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ABSTRACT
In this work, we discuss a method to incorporate domain knowl-
edge into a Reinforcement Learning (RL) environment through
the process of behavioral cloning, in the context of a district en-
ergy management system. Prior knowledge, encoded into heuristic
rule-based programs, is used to initialize a policy network for an
RL agent, after which an RL algorithm is used to improve on this
by optimizing against a reward function. The key ideas are imple-
mented in the CityLearn framework, where the resulting controller
is used to manage the electrical energy storage for 5 buildings in a
district. We demonstrate that the resulting agents offer measurable
performance gains compared to existing baselines, offering a 3.8%
improvement over the underlying rule-based controller, and a 20%
improvement over a pure RL based controller. We also illustrate
the possibility of using imitation learning to develop agents with
desirable characteristics without explicit reward shaping.

CCS CONCEPTS
• Computing methodologies→ Intelligent agents.

KEYWORDS
Reinforcement Learning, Imitation Learning, District Energy Man-
agement

ACM Reference Format:
Sharath Ram Kumar*, Arvind Easwaran, Benoit Delinchant, and Remy Rigo-
Mariani. 2022. Behavioural Cloning based RL Agents for District Energy
Management. In Third ACM SIGEnergy Workshop on Reinforcement Learning
for Energy Management in Buildings & Cities (RLEM) (RLEM ’22), November
9–10, 2022, Boston, MA, USA. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3563357.3566165

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
RLEM ’22, November 9–10, 2022, Boston, MA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9890-9/22/11. . . $15.00
https://doi.org/10.1145/3563357.3566165

1 INTRODUCTION
Demand Response at the building level is widely considered as
a promising avenue to improve the cost and energy efficiency of
power grids. The field has grown in popularity in recent years
due the growing penetration of distributed energy resources in the
energy mix, such as solar panels and battery systems. However,
the development of control systems for distributed building energy
management remains a challenge due to the complex nature of
buildings, which necessitates the use of detailedmodels and requires
significant engineering effort [5]. Reinforcement Learning (RL)
techniques are an active area of research in this context, since
they can be used to build model-free controllers which learn by
directly interacting with the target environment. Specifically, recent
developments in the field of Deep RL, which combine traditional
RL algorithms with deep neural networks, have proven effective in
various continuous control tasks across diverse fields. RL solutions
are typically not used in critical tasks in practice today due to the
inherent unpredictability and the curse of dimensionality [6].

The CityLearn environment is a computer simulation framework
based on the popular OpenAI Gym paradigm, and was developed
to drive research in the field of Deep RL based Building Energy
Management solutions. It uses a set of real-world datasets covering
electricity demand, weather, and electricity pricing data, along with
detailed models of various DERs such as electrical storage systems.
Many RL-based controllers have been developed using CityLearn,
based on different strategies related to the architecture and level of
inter-agent communication. Conventionally, the operational effec-
tiveness is reported relative to a reference Rule-Based Controller
(RBC) - however, recent work has shown the drawbacks of this
approach, demonstrating that a slightly modified RBC is able to
achieve higher performance than most known RL-based solutions
in CityLearn [7].

Imitation learning is an active area of research in the context
of deep RL, as it holds the promise for agents to exploit existing
knowledge and greatly speed up the training, while mitigating the
need for complex reward function design. Behavioural Cloning is
one such approach, where an agent is trained (typically through
supervised learning) on data collected from the actions of an ex-
pert in the same environment. The technique has been used to
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obtain promising results across a range of tasks related to robotic
manipulation [8].

In this work, we propose a solution in which an RL-based con-
troller can be developed utilizing a reference RBC. The approach
uses the Proximal Policy optimization (PPO) learning algorithm
[11] in combination with behavioural cloning. The use of imitation
learning results in controllers with much more predictable actions
and speeds up the training process, and a subsequent training step
results in a small performance improvement over the underlying
RBC. Notably, the learning process does not mandate the use a
complex reward function, instead using a simple metric which is
empirically known to be effective in the Citylearn environment.

2 RELATEDWORK
The CityLearn environment has been used to study the use of rein-
forcement learning in the context of district energy management,
and the potential of such techniques to develop purely data-driven,
model-free controllers has been demonstrated [13]. Several con-
troller architectures have been developed to solve this environment,
with the performance of the resulting agents evaluated against a
benchmark rule-based controller. Vazquez-Cantelli et al proposed
MARLISA, a distributed framework in which each agent learns to
predict its own energy consumption while taking control actions,
with the aim of improving agent performance through information
sharing [12]. Centralized controllers have also proven effective in
solving the environment, where a single agent oversees the states
and decides the actions for all buildings. A centralized agent based
on the Soft Actor-Critic algorithm was developed by Kathirga-
manathan, and was shown to exhibit good performance compared
to the reference rule-based controller [3]. However, Nweye et al re-
cently reported on the limitations of such approaches, and showed
that an improved rule-based controller exhibited state-of-the-art
performance in this environment [7].

Imitation learning, when combined with deep learning, has
shown promise in a diverse set of problems. Hua recently reviewed
the use of imitation and transfer learning in the field of robot-
ics, especially for tasks such as manipulation and fine control [2].
Recently, a method to use imitation learning in the context of a
building energy management problem was described by Gao et al
[1], where the final agent learns to imitate the actions of a Model
Predictive Controller (MPC) with a perfect forecast of the environ-
ment variables. Pezzotti et al developed MimicBot, a deep RL agent
in a Fantasy Football game environment, which achieved excellent
performance when RL training techniques were applied after an
initial behaviour cloning step [9]. In a more advanced scenario,
Liu et al created a framework to train simulated humanoid figures
utilizing motion-capture data, and showed that complex behaviours
requiring multi-agent coordination could be captured using this
approach [4].

While previous work has focused on the application of deep
RL and imitation learning in the context of building energy man-
agement systems (BEMS), we are not aware of any existing work
where these techniques are applied in the context of a district en-
ergy management (DEM) problem. Traditional control methods
used in BEMS, such as MPCs, are often not viable here due to the
increased complexity caused by the presence of multiple buildings,

resulting in the need to resort to heuristic approaches [10]. As such,
the combination of IL and DRL presented in this work is of signifi-
cance as a practical method to transition from these heuristic rules
to a data-driven controller, without losing the knowledge encoded
in the former approach.

3 IMPLEMENTATION
3.1 CityLearn 2022 Environment
The CityLearn 2022 Environment is an OpenAI gym environment
which allows for the development and simulation of RL-based con-
trollers for distributed energymanagement. The environment offers
the possibility of choosing from up to 28 different observations for
each building, covering both global parameters such as weather
and building-specific data such as hourly demand and solar gen-
eration. Each building is equipped with a electric energy storage
system, which can be charged or discharged at each time step by the
controller. The performance of this controller is finally evaluated
against that of a naive agent, which does not use the battery, on
two metrics - net electricity price and net carbon consumption. In
this study, we use only the net electricity price as a comparison
metric. This choice is justified since the focus of the study is on
discussing the use of behaviour cloning, and not on achieving the
best scores in the simulation.

In the present work, data for a period of 1 year for 5 buildings is
used - the models are trained on the data for the first 10 months,
and evaluated on their performance for the subsequent 2 months.
A centralized architecture is chosen for the controller, such that a
single agent is able to observe the states for all 5 buildings, and take
actions to charge or discharge the electric storage of each building
at any time step. The observation space used in our formulation,
made up of 22 data points for the whole district, is outlined in Table
1.

Table 1: State space for RL Problem Formulation

Parameter Observation Type

Month Shared
Hour Shared

Direct Solar Irradiance Shared
Direct Solar Irradiance (6h Forecast) Shared

Carbon Intensity Shared
Electricity Pricing Shared

Electricity Pricing (6h Forecast) Shared

Non-shiftable Load Per Building
Solar Generation Per Building

Electrical Storage SOC Per Building

The above parameters were chosen from the set of all avail-
able information provided by the environment at every time step,
omitting metrics related to the temperature, humidity and daylight
savings status. This selection was done empirically, and adjusted
based on the performance of the agents in the simulation. The
chosen metrics are normalised based on their running mean and
variance before being input to the policy network.
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The reward function 𝑟 (𝑡) at time step 𝑡 is given below, where 𝑁
is the number of buildings and 𝑒𝑖 represents the net electricity cost
for building 𝑖 at time step 𝑡 :

𝑟 (𝑡) = −1 ∗ (∑𝑁
𝑖=1max(0, 𝑒𝑖 ))2

The reward function used for the agent is purely based on the
rectified net electricity price per time step, which is a simple met-
ric based on the energy consumption and the electricity price. It
should be emphasised that this choice was made to demonstrate the
effectiveness of using behaviour cloning in encouraging positive
behaviours for a given agent without explicitly rewarding them.

3.2 Algorithms
The learning process consists of two steps. First, the policy, repre-
sented by the weights of a neural network, is initialized by cloning
the behaviour of a reference rule-based controller. This process is
outlined in Algorithm 1. Next, the PPO algorithm is used to train
this network further to generate the final policy, which typically
achieves marginal gains over the RBC. The hyperparameters used
in this work are listed in Table 2. It should be noted that a lower
learning rate and clipping parameter were chosen for the second
PPO training cycle, so that subsequent policies are not too different
from the cloned policy. The RBC used in our work is outlined in Fig
1. The rules are structured such that the battery is charged during
the late nights and early mornings, and discharged to meet the peak
load.

Figure 1: Rule-Based Agent Action Sequence

Algorithm 1 Behaviour Cloning

1: Initialize the rule-based policy 𝜋𝑅 , target policy 𝜋𝐵𝐶
𝜃

and imi-
tation buffer 𝐵

2: Initialize environment 𝜀 and initial state 𝑠 = 𝑠0
3: while 𝐵 is not full do
4: Add (𝑠 (𝑡), 𝜋𝑅 (𝑠 (𝑡))) to 𝐵, and update 𝑠 (𝑡 + 1) = 𝜀 (𝜋𝑅 (𝑠 (𝑡))
5: end while
6: Split 𝐵 into 𝐵𝑡𝑟𝑎𝑖𝑛 , 𝐵𝑡𝑒𝑠𝑡
7: for 𝑖 = 0, 𝑖 < 𝑛𝑢𝑚_𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑖𝑡𝑒𝑟𝑠 do
8: Sample mini-batch 𝐵𝑚𝑏 from 𝐵𝑡𝑟𝑎𝑖𝑛

9: Calculate Loss
∑
𝐵𝑚𝑏

L(𝜋𝑅 (𝑠 (𝑡)), 𝜋𝐵𝐶
𝜃

(𝑠 (𝑡)))
10: Update 𝜃 := 𝜃 − 𝛾∇L
11: end for
12: Evaluate the model using 𝐵𝑡𝑒𝑠𝑡

The loss function L used in this implementation consists of a
log-loss term which penalizes the difference between the model
output and the ground truth, and a term to promote entropy in the
stochastic policy. The first term addresses bias in the model output,
while the latter term address variance.

Table 2: Hyperparameters Used In This Work

Parameter PPO BC + PPO Description

𝑙𝑟𝐵𝐶 None 1𝑒 − 4 Learning
Rate for
Behavioural
Cloning

𝑒𝐵𝐶 None 1𝑒 − 3 Entropy
Weight for
Behavioural
Cloning Loss

𝑙𝑟𝑃𝑃𝑂 3𝑒 − 4 1𝑒 − 4 Initial Learn-
ing Rate for
the PPO Al-
gorithm

𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 256 256 Mini-batch
size during
PPO updates

𝐻𝑖𝑑𝑑𝑒𝑛𝐿𝑎𝑦𝑒𝑟𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 64,64 64,64 Dimensions
of the policy
network
hidden layers

𝑐𝑃𝑃𝑂 0.2 0.1 PPO Clip
Range

𝛾𝑃𝑃𝑂 0.99 0.99 PPO Future
Rewards
Coefficient

𝜆𝐺𝐴𝐸 0.95 0.95 PPO GAE Co-
efficient

4 RESULTS AND DISCUSSION
The trained agents are able to find a better policy than an agent
which does not use electrical storage, and exhibit good performance
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after training for about 2M steps on the training data. The scores
achieved by each agent are listed in Table 3 - it must be noted that
a lower score is desirable, since the figures represent cumulative
costs. Fig 2 shows the training curves for the control PPO agent and
the agent which started the PPO training process after behaviour
cloning.

Figure 2: Training Rewards for the Agents

Table 3: Net Electricity Price for Different Agents

Agent Type Whole Year ($) Last 2 Months ($)

Baseline (No Storage) 8277.73 1614.90
Rule-Based Controller 6357.17 1281.82
PPO Agent (no BC) 7681.95 1535.99
Only BC (no PPO) 6136.06 1219.43

BC + PPO 6113.04 1215.50

It is visible from the training curves that the agent which starts
out with a behaviour cloning prior does not exhibit a significant
improvement in the training reward, especially when compared to
the PPO-only agent. It is notable that such an approach still leads
to small increase in the score for the final agent.

An important observation is that the actions of the agent trained
using behaviour cloning are more approachable than those of the
agent trained directly using PPO; for instance, the latter sometimes
takes sub-optimal actions such as neglecting the energy storage
system altogether for some buildings. The net energy demand for a
period of 1 week, taken from the evaluation set, is shown in Fig 3.

Figure 3: Net Electricity Consumption of the District

Due to the nature of the training process, the resulting agents
take actions which closely resemble those of the underlying RBC.
As the latter was developed manually using prior knowledge of

the environment dynamics, the behavioural cloning step acts as a
method to transfer existing knowledge into a neural-network based
agent without constructing a complex reward function.

Figure 4: Comparison between RBC Agent and Final Agent

Fig 4 (top) shows a comparison between the actions taken by
the RBC and the final agent under identical circumstances over
a period of 1 week in the evaluation dataset for one of the build-
ings. It can be observed that the PPO+BC approach results in an
agent that broadly follows the trends encoded in underlying rule
based actor. For example, both controllers attempt to charge up the
battery during off-peak hours (late night and early morning), and
discharge during the day depending on the net load. The actions
of the PPO+BC agent are slightly different in terms of magnitude
of charging or discharging; these variations are introduced as a
result of the data-driven training process. It can be seen from Fig 4
(bottom) that the net consumption is reduced as a result, which in
turn reduces the net electricity price that is penalized in the PPO
reward function. We can thus infer from Fig 4 that the improved
performance quantified in Table 3 occurs as a result of the trained
agent learning to make marginal changes to the actions of the RBC,
in an attempt to maximize its reward.

Once the cloning step is completed, the resulting set of weights
can be trained on-line in a continuous training operation. For in-
stance, this opens up the possibility to develop functional con-
trollers that constantly improve and adapt as new data is made
available, which is highly desirable in this context. Since weight
updation is a purely data-driven step, there is minimal additional
effort required to implement the same.

An important caveat with the method presented here is that
the performance of the final agent strongly depends on that of the
initial rule-based agent. Training the clone agent using PPO only
resulted in marginal gains compared to the underlying prior, since
the hyperparameters chosen tend to restrict the exploration aspect
of the learning process in exchange for stability. Further research
is required to determine whether this limitation can be overcome
by a different choice of hyperparameters.
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5 CONCULSION AND FUTURE SCOPE
In this paper, we explore the possibility of embedding prior knowl-
edge into a Deep RL based control system using imitation learning,
in the context of the building energy management problem pre-
sented in the CityLearn environment. The resulting agents are
able to translate a hard-coded set of rules into the weights of a
neural network, and achieve marginal gains over the underlying
policy through continuous training. The possibility of adapting the
method to implement a controller that is training on-line using
real-time data was discussed. It was noted that the technique al-
lows for the training of viable agents without designing a complex
reward function - however, the performance was observed to be
strongly dependent on, and limited by, the performance of the initial
heuristic agent. Future work may focus on achieving a significant
performance improvement over the underlying controller, through
hyperparameter tuning or by using a different reward function.
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