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Abstract—This paper deals with the near-ground propagation
of electromagnetic waves, when the emitting antenna is a finite
length dipole, rather than an elementary one. The existing
propagation model for an elementary Hertzian dipole is extended
to a realistic case by assuming a known current distribution over
the finite-length dipole. Validation of the theoretical models by
an electromagnetic simulator (NEC2d) is also presented in this
article.

Index Terms—Near-ground propagation model, finite-length
dipole antennas, Vertical electric dipole.

I. INTRODUCTION

Wireless sensor networks (WSN) have been widely de-
ployed for environment and urban monitoring purposes. In
some cases, sensors are placed close to a lossy interface in
order to collect data of interest (e.g. precision agriculture or
structural health monitoring of civil engineering infrastruc-
tures). Various measurement-based studies can be found to
treat the near-ground wireless channel [1], [2]. More sophis-
ticated physics-based yet easy-to-use propagation models for
near-ground sensor networks are scarce [3], [4].

The radiation of a near-ground sensor may typically be
handled by the famous Sommerfeld half-space problem. The
Sommerfeld formulation is widely accepted in the community
and can be validated by rigorous mathematical treatment
[5]–[8]. However, the parameter manipulation for a link de-
signer may be complicated using the accurate analysis of the
problem and the associated Green’s functions formalism [9].
The steepest descent technique can provide an asymptotic
approximation of the field radiated by an elementary dipole
over a lossy interface [10], [11].

In [12], authors have highlighted a region with an improved
path loss for the near-ground link of an elementary Vertical
Electric Dipole (VED). This region is bounded between two
critical distances where the surface wave becomes predom-
inant. Analytical expressions for the estimation of the two
critical distances, i.e. the beginning and the end of the region of
interest, have been obtained. Although the simple and ready-
to-use expressions presented in this paper make the prediction
of the wave propagation easier, yet the validity of them is
not guarantied for a finite-length antenna in a near-ground
scenario.

In this paper, we propose an asymptotic extension for the
near-ground propagation model of a VED seen in [12], in

order to adapt it to the finite-length dipole antenna. In section
II, the problem of the near-ground link is described and the
asymptotic extension of the VED problem to the case of
finite-length Vertical Dipole (VD) is presented. Section III
demonstrates the domain of validity of the extended model
using the electromagnetic simulator NEC2d as reference. The
critical distances for the VD case are estimated in section IV
and are compared to those of the VED, followed by a complete
parametric study, before concluding in section V.

II. HALF-SPACE PROBLEM FOR VED AND VD

In this section, the well-know radiation model of an in-
finitesimal Vertical Electric Dipole (VED) over a lossy in-
terface is reviewed and extended to obtain an asymptotic
radiation model for a finite-length Vertical Dipole (VD) cor-
responding to a realistic antenna.

A. Infinitesimal model

The Sommerfeld half-space problem for a Hertzian dipole
invokes image theory. As we can see in Fig.1, the model
of the problem is composed of an infinite lossy interface
dividing the space into two different media, the source (VED)
and the observation point being placed in medium 1. All the
parameters of the model are summarised in Table 1. In such a
scenario, the propagation is due to three wave components: the
direct wave, the reflected wave and a third component namely
the surface wave, due to the diffraction by the interface.
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Fig. 1: Schematic of a VED radiating over a lossy half-space
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TABLE I: Parameters of the problem

Param. Description
δl Infinitesimal length of VED
ht Height of VED
hr Height of observation point P
ρ Radial distance between VED and observation point P
z Vertical distance between VED and observation point P

z ∈]− ht,∞[
(εi, µi, σi) Electromagnetic characteristics of propagation medium

(i = 1) and lossy medium (i = 2)

The radiated electric field of a VED over a lossy interface
can be estimated with a good accuracy by its dominant
component, EVED

z [13]. As demonstrated in [12], the EVED
z

component of the electric field radiated by a VED over an
interface is given by:

EVED
z (ρ, z) = −jI0δlη1k1

[
sin2(θ)

e−jk1r

4πr

+
ε2jkz1 − ε1jkz2
ε2jkz1 + ε1jkz2

sin2(θI)
e−jk1rI

4πrI

− j
1− j

√
πτe−τerfc(j

√
τ)√

sin (θI)
[
cos (ωp − θI)− 1

]
×
√
2 sin7(ωp)

n2

1− n2
cos(ωp)

e−jk1rI

4πrI

]
= I0δlf(ρ, z) (1)

where the radiuses and angles (r, θ) and (rI , θI) are func-
tions of ρ and z which are related to the relative positions
of the observation point P , the VED and the VED image
(see Fig. 1). I0δl is the dipolar moment of the VED, η1
is the medium impedance, k1 is the wavenumber, ωp =
arccos(

√
ε1/(ε1 + ε2)) is the pole of the reflection coefficient,

n =
√
ε2/ε1 is the refractive index provided that the first

medium is vacuum, and τ(ρ, z) = jk1rI [cos(ωp − θI)− 1] is
the numerical distance [12].

B. Extension of the infinitesimal model

In order to adapt the infinitesimal model seen in (1) to a
finite-length VD case, we assume that the VD of length L and
radius a is composed of an infinite set of elementary dipoles,
each one having an infinitesimal length of δl and a specific
current value. This approach is legitimated by [14], where the
author uses it to obtain the field components of a VD. The
exact value of each current element is obviously unknown and
needs to be calculated by a rigorous computational method
such as the method of moments [15]. However, as a good
approximation, the current distribution over a VD can be given
by the Storer’s variational method (valid for L/λ ∈]0, 1.5])
[16]. For a feeding voltage of 1V, the current distribution of
a dipole centred at z′ = 0 has the following form:

I(z′) = A sin
[
k1(

L
2 −|z′|)

]
+B

(
1−cos

[
k1(

L
2 −|z′|)

])
(2)

where z′ ∈ [−L/2, L/2] defines the vertical position over
the dipole, and A and B are complex coefficients varying
according to the length and the radius of VD. The evolution

of theses coefficients according to the VD normalised length
and for a given form factor Ω = 2 ln(L/a) is drawn in Fig. 2:
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Fig. 2: Storer’s coefficients for a given form factor of Ω = 15

The total field EVD
z radiated by the VD can be seen as

the superposition of the fields EVED
z of each VED [14]. The

expression for EVD
z is consequently given by :

EVD
z =

∫ +L/2

−L/2

I(z′)f(ρ, z − z′)dz′ (3)

For a fair comparison of the fields radiated by an infinitesimal
and a finite-length dipole, the dipolar moment of the VED
is driven by calculating that of the VD. The right side of
(4) provides the dipolar moment of the VD. The following
equivalence can thus be obtained:

I0δl =

∫ +L/2

−L/2

I(z′)dz′

=
λ

π

{
A
[
1− cos(k1L

2 )
]
+B

[
k1L
2 − sin(k1L

2 )
]}

(4)

In the following sections, this equivalence is systematically
applied to estimate the excitation current of VED.

III. VALIDATION OF THE EXTENDED MODEL

In this section, we validate the extended model using
NEC2d [17]. To this aim, two test configurations are con-
sidered, and their main parameters are summarised in Table
II. The first configuration presents a typical example of sea-
propagation and maritime radio-communications [18]. For the
second configuration, the parameters have been chosen to
achieve a near-ground wireless communication, where the
ground has been coated by a layer of low-cost graphite [19]
in order to possibly improve the path loss. The electric fields
radiated by VED (EVED

z ) and by VD obtained by the extended
model (EVD

z ) and by NEC2d (ENEC
z ) are shown and compared

in Fig. 3.

TABLE II: Test configurations

f ht hr L Ω εr σ2

(MHz) (λ) (λ) (λ) (S/m)
Config. 1 5 1 1 0.25 10 81 5
Config. 2 2450 0.5 0.5 0.5 15 3 1e4

The figure shows that the extended model gives the same
result as the infinitesimal model and presents a quasi-constant
difference of less than 0.5 dB with the NEC2d simulation over
a large interval of radial distances ρ in the far-field region. This
difference is supposedly due to the Storer’s current distribution
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Fig. 3: Evolution of |Ez| as a function of the radial distance
(ρ) for both test configurations

which is valid for a dipole in free space and would be altered
by the presence of the lossy interface.

Using an electromagnetic simulator, e.g. NEC2d, we are
able to quantify the difference between the current distribution
given by Storer’s formulation (neglecting the interface) and ob-
tained by NEC2d (including the interface). We also introduce
Ẽ (dB), which is the maximum error between the electric fields
obtained by NEC2d (NEC2d current) and the extended model
(Storer’s current) in far-field for distances varying up to 1e3λ.
Table III summarises the parameters for a worst case scenario
of a PEC interface and Fig.4 shows the results accordingly.

TABLE III: Parameters for current distribution

f L ht − L/2 Ω εr σ2

(MHz) (λ) (λ) (S/m)

2450

0.25

15 1 → ∞0.50 0.00025 (→ 0)
0.75 50 (→ ∞)
1.00

These results show that the closer to the interface the
dipole is, the more the NEC2d current distribution differs
from the Storer’s estimation, as it becomes more asymmetric.
According to Fig. 4, the error for the worst case presenting
a resonant dipole very close to a PEC interface (L = λ/2,
ht − L/2 → 0 and σ → ∞) is equal 3.79 dB.

IV. CRITICAL DISTANCES

In order to locate and quantify the impact of the surface
component on the radiated field, we introduce the critical
distances, given by ρmin and ρbreak. In a near-ground commu-
nication link, the main goal of these two distances is to identify
the region where the surface component is predominant.

A. Definitions
The critical distances can be determined in different ways.

In [5], [11], [12] analytical expressions for the critical dis-
tances in the case of an elementary VED are obtained subse-
quent to a few approximations:

ρmin = |n|(ht + hr) ρbreak =
2|n2|
k1

|n2| > 10 (5)
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Fig. 4: Currents distributions according to different parameters

where ρmin is also the distance at which the reflection coef-
ficient of the interface is minimum and ρbreak (also known
as ρknee in [5]) is the distance at which the Sommerfeld
numerical distance (|τ |) is close to unity. These two concepts
are tightly related to a VED and without any new proof, are
not applicable in the case of a VD.

Therefore, in this paper, we introduce a more generic
definition for the critical distances, in order to be used for
both VD and VED. We define ρmin as the distance from which
the surface component becomes predominant compared to the
other components (|Ez surface| > |Ez direct+reflected|), and
ρbreak as the distance at which the surface component reaches
its maximum amplitude (|Ez surface| → |Ez surface|max). For
the two configurations in Table II, both EVD

z and EVED
z are

compared in Fig. 5 with the two-ray method [20], which
excludes the surface component.

Fig. 5 brings into focus a substantial difference between
the two-ray method and the infinitesimal (EVED

z ) and extended
(EVD

z ) models. We define the region of interest to be the range
of ρ distances between ρmin and ρbreak, where the infinitesimal
and extended models show noticeable improvement compared
to the two-rays method, provided that the conditions over
the frequency, the heights and the interface conductivity are
fulfilled [12]. We define ∆Ez as the maximum difference be-
tween the two-ray method and the infinitesimal/extended mod-
els, which by definition occurs at ρbreak. Table IV summarises
the outputs of the infinitesimal and extended models for the
two configurations of Fig. 5 and shows an excellent agreement
between them. In order to rule on the equivalence between
the infinitesimal and the extended models, beyond these two
specific configurations, a parametric study is performed in the
next subsection.
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TABLE IV: Infinitesimal and extended model outputs

ρmin (λ) ρbreak (λ) ∆Ez (dB)
VED VD VED VD VED VD

Config. 1 4.08e3 4.45e3 5.77e5 5.77e5 34.3 34.3
Config. 2 6.41 6.41 2.93e2 2.93e2 25.5 25.5

B. Parametric study

In this section, a parametric study is performed for both
infinitesimal and extended models by varying the height of
the dipole ht, the frequency f , the interface conductivity σ
and the dipole length L. The outputs of the two models, i.e.
ρmin, ρbreak and ∆Ez , are compared. The goal is to rule on the
validity of the infinitesimal model for a finite-length dipole.
All the cases and input parameters are summarised in Table
V, and the results are illustrated in Fig. 6.

TABLE V: Description of the parametric study

Case 1 Case 2 Case 3 Case 4
ht (λ) [0.125, 2] 1 1 1
f (MHz) 5 [1, 100] 5 5
σ (S/m) 5 5 [0.1, 10] 5
L (λ) 0.25 0.25 0.25 [0.25, 1]
εr 81 81 81 81
hr (λ) 1 1 1 1

Fig. 6 shows that the evolution of the outputs of both models
are almost identical, the curves being overlapped for all cases
and over all the distances. Case 1 shows that by increasing
the height of the dipole ht, ρmin increases and ρbreak stays
constant. Consequently, the region of interest shrinks as the
heights increase and the contribution of the surface component
reduces as ∆Ez decreases. Case 2 shows that the critical
distances as well as the contribution of the surface component
decrease by increasing the frequency. Contrarily, in case 3,
the critical distances as well as the contribution of the surface
component increase by increasing the conductivity of the
interface. Finally, case 4 shows that the normalised dipole
length L has no influence on the models’ outputs.

In summary, by increasing the height of the dipole ht, and
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the frequency f , the zone of improved path loss and ∆Ez are
reduced, while by increasing the conductivity of the interface
σ, the zone of interest and ∆Ez are further improved.

V. CONCLUSION

In this paper, we took the elementary VED above a con-
ductive half-space as reference and ruled on the validity of the
infinitesimal model for the finite-length dipole. An extension
of the infinitesimal model has been proposed and used through
different studies. This extended model, provided with the
Storer’s current distribution, matches closely with the results
given by NEC2d.

On the basis of the results reported in section III and IV, we
can claim that the infinitesimal model and its critical distances
given in (5) are still valid for a finite-length VD and, more
importantly, we are able to state that a VED shows the same
field-evolution as a VD, and can rigorously substitute it in the
context of the Sommerfeld half-space problem.
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