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Abstract

In this paper we deal with a class of time-varying delay systems. We show that the existence of a non-
coercive Lyapunov–Krasovskii functional is necessary and sufficient for local exponential stability. This
result extends what is recently given in [3] for globally Lipschitz systems to a class of locally Lipschitz
systems. A switched system approach is used to elaborate this result.

Keywords Time-delay systems; switched systems; Lyapunov–Krasovskii functionals; exponential stabil-
ity.

1 Introduction

Different approaches have been developed in the literature of control theory for the stability analysis of
time-delay systems (see, e.g., [2, 10, 13, 20]). We refer, for example, to the Lyapunov–Krasovskii approach,
the Lyapunov–Razumikhin approach, and recently the trajectory based approach introduced in [15]. Based
on these approaches, a variety of stability criteria have been developed. Time-varying delay systems is a very
intriguing class of time-delay systems for which some non-intuitive properties are discussed and analyzed in
the literature (see, e.g., [4, 14]).

Time-varying delay systems can be seen as a special class of switched systems. This paradigm has been
proposed in [12] for discrete-time delays systems, which consists in transforming the system in question
into discrete-time switched system in a higher-dimensional space. Continuous-time delay systems can be
similarly interpreted as switched systems in infinite-dimensional Banach space. This approach has been used
in [5] and [6] to characterize the stability of continuous-time retarded systems in terms of the existence of
coercive and non-coercive Lyapunov–Krasovskii functionals. By non-coercive Lyapunov functional, we mean
a positive definite functional decaying along the trajectories of the system which satisfies

0 < V (x) ≤ α(‖x‖), ∀ x ∈ X\{0}, (1)

where X is the ambient Banach space and α belongs to the class K∞ of continuous increasing bijections
from R+ to R+. Such a functional V would be coercive if there existed α0 ∈ K∞ such that V (x) ≥ α0(‖x‖)
for every x ∈ X.

Various works have been recently devoted to the characterization of the stability of switched systems
in finite and infinite-dimensional systems through coercive and non-coercive Lyapunov functionals (see,
e.g., [3, 5, 8, 11, 16, 17, 18]). In [3], a characterization of uniform exponential stability in terms of the
existence of non-coercive Lyapunov functionals has been developed for abstract forward complet switched
system. This result covers the class of globally Lipschitz time-varying delay systems with piecewise-constant
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delays. As explained above, this is possible after representing a nonlinear time-varying delay system as an
abstract forward complet switched system. Here we extend this result for a class of locally Lipschitz systems
with measurable time-varying delays.

The paper is organized as follows. Section 2 presents the definitions, the assumptions in use and the
problem statement. In Section 3 we give a switching representation of the considered class of delay systems
and we recall an interesting result in this context. Preliminary results are given in Section 4. The main result
concerning the characterization of local exponential stability through non-coercive Lyapunov-Krasovskii
functional is given in Section 5.

1.1 Notation

Throughout the paper, we adopt the following notation: R denotes the set of real numbers, R+ the set
of non-negative real numbers, and R the extended real line. By (Rn, ‖ · ‖), we denote the n-dimensional
Euclidean space, where n is a positive integer and | · | denotes the Euclidean norm of a real vector. Given
∆ > 0, C = (C([−∆, 0],Rn), ‖ · ‖∞) denotes the Banach space of continuous functions mapping [−∆, 0] into
Rn, where ‖ · ‖∞ is the norm of uniform convergence. For a function x : [−∆, b) → Rn, with 0 < b ≤ +∞,
for t ∈ [0, b), xt : [−∆, 0] → Rn denotes the history function defined by xt(θ) = x(t + θ), −∆ ≤ θ ≤ 0. For
a positive real H and given φ ∈ C, CH(φ) denotes the subset {ψ ∈ C : ‖φ− ψ‖∞ ≤ H}. We simply denotes
CH(0) by CH .

2 Definitions and problem statement

Let us consider the time-varying delay system

Σ :
ẋ(t) = f(x(t), x(t− σ(t))), a.e. t ≥ 0,
x(θ) = x0(θ), θ ∈ [−∆, 0],

(2)

where x(t) ∈ Rn; n is a positive integer; σ ∈ S; S is the set of Lebesgue measurable time-delay functions
σ : R → S; S ⊂ [0,∆]; ∆ positive real (maximum involved time delay); x0 ∈ C is the initial condition;
f : Rn × Rn → Rn is a Lipschitz on bounded sets function such that f(0, 0) = 0.
For each s ∈ S, let, with a slight abuse of notation, fs : C → Rn be the functional which is defined in C as

fs(φ) = f(φ(0), φ(s)), φ ∈ C.

So, system (2) can be equivalently rewritten as the following retarded functional differential equation

ẋ(t) = fσ(t)(xt), a.e. t ≥ 0,
x(θ) = x0(θ), θ ∈ [−∆, 0].

(3)

Definition 1. We say that the system Σ is uniformly globally exponentially stable (UGES for short) if there
exist positive reals M and λ such that, for any x0 ∈ C and σ ∈ S, the corresponding solution exists in R+

and, furthermore, satisfies the inequality

‖x(t, x0, σ)‖ ≤Me−λt‖x0‖∞. (4)

Definition 2. We say that the system Σ is uniformly locally exponentially stable (ULES for short) if there
exist positive reals M , λ and H such that, for any x0 ∈ CH and σ ∈ S, the corresponding solution exists in
R+ and, furthermore, satisfies the inequality

‖x(t, x0, σ)‖ ≤Me−λt‖x0‖∞. (5)

Let us recall the definition of Dini derivative of a functional V : C → R+.
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Definition 3. For a continuous functional V : C → R+ its Dini derivative DV : C → R is defined, for
system Σ, for φ ∈ C, as follows,

DV (φ) = sup
s∈S

lim sup
h→0+

V (xh(φ, s))− V (φ)

h
,

where xh(φ, s) is the solution of Σ starting from φ and associated with σ(t) ≡ s, s ∈ S.

Let us also recall the following definition about Driver’s form derivative [1] of a continuous functional
V : C → R+.

Definition 4. For a continuous functional V : C → R+, its Driver’s form derivative, D+V : C → R, is
defined, for system Σ, for φ ∈ C, as follows,

D+V (φ) = sup
s∈S

lim sup
h→0+

V (φΣ,s
h )− V (φ)

h
, (6)

where φΣ,s
h ∈ C is defined, for h ∈ [0,∆) and θ ∈ [−∆, 0], as follows

φΣ,s
h (θ) =

{
φ(θ + h), θ ∈ [−∆,−h)
φ(0) + (θ + h)fs(φ), θ ∈ [−h, 0].

(7)

Driver’s type derivative, by contrast to Dini’s one, is an appropriate definition of the derivative of a Lya-
punov–Krasovskii functional that does not involve the solution. The relation between Dini’s and Driver’s
type derivatives, in the case of locally Lipschitz Lyapunov-Krasovskii functional V , is clarified by the follow-
ing: fix φ ∈ C and a right-continuous piecewise-constant function σ ∈ S, and let x(·) be the locally absolutely
continuous solution of Σ in a maximal interval [0, b). Inspired from what is already done in [21], in [7] we
establish the following equality which holds for every t ∈ [0, b)

lim sup
h→0+

V ((xt)
Σ,σ(t)
h )− V (xt)

h
= lim sup

h→0+

V (xh(xt, σ))− V (xt)

h
, (8)

where (xt)
Σ,σ(t)
h is given using equation (7) and xh(xt, σ) is the trajectory corresponding to Σ starting from

xt and associated with σ over [t, t + h). By consequence, for every φ ∈ C and s ∈ S the following equality
holds

lim sup
h→0+

V ((xt)
Σ,s
h )− V (xt)

h
= lim sup

h→0+

V (xh(xt, s))− V (xt)

h
, (9)

for every t ∈ [0, b). By applying the supremum over S from the left and the right of equation (9), we obtain
that

D+V (xt) = DV (xt), ∀ t ∈ [0, b). (10)

Of course this is true if V is locally Lipschitz and σ is piecewise-constant.

Remark 1. Equality (8) holds almost everywhere in [0, b) in the case of Lebesgue measurable delay functions.

3 Switching representation

Let us recall by the following definition (see, e.g. [19]) the notion of strongly continuous nonlinear semigroup.
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Definition 5. Let X be a Banach space and let T (t) : X → X, t ≥ 0, be a family of nonlinear maps. We
say that (T (t))t≥0 is a strongly continuous nonlinear semigroup if the following properties hold:

i) For every x ∈ X, it holds that T (0)x = x;

ii) For every t1, t2 ≥ 0, it holds that T (t1)T (t2)x = T (t1 + t2)x;

iii) For every x ∈ X, the map t 7→ T (t)x is continuous.

For each s ∈ S and φ ∈ C, consider the unique solution x(·) over [−∆,+∞) of Σ with σ(t) = s for every
t ≥ 0; the existence and uniqueness of solutions for Σ is discussed in the next section. This defines a family
(Ts(t))t≥0 of nonlinear maps from C into itself by setting

Ts(t)φ = xt, ∀ t ≥ 0.

According to [10, 22], (Ts(t))t≥0 is a strongly continuous semigroup of nonlinear operators on C. Let σ ∈ S
be a piecewise constant function which is constantly equal to σk over [tk, tk+1), with 0 = t0 < t1 < · · · <
tk < t < tk+1, for k ≥ 0. By concatenating the flows (Tσk

(t))t≥0, one can associate with σ the family of
nonlinear evolution operators

Tσ(t) := Tσk
(t− tk)Tσk−1

(tk − tk−1) · · ·Tσ1
(t1),

t ∈ [tk, tk+1). Then, system Σ can be equivalently represented by the following switched system

xt = Tσ(t)φ, φ ∈ C, σ ∈ S. (11)

As a consequence of this switching representation of the nonlinear time-varying delay system Σ, the following
results is proved in [3].

Theorem 1 ([3]). Let l > 0 be such that

‖fs(φ1)− fs(φ2)‖ ≤ l‖φ1 − φ2‖, ∀ φ1, φ2 ∈ C, ∀ s ∈ S. (12)

The following statements are equivalent:

i) System Σ is UGES;

ii) there exists a continuous functional V : C → R+ and positive reals p and c such that

V (φ) ≤ c‖φ‖p, ∀ φ ∈ C,
and

DV (φ) ≤ −‖φ‖p, ∀ φ ∈ C. (13)

Theorem 1 argues that if fs, s ∈ S, is uniformly globally Lipschitz then the UGES property of system Σ
can be characterized by the existence of a non-coercive Lyapunov functional with suitable properties.

The following theorem has not been proven in [3] but it is a straightforward consequence of [3, Theorem
4] applied to the switching representation given by (11) of Σ (see the proof of [3, Theorem 4] for more details).

Theorem 2. Suppose that inequality (12) holds. If there exists H > 0 and a continuous functional V :
CH → R+ and positive reals p and c such that

V (φ) ≤ c‖φ‖p, ∀ φ ∈ CH ,
and

DV (φ) ≤ −‖φ‖p, ∀ φ ∈ CH ,
then Σ is ULES.

Theorem 2 will be useful to prove the main result of this paper.
Knowing that the global Lipschitzianity assumption is somehow very restrictive, in this paper we will

try to relax this property by considering locally Lipschitz systems. An additional regularity property will be
considered (see Assumption 1 in Section 4).

4



4 Preliminary results

The following lemma discusses the existence and uniqueness of the solution of system Σ as well as its
continuous dependence on the initial state.

Lemma 1. For any φ ∈ C and σ ∈ S, there exists, uniquely, a locally absolutely continuous solution x(t, φ, σ)
of Σ in a maximal time interval [0, b), with 0 < b ≤ +∞. If b < +∞, then the solution is unbounded in [0, b).
Moreover, for any ε > 0, for any c ∈ (0, b), there exists δ > 0 such that, for any ψ ∈ Cδ(φ), the solution
x(t, ψ, σ) exists in [0, c] and, furthermore, the following inequality holds

‖x(t, φ, σ)− x(t, ψ, σ)‖ ≤ ε, ∀ t ∈ [0, c]. (14)

Proof. Let H > 0 and take φ1, φ2 ∈ CH . Observe that, for every s ∈ S, we have

‖fs(φ1)− fs(φ2)‖ = ‖f(φ1(0), φ1(s))− f(φ2(0), φ2(s))‖ ≤ l(H)‖φ1 − φ2‖∞,

where l(H) is the Lipschitz constant associated to f in the ball of center 0 and radius H. Then, fs, s ∈ S, is
uniformly Lipschitz on bounded subsets of C. In addition, knowing that f is continuous and σ(·) is Lebesgue
measurable then the map t 7→ fσ(t)(φ) is Lebesgue measurable. By consequence, system (3) respects the
Caratheodory conditions for existence and uniqueness of solutions and the proof is straightforward from the
theory of systems described by RFDEs (see, e.g. [10]). �

We introduce the following assumption.

Assumption 1. The function f is Fréchet differentiable at the origin.

For each s ∈ S, let us introduce the operator Ls : C → Rn defined by

Lsφ = L(φ(0), φ(s)), ∀φ ∈ C, (15)

where L : Rn × Rn → Rn is the derivative of f at 0 which is a bounded linear operator.

Lemma 2. Suppose that Assumption 1 holds. Then, for each s ∈ S, Ls is the Fréchet derivative of fs at 0.
Furthermore, there exists m > 0, such that

‖Lsφ‖ ≤ m‖φ‖∞, ∀φ ∈ C,∀s ∈ S. (16)

Proof. For s ∈ S and φ ∈ C, we have

lim
φ→0,φ6=0

‖fs(φ)− fs(0)− Lsφ‖
‖φ‖∞

= lim
φ→0,φ6=0

‖f(φ(0), φ(s))− f(0, 0)− L(φ(0), φ(s))‖
‖φ‖∞

≤ lim
φ→0,φ6=0

‖f(φ(0), φ(s))− f(0, 0)− L(φ(0), φ(s))‖
max{‖φ(0)‖, ‖φ(s)‖}

= lim
y∈Rn×Rn,y→0

‖f(y)− f(0, 0)− Ly‖
‖y‖

= 0.

Furthermore, we have
‖Lsφ‖ = ‖L(φ(0), φ(s))‖ ≤ m‖φ‖∞, ∀φ ∈ C,∀s ∈ S, (17)

for some m > 0 independent on φ and s. Then for each s ∈ S, fs is Fréchet differentiable at 0 and the
bounded linear operator Ls is its Fréchet derivative. �
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Lemma 3. Suppose that Assumption 1 holds. Suppose that S is reduced to piecewise-constant functions. If
the linear system

ΣL :
ξ̇(t) = Lσ(t)ξt, t ≥ 0,
ξ(θ) = ξ0(θ), θ ∈ [−∆, 0],

(18)

with ξ0 ∈ C, is UGES then system Σ is ULES.

Proof. The proof is a direct consequence of Lemma 2 and [9, Theorem 5.2]. �

Lemma 4. Suppose that Assumption 1 holds. Suppose that S is reduced to piecewise-constant signals. If,
for system ΣL, there exist H, c > 0 and a continuous functional V : CH → [0,+∞) such that the following
inequalities hold for every φ ∈ CH then

(i) V (φ) ≤ c‖φ‖∞,

(ii) D+V (φ) ≤ −‖φ‖∞
then system ΣL is ULES.

Proof. Knowing that Ls, s ∈ S, is uniformly globally Lipschitz (see inequality (17)) then the proof is a direct
consequence of Theorem 2 together with the fact that D+V = DV (see equation (10)). �

5 Main result

The following theorem shows that the existence of a non-coercive Lyapunov–Krasovskii functional is a nec-
essary and sufficient condition for the ULES property of system Σ, provided that Assumption 1 is satisfied.

Theorem 3. Suppose that Assumption 1 holds. System Σ is ULES if and only if there exist positive reals
H, p, c1, c2 and locally Lipschitz functional V : CH → R+, such that the following inequalities hold for any
φ ∈ CH

(i) V (φ) ≤ c1‖φ‖∞,

(ii) D+V (φ) ≤ −c2‖φ‖∞.

Proof. The proof of the necessity part is given in [9, Theorem 5.2]. The proof of the sufficiency part is
inspired from [9, Theorem 5.2]. Let φ ∈ CH and let σ ∈ S be a piecewise-constant function. Knowing that V
is locally Lipschitz, there exist 0 < δ0 < H and c3 = c3(δ0) such that, for any φ1, φ2 ∈ Cδ0(φ), the following
inequality holds

|V (φ1)− V (φ2)| ≤ c3‖φ1 − φ2‖∞. (19)

Seeing that, for sufficiently small h, and for any s ∈ S, we have φΣL,s
h , φΣ,s

h ∈ Cδ0(φ), it follows that in-

equality (19) holds for φΣ,s
h and φΣL,s

h . Now, calculating the Driver’s derivative of V along the system ΣL
gives

D+V (φ) = sup
s∈S

lim sup
h→0+

V (φΣL,s
h )− V (φ)

h

= sup
s∈S

lim sup
h→0+

V (φΣL,s
h ) + V (φΣ,s

h )− V (φΣ,s
h )− V (φ)

h

≤ sup
s∈S

lim sup
h→0+

c3‖φΣ,s
h − φΣL,s

h ‖∞
h

− c2‖φ‖∞

≤ sup
s∈S

lim sup
h→0+

c3 sup
θ∈[−∆,0]

‖φΣ,s
h (θ)− φΣL,s

h (θ)‖

h
− c2‖φ‖∞

≤ sup
s∈S

lim sup
h→0+

c3 sup
θ∈[−h,0]

|θ + h|‖fs(φ)− Lsφ‖

h
− c2‖φ‖∞.
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Let 0 < δ1 < δ0 be a positive real such that if φ ∈ Cδ1 then the following inequality holds

‖fs(φ)− Lsφ‖ ≤
c2
2c3
‖φ‖∞. (20)

So, therefore, for any φ ∈ Cδ1 , we have

D+V (φ) ≤ −c2
2
‖φ‖∞. (21)

Thus, the inequalities (i) and (ii) of Lemma 4 are satisfied for system ΣL, uniformly with respect to piecewise-
constant functions σ ∈ S. Then, thanks to Lemma 4, system ΣL is ULES (hence UGES by linearity) with
respect to the class of piecewise-constant functions σ ∈ S. Then, using Lemma 3, system Σ is ULES with
respect to the class of piecewise-constant functions σ ∈ S. Now, using the equivalence property provided
in [9, Theorem 3.1], that is Σ is ULES with respect to measurable functions σ if and only if it is ULES with
respect to piecewise-constant ones, we conclude the proof of the sufficiency part. �

6 Conclusion

In this paper we characterize the local exponential stability of a class of locally Lipschitz uncertain time-
varying delay systems through the existence of non-coercive Lyapunov–Krasovskii functionals. This is ob-
tained based on a switched system approach. This result extends what is recently given in [3] for globally
Lipschitz delay systems with piecewise-constant delays to locally Lipschitz systems with measurable time-
varying delays. This result is given under the assumption that the function defined the dynamics is Fréchet
differentiable at the origin. Future works will attempt to relax this regularity condition.
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