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Homography-based Riccati observer design for camera pose estimation

Tarek Bouazza, Tarek Hamel, Minh Duc Hua, Robert Mahony

Abstract— This paper introduces a novel approach for esti-
mating the relative pose of a mobile robot equipped with an
onboard IMU, a velocity sensor complemented with a monoc-
ular camera observing a planar scene. The proposed solution
relies on the design of a deterministic Riccati observer that
exploits the first-order approximations of a class of nonlinear
systems. It uses the point-feature correspondences of a sequence
of images and exploits the homography constraint to derive
the system’s measurement equation. The observability analysis,
which highlights the uniform observability condition under
which local exponential stability is guaranteed, is performed.
Moreover, an extension of the observer to depth estimation is
provided. Finally, the proposed observer solution is validated
through simulation and experimental results.

I. INTRODUCTION

State estimation (position, velocity, orientation, etc.) is
a central problem in robotics and autonomous systems. It
involves designing sensor fusion algorithms that combine
various measurements using a dynamical model to produce
state estimates. The most commonly used sensors for navi-
gation problems are proprioceptive sensors, such as inertial
measurement units, which are often complemented by on-
board exteroceptive sensors, such as monocular cameras or
stereovision systems which (besides estimating the state of
the system) provide valuable information on the surrounding
environment.

In computer vision, homography is a projective transfor-
mation that provides pointwise mapping between two images
of the same planar scene, it encodes the camera relative
pose (i.e., position and orientation), the distance between the
camera and the scene, and its normal vector into a single
matrix. Homographies have been widely used in robotic
navigation applications as a vision primitive, most notably
for visual odometry [15] and visual servoing [12].

Homography estimation is a highly developed topic in
the classical computer vision literature. Classical algorithms
for homography estimation consist in computing the ho-
mography on a frame-by-frame basis by solving algebraic
constraints related to image feature correspondences (points,
lines, conics, contours, etc.) [1], [10], [9]. These methods,
however, are not suited for robotic applications as they do not
exploit temporal correlation and as a result cannot improve
(or filter) homography over time. Recent work by the authors
on homography estimation in [11], [4], [7] involves nonlinear
observer design based on the SL(3) group structure of the set
of homographies allowing to exploit velocity information.
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The process of estimating the camera pose and scene
parameters given an estimate of the homography matrix
is known as homography decomposition. Traditional ho-
mography decomposition approaches, such as Faugeras-SVD
based [2] and Zhang-SVD based [16] algorithms use sin-
gular value decomposition to obtain numerical solutions.
Malis and Vargas [13] solved the decomposition problem
analytically. However, all the mentioned methods fall into the
algebraic category, which focuses on solving the homography
decomposition problem on a frame-by-frame basis but not on
filtering the measurement noise. Manerikar et al, [14] used
the deterministic Riccati observer developed by Hamel and
Samson [5] to compute pose using homography estimates
as inputs. This design, however, depends entirely on the
homography estimate obtained in the prior step.

The present paper introduces a novel direct approach
to solving the homography-based pose estimation problem
as an alternative to the classical homography estimation-
decomposition process. Such that to obtain an estimate
of the camera motion, the planar homography constraint
between the two views of the scene is used directly to
construct the system measurement equation needed for the
Riccati observer design [3]. The design of the proposed
observer builds on previous work of the authors [6] on pose
estimation using epipolar constraints, itself an extension of
their previous work on the PnP pose estimation problem, but
departs from it in the modeling of the system and the output
measurements. The output measurement equation used in [6]
is slightly modified in this work to meet the requirements of
the Riccati observer framework [3] when using the planar
homography constraint.

For the sake of clarity, let us consider a single moving
camera observing a stationary plane scene. The task of the
proposed observer is to provide an estimate of the relative
position and attitude of the camera with respect to a chosen
reference frame, as well as the normal direction between the
reference and the planar scene, given a temporal sequence of
images and measurements of the angular and linear velocities
of the camera (both assumed to be bounded), provided by
an IMU and a linear velocity sensor. For this initial design,
no assumption on the reference frame is made, the inertial
frame is considered unknown and therefore the accelerometer
measurements are not taken into account.

This paper is organized as follows. In Section II some
preliminary notation and definitions of observability, the
deterministic Riccati observer framework and planar homog-
raphy are recalled. Section III highlights the proposed Riccati
observer design and explains the derivation of the required
measurement equation from the homography constraint. In



addition, a sufficient condition to ensure uniform observabil-
ity, under which local exponential stability is guaranteed,
was presented, along with an extension of the observer to
depth estimation. Section IV describes simulation results and
outlines experiments conducted to validate the theoretical
results. Concluding remarks are presented in Section V.

II. PRELIMINARY MATERIAL

A. Notation

We denote by Rn the n-dimensional Euclidean space, by
{e1, . . . , en} the canonical basis of Rn, by |x| the Euclidean
norm of the vector x ∈ Rn, and by ‖A‖ = max

|x|=1
|Ax| the

induced matrix norm of A ∈ Rn×n. The set Bnr := {x ∈
Rn : |x| ≤ r} is the closed ball in Rn of radius r. The null
matrix and identity matrix of dimension n×n are denoted by
0n and In, respectively. the null matrix of dimension n×m
is denoted 0n×m.

Sn := {x ∈ Rn+1 : |x| = 1} is the n-dimensional sphere
embedded in Rn+1 with radius equal to one.

x× is the skew symmetric matrix associated to the cross
product x×y = x× y, ∀x, y ∈ R3.

Πp := (In+1−pp>) is the projection onto the tangent space
of the unit n-dimensional sphere at the point p ∈ Sn.

SL(n) := {H ∈ Rn×n : det(H) = 1} is the Special Linear
group of order n.

SO(n) := {R ∈ Rn×n : det(R) = 1, RR> = R>R = In}
is the Special Orthogonal group of order n.

B. Uniform observability of a linear time-varying system

We consider a generic linear time-varying (LTV) system
of the form {

ẋ = A(t)x +B(t)u

y = C(t)x
(1)

with x ∈ Rn the system state vector, u ∈ Rs the system
input vector, and y ∈ Rm the system output vector and A(t),
B(t), C(t) denoting continuous matrix-valued functions with
adequate dimensions.

Let S(t) denote a continuous m×m-dimensional matrix-
valued function, positive definite for all t ∈ R+, the Riccati
observability Gramian associated with the triplet (A,C, S) is
the nonnegative semidefinite matrix-valued function defined
by

W (t, t+δ)A,CS =
1

δ

∫ t+δ

t

Φ>(s, t)C>(s)S(s)C(s)Φ(s, t)ds

(2)
where Φ(s, t) is the transition matrix associated with A(t),
such that {

d
dtΦ(s, t) = A(t)Φ(s, t), ∀s ≥ t
Φ(t, t) = In

(3)

If A(t) and C(t) are bounded and if there exists δ > 0
and ε > 0 such that W (t, t+ δ)A,CIn

≥ εIn for all t ≥ 0, then
we say that the pair (A,C) is uniformly observable.

C. Riccati Observer for a Class of nonlinear Systems

The presented observer is based on a modified version of
the Riccati design framework (presented in [14]). Consider a
class of nonlinear systems, whose state x =

[
x>1 x>2

]>
with

x1 ∈ Bn1
r and x2 ∈ Rn2 (with n1 + n2 = n), that evolves

according to the following equations:{
ẋ = A(t)x + u +O(|x|2) +O(|x||u|)
y = C(x, t)x +O(|x|2)

(4)

A is a continuous matrix-valued function uniformly bounded
with respect to t. Furthermore, it is of the form

A(t) =

[
A1,1(t) 0n1×n2

A2,1(t) A2,2(t)

]
∈ Rn×n

and C is a continuous matrix-valued function uniformly
bounded with respect to t and uniformly continuous with
respect to x.

C(x, t) :=
[
C1(x, t)> C2(x, t)>

]> ∈ Rm×n

Assume that D(t) is a bounded continuous symmet-
ric positive semi-definite matrix-valued function and S(t)
a bounded continuous symmetric positive definite matrix-
valued function and that both D(t) and S(t) are bounded
below. Applying the input

u = −PC>(t)Dy (5)

with P ∈ Rn×n a symmetric positive definite matrix solution
to the continuous Riccati equation (CRE)

Ṗ = AP + PA> − PC>D(t)CP + S(t), P (0) = P0 > 0
(6)

then if the pair (A?(t), C?(t)) with A?(t) = A(t) and
C?(t) := C(0, t) are uniformly observable, the equilibrium
x = 0 is locally uniformly exponentially stable [5, Theorem
3.1 and Corollary 3.2].

D. Homography definition

Consider a moving camera observing a textured planar
scene. Let {A} and {B} be the reference frame and the
current frame respectively. Let ξ ∈ R3 denote the position
of frame {B} with respect to frame {A} expressed in frame
{A}. The orientation of frame {B} with respect to frame
{A} is represented by a rotation matrix R ∈ SO(3).

Let d̊ (resp. d) and η̊ ∈ S2 (resp. η ∈ S2) denote the
distance from the origin of {A} (resp. {B}) to the planar
scene and the normal vector pointing to the scene expressed
in {A} (resp. {B}), one easily verifies that{

η = R>η̊

d = d̊− η̊>ξ
(7)

Let i = 1, . . . N source points belonging to the planar
scene. The coordinate vectors P̊i ∈ {A} and Pi ∈ {B} of
the same i-th point on the scene are related by

Pi = R>(P̊i + ξ) (8)



Fig. 1. Euclidean homography

Since the considered points belong to the observed planar
scene

Π := {∀P ∈ R3 : η>P−d = 0} = {∀P̊ ∈ R3 : η̊>P̊−d̊ = 0}
(9)

and using the fact that η̊>P̊i

d̊
= 1 along with (8), one gets:

Pi = R>(I3 −
ξη̊>

d̊
)P̊i = H−1P̊i (10)

where H−1 = R>(I3 − ξ̄η̊>) (with ξ̄ := ξ

d̊
), is the inverse

of the Euclidean homography matrix H that maps Euclidean
coordinates of the scene’s points from {B} to {A} and given
by

H := R+
ξη>

d
(11)

Since a homography matrix H is only defined up to scale
then any homography matrix is associated with a unique
matrix H̄ ∈ SL(3) by re-scaling

H̄ =
1

det(H)
1
3

H (12)

such that det(H̄) = 1.
If the camera is calibrated (the intrinsic parameters of the

camera are known) one can write

p̊img = KP̊ , pimg = KP (13)

where K ∈ R3×3 is the camera calibration matrix and
p̊img ∈ {A} (resp. pimg ∈ {B}) is the image of the point P̊
(resp. P ) when the camera is aligned with frame {A} (resp.
{B}) and can be written in the form (u, v, 1)> using the
homogeneous coordinate representation for that 2D image
point.

The image homography matrix that maps pixel coordinates
from the current frame to the reference frame is given by

Him := KHK−1 = K(R+
ξη>

d
)K−1 (14)

Rather than source points, normalized coordinates (direc-
tion vectors) can be used

p̊i :=
P̊i

|P̊i|
=

K−1p̊img

|K−1p̊img|
∈ S2

pi :=
Pi

|Pi|
=

K−1pimg

|K−1pimg|
∈ S2

(15)

From equations (10) and (15), the projected points satisfy

pi :=
H−1p̊i
|H−1p̊i|

(16)

known as the planar homography constraint.

III. HOMOGRAPHY-BASED RICCATI OBSERVER DESIGN

A. Observer design

Let ζ = R>ξ denote the position of the current camera
frame {B} with respect to reference camera frame {A}
expressed in frame {B}, and let Ω ∈ R3 and V ∈ R3 denote
the camera angular velocity and linear velocity of the current
frame {B} w.r.t the reference frame {A}, expressed in {B}.
The equations of motion are{

Ṙ = RΩ×

ζ̇ = −Ω×ζ + V

To avoid using minimal parameterization techniques to
parameterize the unit normal vector η̊ ∈ S2, we over-
parameterize it by introducing an auxiliary rotation matrix
Q ∈ SO(3) (see [8]) such that

η̊ := Q>e3 (17)

Since d
dt η̊ = 0, the following system is obtained

Q̇ = 03×3

Ṙ = RΩ×
˙̄ζ = ζ̇

d̊
= −Ω×ζ̄ + V

d̊

(18)

Let Q̂ ∈ SO(3), R̂ ∈ SO(3), ˆ̄ζ ∈ R3 denote the estimates
of Q, R, ζ̄, respectively. Such that the normal vector estimate
is given by

ˆ̊η := Q̂>e3 (19)

In the case where d̊ is known, the proposed observer takes
the following form

˙̂
Q = −Q̂σQ×
˙̂
R = R̂Ω× + σR×R̂
˙̄̂
ζ = −Ω×

ˆ̄ζ + V
d̊
− σζ

(20)

with initial conditions (Q(0), R(0), ζ(0)) ∈ SO(3)×SO(3)×
R3, and σQ, σR, σζ ∈ R3 the innovation terms to be
determined thereafter.

The following error variables are defined

Q̃ = QQ̂>, R̃ = R̂R>, ˜̄ζ = ζ̄ − ˆ̄ζ

Then the objective of observer design consists in stabiliz-
ing (Q̃e3, R̃,

˜̄ζ) about (e3, I3, 0).



Let q =
[
q0 q̄>

]>
be the unit quaternion associated

with a rotation matrix R ∈ SO(3), the expression of R as a
function of q is given by Rodrigues’ formula

R(q) = I3 + 2q̄×(q0I3 + q̄×)

From this, one can write

R = I3 + λ× +O(|λ×|2), with λ , 2sign(q0)q̄ ∈ B3
2

One deduces the following first-order approximations

R̃ = I3 + λR̃× +O(|λR̃|
2)

Q̃ = I3 + λQ̃× +O(|λQ̃|
2)

(21)

From (21) and the first two equations of (18) and (20) one
derives the error dynamics of R̃ and Q̃

˙̃R = σR×R̃

˙̃Q = Q̃σQ×

One then deduces that in first-order approximations

λ̇R̃ = σR +O(|λR̃||σR|)
λ̇Q̃ = σQ +O(|λQ̃||σQ|)

(22)

B. System output with Homography Constraints

The measurement equation is obtained through the planar
homography constraint (16), written as follows

Ĥpi

|Ĥpi|
=

H̃p̊i

|H̃p̊i|
(23)

where Ĥ is the homography estimate and H̃ = ĤH−1 the
homography error. By expanding the expression of H̃ and
multiplying both sides by Πp̊i , expression (23) writes

Πp̊i

Ĥpi

|Ĥpi|
= Πp̊i(I3 +

R̂ ˆ̄ζ ˆ̊η>

1− ˆ̊η>R̂ ˆ̄ζ
)(R̃− R̂ζ̄η̊>)p̊i

Using first-order approximations (21) yields

Πp̊i

Ĥpi

|Ĥpi|
≈ Πp̊i Γ̂

(
λR̃× − R̂

˜̄ζe>3 Q̂− R̂ ˆ̄ζe>3 λQ̃×Q̂
)
p̊i

with Γ̂ = I3 + R̂ ˆ̄ζ ˆ̊η>

1− ˆ̊η>R̂ ˆ̄ζ
= ĤR̂>, one then deduces

Πp̊i

Ĥpi

|Ĥpi|
≈ −(Q̂p̊i)3Πp̊i Γ̂R̂

˜̄ζ − (Q̂p̊i)2Πp̊i Γ̂R̂
ˆ̄ζλQ̃,1+

(Q̂p̊i)1Πp̊i Γ̂R̂
ˆ̄ζλQ̃,2 −Πp̊i Γ̂p̊i×λR̃

By setting the measurement as yi = Πp̊i
Ĥpi
|Ĥpi|

, one finds

yi = −(Q̂p̊i)2Πp̊iĤ
ˆ̄ζλQ̃,1 + (Q̂p̊i)1Πp̊iĤ

ˆ̄ζλQ̃,2−

Πp̊i Γ̂p̊i×λR̃ − (Q̂p̊i)3Πp̊iĤ
˜̄ζ (24)

Let the system output be y :=
[
y>1 . . . y>N

]>
, it has the

form of the measurement equation of (4), where



x :=


λQ̃,1
λQ̃,2
λR̃
˜̄ζ

 , u :=


σQ,1

σQ,2

σR

σζ

 ,

A :=


0 0 01×3 01×3

0 0 01×3 01×3

03×1 03×1 03×3 03×3

03×1 03×1 03×3 −Ω×

 ,

C1 :=


−(Q̂p̊1)2Πp̊1

Ĥ ˆ̄ζ (Q̂p̊1)1Πp̊1
Ĥ ˆ̄ζ −Πp̊1

Γ̂p̊1×
...

...
...

−(Q̂p̊N )2Πp̊N Ĥ
ˆ̄ζ (Q̂p̊N )1Πp̊N Ĥ

ˆ̄ζ −Πp̊N Γ̂p̊N×



C2 :=


−(Q̂p̊1)3Πp̊1

Ĥ
...

−(Q̂p̊N )3Πp̊N Ĥ


(25)

From there, the expressions of the innovation terms are
computed according to (5), where the matrices S and D
(involved in (6)) are chosen larger than some constant
positive matrix.

Note that only the first two components of the innovation
term σQ (i.e. σQ,1 and σQ,2) are involved in the design
process of the Riccati observer. Its last component can
therefore be set to zero for the sake of simplicity, such that
σQ = [σQ,1, σQ,2, 0]

>.

Remark 1. Note that another possible setting of this prob-
lem can be considered, assuming that the measured linear
velocity v ∈ R3 is expressed in the reference frame, which
amounts to simpler dynamics{

Ṙ = RΩ×
˙̄ξ = v

d̊

This case, although impractical, is interesting to investi-
gate from a theoretical standpoint as it leads to a simplified
version of (25) with A = 08×8.

C. Observability analysis

This section provides sufficient conditions that ensure
the exponential stability of the observer’s origin error. The
equilibrium (Q̃e3, R̃,

˜̄ζ) = (e3, I3, 0) is locally exponentially
stable, provided that the pair (A?(t), C?(t)) with A?(t) :=
A(t) and C?(t) := C(0, t) is uniformly observable, the
observability Gramian is as follows

W (t, t+δ)A
?,C?

In
=

1

δ

∫ t+δ

t

Φ?>(τ, t)C?>(τ)C?(τ)Φ?(τ, t)dτ

(26)
with

C? =

 (Qp1)2Πp̊1
Hζ̄ −(Qp1)1Πp̊1

Hζ̄ Πp̊1
Γp̊1× (Qp1)3Πp̊1

H

...
...

...
...

(QpN )2Πp̊N
Hζ̄ −(QpN )1Πp̊N

Hζ̄ Πp̊N
Γp̊N× (QpN )3Πp̊N

H





and
Φ?(τ, t) =

[
I5 03×3

03×5 R(τ)>R(t)

]
In order to guarantee that the Gramian (26) is always

positive, it suffices to prove that C?(t) is of full rank. The
approach taken is inspired by the previous work in [4].

One has from the expression of H̃ that in first-order
approximation H̃ ≈ I3 + ∆, with

∆ = Γ̂(λR̃× − R̂
˜̄ζe>3 Q̂− R̂ ˆ̄ζe>3 λQ̃×Q̂) (27)

Let us consider the equation

Πp̊iH̃p̊i = 0, ∀i ∈ {1 . . . N} (28)

which can be developed as follows:

Πp̊i∆p̊i = 0, ∀i ∈ {1 . . . N}

⇔ Πp̊i Γ̂(λR̃× − R̂
˜̄ζe>3 Q̂− R̂ ˆ̄ζe>3 λQ̃×Q̂)p̊i = 0

⇔ − (Q̂p̊i)2Πp̊iĤ
ˆ̄ζλQ̃,1 + (Q̂p̊i)1Πp̊iĤ

ˆ̄ζλQ̃,2−

Πp̊i Γ̂p̊i×λR̃ − (Q̂p̊i)3Πp̊iĤ
˜̄ζ = 0

From there, the expression of C in (25) can be identified,
and one finds by evaluating the latter around the equilibrium
x = 0, the following system

Πp̊i [−(Qp̊i)2Πp̊i
Hζ̄ (Qp̊i)1Πp̊i

Hζ̄ −Πp̊i
Γp̊i× −(Qp̊i)3Πp̊i

H ] x = 0
(29)

Finally, from (29) the following equivalence is deduced

C?x = 0 ⇐⇒ Πp̊iH̃p̊i = 0, ∀i ∈ {1 . . . N} (30)

It is straightforward that if H̃ = I3 then x = 0. This
being said, to prove that C? is of full rank it is sufficient
to show that H̃ = I3 around the equilibrium. This amounts
to equation (28), which furthermore implies the existence of
some non-null constants such that

H̃p̊i = λip̊i (31)

Definition 1 (Consistent set). A set MN of N ≥ 4 vector
directions p̊i ∈ S2 (i = {1 . . . N}) is called consistent if it
contains a subsetM4 ⊂MN of 4 constant vector directions
such that all its vector triplets are linearly independent

Definition 1 implies that if the setMN is consistent then,
for all p̊i ∈ M4 there exist a unique set of three non
vanishing scalars bj 6= 0 (j 6= i) such that

p̊i =
yi
|yi|

where yi =

4∑
j=1(j 6=i)

bj p̊j (32)

The relation (31) indicates that all λi are eigenvalues of H̃
and all p̊i ∈ S2 are the associated eigenvectors of H̃ . Note
that the fact that λi 6= 0 can be easily verified. For instance,
if λi = 0, then p̊i = λiH̃

−1p̊i = 0 which contradicts the
fact that p̊i ∈ S2.

Consider the consistent setMN = {p̊1 . . . p̊N}, it follows
at the limit (and without loss of generality) that (p̊1, p̊2, p̊3)

are three independent vectors and therefore they represent
three non collinear eigenvectors of H̃ associated with the
eigenvalues λi for i = {1, 2, 3} such that H̃p̊i = λip̊i.

Exploiting again the consistency of the set Mn, it fol-
lows that there exists a constant direction p̊k from the set
{p̊4 . . . p̊N} such that:

p̊k =
yk
|yk|

where yk =

3∑
i=1

bip̊i, bi ∈ R/{0}, i = {1, 2, 3}

(33)
Since p̊k can be seen as a forth eigenvector for H̃ associated
to the eigenvalue λk = ±|H̃p̊k|, this yields

λkp̊k = H̃p̊k =
1

|yk|

3∑
i=1

biH̃p̊i

λk

3∑
i=1

bip̊i =

3∑
i=1

biλip̊i

Exploiting the fact that the measured directions form a
consistent set, it follows that bi 6= 0, i = {1, 2, 3} and using
the fact that det(H̃) = 1, a straightforward identification
shows that λk = λ1 = λ2 = λ3 = 1 and thus H̃ = I3.

It follows from (30) that with a minimum of four direction
vectors p̊k, k = {1, 2, 3, 4} forming a consistent setM4 the
pair (A?, C?) is uniformly observable, and the equilibrium
(Q̃e3, R̃,

˜̄ζ) = (e3, I3, 0) is locally exponentially stable.

Remark 2. A special case occurs when the current and
reference camera positions are overlapped i.e., ζ̄ = 0,
the homography simplifies to the rotation matrix H = R,
meaning that the Lie group SL(3) is degenerated into SO(3).

In this case, the planar homography constraint (16) be-
comes pi = R>p̊i, and the error reduces to H̃ = R̃ which
leads to the following measurement equation

0 = Πp̊i p̊i×λR, ∀i ∈ {1 . . . N} (34)

such that at the equilibrium R̃ = I3 one finds

C?(t) =

 p̊1×
...

p̊N×

 (35)

C?x = 0 yields

p̊i × λR = 0, ∀i ∈ {1 . . . N} (36)

For N = 2 equation (36) implies the existence of λ1, λ2 ∈
R?, such that λR = λ1p̊1 = λ2p̊2, since the points are chosen
so that p̊j and p̊i are noncollinear ∀i 6= j, it follows directly
that λR = 0. One concludes that the attitude R is uniformly
observable with a minimum of two source points.

D. Depth estimation

In practice, the distance between the reference camera
and the scene d̊ is unknown. The proposed observer has an
interesting property making it possible to estimate the latter
along with the state when the linear velocity V is measured.



To this end, a new state variable ρ = 1
d̊

and its estimate ρ̂
are defined, such that{

˙̄ζ = −Ω×ζ̄ + ρV

ρ̇ = 0
(37)

Note that including the estimate of ρ in the Riccati observer
framework would render the system naturally unobservable
when V is equal to zero, it is therefore preferable to estimate
it separately and cascade the two observers.

Proposition 1. Consider the general solution to the Con-
tinuous Riccati Equation (6) as the time-varying symmetric
positive definite matrix P (t), if the measured direction vec-
tors form a consistent set MN , then by setting

˙̂ρ = kρV
>P̄C†y (38)

with P̄ = [ 03×5 I3 ]P−1, C† =
[
C>C

]−1
C> and kρ > 0,

the equilibrium (x, ρ̃) = (0, 0), with ρ̃ = ρ − ρ̂, is locally
asymptotically stable if S(t) and D(t) are chosen larger than
some positive matrix.

Proof. Define the following candidate Lyapunov function

L(x, t) = x>P−1x +
1

kρ
|ρ̃|2 (39)

Using the property d
dtP

−1(t) = −P−1Ṗ (t)P−1, one finds
by differentiating L

L̇ = −x>
[
C>SC + P−1DP−1

]
x+

2ρ̃V > [ 03×5 I3 ]P−1x− 2

kρ
ρ̃ ˙̂ρ

Since the direction vectors form a consistent set, the Riccati
observability condition is satisfied and the matrix C>C is
therefore invertible, which yields

x =
[
C>C

]−1
C>y

It follows that

L̇ = −x>
[
C>SC + P−1DP−1

]
x

− 2ρ̃

[
1

kρ
˙̂ρ− V >P̄

[
C>C

]−1
C>y

]
Finally, introducing the expression (38) of ˙̂ρ yields

L̇ = −x>
[
C>SC + P−1DP−1

]
x

By choosing S(t) and D(t) positive definite, it follows that
(x, ρ̃) = (0, 0) is locally asymptotically stable.

Remark 3. If the linear velocity in the body-fixed frame is
unmeasurable, and constant or slowly time-varying then, by
defining s = V

d̊
= ρV , and proceeding as in proposition 1:{

˙̄̂
ζ = Ω×

ˆ̄ζ + ŝ− σζ
˙̂s = ksP̄C

†y, ks > 0
(40)

one ensures that the equilibrium (x, s̃) = (0, 0) with s̃ =
s − ŝ is locally asymptotically stable. Analogously, if the

linear velocity is rather constant or slowly time varying in
the inertial frame, then by definig s = v

d̊
and{

˙̄̂
ξ = ŝ− σξ
˙̂s = ksP̄C

†y, ks > 0
(41)

one also ensures that the equilibrium (x̄, s̃) = (0, 0) with

x̄ =
[
λQ̃,1, λQ̃,2, λR̃,

˜̄ξ
]>

is locally asymptotically stable if
conditions of proposition 1 are satisfied.

IV. SIMULATION RESULTS AND EXPERIMENTAL
EVALUATION

A. Simulation setup

In this section, the performance of the proposed observer
is investigated through simulation. The camera is represented
in 3D space, observing four points of interest belonging to
the horizontal plane. The camera is initially at the center
with z = 5m, representing the true value of d̊, and pointing
downward, such that η̊ = e3. For this scenario, the camera
motion follows a circular path with velocity in the body-
fixed frame V (t) = [0.5 sin(0.5t),−0.5 cos(0.5t), 0]

> and
angular velocity Ω(t) = [0.1 sin(0.5t), 0.1 cos(0.5t), 0.1]

>.
The attitude and normal vector estimates are expressed
directly on the group of unit quaternions (q̂R, q̂Q) associated
with R̂ and Q̂, respectively. Considering that V is known, the
observer is implemented with depth estimation as described
in Proposition 1.

The following initial state estimates are
considered: ˆ̄ζ(0) = [0.2, 0.2, 0.2]

>, q̂R(0) =
[0.9509, 0.1503, 0.2250, 0.1503]

>, corresponding to errors in
roll, pitch and yaw of 30(deg), q̂Q(0) = [0.924, 0.3827, 0, 0]
corresponding to an angle of 30(deg) between η̊(0) and
ˆ̊η(0), and ρ̂(0) = 0.3, with P (0) = diag(1I5; 2I3),
D = 100I3N , S = 0.5I8. The initial estimates are randomly
perturbed in each component by sampling from Gaussian
distributions of mean 0 and standard deviation 0.2, 15(deg),
15(deg), and 0.2, respectively. The results of 100 Monte
Carlo trials are shown in Figures 2 and 3; the shaded area
shows 5th to 95th percentile.

The presented simulation results are consistent with the
theoretical results and validate the performance of the Riccati
observer proposed in this work.

B. Image stabilisation experiment

To support the simulation results and further evaluate the
performance of the Riccati observer, an image stabilization
experiment is conducted involving a sequence of images and
angular velocity measurements collected from a camera-IMU
system moving rapidly along a planar scene. The homogra-
phy resulting from the implemented observer estimates is
used to track a region of interest in the moving image by
means of image warping with respect to the reference.

The results obtained (available at https:
//shorturl.at/jGMX9) demonstrate that the observer
performs properly and manages to track the region of
interest even in the presence of strong occlusion, severe

https://shorturl.at/jGMX9
https://shorturl.at/jGMX9


Fig. 2. Scaled position and attitude estimation errors, respectively.

Fig. 3. Normal direction and inverse depth estimation errors, respectively.

image blur and light saturation, demonstrating its robustness
and the good convergence of the estimates to the real values.

V. CONCLUSIONS

This work presents a novel approach for camera pose
estimation when viewing a planar scene. The proposed so-
lution uses the homography constraint to design a nonlinear
observer based on the Riccati observer design framework.
A sufficient condition to guarantee uniform observability is
provided, along with an extension of the observer for depth
estimation. The simulation and experimental results illustrate
that the proposed approach appropriately and accurately
estimate the homography components.

As part of future work, an online version of the Riccati
observer will be implemented in C++ along with OpenCV for
feature extraction and matching. An extension of the observer
to bias estimation will also be investigated.
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