (P ′, Q′) = P̂(W) where W has size r. By induction we have that the common
support of P̂(W) is the subset P(W) of size r. Consider a letter a, and let i = ls(Wa). We distinguish
three cases in order to define P :

1. P(Wa) has one more interval than P(W). This interval is necessarily the singleton {i}. In this
case add to P ′ a single node tree canonically labeled by i, and label it by a: this defines P .

3Equivalently, one could of course gather the two labelings on the underlying shape.

Discrete Math Days, Santander, July 4–6, 2022

2. P(Wa) has one fewer interval than P(W). So i is adjacent to two intervals of P(W), correspond-
ing inductively to two trees of P̂(W). We add a new root labeled a in P ′ and attach to it the
two subtrees. This gives P , in which the new node has canonical labeling i.

3. P(Wa) and P(W) have the same number of intervals. In this case i is on the left or right of an
interval of P(W), but not adjacent to any other interval. We add a new root labeled a in P ′ and
attach to it the subtree corresponding to the interval: it is attached as a right subtree if i is on
the left, and as a left subtree if i is on the right.

In all cases, Q is obtained from Q′ by labeling the new node by r + 1. It is immediate by that Q is
decreasing.

Definition 10. The encoding P̂ : A∗ 7→ (P,Q) is called the P-correspondence.

Here is this correspondence for PCS with the word W = 5.11.8.3.9.3.2 from our previous example:

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

P

Q

2

3

3
8

9

115

7

6

2

5

314

The encoding P̂ can be thought of as recording the full history of the parking process. Let us list
some immediate properties for any local procedure P:

• A word is P-parking if and only if it results in a single tree with support {1, . . . , r} via the
P-correspondence.

• The P-correspondence is injective: the word W can be reconstructed by reading off the labels of
P in the increasing order given by the labeling of Q.

• The canonical labeling of a node is the spot where the corresponding car ended up parking.

Note that the conditions Shift invariance and Local decision are not necessary for this construc-
tion and properties. Roughly speaking, they determine what kind of P -labelings may occur in the
image.

The correspondence is particularly nice if for any P in the image, all Q with same underlying tree
give a pair (P,Q) in the image of P̂. In that case the image of P̂ is determined once we know what
labeled trees P can occur.

This is the case for our running examples: For Pusual, a valid labeling of a node is the canonical label
of one of its left descendants (or its own). For PCS , a valid labeling of a node has to be weakly larger
than the label of its left child, and strictly smaller than the label of its right child (if such children are
not present, use instead the canonical label of the node).

5 Extensions

5.1 Probabilistic parking

To add probabilities to the setting, one can ask how likely it is for a word to be parking. One can also
study properties of P-parking words picked uniformly at random for instance. In the classical case this

Discrete Math Days, Santander, July 4–6, 2022

is very natural from the hashing viewpoint, see [2, 3].

It is also possible to probabilize the procedures themselves, by having P associate to each word
W a finite probability measure on Fin(Z). The local requirements extend naturally to define such
procedures, as do most results given in this abstract. One may then ask: what is the probability of a
fixed W to be parking ?

Such a procedure is defined at the end of [4]: one flips a (fixed) coin to determine to park left or right.
Another possibility is to do a random walk on the interval that is hit, so that parking on the left/right
depends on the interval size, and where one desires to park. This leads to the rich combinatorics of
remixed Eulerian numbers, introduced by the author with Vasu Tewari [7].

5.2 Special subclasses

A natural subclass of parking procedures consists of those where the parking decisions only depend on
the set of occupied spots:

Definition 11. A parking procedure P is called Markovian if there exists a function M : Fin(Z)×A→
Fin(Z) such that P(a1 · · · ara) = M(P(a1 · · · ar), a) for any letters a1, · · · , ar, a.

Clearly Pusual is Markovian, while PCS is not (one needs the red crosses in the figure).

Definition 12. A parking procedure P is called abelian if P(a1 · · · ar) = P(aσ1 · · · aσr) for any letters
a1, . . . , ar and any permutation σ.

Pusual is abelian, as can be seen immediately from the characterization of parking words in the
introduction. PCS is not, as 112 is parking while 121 is not. It would be interesting to determine other
abelian procedures, as these are probably quite rare. One can for instance show that if a standard
procedure P is abelian and Markovian, it is either Pusual or the symmetric “always go left” version.

References

[1] A. Christensen, P. E. Harris, Z. Jones, M. Loving, A. Ramos Rodriguez, J. Rennie, and G. Rojas Kirby,
A generalization of parking functions allowing backward movement, Electron. J. Combin. 27(1) (2020),
#P1.33.

[2] P. Diaconis and A. Hicks, Probabilizing parking functions, Adv. in Appl. Math. 89 (2017), 125–155.

[3] P. Flajolet, P. Poblete and A. Viola , On the Analysis of Linear Probing Hashing, Algorithmica. 22 (1998),
490–515.

[4] A.G. Konheim and B. Weiss, An occupancy discipline and applications, SIAM J. Appl. Math. 14 (1966),
1266–1274.

[5] R. P. Stanley and J. Pitman. A polytope related to empirical distributions, plane trees, parking functions,
and the associahedron. Discrete Comput. Geom. 27(4), (2002), 603–634.

[6] P. Nadeau and V. Tewari, Schubert coefficients for the permutahedral variety, in preparation.

[7] P. Nadeau and V. Tewari, A q-deformation of an algebra of Klyachko and Macdonald’s reduced word
formula, preprint, 2021, arxiv:2106.03828.

[8] C. H. Yan, Parking functions, in Handbook of enumerative combinatorics, Discrete Math. Appl. (Boca
Raton), CRC Press, Boca Raton, FL, 2015, 835–893.

	Introduction
	Our setup
	Enumeration
	Encoding with binary trees
	Extensions
	Probabilistic parking
	Special subclasses

