
HAL Id: hal-03851261
https://hal.science/hal-03851261

Submitted on 14 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An electronic nose using conductometric gas sensors
based on P3HT doped with triflates for gas detection

using computational techniques (PCA, LDA, and kNN)
Aicha Boujnah, Aimen Boubaker, Sébastien Pecqueur, Kamal Lmimouni,

Adel Kalboussi

To cite this version:
Aicha Boujnah, Aimen Boubaker, Sébastien Pecqueur, Kamal Lmimouni, Adel Kalboussi. An elec-
tronic nose using conductometric gas sensors based on P3HT doped with triflates for gas detection
using computational techniques (PCA, LDA, and kNN). Journal of Materials Science: Materials in
Electronics, 2022, 33, pp.27132-27146. �10.1007/s10854-022-09376-2�. �hal-03851261�

https://hal.science/hal-03851261
https://hal.archives-ouvertes.fr


1 

 

An electronic nose using conductometric gas sensors based on 1 

P3HT doped with triflates for gas detection using computational 2 

techniques (PCA, LDA and kNN) 3 

Aicha Boujnah1, Aimen Boubaker1, Sébastien Pecqueur2, Kamal Lmimouni2 & Adel Kalboussi1 4 

1Department of Physics, Faculty of sciences, University of Monastir, Monastir 5050, Tunisia. 5 

2Univ. Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-6 

59000 Lille, France. 7 

Email:  aicha.boujnah.1992@gmail.com 8 

ABSTRACT 9 

 10 

 This study presents the development of an electronic nose comprising eight homemade sensors with pure P3HT 11 

and doped with different materials. The objective is to electronically identify the gases exposed on these sensors and 12 

evaluate the accuracy of target-gas classification. The resistance variation for each sensor is measured over time and 13 

the collected data were processed by three different identification techniques as following; principal component 14 

analysis (PCA), linear discriminate analysis (LDA) and nearest neighbor analysis (kNN). The merit factor for the 15 

analysis is the relative modulation of the resistance is very important and computationally gives different results. In 16 

addition, the fact that we have sensors made with innovative materials where the reproducibility of the response for 17 

the same material can be a constraint in the recognition. In contrast, we have shown that despite the lack of 18 

reproducibility for the same material on two different sensors, and despite the instability during the ten last seconds, 19 

we have good recognition rates and we can even say which algorithm is better. It is noted that the LDA is the most 20 

reliable and efficient method for gas classification with a prediction accuracy equal to 100% whereas it reach 93.52% 21 

and 73.14 % for PCA and kNN, respectively for other techniques for 40% of training dataset and 60% of testing 22 

dataset. 23 

 24 

Keywords Electronic nose, Conductometric gas sensor, Pattern recognition, Confusion matrix, LDA, PCA, kNN. 25 

 26 

1 Introduction   27 

 Over the past decades, researchers have studied and developed electronic nose (e-nose) technology [1–3] that 28 

has been widely used in many fields such as medicine [4], industry, military, and environment [5]. By analogy with 29 

the human olfactory system, an e-nose is an instrument that combines different elements sensitive to gases on an 30 

input array [3]. Information is then projected to a classifier that analyses interactions of gases with sensitive materials 31 

by pattern recognition, so information is classified to identify the chemical identity of molecularly elementary or 32 

constitutionally complex odors [2,6,7] . The performance of gas sensors can be evaluated by dint of several criteria 33 
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such as high sensitivity, selectivity/specificity, fast-response/recovery-time, robustness, low cost and simple 34 

fabrication, good repeatability and long-term stability [8]. Based on the sensing materials and working principles, 35 

sensing transduction can be classified into several types, such as electrochemical, resistive, capacitive, optical and 36 

acoustical [9,10]. 37 

 On conductometric gas sensors, resistance changes for the sensitive material when it interacts with the molecules 38 

[11], caused by either-or-both change in charge carrier density and mobility [4]. Resistance in conductometric gas 39 

sensors depends on changes in the partial pressure for different gases exposed, but also on the geometry of the pair 40 

electrodes. Therefore, interdigitated electrodes structures with a sensing layer are widely used for several types of 41 

sensors due to large width-to-length ratio, maximizing the sensitivity of the material’s resistance upon small 42 

environmental changes [12].  43 

 Conductive polymers have been widely studied in various applications such as in electronics [13,14], 44 

optoelectronics[15,16], electromechanical devices on the one hand, and in chemical gas sensors on the other hand 45 

[17].  It is widely recognized that researchers have used conductive polymers as a sensing layer for chemoresistors 46 

gas sensors [8] because these materials have good mechanical properties such as robustness and flexibility [18]. In 47 

addition, they not only offer high gas sensitivity; short response/recovery times but they also require low power 48 

consumption and low design cost [19]. Several conducting polymers were used as a sensing layer, such as 49 

poly(pyrrole), poly(aniline) and poly(3,4-ethylene dioxythiophene) [8,18]. Among polymers, the poly (3-50 

hexylthiophene) (P3HT) was studied in the previous work because it has high hole mobility, good stability under 51 

ambient conditions [20,21].  In 1990, A. Assadi and coworkers [22] proposed a P3HT based field-effect transistor 52 

and found that the interactions between alumina gas and P3HT results in a change in the electrical properties of 53 

transistor. In addition, Bertoni C et al. opened the way to the use of P3HT nanofibers based sensing elements for the 54 

realization of portable, real-time electronic noses for exhaled breath analysis [23].  Kuo et al. showed good 55 

performances, such that the relative resistance modulation (dR/R) of the P3HT thin-film for different concentrations 56 

of ammonia gas NH3 was around 6% [21]. Doping materials such as P3HT is essential to improve the electrical 57 

performances that in return enhances both charge-carrier injection and transport in semiconductor devices to 58 

decrease its power consumption. In addition, doping can control the surface morphologies and physical/chemical 59 

properties of the conductive polymer [24], affecting the surface energy and crystallinity [25]. Different dopants have 60 

different doping yields on conducting polymers, but also different effects on the selectivity and sensitivity of target 61 

gases. Joseph N. Barisci et al. [26] use a set of sensors based on doped-polypyrrole polymers for the detection of 62 

BTEX compounds (benzene, toluene, ethylbenzene and xylene). In this study, they used different dopants to analyze 63 

the target gases with sufficient sensitivity and reproducibility. 64 

 Cumulative effects of many gas sensing materials was conceptualized by the term electronic nose, first used in 65 

the late 1980s by Gardner and coworkers, although the concept had been formalized somewhat earlier by Persaud 66 

and Dodd [27]. Pattern recognition and classification techniques are the building blocks of the e-nose to identify 67 

different types of gases exposed on the gas sensor [28,29]. Hence, several methods have been investigated for e-68 

nose analysis, such as principal component analysis (PCA) [30], support vector machines (SVM) [31,32], artificial 69 

neural networks (ANN) [33,34] or k-nearest neighbor (kNN) [35]. 70 

 In the present study, we report the results of an electronic nose based on conductometric gas sensors, where 71 

P3HT presents the sensitive layer deposited onto interdigitated gold electrodes with seven different dopants, to 72 

recognize and identify three different gases as following; are water, acetone and ethanol. The adsorption and 73 
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desorption datasets obtained from each sensor were used for the identification and prediction of those odors using 74 

three different machine-learning methods, i.e., PCA, LDA, and kNN and we discuss the results. 75 

2 Data Acquisition and sensor response  76 

 In order to study the effect of the gas on the response of the sensor, all measurements of electrical device 77 

characterization were performed on an Agilent 4155 parameter analyzer in air. This air passes through vials 78 

containing the different solvents in the liquid phase, and the flow pushes the gas phase. 79 

 Figure 1 describes the E-nose setup used for measuring the resistance of the gas sensor. Three valves that contain 80 

a check valve to prevent solvent contamination of the glass vials containing solvent manually controlled exposure 81 

to the various gases. Each solvent-containing vial (Water, Acetone and Ethanol) is manually exchanged in the setup 82 

during the 3-minute purge (bypass valve ON, analyte vial IN/OUT OFF), in order to ensure a continuous and steady 83 

flow of pressurized gas over the entire output current record for each device measured with the different P3HT 84 

materials. The exposed gas flow rate is always set to 1mL/s. During the experiment, no solvent condensation was 85 

observed either in the Teflon tube, at the gas capillary exhaust, or on the substrate of the sensitive material [36].  86 

 The saturating vapor concentration (in ppm) is the concentration of vapor in equilibrium with the pure substance 87 

at a given temperature (20°C) and atmospheric pressure. It is obtained directly from the saturation vapor pressure 88 

Psat (in Pa) which is the partial pressure under the same conditions. According to the perfect gas law, we have: 89 

P × V = n × R × T                                                                                                                                                       (1) 90 

Where P is the vapor pressure (in Pa), V is the volume of the gas (in m3), n is the quantity of gas (in mol), R is the 91 

universal constant of perfect gases (8.314472 J.mol-1.K-1) and T is the temperature (273.15 + X°C in K). 92 

 The pressure P is proportional to the quantity of gas n. Therefore, we can find the gas concentration in ppm by 93 

this ratio: 94 

C = 
nsat (gas)

n (total)
 × 106 = 

Psat (gaz)

Patm
 × 106                                                                                                                             (2) 95 

With: 96 

At T=20°C, Psat (Water) = 2300 Pa, Psat (Acetone) = 22800 Pa and Psat (Ethanol) = 5800 Pa.  97 

Patm= 1013.25 hPa= 101325 Pa. 98 

 This is only an approximation because we are not necessarily in thermodynamic equilibrium; it would have to 99 

be verified experimentally to do metrology. However it not relevant within the framework of this study.  In addition, 100 

we did not study the effect of gas concentrations on the response of the sensors and no metrology was carried out. 101 

 102 

Fig. 1 E-nose setup used for measuring the resistance of gas sensor 103 

 We collected all the data from the resistance versus time reading of these eight different sensors based on eight 104 

different materials. The parameter extraction step is important to reduce the dimension of the input parameters of 105 

the classification algorithm. The principle is to reduce the amount of information while keeping most of their 106 

variance contained in the sensor matrix. Therefore, after collecting all the measurements, we used the characteristic 107 
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parameters of the each sensor response to improve the classification. These parameters are the relative variation of 108 

the resistance dR/R, which defines the relative difference between the device resistance after 3 minutes of gas 109 

exposure and the resistance before opening the gas vial that can give information between the sensor and the odors 110 

(Figure 2). In addition, to filter the amount of data to be analyzed, we chose to use the data set that contains the 111 

dR/R at the last ten seconds of exposure. We chose to use the “steady state” dataset, which shows the best separation 112 

of data by nature of the gas [36]. 113 

 114 

Fig. 2 Diagram of resistance modulation dR/R 115 

 Figure 3 shows the mean value of the relative resistance variation (in %) of the different 24 devices (three tests 116 

were evaluated for each material) recorded over the last ten seconds per exposure to the three different stimulus 117 

water / acetone / ethanol. We observed a variability between the resistance modulations for all the devices doped 118 

with the same materials. This is due to the droplet deposition technique. However, we notice the reproducibility of 119 

the resistance modulation in particular in the cases of Fe(OTf)3, Cu(OTf)2, In(OTf)3 and P3HT without dopant [36]. 120 

 121 

Fig. 3 Representation of the mean value of the relative resistance modulation (in %) of the 24 sensors to the three different 122 

stimulus Water / Acetone / Ethanol 123 

 The exposure of these three different gases is done in a sequential way with all the possible combinations of 124 

gases in order to study the sensitivity and selectivity of sensors. Figure 4 shows the sensor matrix that was used in 125 

this study. It presents the six different sequences of gas exposure. Each time, three gases are exposed: 1 is Water, 2 126 

is Acetone and 3 is Ethanol. Each 3-min gas exposure is initiated by a 3-min air purge. The measurement sequences 127 

that have been carried out for each device during two hours are: 128 
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∑/ ᴓ/1/ ᴓ/3/ ᴓ/2/ ᴓ/1/ ᴓ/2/ ᴓ/3/ ᴓ/2/ ᴓ/1/ ᴓ/3/ ᴓ/2/ ᴓ/3/ ᴓ/1/ ᴓ/3/ ᴓ/1/ ᴓ/2/ ᴓ/3/ ᴓ/2/ ᴓ/1/ ᴓ 129 

With: 130 

∑: without compressed air flow and without probed gas 131 

ᴓ : with air purge 132 

1: with compressed air flow and the probed gas is water 133 

2: with compressed air flow and the probed gas is acetone 134 

3: with compressed air flow and the probed gas is ethanol 135 

 For each gas, we took the 10 values of the relative resistance modulation dR/R during the last ten seconds (steady 136 

state) as different rows in the matrix (180 rows). In addition, the 24 columns represent the number of extracted 137 

features we can obtain at a specific time for the gas exposure sequences; dR/R for eight sensors with three tests per 138 

sensor. 139 
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 140 

Fig. 4 Sensor matrix with characteristic parameters 141 

With:  142 

(
dR

R
)
i, j

c

: Represents the response of relative resistance modulation in the steady state for each sensor number i for test 143 

j and for class c.  144 

i: 1, 2, 3, 4, 5, 6, 7 and 8, is the number of the sensor to be tested. 145 
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j: 1, 2 and 3, is the number of measure tests for each sensor to be tested. 146 

c: 1, 2 and 3, is the number of the class. 147 

3 Algorithms and pattern recognition  148 

 This phase covers mainly the classification and representation of both pattern and results regarding their 149 

importance as part of any system [37]. The main objective of a classification algorithm is to find the rules that model 150 

the behavior of the sensor and thus discriminate between compounds or mixture of compounds. There are two types 151 

of classification algorithms: supervised or unsupervised. Several methods can be found in the literature each with 152 

its own specificities and variants [38–40]. It is recommended to test several classification algorithms in order to find 153 

which algorithm will give the best classification performance. In this study case, three different classification 154 

algorithms were tested: PCA, LDA, and k-NN. The Scikit-Learn library, developed in Python language was used to 155 

test the different methods of recognition [41]. We used 180 individual observations. We chose randomly 40 % of 156 

the dataset that was used for the training set (72 Observations) and the rest for the identification and the testing (108 157 

Observations). 158 

Table 1 Algorithm accuracy of several random datasets 159 

 PCA Accuracy (%) 

(X test=60%, X train=40%) 

LDA Accuracy (%) 

(X test=60%, X train=40%) 

KNN Accuracy (%) 

(X test=60%, X train=40%) 

Random data set 1 86.11 100 63.6 

Random data set 2 89.81 100 26.8 

Random data set 3 93.52 100 73.1 

Random data set 4 89.81 100 64.8 

 160 

 We took several data partitions and each time, we applied the three different algorithms to compare the calculated 161 

accuracies. Table 1 shows that with each random change in the dataset, the accuracy changes for both the PCA and 162 

KNN classification methods. However, the LDA method gives an efficient classification with 100% accuracy.  163 

3.1 Principle Component Analysis (PCA)   164 

 PCA is a statistical and unsupervised approach used for feature extraction and data compression [30,42]. Indeed, 165 

the principle of this algorithm is to find a combination of input parameters that contains the most variance between 166 

all data. The other interest is to remove the redundancy of information between these parameters [43]. The 167 

disadvantage of this method is that it only allows decorrelating linearly correlated variables, but a non-correlation 168 

does not mean a statistical independence. 169 

3.2 Linear Discrimination Analysis (LDA)  170 

 LDA is a supervised approach, which is considered as the most commonly used classification algorithm since it 171 

gives good results and allows easy interpretation [44]. The basic function of this algorithm is to maximize variance 172 

difference between data classes while minimize the variance difference inside each individual class [7]. Therefore, 173 

if there is any groupings in data, the LDA is a powerful tool to recognize them. However, the disadvantage of this 174 

classification algorithm is that it can only discriminate classes that are linearly separable. 175 

3.3 K- Nearest Neighbors (kNN) 176 

 The K-nearest neighbors (kNN) algorithm is a Machine Learning algorithm that belongs to the class of simple 177 

and easy-to-implement supervised learning algorithms that can be used to solve classification and regression 178 

problems. In fact, the kNN is a special type of algorithm that does not use a statistical model [45]. It is "non-179 
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parametric" based only on training data. The kNN algorithm is based on the selection of the k closest data points to 180 

the point under study in order to predict its value. In this work, we choose k between 1 and 50 as the best choice for 181 

the application since the highest classification rate was achieved with this value. The algorithm becomes much 182 

slower as the number of observations and independent variables increase. 183 

 184 

Fig. 5 The resistance variation dR/R (%) versus time of the sensor array with 7 different dopants (triflates) during exposure to 185 

the different gases a no triflate, b Fe(OTf)3, c Cu(OTf)2, d Bi(OTf)3, e In(OTf)3, f Al(OTf)3, g Dy(OTf)3, and h Ce(OTf)3 186 

4 Results and Discussion  187 

4.1 Sensor Response  188 

 We recently reported on the doping of P3HT with different triflates, which showed gas-specific sensitivity [36]. 189 

We selected one of three devices for each gas sensor during a single sequence of exposure of the three gases taken 190 

at random to visualize the change in resistance over three minutes. The sensor responses show a small base resistance 191 

drift over time for some dopants (but not in the resistance modulation, which is used as a factor of merit for the 192 

analysis). This indicates the temporal stability of the triflate sensitized sensing elements over two hours of data 193 
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acquisition (The raw data are available as supplementary information S3 and S4 in the article ‘Mildly-doped 194 

polythiophene with triflates for molecular recognition’ [36]). 195 

 Figure 5 shows the dR/R response of eight different sensor materials: P3HT without triflates and P3HT doped 196 

with Fe(OTf)3, Cu(OTf)2, Bi(OTf)3, In(OTf)3, Al(OTf)3, Dy(OTf)3 and Ce(OTf)3. As we can see, each sensor showed 197 

different signature to each transported gas (water, acetone and ethanol). This would explain that each gas has an 198 

impact on the device conductance. 199 

 200 

Fig. 6 Radar plot of six sequences of exposure of gases for eight different devices 201 

 The values of the resistance variation are specific from gas to another and from dopant to another that favor 202 

either increases or decreases in resistance. Moreover, Fig. 6 represents the radar graph of each sequence of exposure 203 

of three gases for the eight devices. As we observe, in the absence of gas exposure for all eight devices, the dR/R 204 

variation of the response of each sensor is very low about 0%. This explains that the intervention of probed gas 205 

molecules is necessary to vary the devices resistance [24,36]. Moreover, it is noticed that pure P3HT without triflates 206 

gives relatively low resistance variation responses compared to other sensors with different dopants as shown in Fig. 207 

5. It interacts with water and acetone with a resistance variation about 14% and -13% respectively. While the reaction 208 

with ethanol is very limited.  209 

 Sensitivity and selectivity can be improved and optimized by introducing dopants that cause the modification of 210 

the energy band structure and morphology. Thus, they have a significant impact on the materials’ conductivity 211 

[24,25]. Furthermore, in Fig. 3, it was found that devices doped with Fe(OTf)3 is the most sensitive one to ethanol 212 

than the others. It presents a resistance variation of about 46%. Similarly, the devices doped with this same material 213 

produce the highest response with 35.3% as resistance variation when exposed to acetone while devices doped with 214 

Bi(OTf)3 present the lowest response among all sensors with only 9.42% variations. While, devices doped with 215 

Ce(OTf)3 are the most sensitive to water as it gives a response of 125.5% of resistance variation.         In 216 

addition, the order of gas exposure has a strong effect on the resistance modulation changes. As we observed in Fig. 217 



10 

 

6, in the sequence 3, in the case of Ce(OTf)3 for example, when exposing water after acetone, gives a resistance 218 

modulation about 125.5% which is different than when exposing water after ethanol in the sequence 4 (195.7%). 219 

4.2 Result of PCA classification 220 

4.2.1 Importance of feature Scaling 221 

 The principal components are chosen to contain the maximum variance in the data and to be orthogonal [42,46]. 222 

While simplifying the interpretation of the data by the first two or three principal components (PC1, PC2, and PC3) 223 

in two or three dimensions and preserving most of the variance in the data. The cumulative percentage explained is 224 

obtained by adding the successive proportions of variances explained. For example for 94.4 % and 3.1 % is equal to 225 

97.5 %, and so on. Therefore, about 97.5 % and 66% of the total variance is explained by the first two eigenvalues 226 

using data without and with Standard scaler applied respectively (Figure 7).  227 

 Feature scaling through standardization would be an important preprocessing step for many machine-learning 228 

algorithms, which consists of transforming numeric columns to a common scale.  There are multiple normalization 229 

techniques in statistics. The z-score method (often called standardization) transforms the data into a distribution with 230 

a mean of 0 and a standard deviation of 1.  Each standardized value is computed by subtracting the mean of the 231 

corresponding feature and then dividing by the standard deviation. 232 

 Alternatively, we can use the StandardScaler class available in the Scikit-learn library to perform the z-score. 233 

First, we create a standard_scaler object. Then, we calculate the parameters of the transformation (in this case the 234 

mean and the standard deviation) using the .fit() method. Next, we call the .transform() method to apply the 235 

standardization to the data frame. The .transform() method uses the parameters generated from the .fit() method to 236 

perform the z-score. 237 

 While many algorithms (such as SVM, kNN, and logistic regression) require features to be normalized, Principle 238 

Component Analysis (PCA) is a prime example of such an importance for it. In PCA, we are interested in the 239 

components that maximize the variance. To illustrate this, PCA is performed to compare the use of data with 240 

StandardScaler applied, to unscaled data. The results are visualized in the meantimes a clear difference is noticed 241 

(Figure 8).  242 

 243 

Fig. 7 The score plot of the data variance by the principal components a for training dataset after PCA, and b for standardized 244 

training dataset after PCA 245 

4.2.2 Classification  246 

 Here, we use the value of the resistances instead of the resistance modulation, and we apply the PCA method. 247 

As we can see in Fig. S1 (which is provided as supplementary information), the classification of the three classes is 248 

not good. We observe an overlap between clusters with a low rate of accuracy (57.41%) because of the drift of 249 
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sensor responses. Therefore, we are interested only in studying the data of the resistance modulation dR/R in gas 250 

classification.  251 

 Figure 8 shows a 2D plot for the coefficients of the Principal Component Analysis for the three different gases 252 

that group into three different clusters. Each gas is shown in different colors for visual identification. While these 253 

clusters separated from each other, the separation between water, ethanol and acetone is defined. It is more 254 

interesting to split data on train and test datasets to visually analyze the classification results. The data elements of 255 

random data set 3 were split randomly on 40% for training and the rest for the testing.  By the PCA before 256 

standardizing training dataset (Fig. 8a), we observe that the clusters of acetone and ethanol are grouped on the left 257 

of the graph, and the cluster of water is located on the right and in the middle of the graph. In addition, we notice 258 

that there is a partial overlap between the water and acetone cluster and between the ethanol and acetone cluster. 259 

The first two components, PC1 and PC2, contain 97.5% of the variance of the data. The first principal component, 260 

PC1, explains 94.4% of the total variation, while 3.1% of the total variance is explained by PC2. This shows high 261 

identification accuracy close to 82.51% for un-scaled data as compared to the rest of the variance components. The 262 

results obtained by PCA after scaling provided a perfect classification. In Fig. 8b, about 66% of the total variance 263 

of the data is displayed. PC1 and PC2 explain 42.4% and 23.6% of the variance respectively. The classification 264 

accuracy obtained by the PCA method with standardization of training dataset was 93.52% and we observed that 265 

the three gas groups are separated from each other with a little overlap. 266 

 After performing the PCA on the training set, the PCA was tested using test set, to generate overviews of the 267 

observations. The score plots of the testing set using the first two components shows an overlap between 268 

acetone/water and acetone/ethanol (Fig. 8c). 269 

 270 

Fig. 8  PCA classification with a training dataset after PCA, b Standardized training dataset after PCA, and c Standardized 271 

testing dataset after PCA 272 

4.3 Result of LDA classification 273 

 Similar to PCA, LDA also evaluates the distribution and distances, within and between classes [46]. The first 274 

two components are 0.41 and 0.24. This technique can improve the resolution of existing classes. To detail the 275 

classification performance, the different classification parameters such as sensitivity (or recall), accuracy and  276 

specificity (or F1 score) were calculated (Table 2). The results of the LDA analysis show a clear identification as 277 

shown in Fig. 9. The three gas groups are completely separated from each other. Prediction accuracy for the normal 278 
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test dataset with LDA is 100%. The results indicate that the e-nose can be used successfully as a rapid method for 279 

gas identification. 280 

 281 

Fig. 9 LDA classification 282 

 The use of a confusion matrix helps to evaluate the performance of a Machine Learning model and to check how 283 

often its predictions are correct compared to reality in classification problems. The rows of this matrix represent the 284 

true classes while the columns represent the predicted classes. The diagonal elements represent the number of points 285 

for which the observations are correctly classified, while the off-diagonal elements are those that are mislabeled by 286 

the classifier. The higher the diagonal values of the confusion matrix, the better indicating many correct predictions. 287 

The advantage of these matrices is that they are very simple to read and understand. They allow visualizing very 288 

quickly data and statistics in order to analyze the performance of a model and to identify trends that can help to 289 

modify the parameters. 290 

 As showed in Fig. 10, the non-diagonal cells are all zero, confirm that, the discrimination of classes is due 291 

without errors. In addition, we can see that the diagonal cells indicate the number of correct reclassifications by the 292 

trained observation data sets. For example, in 40 cases, acetone was correctly classified, corresponding to 100% 293 

accuracy of all 108 observational data sets. Because there was not a single case of incorrect classification, the 294 

discrimination value was 100% correct. 295 

 296 

Fig. 10 Confusion matrix of LDA method 297 

 298 
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Table 2 Results of LDA and kNN algorithms 299 

 Precision % Recall % (Sensitivity) F1-score % 

(Specificity) 

Support 

Algorithm kNN LDA kNN LDA kNN LDA kNN LDA 

Acetone 100 100  28 100  43 100  40 40 

Water 89 100  100 100  94 100  39 39 

Ethanol 55 100  100 100  71 100  29 29 

Accuracy of  

algorithm 

KNN                                                                                    

73.14 % 

LDA 

100 % 

108 108 

 300 

4.4 Result of kNN classification 301 

 For this last algorithm, we choose k between 1 and 50 to determine the accuracy of the prediction for unknown 302 

observations. KNN requires features to be normalized and we applied StandardScaler to unscaled data. This model 303 

shows an accuracy of 73.14 % only. We notice that the accuracy for acetone and ethanol is perfect at 100%. On the 304 

other hand, water shows an accuracy of 80 % (Figure 11). Hence, the misclassification is worse than the one by the 305 

LDA prediction algorithm. 306 

 307 

Fig. 11 Confusion matrix of kNN method 308 

 In the next step, we tested to what extent the accuracy of the kNN algorithm depends on the number of neighbors 309 

(Figure 12). However, while increasing k from 50 up to 100, we did not see any further increase in accuracy. In 310 

contrast, the accuracy dropped slowly. Thus, the distances between the classes sufficiently separate when using 50 311 

neighbors. We may also be interested in a way to choose the k for which the classification would be the best. One 312 

way to find this is to plot the k value and the corresponding error rate for the dataset. Thus, we can detect the best 313 

prediction rate is obtained for a k between 1 and 50.  314 

 A brief comparison of our initial output results to those of other similar tools such as k-nearest neighbors (kNN)) 315 

is shown in Table 2. As shown above, the performance of LDA model was perfect. While the kNN model showed 316 

a 73.14 % prediction performance, it is failed to successfully predict all of the labels for the test subset.   317 
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 318 

Fig. 12 kNN Accuracy depend on number of neighbors k 319 

4.5 Effect of training datasets on accuracy algortihms 320 

 In this part, we were interested in testing several data sets in order to know the efficiency of each of these three 321 

algorithms when we chose a smaller training data set and a larger test data set. The objective is to have a device that 322 

we are able to calibrate the least number of times possible to be able to test it the most number of times possible. As 323 

we can see in Fig. 13, Both PCA and kNN classification methods give a high accuracy of about 100% for a high 324 

training datasets (80%). Each time we decrease the training datasets, the matching becomes weak and subsequently 325 

the accuracy of the classification decreases. For example, at a small training dataset, which is equal to 20%, the 326 

accuracy is 88.9% and 32% for PCA and kNN algorithm, respectively. On the other hand, the LDA technique shows 327 

a perfect accuracy for large testing datasets: 100% accuracy for a training dataset equal to 7%. 328 

 In this case, we can say that this method is efficient for the classification of different gases. In addition, LDA is 329 

widely used for various technologies of E-noses and materials other than conductometric sensor. Okur, S. et al, 330 

studied the identification of mint scents using a Quartz Crystal Microbalance (QCM) sensors Based E-Nose and 331 

verified that LDA method gives good results of classification with 100% accuracy [45,47]. Moreover, Akbar, M. A. 332 

et al, studied the classification of gases using 4x4 Array of tin-oxide based Gas Sensor and they compare results of 333 

PCA and LDA methods. The obtained results reveal that LDA reaches 100% classification accuracy with only 50% 334 

of the collected sample data. They verified that for the given sample data LDA with fewer components provide 335 

better classification than PCA [48]. 336 

 337 

Fig. 13 Algorithm accuracies for several training datasets 338 
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5 Conclusion 339 

 In this work, we have developed the results of analysis and identification of the three studied gases: water, 340 

acetone and ethanol. The raw data of the temporal responses of the gas sensors represent too much data. We have 341 

therefore defined representative parameters of these curves, allowing a fast and reliable exploitation of the data using 342 

supervised and unsupervised analysis algorithms.  343 

 The extracted parameters are the variation of the relative resistance dR/R recorded for the eight different 344 

materials, three devices per material, with the output currents recorded overtime when exposed to the three different 345 

gases, exposed six sequences of three minutes per gas [36]. We were interested in the steady-state data that contains 346 

the output currents at the last 10 seconds of exposure. This state shows a clearer classification of the gas classes 347 

compared to the other states [36]. We compared the following analysis methods: PCA, LDA and kNN for 40% of 348 

training dataset. They present good identification of the gases with high accuracy. For the PCA algorithm, the 349 

accuracy reaches 93.52%, 100% for the LDA and 73.14% for the kNN. In addition, we tested these techniques using 350 

smaller training dataset and larger testing dataset, and we concluded that LDA is the efficient method for gas 351 

discrimination. 352 

 In order to improve the classification performance of the e-nose system, future work will be doing the feature 353 

engineering and using some feature extraction and feature reduction techniques. Among these feature parameters, 354 

we noted the derivative and the integral as being transient parameters and that could even result in better 355 

classification performance. 356 

 Thanks to this study that emphasize on the algorithm’s choice, we will challenge our system with larger number 357 

of classes with more gases (providing a protocol for exposing each gas for shorter time will be optimized with a 358 

different setup, in preparation...) 359 
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