Aicha Boujnah 
email: aicha.boujnah.1992@gmail.com
  
Aimen Boubaker 
  
Sébastien Pecqueur 
  
Kamal Lmimouni 
  
Adel Kalboussi 
  
An electronic nose using conductometric gas sensors based on P3HT

Keywords: Electronic nose, Conductometric gas sensor, Pattern recognition, Confusion matrix, LDA, PCA, kNN

   

Introduction

Over the past decades, researchers have studied and developed electronic nose (e-nose) technology [1][START_REF] Rabeb | 14th Int. Conf. Sci. Tech. Autom. Control Comput. Eng. -STA'2013[END_REF][START_REF] Covington | [END_REF] that has been widely used in many fields such as medicine [4], industry, military, and environment [START_REF] Bedoui | 10th Int. Multi-Conferences Syst. Signals Devices 2013[END_REF]. By analogy with the human olfactory system, an e-nose is an instrument that combines different elements sensitive to gases on an input array [START_REF] Covington | [END_REF]. Information is then projected to a classifier that analyses interactions of gases with sensitive materials by pattern recognition, so information is classified to identify the chemical identity of molecularly elementary or constitutionally complex odors [START_REF] Rabeb | 14th Int. Conf. Sci. Tech. Autom. Control Comput. Eng. -STA'2013[END_REF][START_REF] Hu | [END_REF]7] . The performance of gas sensors can be evaluated by dint of several criteria such as high sensitivity, selectivity/specificity, fast-response/recovery-time, robustness, low cost and simple fabrication, good repeatability and long-term stability [8]. Based on the sensing materials and working principles, sensing transduction can be classified into several types, such as electrochemical, resistive, capacitive, optical and acoustical [9,10].

On conductometric gas sensors, resistance changes for the sensitive material when it interacts with the molecules [11], caused by either-or-both change in charge carrier density and mobility [4]. Resistance in conductometric gas sensors depends on changes in the partial pressure for different gases exposed, but also on the geometry of the pair electrodes. Therefore, interdigitated electrodes structures with a sensing layer are widely used for several types of sensors due to large width-to-length ratio, maximizing the sensitivity of the material's resistance upon small environmental changes [12].

Conductive polymers have been widely studied in various applications such as in electronics [13,14], optoelectronics [START_REF] Nalwa | Handbook of Advanced Electronic and Photonic Materials and Devices[END_REF][START_REF] Seon | [END_REF], electromechanical devices on the one hand, and in chemical gas sensors on the other hand [17]. It is widely recognized that researchers have used conductive polymers as a sensing layer for chemoresistors gas sensors [8] because these materials have good mechanical properties such as robustness and flexibility [18]. In addition, they not only offer high gas sensitivity; short response/recovery times but they also require low power consumption and low design cost [START_REF] Gupta | Science and Technology of Chemiresistive Gas Sensors[END_REF]. Several conducting polymers were used as a sensing layer, such as poly(pyrrole), poly(aniline) and poly(3,4-ethylene dioxythiophene) [8,18]. Among polymers, the poly (3hexylthiophene) (P3HT) was studied in the previous work because it has high hole mobility, good stability under ambient conditions [START_REF] Ferchichi | [END_REF]21]. In 1990, A. Assadi and coworkers [22] proposed a P3HT based field-effect transistor and found that the interactions between alumina gas and P3HT results in a change in the electrical properties of transistor. In addition, Bertoni C et al. opened the way to the use of P3HT nanofibers based sensing elements for the realization of portable, real-time electronic noses for exhaled breath analysis [23]. Kuo et al. showed good performances, such that the relative resistance modulation (dR/R) of the P3HT thin-film for different concentrations of ammonia gas NH3 was around 6% [21]. Doping materials such as P3HT is essential to improve the electrical performances that in return enhances both charge-carrier injection and transport in semiconductor devices to decrease its power consumption. In addition, doping can control the surface morphologies and physical/chemical properties of the conductive polymer [24], affecting the surface energy and crystallinity [25]. Different dopants have different doping yields on conducting polymers, but also different effects on the selectivity and sensitivity of target gases. Joseph N. Barisci et al. [26] use a set of sensors based on doped-polypyrrole polymers for the detection of BTEX compounds (benzene, toluene, ethylbenzene and xylene). In this study, they used different dopants to analyze the target gases with sufficient sensitivity and reproducibility.

Cumulative effects of many gas sensing materials was conceptualized by the term electronic nose, first used in the late 1980s by Gardner and coworkers, although the concept had been formalized somewhat earlier by Persaud and Dodd [27]. Pattern recognition and classification techniques are the building blocks of the e-nose to identify different types of gases exposed on the gas sensor [28,29]. Hence, several methods have been investigated for enose analysis, such as principal component analysis (PCA) [30], support vector machines (SVM) [31,32], artificial neural networks (ANN) [33,34] or k-nearest neighbor (kNN) [35].

In the present study, we report the results of an electronic nose based on conductometric gas sensors, where P3HT presents the sensitive layer deposited onto interdigitated gold electrodes with seven different dopants, to recognize and identify three different gases as following; are water, acetone and ethanol. The adsorption and desorption datasets obtained from each sensor were used for the identification and prediction of those odors using three different machine-learning methods, i.e., PCA, LDA, and kNN and we discuss the results.

Data Acquisition and sensor response

In order to study the effect of the gas on the response of the sensor, all measurements of electrical device characterization were performed on an Agilent 4155 parameter analyzer in air. This air passes through vials containing the different solvents in the liquid phase, and the flow pushes the gas phase.

Figure 1 describes the E-nose setup used for measuring the resistance of the gas sensor. Three valves that contain a check valve to prevent solvent contamination of the glass vials containing solvent manually controlled exposure to the various gases. Each solvent-containing vial (Water, Acetone and Ethanol) is manually exchanged in the setup during the 3-minute purge (bypass valve ON, analyte vial IN/OUT OFF), in order to ensure a continuous and steady flow of pressurized gas over the entire output current record for each device measured with the different P3HT materials. The exposed gas flow rate is always set to 1mL/s. During the experiment, no solvent condensation was observed either in the Teflon tube, at the gas capillary exhaust, or on the substrate of the sensitive material [36].

The saturating vapor concentration (in ppm) is the concentration of vapor in equilibrium with the pure substance at a given temperature (20 °C) and atmospheric pressure. It is obtained directly from the saturation vapor pressure Psat (in Pa) which is the partial pressure under the same conditions. According to the perfect gas law, we have:

P × V = n × R × T ( 1 
)
Where P is the vapor pressure (in Pa), V is the volume of the gas (in m 3 ), n is the quantity of gas (in mol), R is the universal constant of perfect gases (8.314472 J.mol -1 .K -1 ) and T is the temperature (273.15 + X °C in K).

The pressure P is proportional to the quantity of gas n. Therefore, we can find the gas concentration in ppm by this ratio: This is only an approximation because we are not necessarily in thermodynamic equilibrium; it would have to be verified experimentally to do metrology. However it not relevant within the framework of this study. In addition, we did not study the effect of gas concentrations on the response of the sensors and no metrology was carried out. variance contained in the sensor matrix. Therefore, after collecting all the measurements, we used the characteristic parameters of the each sensor response to improve the classification. These parameters are the relative variation of the resistance dR/R, which defines the relative difference between the device resistance after 3 minutes of gas exposure and the resistance before opening the gas vial that can give information between the sensor and the odors (Figure 2). In addition, to filter the amount of data to be analyzed, we chose to use the data set that contains the dR/R at the last ten seconds of exposure. We chose to use the "steady state" dataset, which shows the best separation of data by nature of the gas [36]. i: 1, 2, 3, 4, 5, 6, 7 and 8, is the number of the sensor to be tested. j: 1, 2 and 3, is the number of measure tests for each sensor to be tested.

c: 1, 2 and 3, is the number of the class.

Algorithms and pattern recognition

This phase covers mainly the classification and representation of both pattern and results regarding their importance as part of any system [37]. The main objective of a classification algorithm is to find the rules that model the behavior of the sensor and thus discriminate between compounds or mixture of compounds. There are two types of classification algorithms: supervised or unsupervised. Several methods can be found in the literature each with its own specificities and variants [38][39][40]. It is recommended to test several classification algorithms in order to find which algorithm will give the best classification performance. In this study case, three different classification algorithms were tested: PCA, LDA, and k-NN. The Scikit-Learn library, developed in Python language was used to test the different methods of recognition [41]. We used 180 individual observations. We chose randomly 40 % of the dataset that was used for the training set (72 Observations) and the rest for the identification and the testing ( 108Observations). We took several data partitions and each time, we applied the three different algorithms to compare the calculated accuracies. Table 1 shows that with each random change in the dataset, the accuracy changes for both the PCA and KNN classification methods. However, the LDA method gives an efficient classification with 100% accuracy.

Principle Component Analysis (PCA)

PCA is a statistical and unsupervised approach used for feature extraction and data compression [30,42]. Indeed, the principle of this algorithm is to find a combination of input parameters that contains the most variance between all data. The other interest is to remove the redundancy of information between these parameters [43]. The disadvantage of this method is that it only allows decorrelating linearly correlated variables, but a non-correlation does not mean a statistical independence.

Linear Discrimination Analysis (LDA)

LDA is a supervised approach, which is considered as the most commonly used classification algorithm since it gives good results and allows easy interpretation [44]. The basic function of this algorithm is to maximize variance difference between data classes while minimize the variance difference inside each individual class [7]. Therefore, if there is any groupings in data, the LDA is a powerful tool to recognize them. However, the disadvantage of this classification algorithm is that it can only discriminate classes that are linearly separable.

K-Nearest Neighbors (kNN)

The K-nearest neighbors (kNN) algorithm is a Machine Learning algorithm that belongs to the class of simple and easy-to-implement supervised learning algorithms that can be used to solve classification and regression problems. In fact, the kNN is a special type of algorithm that does not use a statistical model [45]. It is "non-parametric" based only on training data. The kNN algorithm is based on the selection of the k closest data points to the point under study in order to predict its value. In this work, we choose k between 1 and 50 as the best choice for the application since the highest classification rate was achieved with this value. The algorithm becomes much slower as the number of observations and independent variables increase. We recently reported on the doping of P3HT with different triflates, which showed gas-specific sensitivity [36].

We selected one of three devices for each gas sensor during a single sequence of exposure of the three gases taken at random to visualize the change in resistance over three minutes. The sensor responses show a small base resistance drift over time for some dopants (but not in the resistance modulation, which is used as a factor of merit for the analysis). This indicates the temporal stability of the triflate sensitized sensing elements over two hours of data acquisition (The raw data are available as supplementary information S3 and S4 in the article 'Mildly-doped polythiophene with triflates for molecular recognition' [36]).

Figure 5 shows the dR/R response of eight different sensor materials: P3HT without triflates and P3HT doped with Fe(OTf)3, Cu(OTf)2, Bi(OTf)3, In(OTf)3, Al(OTf)3, Dy(OTf)3 and Ce(OTf)3. As we can see, each sensor showed different signature to each transported gas (water, acetone and ethanol). This would explain that each gas has an impact on the device conductance. The values of the resistance variation are specific from gas to another and from dopant to another that favor either increases or decreases in resistance. Moreover, Fig. 6 represents the radar graph of each sequence of exposure of three gases for the eight devices. As we observe, in the absence of gas exposure for all eight devices, the dR/R variation of the response of each sensor is very low about 0%. This explains that the intervention of probed gas molecules is necessary to vary the devices resistance [24,36]. Moreover, it is noticed that pure P3HT without triflates gives relatively low resistance variation responses compared to other sensors with different dopants as shown in Fig.

5.

It interacts with water and acetone with a resistance variation about 14% and -13% respectively. While the reaction with ethanol is very limited.

Sensitivity and selectivity can be improved and optimized by introducing dopants that cause the modification of the energy band structure and morphology. Thus, they have a significant impact on the materials' conductivity [24,25]. Furthermore, in Fig. 3, it was found that devices doped with Fe(OTf)3 is the most sensitive one to ethanol than the others. It presents a resistance variation of about 46%. Similarly, the devices doped with this same material produce the highest response with 35.3% as resistance variation when exposed to acetone while devices doped with Bi(OTf)3 present the lowest response among all sensors with only 9.42% variations. While, devices doped with Ce(OTf)3 are the most sensitive to water as it gives a response of 125.5% of resistance variation. In addition, the order of gas exposure has a strong effect on the resistance modulation changes. As we observed in Fig. 6, in the sequence 3, in the case of Ce(OTf)3 for example, when exposing water after acetone, gives a resistance modulation about 125.5% which is different than when exposing water after ethanol in the sequence 4 (195.7%).

Result of PCA classification

Importance of feature Scaling

The principal components are chosen to contain the maximum variance in the data and to be orthogonal [42,46].

While simplifying the interpretation of the data by the first two or three principal components (PC1, PC2, and PC3) in two or three dimensions and preserving most of the variance in the data. The cumulative percentage explained is obtained by adding the successive proportions of variances explained. For example for 94.4 % and 3.1 % is equal to 97.5 %, and so on. Therefore, about 97.5 % and 66% of the total variance is explained by the first two eigenvalues using data without and with Standard scaler applied respectively (Figure 7).

Feature scaling through standardization would be an important preprocessing step for many machine-learning algorithms, which consists of transforming numeric columns to a common scale. There are multiple normalization techniques in statistics. The z-score method (often called standardization) transforms the data into a distribution with a mean of 0 and a standard deviation of 1. Each standardized value is computed by subtracting the mean of the corresponding feature and then dividing by the standard deviation.

Alternatively, we can use the StandardScaler class available in the Scikit-learn library to perform the z-score.

First, we create a standard_scaler object. Then, we calculate the parameters of the transformation (in this case the mean and the standard deviation) using the .fit() method. Next, we call the .transform() method to apply the standardization to the data frame. The .transform() method uses the parameters generated from the .fit() method to perform the z-score.

While many algorithms (such as SVM, kNN, and logistic regression) require features to be normalized, Principle

Component Analysis (PCA) is a prime example of such an importance for it. In PCA, we are interested in the components that maximize the variance. To illustrate this, PCA is performed to compare the use of data with

StandardScaler applied, to unscaled data. The results are visualized in the meantimes a clear difference is noticed (Figure 8). 

Classification

Here, we use the value of the resistances instead of the resistance modulation, and we apply the PCA method.

As we can see in Fig. S1 (which is provided as supplementary information), the classification of the three classes is not good. We observe an overlap between clusters with a low rate of accuracy (57.41%) because of the drift of sensor responses. Therefore, we are interested only in studying the data of the resistance modulation dR/R in gas classification.

Figure 8 shows a 2D plot for the coefficients of the Principal Component Analysis for the three different gases that group into three different clusters. Each gas is shown in different colors for visual identification. While these clusters separated from each other, the separation between water, ethanol and acetone is defined. It is more interesting to split data on train and test datasets to visually analyze the classification results. The data elements of random data set 3 were split randomly on 40% for training and the rest for the testing. By the PCA before standardizing training dataset (Fig. 8a), we observe that the clusters of acetone and ethanol are grouped on the left of the graph, and the cluster of water is located on the right and in the middle of the graph. In addition, we notice that there is a partial overlap between the water and acetone cluster and between the ethanol and acetone cluster.

The first two components, PC1 and PC2, contain 97.5% of the variance of the data. The first principal component, PC1, explains 94.4% of the total variation, while 3.1% of the total variance is explained by PC2. This shows high identification accuracy close to 82.51% for un-scaled data as compared to the rest of the variance components. The results obtained by PCA after scaling provided a perfect classification. In Fig. 8b, about 66% of the total variance of the data is displayed. PC1 and PC2 explain 42.4% and 23.6% of the variance respectively. The classification accuracy obtained by the PCA method with standardization of training dataset was 93.52% and we observed that the three gas groups are separated from each other with a little overlap.

After performing the PCA on the training set, the PCA was tested using test set, to generate overviews of the observations. The score plots of the testing set using the first two components shows an overlap between acetone/water and acetone/ethanol (Fig. 8c). 

Result of kNN classification

For this last algorithm, we choose k between 1 and 50 to determine the accuracy of the prediction for unknown observations. KNN requires features to be normalized and we applied StandardScaler to unscaled data. This model shows an accuracy of 73.14 % only. We notice that the accuracy for acetone and ethanol is perfect at 100%. On the other hand, water shows an accuracy of 80 % (Figure 11). Hence, the misclassification is worse than the one by the LDA prediction algorithm.

Fig. 11 Confusion matrix of kNN method

In the next step, we tested to what extent the accuracy of the kNN algorithm depends on the number of neighbors (Figure 12). However, while increasing k from 50 up to 100, we did not see any further increase in accuracy. In contrast, the accuracy dropped slowly. Thus, the distances between the classes sufficiently separate when using 50 neighbors. We may also be interested in a way to choose the k for which the classification would be the best. One way to find this is to plot the k value and the corresponding error rate for the dataset. Thus, we can detect the best prediction rate is obtained for a k between 1 and 50.

A brief comparison of our initial output results to those of other similar tools such as k-nearest neighbors (kNN))

is shown in Table 2. As shown above, the performance of LDA model was perfect. While the kNN model showed a 73.14 % prediction performance, it is failed to successfully predict all of the labels for the test subset. 

Effect of training datasets on accuracy algortihms

In this part, we were interested in testing several data sets in order to know the efficiency of each of these three algorithms when we chose a smaller training data set and a larger test data set. The objective is to have a device that we are able to calibrate the least number of times possible to be able to test it the most number of times possible. As we can see in Fig. 13, Both PCA and kNN classification methods give a high accuracy of about 100% for a high training datasets (80%). Each time we decrease the training datasets, the matching becomes weak and subsequently the accuracy of the classification decreases. For example, at a small training dataset, which is equal to 20%, the accuracy is 88.9% and 32% for PCA and kNN algorithm, respectively. On the other hand, the LDA technique shows a perfect accuracy for large testing datasets: 100% accuracy for a training dataset equal to 7%.

In this case, we can say that this method is efficient for the classification of different gases. In addition, LDA is widely used for various technologies of E-noses and materials other than conductometric sensor. Okur, S. et al, studied the identification of mint scents using a Quartz Crystal Microbalance (QCM) sensors Based E-Nose and verified that LDA method gives good results of classification with 100% accuracy [45,47]. Moreover, Akbar, M. A.

et al, studied the classification of gases using 4x4 Array of tin-oxide based Gas Sensor and they compare results of PCA and LDA methods. The obtained results reveal that LDA reaches 100% classification accuracy with only 50% of the collected sample data. They verified that for the given sample data LDA with fewer components provide better classification than PCA [48]. 
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Table 1

 1 Algorithm accuracy of several random datasets

		PCA Accuracy (%)	LDA Accuracy (%)	KNN Accuracy (%)
		(X test=60%, X train=40%)	(X test=60%, X train=40%)	(X test=60%, X train=40%)
	Random data set 1	86.11	100	63.6
	Random data set 2	89.81	100	26.8
	Random data set 3	93.52	100	73.1
	Random data set 4	89.81	100	64.8

Table 2

 2 Results of LDA and kNN algorithms

		Precision %	Recall % (Sensitivity)	F1-score %	Support
						(Specificity)		
	Algorithm	kNN	LDA	kNN	LDA	kNN	LDA	kNN	LDA
	Acetone	100	100	28	100	43	100	40	40
	Water	89	100	100	100	94	100	39	39
	Ethanol	55	100	100	100	71	100	29	29
	Accuracy of		KNN			LDA		108	108
	algorithm		73.14 %			100 %			
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Conclusion

In this work, we have developed the results of analysis and identification of the three studied gases: water, acetone and ethanol. The raw data of the temporal responses of the gas sensors represent too much data. We have therefore defined representative parameters of these curves, allowing a fast and reliable exploitation of the data using supervised and unsupervised analysis algorithms.

The extracted parameters are the variation of the relative resistance dR/R recorded for the eight different materials, three devices per material, with the output currents recorded overtime when exposed to the three different gases, exposed six sequences of three minutes per gas [36]. We were interested in the steady-state data that contains the output currents at the last 10 seconds of exposure. This state shows a clearer classification of the gas classes compared to the other states [36]. We compared the following analysis methods: PCA, LDA and kNN for 40% of training dataset. They present good identification of the gases with high accuracy. For the PCA algorithm, the accuracy reaches 93.52%, 100% for the LDA and 73.14% for the kNN. In addition, we tested these techniques using smaller training dataset and larger testing dataset, and we concluded that LDA is the efficient method for gas discrimination.

In order to improve the classification performance of the e-nose system, future work will be doing the feature engineering and using some feature extraction and feature reduction techniques. Among these feature parameters, we noted the derivative and the integral as being transient parameters and that could even result in better classification performance.

Thanks to this study that emphasize on the algorithm's choice, we will challenge our system with larger number of classes with more gases (providing a protocol for exposing each gas for shorter time will be optimized with a different setup, in preparation...)
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