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1 Introduction

In this paper we study the large-energy and large-angular momentum limit of the two body
scattering problem, known as eikonal scattering. We investigate in particular transplanck-
ian gravitational scattering at large impact parameter, although the scope of our study is
wider and it applies as well beyond gravitational interactions.
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We are interested in both the classical and quantum aspects, and we are going to
contrast their features. Classical eikonal effects control the leading contributions to the
observables and are of direct interest for e.g. astrophysical bodies, while we show that
quantum (non-gravity) effects may become the dominant corrections whenever particles
of the Standard Model (SM) are scattered at transplanckian energy and large impact
parameter.

The goal of the present work is twofold: i) providing a systematic Effective Field The-
ory (EFT) expansion in the eikonal regime that works to any desired order in the ratios
of length scales, for particles of any mass and spin, and large gravitational coupling; and
ii) understanding the causal structure in a theory with dynamical gravity, including never-
theless the leading — resolvable — quantum fluctuations from the dynamics of particles.
It turns out that these quantum field theory (QFT) corrections are orders of magnitude
more important than semiclassical corrections for particles or small black holes scattering.

The eikonal approximation has a long history that started in non-relativistic quantum
mechanics inspired by the geometric optics limit, see e.g. [1]. One of most interesting ap-
plications in modern times was the study of transplanckian scattering of massless particles
in a beautiful series of works [2–8], where one of the original motivations was to construct
explicitly an unitary S-matrix to address the black hole information paradox.1 Despite the
original goal was beyond reach, the eikonal has recently found a new life with the detection
of gravitational waves (GWs) that has sparked a fervent activity in the application of such
method to study the scattering of massive compact objects such as black holes or neutron
stars, see e.g. refs. [10–19], and references therein for an incomplete list of works on this
subject.

Since gravity couples to the energy-momentum tensor, the gravitational coupling is
very large in the transplanckian regime, in fact tremendously large for astrophysical bod-
ies. Yet the theory remains under theoretical control because the pull of gravity decays
with distance in D ≥ 4 spacetime dimensions. Therefore one can expect that an EFT ex-
pansion in the relevant length scales — Schwarzschild radius Rs, body sizes L�, Compton
wavelengths λ̄ etc — over the impact parameter b would allow to control and organize the
infinitely many Feynman diagrams required with such a large gravitational coupling.

In this paper we show that such an EFT expansion at large center of mass (c.o.m.)
energy — hence large coupling — and large impact parameter, actually corresponds to
study systematically the corrections to the limit `→∞ of the partial wave decomposition
of scattering amplitudes for particles of any mass and spin. In particular, we show that
the eikonal (matrix) exponentiation of the scattering phase, that is obtained by resumming
infinitely many diagrams as depicted in (1.1),

e2iδ(s,b) = Exp
{

+ . . .

}
= I+ + . . .

(1.1)

1Transplanckian eikonal scattering has found applications even within particle phenomenology at collid-
ers, see [9].
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can be understood as a direct consequence of the SU(2)→ ISO(2) group contraction, where
the isometries of the sphere (3D rotations) are well approximated by those of a tangent
plane at large radius (euclidean 2D translations and rotations). In this sense, we show that
eikonal expansion holds for the same reason a flat-earth model of a our planet is an excellent
approximation over length scales much smaller than the earth radius.2 The continuous-spin
irreducible representations (irreps) of the non-compact group ISO(2) corresponds precisely
to the emergence of a continuous — classical — angular momentum in the eikonal limit.
Although we derive an all-order eikonal expansion in section 3.3, we do not know what the
radius of convergence may be, the optimistic expectation based on black hole formation
being Rs/b ∼ 1.

While the leading transplanckian eikonal scattering is semiclassical, we show that there
is a huge window in length scales where the quantum corrections ∼ α(λ̄/b)2 controlled
by some QFT coupling α and Compton wavelength λ̄ (other than irrelevant quantum
gravity (λPl/b)2) are much more important than semiclassical post-Minkowskian (Rs/b)2-
corrections, as soon as

√
αλ̄ > Rs. Likewise, if very light, essentially massless, particles

run in loops their relative corrections ∼ α log2 b/λ̄ may well dominate the semiclassical
ones (Rs/b)n whenever α� (Rs/b)2. For instance, when scattering SM particles at trans-
planckian energy, there are about fifteen orders of magnitudes where SM quantum loops
can be more important than post-Minkowskian corrections. This is usually obscured in the
literature by conflating the eikonal scattering with the blind classical limit ~ → 0 limit,
despite αλ̄ may in fact be larger than Rs.3

The fact that quantum effects may represent the leading corrections in transplanckian
scattering opens the possibility to study the role of quantum fluctuations in the context
of dynamical gravity in the controlled setting of the eikonal expansion. We investigate
in particular the causal structure of scattering amplitudes in the eikonal regime including
QFT corrections, significantly extending the results of [20] along the lines of [21–24].

In particular, focusing on the instructive (and phenomenologically interesting) graviton-
scalar scattering, we prove an infinite tower of non-linear positivity constraints on the
EFT, assuming analyticity and unitarity of the scattering amplitudes. These constraints
represent the imprint of causality on infrared observables. Notice that we are neglecting
spooky quantum-gravity corrections ∼ (λPl/b)2, so that analyticity of amplitudes is a
rather conservative assumption. Positivity of the time delay, that is “asymptotic causality”,
is just the simplest of these positivity bounds. Higher energy derivatives of the scattering
phase are constrained as well but, in the eikonal limit, the bounds requires also taking the
rigid limit of fixed and weak gravitational background.

This work is organised as follows. Using general and simple scaling arguments, in
section 2 we introduce an operative way to study the eikonal regime based on the large
angular momentum limit. We propose also a better way of contrasting classical vs quan-
tum effects, based on their size and resolvability with respect to physical observables such

2To the point flat-earth believers extrapolate that approximation beyond its range of validity.
3Needless to say, this is unlikely to be the case for scattering astrophysical bodies unless considering

modified-gravity theories with e.g. an extra light particle coupled to matter and with Compton wavelength
larger than the Rs or L�.
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as the deflection angle. Section 3 is devoted to prove and extend the eikonal exponentia-
tion (1.1) via partial waves decomposition for particles of any mass and spin. In particular,
in section 3.3 we show how to extract an eikonal expansion valid to all orders in the deflec-
tion angle. Then we discuss an application of this in section 4 by studying the scattering
of a photon against a massless neutral scalar, up to next-to-leading order in G (Newton
constant) and at the leading order in the fine structure constant α. In section 5 we study
causality constraints in the form of positivity bounds for the EFT of scalar-graviton scat-
tering. We present our conclusions in section 6. Certain details on infrared divergences, on
the partial wave expansion, and the 2-loop calculations can be found in appendices A, B,
and C respectively.

2 Eikonal and transplanckian scattering

We consider the gravitational scattering of two — possibly spinning — bodies of incoming
momenta p1 and p2 and denote by s = (p1 + p2)2 and t = q2 the Mandelstam variables for
the c.o.m. energy and the momentum exchanged, squared.4

There are four length scales in this problem. Two are kinematical — the Compton
wavelength λs ≡ 1/

√
s and the impact parameter b (conjugate variable to q, more on this

in the next sections) — whereas the other two are dynamical: the Planck length λPl and
the effective Schwarzschild radius Rs, namely5

Rs ≡ 2G
√
s , λPl =

√
G = 1

mPl
√

8π
. (2.1)

The mPl is the reduced Planck mass and G the Newton constant.
The Rs and λPl mark the onset of classical strong non-linearities (e.g. black hole

formation) and strong quantum-gravity (QG) effects, respectively. The impact parameter
measures the orbital angular momentum b|p|, where p is the c.o.m. 3-momentum.6 In the
following we consider bodies with spin projections much smaller than the orbital spin, so
that the impact parameter can be traded for the total angular momentum ` ' b|p|, which
is taken large.

Other dynamical length scales, collectively denoted by λ̄ hereafter, may appear in the
problem representing e.g. the size of the (astrophysical) body, the compositeness-scale of
particles, the Compton wavelength of virtual particles, the string length, etc.

The problem is further caractherized by the strength αg of the gravitational interac-
tions

αg ≡ Rs
(p1 · p2)2

s|p|
∼ Rs

√
s ∝ Gs (2.2)

defined proportionally to the residue of the elastic amplitude at t = 0, such that the
scattering phase at large angular momentum is δ` = αg log ` for ` → ∞. The right-most

4In order to simplify the kinematics we consider the case where the final masses are m3 = m1 and
m4 = m2, although the bodies may change flavor, spin, etc. in the scattering. We call u = 2m2

1 +2m2
2−s− t

the other Mandelstam variable.
5Reintroducing ~ while keeping c = 1, the planck length is λPl =

√
G~ and m2

Pl = ~2/(8π λ2
Pl).

6It can be expressed in terms of Mandelstam invariants as p2 = [s− (m1 +m2)2][s− (m1 −m2)2]/4s.
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part of (2.2) shows the scaling of αg for massless particles. For future reference, in the
probe limit the scaling is instead αg = Rs|p|. The gravitational coupling controls two
regimes:

subplanckian s� m2
Pl =⇒ αg � 1 Rs � λPl � λs

transplanckian s� m2
Pl =⇒ αg � 1 λs � λPl � Rs .

(2.3)

In subplanckian scattering, the bodies need full fledge quantum description because the
Compton wavelength λs is larger than the classical Rs; yet the gravitational interactions
are still very weak, so that they can be systematically taken into account by deforming the
free (quantum) theory, e.g. in the Born approximation scheme. If other interactions are
also weak, textbook QFT pertubative calculations in terms of a finite numbe of Feynman’s
diagrams are enough to achieve any desired accuracy.

Transplanckian scattering — reached for extremely boosted particles relative to one
another or just for very massive (e.g. astrophysical) bodies — is characterised instead by
a large coupling αg � 1, and the perturbative approximation scheme with a finite number
of Feynman’s diagrams is no longer viable.

However, in transplanckian scattering, one can adopt an EFT expansion thanks to the
large hierarchy of length scales

λs
b
� λPl

b
� Rs

b
� 1 (2.4)

as long as the impact parameter b is taken much larger than the Schwarzschild radius. In
other words, there is another expansion parameter, Rs/b � 1, which is nothing but the
classical scattering angle itself7 once expressed in terms of the conjugate variable q, namely

θ ' |q|
|p|
∼ Rs

b
� 1 . (2.5)

The exchanged momentum must therefore be very small to allow the EFT expansion to
work in the large coupling regime. In a sense, the two bodies have a tremendous center of
mass energy — a large gravitational coupling — but the pull of gravity decays with distance
so that a large transverse separation (large angular momentum) allows us to control the
scattering of nearly deflected bodies. As long as ` is taken large and the angle is small,
one can control the theory in all energy range, from the subplanckian (small coupling) to
the transplanckian (large coupling) regime. Equivalently, the eikonal regime corresponds
to the kinetic energy being much larger than the potential energy,

√
s � Gs/b, which

immediately implies (2.5).
In the next section we address this eikonal regime of large impact parameter and small

angle by systematically studying the limit

`→∞ , θ → 0 , `θ → fixed ∼ αg (2.6)

in the partial wave decomposition, and its corrections at finite ` and θ. The leading effect
corresponds to resum an infinite class of Feynman diagrams (ladder and cross-ladder),

7Explicitly, θ ' q/p ∼ Fb/p ∼ αg/pb ∼ Rs/b where F is the force.
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λs λPl Rs
bλstring L⊙

λs λPl Rs
bλλstring

Figure 1. Scale lengths of the system. Bottom: tidal relative corrections (L�/b)n are largest
and dominate the modifications to the leading eikonal. Top: the most important corrections to
leading eikonal arise from higher-derivative operators generated by particles of Compton wavelength
λ̄ = 1/me that are running in loops, as long as αλ̄2 � Rs and b � λ̄. For b � λ̄ resummation to
all orders in λ̄/b is needed, corresponding to work with a new EFT where new degress of freedom
are propagating. A typical example of δθ/θ, to first order in the coupling constant, is ∼ α log2 λ̄/b

in this regime.

whereas the next-to-leading contributions keep track of the O(Rs/b)n- corrections and,
possibly, of other small-coupling effects. In section 3.3 we provide the all-order eikonal
amplitude which can be used to extract any desired O(Rs/b)n, extending thus the result
to finite scattering angle.

Since Rs controls the classical non-linear gravitational effects, and because it is much
larger than the quantum gravity scale λPl and the Compton wavelength λs, the trans-
planckian regime is usually conflated with the semi-classical limit.

This identification of transplanckian scattering with classical physics is, however, too
quick and sometimes misleading. Only the leading term needs to be classical. There could
be indeed other length scales in the problem λ̄, e.g. other particles Compton wavelengths,
which are not necessarily small relatively to Rs or even to b as one lowers it:

λ̄� Rs � b vs Rs � λ̄� b vs Rs � b� λ̄ . (2.7)

Only the leftmost inequalities allow to consistently neglect λ̄/b corrections relative to Rs/b.
And there can be quantum corrections due to other weak couplings, collectively denoted

hereafter by α (e.g. a gauge coupling in a QED-like theory), which can be larger than the
classical corrections O(Rs/b)n to the leading term. This never happens for astrophysical
bodies (unless there were e.g. new light degrees of freedom with Compton wavelength larger
than Rs), but it can definitely happen for scattering particles at transplanckian energies, or
even for black holes of radius much larger than λPl but smaller than the various Compton’s
wavelengths of particles in the SM. See figure 1 for an illustration.

Consider for example a theory of photons coupled to gravity, integrating out a charged
particle of spin se and mass me at one-loop the theory is matched to an extra effective
operator (among others)

δL = c

(
α

4π λ̄
2
)
FµνFρσR

µνρσ (2.8)

where λ̄ = 1/me and c = ±(2se + 1)/180 with + (−) for a boson (fermion). In the regime
Rs �

√
|c|α/4πλ̄� b, the operator (2.8) changes the scattering angle by a relative amount

O(cα/4π λ̄2/b2) which is more important than the O(Rs/b)2 classical corrections [21]. The
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regime Rs < b < λ̄, which is beyond the EFT description (2.8), is also discussed in [21]
using full QED coupled to gravity, and it is further extended in section 4.

For other examples where λ̄ = λstring in string theory, see [2, 3] for the regime
Rs � λstring � b, the [4] for λstring � Rs � b, and [2, 25] for Rs < b < λstring. We
collectively refer to this bulk of papers as the ACV reference. For more recent results see
also appendix E of ref. [20] and [26], again in the non-trivial regime Rs < b < λstring. Need-
less to say, to address the b � λ̄ case, one needs to incorporate new propagating degrees
of freedom that appear from b ' λ̄ downward.

We remark that it is possible to extend the eikonal regime below λ̄ for strings and par-
ticles because the degrees of freedom running in loops carry at most momenta of planckian
order (past which the integrals converge), which is still far from being enough to compete
with the orbital contribution, i.e. b|p| � mPlλ̄, for s � m2

Pl. This is generically not the
case instead for astrophysical bodies where the constituents that become visible at λ̄ = L�
are themselves transplanckian and carry an O(1) fraction of the total angular momentum;
in this case the eikonal approximation breaks down.

As we explain in detail in section 2.1, transplanckian scattering is indeed semiclassical
but in the sense that θ and the angular momentum ` ∼ b|p| have simultaneously small
quantum uncertainties. Semi-classicality does not mean that relative corrections to the
leading value of θ must be classical in origin too. They can well be dominated in fact by
quantum loops O(α/4π), rather than by classical effects O(Rs/b), like in the example (2.8).
Likewise, corrections due to other length scales λ̄/b could also dominate over the classical
corrections O(Rs/b).

Reintroducing momentarily ~, the customary approach to select the relevant scales in
the two-body problem is looking at the ~-scaling of scattering amplitudes, which assigns
what is “classical” and what is “quantum”. We think that a more appropriate terminology
to take into account a larger number of scales is actually “resolvable” and “non-resolvable”
effects. Indeed, we argue in section 2.1 that certain quantum effects such as those produced
by couplings with the SM are in fact resolvable and possibly more important than certain
classical contributions.

Alternatively, whenever taking ~ → 0 limit one should determine what to keep fixed
depending on the relative size of the various contributions. Sending to zero the Compton
wavelength λ̄ = ~/me of particles running in a loop, or the (dimensionaless) loop expansion
parameter itself α/4π = g2~/16π2, does not really make sense in transplanckian scattering
whenever λ̄ > Rs or α/4π > (Rs/b)2.

We insist on the fact that the relative hierarchy between those scales completely de-
pends on the problem studied. A system involving the sun, for instance, is dominated by
finite size λ̄ = L� effects, as its radius L� is much larger than its Schwarzschild radius
and any other λ̄. In this case the classical limit emerges as the leading effect in the ~→ 0
scaling, see e.g. [27]. On the other hand, for small black holes, say λPl � Rs � 1/TeV,
the relevant corrections would actually come from SM couplings where the SM particles
have λ̄ > Rs. Likewise, SM loops are the most important corrections for transplanckian
scattering of photons at small impact parameter (but still larger than Rs).

– 7 –
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We would like to mention that the eikonal regime exists and it is relevant for instance
also in QED without gravity. In the scattering of two particles of charge Zi, the condition
of kinetic energy to dominate over the potential energy leads to ω � αZ1Z2/b and, analo-
gously to the gravitational case, the eikonal regime in QED is also characterized by large
total angular momentum taking the form ` ∼ αemZ1Z2/θ. Contrary to the gravitational
case, however, the classical limit `θ � 1 is reached only for very large Zi, corresponding
necessarily to non-elementary objects such as heavy nuclei,8 charged black holes, etc.

2.1 Classical vs quantum and resolvability

As we have discussed so far, the eikonal scattering may apply to both subplanckian and
transplanckian regimes, as long as the angular momentum is large and the scattering angle
is small. It is however only for transplackian energies that eikonal scattering is also semi-
classical as we show in this subsection, along with the classification of the next-to-leading
classical and quantum corrections.

We can talk of semi-classical trajectory whenever we can simultaneously assign the
impact parameter b and the resulting deflection angle θ, i.e. if the outcome of the scattering
experiment is approximately deterministic because of small quantum uncertainties:

∆θ/θ � 1 & ∆b/b� 1 . (2.9)

The quantum uncertainties can be related as

∆θ
θ
∼ ∆q

pθ
&

1
∆b

1
pθ
∼ 1

∆b/b
1
`θ

(2.10)

so the semiclassical limit requires `θ � 1. Moreover, in the eikonal scaling discussed in the
previous subsection, `θ ∼ αg and therefore classicality requires tranplanckian scattering
αg � 1 (that is δ` � 1) namely

∆θ
θ

∆b
b
∼ 1
αg
� 1 . (2.11)

The intersection between semiclassical limit and eikonal scattering allows us to describe
transplanckian eikonal scattering in terms of trajectories in spacetime. Notice also that
being transplanckian implies

1
Gs
∼ λs
Rs
� 1 , (2.12)

which is equivalent to
λ2

Pl
R2
s

� 1 . (2.13)

In classical transplanckian scattering, Rs and λPl are hierarchical hence the latter matters
the least in the EFT.

8The calculation of the Lamb shift due to nuclei with Zi � 1, see e.g. [28], is the QED bounded-orbit
analog of the quantum corrections to the gravitational unbounded orbits we calculate in the next sections.
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Let us now take the leading order deflection angle θ ∼ Rs/b and imagine including
possible subleading corrections δθ. It is relevant at this point to ask which corrections are
resolvable: whether their effect is larger than quantum uncertainty.

We consider the following type of modifications: δθ ∼ (Rs/b)n, δθ ∼ (λPl/b)2n and
δθ ∼ αn(λ̄/b)k, where we recall that α represents some other coupling in the theory, e.g.
α = αem the fine structure constant of QED. Tidal corrections (L�/b)k fit in the αn(λ̄/b)k-
classification with λ̄ = L� and α some analog of e.g. the love number.

The first type (Rs/b)n are classical GR corrections, sometimes referred to as Post-
Minkowskian (PM) corrections. The second one (λPl/b)2n are purely quantum gravity
(QG) corrections. The last type of modifications αn(λ̄/b)k may be “quantum” corrections
whenever controlled by a coupling such as α = αem (for this we dub them “gauge”, but
the coupling can certainly be a Yukawa squared or else), but they can also be classical
whenever due to finite-size — tidal — corrections. To summarise9

δθ

θ
∼


(Rs/b)n PM,
(λPl/b)2n QG,
αn (λ̄/b)k Gauge/Tidal

(2.14)

where k = 0 for n > 0 corresponds to powers of log b/λ̄ factors (typically arising from light
particles loops). From (2.10), we get

∆θ/θ
δθ/θ

&
1

∆b
1

p δθ
∼ 1

∆b/b
1
`θ

( 1
δθ/θ

)
∼



1
∆b/b

1
αg (Rsb )n PM,

1
∆b/b

1

(Rsb )2
(
λPl
b

)2n−2 QG,

1
∆b/b

1
αgαn( λ̄b )

k Gauge/Tidal

(2.15)

where we used `θ ∼ αg and (λ2
Pl/b)2αg ∼ (Rs/b)2.

Let us comment on the different scenarios. For αg large enough, the PM higher-order
corrections lead to resolvable effects10

∆θ/θ
δθ/θ

� 1 . (2.16)

These are the corrections considered for instance in [10–17].
On the other hand, QG corrections controlled by λPl/b, the second equation in (2.15),

are always smaller than the quantum uncertainty, as the eikonal limit requires Rs/b � 1,
while being transplanckian (semi-classical) imposes that λPl/b is even smaller. Therefore,
one important lesson is that in eikonal scattering

Quantum gravity corrections are never resolvable.
9We are implicily assuming that there are no other long range interactions among the two bodies, it is

simple to amend this simplifying assumption.
10An amusing observation is the fact that given explicit kinematic parameters, there exists a maximum

PM-order n̄ ∼ logαg/ log(b/Rs) which makes sense to calculate, beyond which quantum uncertainty takes
over.
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This implies that δθ/θ = O(λPl/b)2n corrections for scattering e.g. massless scalars in [4], or
the quantum gravity corrections to bending of light [29, 30], do not actually correspond to
any physical effect such as e.g. the alleged violations of the equivalence principle. They just
fall behind the intrinsic quantum fuzziness wall. Those corrections, however, are needed
to correctly extract the resolvable 3PM corrections, as originally stressed and done in [4].
Of course, mixed corrections scaling as (λPl/b)n(Rs/b)k are also not resolvable.

This does not mean, however, that all quantum effects are necessarily negligible relative
to the classical ones. For instance, from the third line of eq. (2.15) we understand that
there exists again a large enough αg such that quantum effects due to gauge interactions
δθ/θ = αn(λ̄/b)k are in fact resolvable in the eikonal-transplanckian limit. In particular
there is a regime in which such effects are even larger than the PM ones, see e.g. the effect
of (2.8) in the regime Rs �

√
|c|α/4π/me [21]. We discuss and extend this example in

section 4.
Even in the QED setting, it may happen than quantum corrections are generically more

important than classical tidal corrections, as the Lamb shift contribution to the energy level
in a bound state can easily be larger than the classical tidal effects, parametrically scaling
as (anucl/aBohr)2, due to finite nucleus size anucl with respect to the Bohr radius aBohr.

In fact, even tidal corrections that one would ascribe to classical physics may well be
quantum in origin, as e.g. the size of a neutron star is controlled by its fully quantum
equation of state, not to mention the stability of matter, atoms and nuclei. Quantum
vs classical is actually a false dichotomy: what really matters whenever dealing with the
dimensionful parameter ~ are — of course — dimensionless ratios that can be large or
small, and whether the effects are resolvable or not.

We end this section with the second lesson:

Quantum (non-gravity) corrections may be resolvable and even leading over PM.

3 The eikonal scattering as a contraction

In this section we show how the eikonal (1.1) is recovered from the large angular momentum
limit of the partial waves decomposition, for all masses and spins.

We first review the main properties of the amplitude expansion on partial waves for
spinning particles in section 3.1. Then, applying the limit (2.6), we recover (1.1), which is
physically understood as the (c.o.m. little-)group contraction from SU(2) to ISO(2).

The continuous representations of ISO(2) turn out to be crucial to recover the integral
form of (1.1). This geometrical point of view of the eikonal is detailed in section 3.2.
Next, we focus on the subleading corrections to the eikonal limit, and obtain an all order
expression (3.29) and its inverse (3.31), that allows to extend the results to finite θ. We
conclude the section by extracting deflection angle and the time delay from the eikonal
amplitude for particles of any spin.

3.1 Partial waves reminder

From the classical arguments and scaling discussed in section 2, we expect to recover the
eikonal exponentiation (1.1) in the limit of large total angular momentum. It is then natural
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to work in a basis of definite angular momentum, that is projecting the amplitudes on
partial waves. As this partial wave decomposition plays an important role in the following,
we review its salient aspects in this section, leaving a detailed derivation to appendix B.

Firstly, we build two-particle states by taking the tensor product of irreps of Poincaré
in the c.o.m. frame. For future convenience, we choose a net angle θ with the z-axis equally
split between the incoming and outgoing state. The azimuthal angle φ takes into account
rotations with respect to the xz-plane. As usual, the states are labeled by momentum
pi, spin Si, helicity λi (spin projection along pi) and other quantum numbers, collectively
denominated αi

|1λ1 2λ2〉 ≡ R(φ,−θ2 ,−φ)|p1 S1 λ1, α1; p2 S2 λ2, α2〉 c.o.m.
θ=φ=0

, (3.1)

|3λ3 4λ4〉 ≡ R(φ, θ2 ,−φ)|p3 S3 λ3, α3; p4 S4 λ4, α4〉 c.o.m.
θ=φ=0

, (3.2)

while the S-matrix is related to the (helicity) scattering amplitude of a 2→ 2 process by

〈3λ3 4λ4 |S − I|1λ1 2λ2〉 = (2π)4δ4(p1 + p2 − p3 − p4) iMλ3λ4
λ1λ2

(pi) . (3.3)

The 2-particle states are decomposed on Poincaré irreps of definite angular momentum,
leading to the partial waves decomposition of the scattering amplitude and the S-matrix
given by

Partial-waves =



Mλ3λ4
λ1λ2

(pi) = N2 e
i(λ12−λ34)φ∑

`

(2`+ 1)d`λ12λ34(θ)M`
λ3λ4
λ1λ2

(s)

M`
λ3λ4
λ1λ2

(s) = N−1
∫ 1

−1
dcos θ d`λ12λ34(θ)Mλ3λ4

λ1λ2
(pi)

∣∣
φ=0

S`
λ3λ4
λ1λ2

(s) = N−1
∫ 2π

0

dφ

2π

∫ 1

−1
dcos θ d`λ12λ34(θ) e−i(λ12−λ34)φSλ3λ4

λ1λ2
(pi)

(3.4)

where the normalization is N = 8π
√

s
|p1||p3| and λij ≡ λi−λj . The first two expressions are

respectively the projection of the amplitudes on a complete basis of asymptotic states, with
d`λ′λ(θ) ≡ 〈` λ′|e−iθJ2 |`λ〉 the Wigner d-matrix, and its inverse expression for the expansion
coefficients called partial waves M`. The J2 is the rotation generator around the y-axis.
The decomposition of the S-matrix is recovered by adding back the identity in (3.3) suitably
written in spherical coordinates, see (B.15).

Notice that rotations of the scattering plane by an angle φ change the scattering matrix
by an overall phase,

Mλ3λ4
λ1λ2

(pi) = ei(λ12−λ34)φMλ3λ4
λ1λ2

(pi)
∣∣
φ=0 , (3.5)

something we repeatedly use in the following by going back and forth from momentum to
impact parameter space.

In the following we often express the partial wave S-matrix (3.4) via matrix exponen-
tiation

S`
λ3λ4
λ1λ2

(s) =
(
e2iδ`(s)

)λ3λ4

λ1λ2
(3.6)
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of the scattering phase matrix δ`(s), of matrix elements (δ`)ji = (δ`)λ3λ4
λ1λ2

where the collective
indices take values i = (λ1, λ2) and j = (λ3, λ4). The phase matrix, and in particular its
large impact parameter expression, plays an important role in extracting physical observ-
ables, as we review in the following.

In order to simplify the notation we restrict hereafter to the case of m1 = m3 and
m2 = m4. In this case, initial and final c.o.m. 3-momenta are equal, |p1| = |p3| ≡ |p|, and

p1p3 = p2 cos θ , 1− cos θ
2 = sin2 θ

2 = q2

4p2 , q ≡ p3 − p1 . (3.7)

This kinematics is not necessarily elastic, as the states can still change spin S, helicity λ,
internal quantum numbers etc.

3.2 Eikonal as SU(2)→ ISO(2) contraction

Now that all notation is set up, we are ready to apply the eikonal limit (2.6) `→∞ with
`θ → fixed to the S-matrix expressed in partial waves (3.4). We are interested in showing
that the scaling limit (2.6) has a nice geometric implementation: it is captured by the
group contraction SU(2)→ ISO(2) where the isometries of a large sphere, SU(2) ∼ SO(3),
are well approximated by the isometries ISO(2) of a tangent 2D euclidean plane.

The goal is to study the limit (2.6) of the partial wave decomposition of the matrix
elements (3.4), and we first focus on how this limit acts on the Wigner-d matrix, by
exploiting group theory arguments. Let us recall that the Wigner-d matrix in the partial
wave decomposition are the matrix elements d`λ′λ(θ) ≡ 〈` λ′|e−iθJ2 |`λ〉, where an unitary
irrep of the rotation operator R(0, θ, 0) = exp(−iθJ2) acts on states of definite angular
momentum, with a rotation around the y-axis. We remind that the generators of the
algebra of rotations SU(2) satisfy the following commutation relations and acts on states
|`λ〉 as

SU(2) : [J3, J±] = ±J± , [J+, J−] = 2J3 , (J± ≡ J1 ± iJ2) , (3.8)

J3|`λ〉 = λ|`λ〉 , J±|`λ〉 =
√
J 2 − λ(λ± 1)|`λ± 1〉 , (3.9)

where J 2 = `(`+ 1) is the Caisimir operator, and the tower contains 2`+ 1 states within
the irrep, which are eigenstates of J3 with λ, λ′ = −`, . . . , `.

When the total angular momentum becomes large, and in particular much larger than
the helicity of the scattered particles λ/`� 1, the SU(2) algebra (3.8) contracts to

ISO(2) : [j3, j±] = ±j± , [j+, j−] = 0 , (3.10)
j3|λ〉 = λ|λ〉 , j±|λ〉 = |λ± 1〉 , (3.11)

where we defined j± ≡ J±/
√
`(`+ 1) and j3 ≡ J3. The resulting algebra, where the

raising and lowering operators commute, and are both charged under j3 rotations around
the z-axis, is ISO(2), i.e. the isometries of the 2D euclidean plane. As anticipated, this is
unsurprising, because at large angular momentum we recover the flat-earth limit, where
the isometries of a sphere reduce to those of a plane.
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As ISO(2) is non-compact, there exist non-trivial infinite dimensional irreducible repre-
sentations with λ ∈ Z or λ ∈ Z+1/2. Given that the generator J2 =

√
`(`+ 1)(j+−j−)/2i

appears explicitly inside the Wigner d-matrix, it is convenient to work in a basis built by
states which are simultaneously eigenstates of j+ and j− (as they commute). The so-called
continuous-spin basis |ϕ〉 perfectly serves this purpose as it satisfies

j±|ϕ〉 = |ϕ〉e∓iϕ , (3.12)

where ϕ is an angle. The continuous-spin basis and the |λ〉 basis are connected via a Fourier
series, namely

|ϕ〉 ≡
∑

λ∈(half)integers
eiϕλ|λ〉 ←→ |λ〉 =

∫ 2π

0

dϕ

2π e
−iλϕ|ϕ〉 , (3.13)

In summary, in the large ` limit, the |`λ〉 states can be decomposed in a suitable basis
of ISO(2) irreps for which J2 matrix elements are diagonal. This procedure allows us to
recover the Wigner d-matrix d`(θ) in the large angular momentum limit

d`λ′λ(θ) θ→0−−−→
`→∞

∫ 2π

0

dϕ

2π e
i(λ′−λ)ϕeiθJ sinϕ = Jλ−λ′(J θ) , J ≡

√
`(`+ 1) (3.14)

which is just an integral representation of the Bessel Jν(x) function11 [31]. Notice that this
is a highly oscillating integral, whose matrix elements would average to zero, except for the
region where θ` is finite. This is consistent with the regime of validity we were interested
in, (2.6). In the next sections we exploit this form of the Wigner-d matrix, in order to
recover the eikonal amplitude.

Finally, here we focused on the case of 4 dimensions, however a similar contraction
should hold for SO(D − 1) to ISO(D − 2) which we leave for future investigation.

3.2.1 Impact parameter eikonal

All the ingredients to recover (1.1) have now been introduced. The large angular momen-
tum limit of the Wigner-d matrix discussed in (3.14) is explicitly inserted in the scattering
matrix decomposed in partial waves (3.4). Furthermore, we define the impact parameter

b ≡ J
|p|

=
√
`(`+ 1)
|p|

, M`(b)
λ3λ4
λ1λ2

(s) ≡Mλ3λ4
λ1λ2

(s, b) , (3.15)

where b becomes a continuous parameter in the large ` limit. We change variables in
the partial waves decomposition to θ(|q|) = |q|/|p|

(
1 +O(q/p)2), and as the integral

is dominated by the region |q| � |p| we can safely extend the upper boundary of the
integral to infinity. Lastly, we absorbed in the amplitude the helicity-dependent phase
appearing in (3.14), by rotating it by an azimuthal angle according to (3.5). The partial
wave decomposition then becomes

Mλ3λ4
λ1λ2

(s, b) −−−→
b→∞

1
8π

1
|p|
√
s

∫ ∞
0
d|q||q|

∫ 2π

0

dϕ

2π eib|q| sinϕMλ3λ4
λ1λ2

(|q| � |p|)
∣∣
φ=ϕ

. (3.16)

11The function J2(x) should not be confused for the SU(2) generator J2. We recall that λ−λ′ is integer,
and any 2π-periodic integration range in (3.14) is equivalent.
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Finally, let’s recall that the amplitude in (3.16) refers to p1 and p3 forming respectively
an angle ±θ/2 w.r.t. the z-axis. The two vectors lie in a plane rotated by φ = ϕ w.r.t. the
xz-plane, implying that q = (q1, q2, 0) = |q|(cosϕ, sinϕ, 0) is contained in the xy plane.
We define a 2D-vector q = |q|(cosϕ, sinϕ) (in non-italic font) in the xy-plane. We can thus
interpret b|q| sinϕ as a scalar product bq with a 2D impact parameter vector b = b(0, 1)
forming an angle π/2 − ϕ with q. This leads us to the following definition of eikonal or
impact parameter transform

Mλ3λ4
λ1λ2

(p,b) ≡ 1
4|p|
√
s

∫
d2q

(2π)2 e
ibqMλ3λ4

λ1λ2
(p, q)

∣∣
q=(q,0)
q2�p2

. (3.17)

Up to normalization, this is just the Fourier transform that maps 2D-momentum q-space
to 2D impact parameter b-space.

Because of (3.5) and the invariance of the 2D scalar product under 2D rotations,
the large `-limit of the partial wave transform and the eikonal transform are unitarily
equivalent12

M(p,b) = UM(s, b)U † , (3.18)

Mλ3λ4
λ1λ2

(p,b)
∣∣
b=b(cosϕ,sinϕ) = ei(λ12−λ34)(ϕ−π/2)Mλ3λ4

λ1λ2
(s, b) , (3.19)

whenever |b| is set equal to J /|p|, given the definition (3.15)M`(b)(s) ≡M(s, b). The uni-
tary transformation U13 just inserts little-group phases in the off-diagonal terms, without
changing the eigenvalues which control the physical scattering angles and the time delays.

An equivalent expression in terms of the partial wave S-matrix (3.6) and in an index-
free notation via matrix exponentiation is

e2iδ(s,b) − I = i

4|p|
√
s

∫
d2q

(2π)2 e
ibqM(p, q)

∣∣
q=(q,0)
q2�p2

(3.20)

where the matrix δ(s,b) is related to δ`(b)(s) by the same unitary transformation (3.18) that
connects the amplitude function of b to the one function of b, and I has matrix elements
δλ3
λ1
δλ4
λ2
.

So far no assumptions on the details on the theory were made and the only approx-
imation used is the large partial wave limit. However, one must be consistent and check
that the phase-shift is dominated by the contributions at large b. For instance, a theory
of only contact terms would lead to delta functions localized at b = 0, thus lying outside
of the regime of validity of the Eikonal. In particular, the chosen theory must include

12The expi(λ12−λ34)ϕ-factor is expected to show up for a ϕ-rotated scattering plane via (3.5). The origin
of the extra −π/2-factor in (3.19) can also be understood as following. From the momentum-space eikonal
expression (4.4) it follows that the net exchanged momentum q = 2∂bδ(s,b) is aligned to b which thus lie
in the scattering plane, while the total angular-momentum vector (in c.o.m. frame) J = J p1 ∧ p3/p

2 is
transverse to the scattering plane and needs a J3-rotation by −π/2 to make it aligned to b. Equivalently, b
is actually the 2D projection of the 3D vector b = J ∧p/|p|2 with p = (p1 +p3)/2(cos θ/2), with cos θ given
by (3.7) and the normalization fixed by (3.15). This explains why the ` � 1 limit and eikonal amplitude
are related by the little-group rotation (3.19).

13Of matrix elements Uλkλl
λiλj

= δ
λk
λi
δ
λl
λj
eiλij(ϕ−π/2).
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non-analyticities in q, and the easiest way to achieve it is by including a massless media-
tor, such as a graviton or a photon. Moreover semi-classicality requires a large scattering
phase that is achieved with transplanckian scattering or large charges in gravity and QED
respectively.

3.2.2 Momentum-space eikonal

We discuss in this section the eikonal scattering amplitude in momentum space, that is the
inverse relation of (3.17) or (3.20).

Let’s work with the partial wave amplitude (3.4) specialized to m1 = m3 and m2 = m4
(hence |p1| = |p3| = |p|) and φ = 0

Mλ3λ4
λ1λ2

(pi)
∣∣
φ=0 = 4π

√
s

|p|
∑
`

(2`+ 1)d`λ12λ34(θ)M`
λ3λ4
λ1λ2

(s) . (3.21)

A first observation is that the Wigner-d returns δλ12λ34 as θ → 0, unless simultaneously
` → ∞. Therefore, the non-trivial θ-dependence for θ � 1 in (3.21) comes again from
the region of summation where `θ is finite. In that region we can use the limit (3.14)
d`λ′λ(θ)→ Jλ−λ′(J θ) and approximate the series with an integral over the impact parameter
b defined in (3.15), namely

Mλ3λ4
λ1λ2

(pi)
∣∣
φ=0
−→ 4|p|

√
s

∫ ∞
0
dbb

∫ 2π

0
dϕei(λ12−λ34)ϕei|~q||

~b| sinϕMλ3λ4
λ1λ2

(s, b) , (3.22)

where we have also made the approximation θ(|q|) = |q|/|p|
(
1 +O(q/p)2).14 Finally,

using (3.19) in (3.22) and recalling that M(p,b) is 2π-periodic (λ12 − λ34 is integer), we
arrive at the momentum-space eikonal amplitude

Mλ3λ4
λ1λ2

(p, q)
∣∣ eik
φ=0

= 4|p|
√
s

∫
d2b e−iqbMλ3λ4

λ1λ2
(s,b) ,

Mλ3λ4
λ1λ2

(p, q)
∣∣ eik
φ=0

= −i4|p|
√
s

∫
d2b e−iqb

(
e2iδ(s,b) − I

)λ3λ4

λ1λ2
.

(3.23)

We have used the subscript “eik” to remind the regime of small |q| and large b that holds
on each side respectively.

The (3.23) refers to scattering in the φ = 0 plane where q = |q|(1, 0, 0). The generic
φ 6= 0 case is given by the same expression, but with general q = |q|(cosφ, sinφ, 0) = (q, 0),
resulting in the usual helicity factor

Mλ3λ4
λ1λ2

(p, q)
∣∣
eik = ei(λ12−λ34)φMλ3λ4

λ1λ2
(p, q)

∣∣ eik
φ=0

, (3.24)

consistently with (3.19).
In summary, the momentum-space eikonal amplitude is in fact the 2D inverse-Fourier

transform of the impact-parameter eikonal amplitude.
14Notice that Jλ−λ′ (0) = δλ12λ34 smoothly connectes to d`λ12λ34 (0) = δλ12λ34 , even in the small-` region,

at small θ.
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3.3 The all-order eikonal amplitude

It is interesting to see what are the leading corrections to the eikonal amplitudes (3.17)
and (3.23) that we have obtained using the large angular momentum limit of d`(θ),
see (3.14). The Wigner-d matrix can be expressed as well in terms of (Jacobi) polyno-
mials in cos θ (see (B.17)) which themselves admit a large-` expansion in terms of Bessel
functions. This limit is uniform in the whole interval for θ ∈ [0, π),15 and has a known
error from the truncation [32–34], leading to

d`λ′λ(θ) = Nλ′,λ,`

(
θ

sin θ

)1/2
Jλ−λ′((`+ 1

2)θ) +
√
θO(1/`3/2) , (3.25)

with a known (although not very informative) prefactor Nλ′,λ,` → 1 for λ, λ′/`→ 0.
The (3.25) shows that the limit of the Wigner d-matrix recovered in section 3.2 is

indeed accurate, up to a relative order O(θ2) in the large-` limit. This implies that the
results we derived so far with the eikonal expansion based on the limit `→∞ are valid in
transplanckian scattering up to O(θ2), which is 2PM order, included.16

Since (3.25) does not require small angle, we can in fact extend the eikonal amplitude
to all orders in θ, in the large-` limit.17 This can be done directly by plugging the uniform
limit (3.25) into the partial wave expansion (3.4) that gives

Mλ3λ4
λ1λ2

(s, b) = 1
8π

1
|p|
√
s

∫ ∞
0
d|q||q|

(
θ(|q|)

sin θ(|q|)

)1/2
Jλ34−λ12(b|p|θ(|q|))Mλ3λ4

λ1λ2
(p, q)

∣∣
φ=0

(3.26)

up to an error O(1/(bp)3/2), where we have made the change of variables corresponding
to (3.7), and we have redefined the relation between b and `

M(s, b) ≡M`(b)(s) , b ≡ (`+ 1/2)/|p| (3.27)

to match the partial wave amplitude. This can be interpreted as a 2D Fourier transform
after the suitable change of variables Q(|q|) = |p|θ(|q|) (or |q|(Q) = 2|p| sinQ/2|p|), with
a jacobian given by |q|d|q| = |p| sin Q

|p|dQ, where again θ(|q|) is defined in (3.7).
After the change of variables, (3.26) takes the form

Mλ3λ4
λ1λ2

(s, b) = 1
8π
√
s

∫ ∞
0
dQ

(
Q

|p|
sin Q

|p|

)1/2
Jλ34−λ12(bQ)Mλ3λ4

λ1λ2
(p, q(Q))

∣∣
φ=0

(3.28)

15The interval of uniform convergence is open at θ = π: a priori this would matter only for identical
particles when one has a singularity associated to backward scattering. However, even in that case, it’s
enough to just split the interval into two parts, and then use d`λ′λ(π− θ) = (−1)`+λ

′
d`λ′−λ(θ) to extend the

convergence to θ = π included.
16Note that finite-` corrections can be made O(

√
θ/`3/2) ∼ θ2/(Gs)3/2 ∼ λPl/b × λs/b � 1 just by the

replacement
√
`(`+ 1)→ `+ 1/2.

17An alternative approach, equivalent only in the semiclassical regime, would be using the large-
` expansion of the Bessel functions in (3.25) (see e.g. 9.2.1 of [31]), which gives d`λ′λ(θ) −−−→

`θ�1
2√

(2`+1)π sin θ
cos
(
(`+ 1/2)θ − (λ− λ′)π2 −

π
4

)
+ O(1/`θ), and then derive along the lines of [35, 36] an

all-order radial action for the semiclassical scattering of all masses and spins.
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where q(Q) = |q|(Q)(cosφ, sinφ, 0) and which, recalling the Bessel integral form and the
relation (3.19) that relates b to b, leads us to the all-orders eikonal amplitude (in θ)

Mλ3λ4
λ1λ2

(p,b) = 1
4|p|
√
s

∫
d2Q
(2π)2 e

ibQ M̃λ3λ4
λ1λ2

(p, Q)

M̃λ3λ4
λ1λ2

(p, Q) ≡
( |p|
Q

sin Q

|p|

)1/2
Mλ3λ4

λ1λ2
(p, q(Q)) (3.29)

at a generic angle in the xy plane. The (3.17) matches up to O(θ2) the (3.29).
The eikonal amplitude in impact parameter space is recovered by applying∫∞

0 dbbJλ34−λ12(bQ′) to both sides of eq. (3.28) and using the orthogonality of the Bessel
functions (B.18). The resulting expression is

Mλ3λ4
λ1λ2

(p, q)
∣∣
φ=0

= 8π|p|
√
s

(
θ

sin θ

)1/2 ∫ ∞
0

dbbJλ34−λ12(b|p|θ)Mλ3λ4
λ1λ2

(s, b) , (3.30)

where we reintroduced θ = Q′/|p|. The relative error decays in the semiclassical limit as
|p| → ∞.

Using the Bessel-integral representation (3.14), and defining M(s,b) as in (3.19), it
leads to a generalized all-order eikonal transform in momentum space

Mλ3λ4
λ1λ2

(p, q)
∣∣
q=(q,0) = 4|p|

√
sN (θ)

∫
d2be e−ibeqMλ3λ4

λ1λ2
(s,b(be)) ,

Mλ3λ4
λ1λ2

(p, q)
∣∣
q=(q,0) = −i4|p|

√
sN (θ)

∫
d2be e−ibeq

(
e2iδ(s,b(be)) − I

)λ3λ4

λ1λ2
.

(3.31)

where

N (θ) =
[(

θ

sin θ

)1/2 (sin θ/2
θ/2

)2]
= 1 +O(θ4) , b =

(sin θ/2
θ/2

)
be (3.32)

with the normalization N (θ) becoming important only from the 4PM-order onward.
The (3.31) is expressed in terms of the partial wave scattering phase δ` by construc-

tion (hence enjoying all its properties, Imδ` ≥ 0, . . .) and it delivers indeed the expected
relation (3.35) between δ` and the scattering angle18 θ and time delay T . It is however
slightly different than the 2D Fourier transform of [15, 37] which, to our understanding, is
a convenient definition of a suitable phase δ̃ made to match to the correct scattering angle.

3.4 Scattering angle and time delay

The scattering phase δ(s,b) is the master function from which we can extract other physical
observables. Its partial derivatives, for instance, are directly connected to the time-delay
and scattering angle, as we show in this section. We first review how the observables
emerge in the scattering spinless particles in section 3.4.1, and then expand on [21, 38, 39]
by adding the spin dependence as well in section 3.4.2.

18Explicitly, the stationary phase of (3.31) in the spinless case gives θ = 2
|p|

∂Reδ(s,b)
∂|b| = 2 ∂Reδ`(s)

∂`
. For the

expression valid away from the eikonal limit or for generic spins see (3.38): in summary, first diagonalize
δ(s,b) then look for the saddle point.
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3.4.1 Observables without spin

We consider a linear superposition of partial waves |
√
s ` α〉in(out) for an incoming (outgoing)

2-particle system in the c.o.m. frame of a given energy
√
s, total angular momentum ` and

other internal quantum numbers α

|f〉in/out =
∫
d
√
s
∑
`,α

f`,α(
√
s)|
√
s, `, α〉in/out . (3.33)

The wavepacket f`,α(
√
s) is normalized to

∑
`α

∫
d
√
s|f`,α(

√
s)|2 = 1 and is sharply peaked

around some particular center of mass energy
√
s, some ` and some α.

An outgoing 2-particle state differs at late time from an early-time incoming 2-particle
state by the action of the little-group associated to the vanishing 3-momentum of the c.o.m.
frame — i.e. 3D rotations — or the action of time-translations which give rise to an overall
phase, hence the same ray and physical observables. Restricting to the non-trivial polar
rotations, there should thus exist an angle θ (the scattering angle) and a time T (the time
delay) for which the time-delayed and angle-rotated outgoing elastic state eiTH+iθJ2 |f〉out
has the maximal overlap with the ingoing state |f〉in in the semiclassical limit αg � 1
where the phase is large. This overlap becomes

|out〈f |e−iTH−iθJ2 |f〉in| = |
∑
`α

∫
d
√
s|f`,α(

√
s)|2Exp

[
i(2δ`(

√
s)− T

√
s)
]
P`(cos θ)| ,

−−−→
l→∞

|
∑
α

∫
d
√
s d` dϕ|f`,α(

√
s)|2Exp

[
i(2δ`(

√
s)− T

√
s− `θ cosϕ)

]
|

(3.34)

where P`(cos θ) are the Legendre polynomial.19 The phase-shift δ`(
√
s) has actually a

real and imaginary part, the latter being entirely associated to particle production such
as the emission of gravitons, photons or other states. The production of gravitons in
the eikonal regime starts at 3PM. We have approximated the large ` behavior of the
Legendre polynomials by the Bessel function J0(`θ), which can be expressed in its integral
form (3.14).

The resulting integral in the limit (2.6) with αg � 1 (hence large δ`) is clearly controlled
by two saddle points: the time delay and the semi-classical deflection angle at

T = 2∂Reδ`
∂
√
s
, θ = 2|∂Reδ`

∂`
| = 2
|p|

∂Reδ(s,b)
∂|b| . (3.35)

3.4.2 Observables with spin

The same argument can be extended to the spinning case, where the partial waves
|
√
s ` λ, α〉in(out) include total angular momentum ` of projection λ. The other internal

19We have also replaced
∑

`
↔
∫
d`, but the statement is actually fully accurate thanks to the Poisson

summation formula [35, 40, 41] which gives a deflection angle Θ(θ) ≡ 2πn± θ = 2∂Reδ`,α/∂(`+ 1/2) which
differs by the net observed angle θ by an irrelevant 2πn, where n is the number of orbital winding between
particles. Since the θ in this section is defined only up to 2πn, we are allow to conflate θ with Θ, which is
effectively like just retaining the first winding mode.
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quantum numbers are collectively called α = {λi, λj , . . .}, and include the helicities λi
of the single particles of which the state is made of. Let’s specifically focus on linear
superpositions

|f〉in(out) =
∫
d
√
s
∑
`λαβ

fβ`,λ(
√
s)V α

β |
√
s ` λ, α〉in(out) , (V †S`V )βα = e2iδ`,αδβα (3.36)

with wave-packets fβ`,λ(
√
s) normalized to

∑
`λβ

∫
d
√
s|fβ`,λ(

√
s)|2 = 1, and sharply peaked

around some particular `, λ, α and
√
s, while V is the unitary transformation acting on

the internal indices that diagonalizes the partial-wave S-matrix S`βα = out〈`λ, β|`λ, α〉in.
Following the spinless procedure, we study the overlap between the incoming and the

time-delayed and angle-rotated outgoing elastic state

|out〈f |e−iTH−iθJ2 |f〉in| = |
∑
`λα

∫
d
√
s|fα`,λ(

√
s)|2Exp

[
i(2δ`,α − T

√
s)
]
d`λλ(θ)| . (3.37)

For sharply-peaked wave-packets, and for large ` and
√
s, the overlap is controlled again

by the stationary points of the semiclassical scattering phase which defines the (eigen-)
scattering angles and time delays

Tα = 2∂Reδ`,α
∂
√
s

, θα = 2|∂Reδ`,α
∂`

| (3.38)

where we have used (3.25) and the Bessel integral representation (3.14). The (3.38) gives
a scattering angle and time delay for any eigen-scattering phase labeled by α, generalizing
the familiar results of [16, 35, 42] to the case of generic spin and inelasticity. For exam-
ple scattering of photons gives rise to two time-delays depending on the external helicity
configuration. In summary, the observables in the spinning case are similiar to the scalar
scenario, by simply replacing the scattering phase with its eigenvalues,20 δ −→ δdiag.

The causality condition
T ≥ 0 , (3.39)

usually referred to as “asymptotic causality” is roughly the statement that interactions
can only slow you down. We actually prove (3.39) — via analyticity and unitarity — in
section 5, along with several other positivity/causality bounds.

4 Transplanckian scattering

In this section we consider eikonal transplanckian scattering, αg � 1. The main object that
we want to compute is the scattering phase. This is a function of dimensionless quantities
given by ratios of the scales of the problem introduced in section 2, namely

δ = δ

(
αg,

Rs
b
,
λ2

Pl
b2
, α,

λ̄

b

)
. (4.1)

20While we focused on the most natural observables, the eigen-angles, one may be interested in less
invariant information, such as the change of the scattering plane in certain spin configurations, etc. This
can be extracted by a simple change of basis, from the helcity-amplitude basis to a basis of spin pointing in
certain directions. It would be perhaps interesting to make this change of basis explicit and make contact
with e.g. [36].
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The leading term proportional just to αg is called 1PM, while classical GR contri-
butions scaling as (Rs/b)n and extracted from (n − 1)-gravitational loops amplitudes are
referred to as nPM. Insertions of G that give rise instead to λ2

Pl/b
2-factors are dubbed

QG corrections, and we do not count them as genuine PM corrections, avoiding to put
everything in the same basket. We recall that α represents other couplings in the theory
such as e.g. the electromagnetic fine structure constant, and λ̄ any other new length scale
in the problem (e.g. the electron Compton wavelength or body finite size).

A closer inspection reveals the following structure

δ(s, b) = αg
∑

m,n,p,q

βmnpq

(
Rs
b

)m (λPl
b

)2n
αp
(
λ̄

b

)q
= δ0(s, b) + δ1(s, b) + . . . , (4.2)

where αg appears just as an overall prefactor, and δi(s, b) contains all contributions scaling
asGi+1, that is given by the sum over the βmnpq withm+2n = i+1. Them = n = p = q = 0
corresponds to the logarithmic leading eikonal ∝ αg log b. Just to clarify the notation, the
contributions to δ containing no (λPl/b)-factor are called

(n+ 1)PM + pGauge←− (Rs/b)nαp(λ̄/b)q (4.3)

without specifiying the λ̄/b-order that can change (as one varies b across the scale λ̄),
from an analytic contribution (λ̄/b)q (i.e. from local higher dimensional operators) to a
non-analytic dependence such as log2 λ̄/b due to light or mass particles running in loops.

The important observation at this point is that the dependence on the gravitational
strength αg is analytic, linear, and that the eikonal expansion holds for any value of αg
(provided ` is large). We are thus allowed to expand both sides of (3.17) in the subplanckian
eikonal regime, and extract the βmnpq from a perturbative calculation along the lines of [4].

Explicitly, the phase matrix at the first two orders in G is thus given by
δ0(s,b) = 1

8|p|
√
s

∫
d2q

(2π)2 e
ibqM0(p, q)

∣∣
q=(q,0)
q2�p2

,

δ1(s,b) + iδ0(s,b)2 = 1
8|p|
√
s

∫
d2q

(2π)2 e
ibqM1(p, q)

∣∣
q=(q,0)
q2�p2

.

(4.4)

where we drop the helicity indices for notational simplicity. The δ2
0 is intended as a product

of matrices in helicity space. The amplitudeMi(p, q) includes all contributions scaling with
Gi+1 or containing i gravitational loops. We recall that the leading eikonal phase at lowest
order in all coupling is just δlead

0 (s,b) = −αg log b/bIR, where bIR is an IR cutoff specific to
four dimensions, see appendix A for a physical interpretation.

4.1 Scattering phase in QED+gravity

Let’s present now a fully worked-out example in the context of transplanckian scattering in
QED coupled to gravity, up to two-loop order. More specifically, we consider the scattering
of photon off a neutral scalar at s � m2

Pl, b � Rs, to O(G2) and O(α), that is including
loops of charged states as well as of gravitons. We start first reviewing the results of [21]
at one loop, and then move to eikonal scattering to two loop order in 4.1.2.
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4.1.1 1-loop: O(α) relative corrections

In this subsection we are interested in extracting the relative O(α)-corrections to the leading
eikonal scattering phase δlead

0 (s,b) = −αg log b/bIR. As we have seen in section 2.1, these
corrections may well dominate over the classical PM corrections as soon as Rs is much
smaller than the Compton wavelength of a charged state that couples significantly to the
photon. In particular, we focus on αgα� 1 with 1� (Rs/b)2 � α and λ̄ = 1/me > Rs, so
that either massive or massless charged states in loops are more important than classical
PM corrections. Of course, this regime is never realized for astrophysical objects. It can be
realized however in a huge range of values of Rs/b when scattering SM particles or small
black holes.21

We consider the gravitational scattering of a photon against a neutral scalar particle
that couples only gravitationally. The exchanged graviton couples to the stress energy
tensor of the photon, whose loop effects are encoded in form factors. The relevant amplitude
in the t/s� 1 eikonal limit takes the form

Meik
0 (s, t) = αg

16π|p|
√
s

q 2

 F1(t) −4q2
+F3(t)

−4q2
−F3(t) F1(t)

 , (4.5)

where q± = 1√
2(q1 ± q2), and the diagonal entries are helicity preserving while the off-

diagonal describe helicity flipping. The details of the energy-momentum tensor form factors
can be found in [21], and it depends on the species (e.g. the spin) of the particle running
in the loop. The purely gravitational case (α = 0) is given by the diagonal matrix with
F1(t) = 1, F3(t) = 0.

In [21], two main regimes are considered: large mass of the charged states where
the particles can be integrated out leading to the effective F 2R coupling in (2.8), and
the massless limit. The regimes correspond to probing the scattering at different impact
parameters b compared to the Compton wavelength of the state running in the loop. In
particular, at b � λ̄ = 1/me, the corrections are due to a local operator in the EFT
(associated to gravitational non-minimal coupling), contributing with power-law (λ̄/b)2 to
the phase matrix

δ±(s,b� λ̄) = αg

(
− log b/bIR ±

8F3(0)
b2

)
, (4.6)

where F3(0) = −c(α/4π)1/m2
e and c as defined just below (2.8). On the other hand, at

b� λ̄ the eigenstates of phase matrix are given by

δ±(s,b� λ̄) = αg

(
− log b/bIR −

βX
g

log bme
2
)

(4.7)

where g is the gauge coupling, me is the mass of state in the loop and βX is the beta
function of charged spin-0 or spin-1/2 states. When running in loops are charged spin-1

21Example: tranplanckian scattering with Rs = 105 λPl, while SM charged particles have Compton
wavelengths a dozen orders of magnitude larger than Rs, and coupling to photon O(αem) ∼ 1/100. As
expected, and confirmed in this section, their quantum contribution to the phase shift can be tens of orders
of magnitudes more important than classical 3PM corrections.
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states, there are some subtleties related to Sudakov resummations at exponentially small
b, we refer to [21] for a full IR-safe treatment of that case. As discussed in (3.4.2), the
eigenvalues of the phase matrix are relevant to extract physical observables.

The leading term log b/bIR comes from the tree-level graviton exchange, it is spin
independent and leads to the famous Shapiro time delay. Notice that all “gravitational
dependence” is encoded in the overall coupling αg. We observe no important difference on
whether the scalar neutral particle in the scattering is massless or massive. This conclusion
radically changes at 2PM, as we explore in the next section.

4.1.2 2-loops: O(αλ2
Pl/b

2) vs O(αRs/b) relative corrections

As discussed in section 2.1, as we move towards higher powers of G, we are only interested
in contributions in Rs/b as they are the only ones leading to resolvable effects, as opposed
to QG λ2

Pl/b
2 relative corrections that are never resolvable in the eikonal transplanckian

regime. In this section we focus on the case of scattering a neutral and massless scalar off
photons, and look for corrections that can appear at G2.

We anticipate that in this massless case, in fact, only a non-resolvable contribution
turns out to be produced (not only in the purely gravitational case but also at two loops
including the α-corrections). From this point of view, there is a sharp difference in nature
between the massless and massive scenario at G2, as in the latter larger resolvable effects
are instead expected to appear.

In the following, we proceed with the original approach of ACV, e.g. [4], focusing on the
s-channel cut which allows to extract the imaginary part of δ1(s,b) and then reconstruct
the real part via a dispersion relation. We choose this perspective first to review and clarify
the method (which was also used to compute the real part of δ2(s,b) in [15]), and with the
goal of extracting the gauge contribution at 2PM.

The starting point is the expansion the exponential form of the S-matrix (4.4), where
we select the G2-contributions and take the imaginary part in the s-channel

ImsM1(s,b) = 2s
[
δ0(s,b)2 + Ims δ1(s,b)

]
= ImsM1(s,b)2−cut + ImsM1(s,b)3−cut . (4.8)

Considering the 2PM with one insertion of α is equivalent generically to a two loop calcu-
lation, whose s-cuts can be organized in two- and three-particle cuts.

At large b � λ̄, the gauge contributions reduce to EFT corrections to the photon-
graviton vertices: therefore all G2-contribution actually appears at one loop, and the only
diagram contributing to the imaginary part in the s-channel is the box, obtained by gluing
two on-shell amplitudes (4.5). This is not the case at small b, where G2 is obtained at 2
loops, and as such contributes to the s-channel discontinuity also with 3-particle cuts.

We first analyse the two-particle cut, following and extending the argument of [37] to
spinning states and loop corrections to the stress energy tensor. The cut is diagrammati-
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Figure 2. Pictorial representation of the r.h.s. of eq. (4.9). In this picture, the grey blobs represent
effective vertices of order α. Recall that with in-coming momenta pµ1 + pµ3 = qµ, and s = (p1 + p2)2.

cally represented in figure 2 and it is explicitely given by

ImsM1(s, t)λ1λ3
2−cut = 1

2

∫
dk4

(2π)2M0(s, k2)λ1λM0((s, q − k)2) λλ3 δ+((p1 − k)2)δ+((p2 + k)2)

= 1
4s

∫ |k|d|k|dφ
(2π)2 M0(s, k2)λ1λM0(s, (q − k)2)λλ3 , (4.9)

where the delta functions were solved explicitly in the center of mass frame of two incoming
particles pointing in the z-direction as δ+((p1−k)2)δ+((p2+k)2) = 1

2s|k|δ(k0)δ
(
cos θ − |k|2E

)
,

and cos θ is the projection of the loop momentum k onto p1. Since we are interested in
the eikonal limit, the momentum exchanged by gravitons in the loop is small as selected
by the saddle point at large b (as further confirmed by [43, 44]), which means that we can
directly useM0 ∼Meik

0 of eq. (4.5) in the limit of soft transferred momentum. As we want
to compute δ1 at O(α), we can neglect the cross product α2. Furthermore, we shift the
loop momentum in such a way that all gauge contribution is contained inM0(s, k2) (which
amounts to multiply by 2 all terms proportional to α) andM0(s, (q−k)2) = 8παgs/(q−Q)2

is simply the diagonal tree level gravitational term. The integral in φ is performed by a
change of variable z = eiφ, where the integration over the unit circle is then given by the
residue lying inside the contour,

ImsM1(s, t)λ1λ3
2−cut = −1

4s

∫ |k|d|k|
2π M0(s, k2)λ1λ3

8παgs√
|q|2 + |k|2

+O(α2)

= 1
4s

∫ |k|dkdφ′

(2π)2 M0(s,k2)λ1λM0(s, (q − k)2)λλ3 +O(α2) , (4.10)

where |k| = |k| and |q| = |q| are 2D vectors with angle φ′ between them. The 4D cutted
box at O(α) in the soft limit of the loop momentum becomes a 2D convolution22 that
factorized in b-space. We recover that the contribution of the two particle cut at G2 and
α is therefore

ImsM1(s, t)λ1λ3
2−cut = 2s

(
δ0(s,b)2

)
λ1λ3

, (4.11)

where δ2
0 is intended as a product of matrices in helicity space. The immediate consequence

of (4.11) and (4.8) is that Ims δ1(s,b) = 0 at large b � λ̄, as there is no 3-particle cut
22This property is observed also in the scattering of two heavy scalars, where the linearized delta functions

can be trivially solved, see [14].
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contribution. On the other hand, let us anticipate that δ1(s,b) develops an imaginary part
at smaller impact parameters. This feature is completely equivalent to the 3PM term in
pure gravity, where the effect of gravitational radiation appears due to the presence of a 3
particle cut of the H-diagram [4], while here we encounter emission of SM particles already
at G2, as we shall analyse in a moment.

Still within the b� λ̄ regime, what can we say about the real part of δ1(s,b)?
One of the main features of the amplitude that can be exploited in order to reconstruct

its real expression is crossing symmetry, which manifests itself simply as symmetry under
s↔ u exchange as we are scattering a photon off a scalar spectator. As we have computed
M1 already in the eikonal limit t � s, the properties of crossing symmetry are clearly
lost, but it is still possible to reconstruct the real part by writing a basis of structures
s ↔ u symmetric, expanding them in the eikonal limit, and matching their imaginary
part to the result previously computed in b-space. In practice, as δ0 is linear in s, we can
select structures growing slower or equal to s3. Furthermore, as we expect to produce a
polynomial in s in the imaginary part, we can safely restrict to log type discontinuities.

We consider therefore the two following structures

s3 log (−s) + u3 log (−u) ∼ s3
(
−iπ + 3t

s
log s

)
+O(s) = X ,

s2 log (−s) + u2 log (−u) ∼ s2 (−iπ + 2 log s) +O(s) = Y . (4.12)

Notice that including higher powers of log sn would lead to logarithms of s in the imaginary
part of M1, which is excluded by eq. (4.11). We expect M1 to be given by a linear
combination of the two structures M1 = α(t)X + β(t)Y , but β(t) = 0, as ImsM1 does
not contain any s2 contribution. By computing the Fourier transform and matching α(t)
to (4.11), we can extract

δ1(s,b) = 3 log s
πs
∇2

bδ0(s,b)2 , (4.13)

which we remind is valid also at order α in the large b regime. The scaling of this con-
tribution is δ1 ∼ αg(λPl/b)2, which parallels the massless scalar result of ACV [4] here
extended to photon-scalar scattering: no resolvable contribution is present at O(G2), that
is no genuine αRs/b relative correction is found at this order for a massless neutral scalar
scattering off a photon.

Obviously when more scales such as masses are involved in the problem the task of
building a complete basis becomes much more involved. In [15], the basis was extracted
by fully computing the two loop contribution in N = 8, which turns out to be complete
also for the GR scenario. Another approach to recover δ1 is to compute the two particle
cut without applying the small t limit and then reconstruct the real part by using s ↔ u

dispersion relations. This task is easier when all external states are massive (and t is small),
as the s and u channel cuts are well separated, while extra care is needed when particles are
massless and there is an overlap between the branch cuts. We leave this explicit approach
to future work.

Is it surprising that only irrelevant non-resolvable QG corrections ∼ αλ2
Pl/b

2 are found
at O(G2) in the b� λ̄ limit? At this one loop order (see figure 2) every amplitude can be
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Figure 3. Topologies arising from the contraction M5λ1M∗
5λ3

. One must add the symmetric
contributions w.r.t. the cut for (d), (e) and (f).

decomposed in a basis of massless scalar amplitudes, which by direct inspection contains
only logarithms. To be contrasted with the expected contribution at 2PM, which scales as
Rs
b = 2G

√
s

b , thus containing a square root type of discontinuity. The result is not surprising
as it is consistent with this scaling argument.

Let us now move to the study of the case b � λ̄. As explained in the previous
paragraphs, in this regime δ1 develops an imaginary part that we can extract by looking
at the 3-particle cut of the amplitude. For simplicity, the charged particles in the loop are
treated as effectively massless. The integrand of this computation is recovered by gluing
two on-shell tree-level 5-point amplitudesM5λi with one external photon. Considering all
momenta incoming we have

ImsM1(s, t)λ1λ3
3−cut (4.14)

= 1
2

∫
ddk1
(2π)d

ddk2
(2π)d

ddk3
(2π)d δ

−(d)(p1 + p2 + k1 + k2 + k3
)
δ−+(k2

1)δ−+(k2
2)δ−+(k2

3)M5λ1M∗5λ3 ,

where, to keep track of possible divergence terms, we work in d = 4 − 2ε dimensions. We
have also introduced the shorthand notation δ−(n)(x) ≡ (2π)nδ(x) for convenience. The
product of the two five-point amplitudes can be organise in terms of the six planar and one
non-planar topologies represented respectively in figure 3(a)–(f) and figure 3(g). To solve
the two-loop integral given in eq. (4.14), we follow a procedure similar to the one employed
in [14, 15, 45]. First of all, we parametrize the external kinematic as

pµ1 = p̄µ1 + qµ

2 , pµ3 = −
(
p̄µ1 −

qµ

2

)
, pµ2 = p̄µ2 −

qµ

2 , pµ4 = −
(
p̄µ2 + qµ

2

)
. (4.15)

As a consequence, one can see that

p̄1 · q = 0 = p̄2 · q , p̄2
1 = −q

2

4 = p̄2
2 . (4.16)

Notice that w.r.t. refs. [14, 15, 45] we do not expand the integrand in small q2.
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p2 p4

(d)

p1 p3

p2 p4

(e)

p1 p3

p2 p4

(f)
p1 p3

p2 p4

(g)

(a) (b) (c)

(d) (e)

(f) (g) (h)

1

Figure 4. The eight MIs needed to solve the two-loop integral. (a)–(e) are the planar MIs, while
(a)–(c) and (f)–(h) are the non planar one. A dot on the propagator line means that it is squared
in the integral.

Then, making use of reverse unitarity [46–49], we can apply Integration-by-Parts (IBP)
identities [50–52] with the help of the LiteRed package [53, 54] o rewrite eq. (4.14) as a
combination of two-loop scalar Master Integrals (MIs) sketched in figure 4. In particular,
the sum of the planar topologies can be written entirely in terms of five MIs depicted
in figure 4(a)–(e) that we can call ~g = {g1, g2, g3, g4, g5}. The non planar topology can
be reduced to a combination of six master integrals depicted in figure 4(a)–(c) and (f)–
(h), from now on called ~̃g = {g̃1, g̃2, g̃3, g̃4, g̃5, g̃6}. Their explicit expression is written in
appendix C. Schematically we have

ImsM1(s, t)λ1λ3
3−cut = G2α(−q2)2

 5∑
j=1
Cj(y, ε)gj(y, ε) +

6∑
j=1
C̃j(y, ε)g̃j(y, ε)

 , (4.17)

where Cj and C̃j are some polynomial functions of ε and y. Notice that g̃1, g̃2 and g̃3 are
essentially equal to g1, g2 and g3, and that g̃4 is related to g3 via crossing. Hence, in the
end we have seven MIs to compute.

One can realise that the integrals ~g and ~̃g are dimensionless scalar functions and de-
pends non-trivially only on the dimensionally regularisation parameter ε and the variable

y ≡ p̄1 · p̄2
|p̄1||p̄2|

= 2s
−q2 − 1 . (4.18)

Using the approach of refs. [55–60], we can solve these MIs by writing a suitable differential
equation. These equations have been written in a canonical form using the package Fuch-
sia [61, 62]. In particular, the planar and non planar MIs satisfy respectively the following
differential equations

d~g(ε, y) = ε [A+1d log(y + 1) + A−1d log(y − 1)]~g(ε, y) , (4.19)

d~̃g(ε, y) = ε
[
Ã+1d log(y + 1) + Ã−1d log(y − 1)

]
~̃g(ε, y) , (4.20)
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where A±1 and Ã±1 are constant matrices whose explicit expressions are written in ap-
pendix C. Expanding the integrals in ε

gi(ε, y) =
∑
n

εng
(n)
i (y) , g̃i(ε, y) =

∑
n

εng̃
(n)
i (y) , (4.21)

one can easily solve the previous differential equations order per order in ε.
In order to fix a unique solution, we just need to know the value of the MIs for a

certain value of y, e.g. y = 1. To this end, we can first solve the differential eqs. (4.19)
and (4.20) around y = 1 by essentially exponentiating the matrices A−1 and Ã−1. Then,
following refs. [60, 63], we can use the fact that our basis of MIs is UV finite, hence study
the behaviour of this solution for ε < 0 and require its regularity. With this manipulation,
we find some non-trivial relations between the various MIs in y = 1. In particular, we find
that g3(y = 1) = 0 and that it is enough to compute the values of g1, g4 and g̃5 in y = 1
to uniquely fix all the boundary conditions for eqs. (4.19) and (4.20). These integrals are
either easy to compute or known in the literature, see e.g. [64, 65].

Regardless of this, one can realise that all the MIs are just (poly)logarithmic function
of y. Therefore, the scaling of ImsM1(s,b)λ1λ3 is fixed by the polynomial in front of ~g
and ~̃g in eq. (4.17), i.e.

ImsM1(s, t)λ1λ3
3−cut ∼ G

2αq4yn ∼ αg

(
Gα

sn−1

(q2)n−2

)
, (4.22)

where n is an integer number smaller than 4. From this simple scaling reasoning, we
can then see that no PM classical contribution proportional to 2G

√
sq ∼ Rs/b is actually

generated. Therefore, we find no resolvable effect at this order, for the case of scattering
of a photon off a massless neutral scalar.

5 Analyticity, causality and time delay

In this section we study the causal structure of eikonal amplitudes. At the operational
level we are working with scattering amplitudes so that we trade causality for suitable
regions of analyticity in the external momenta or Mandelstam invariants. This can either
be an assumption or it can be justified by micro-causality (which holds also in fixed curved
spacetimes [66]) together with angular momentum selection rules that fix the little-group
scaling and the kinematical singularities associated.

We assume these analyticity properties apply as well to eikonal gravitational scattering
because we are systematically neglecting all quantum gravity O(λPl/b)n-effects in this
regime, while retaining instead PM and QFT effects. This is closely related to QFT on a
fixed background except that we include radiation effects from gravity being dynamical,
i.e. with the graviton being a state that can be produced in the scattering and put on-shell,
and as such it enters in the imaginary part of the elastic amplitudes.

As case of study, we focus on the instructive graviton-scalar scattering 1h2S → 3h4S
which i) retains a rather simple but non-trivial kinematic structure allowing to isolate
the dynamical singularities from the kinematical ones, while ii) it provides rather neat
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and interesting causality bounds with potential implication on modified-gravity theories,
see also [67].

Our analysis below shows the emergence of a rich structure of causality bounds in
the eikonal regime, in the form of non-linear positivity constraints, which largely extends
the early on results of [20, 68], with implications and techniques similar to those studied
recently in e.g. [22, 24, 38, 69] by introducing dispersive “arcs” in the complex s-plane, see
figure 5. We essentially parallel [24] in proving positivity of the time-delay matrix, here for
particles with different spins and masses, and with moreover potential phenomenological
implications in cosmology. Furthermore, we find that eikonal scattering can be used to
bound even contact operators by inserting them into loops that correct the high-energy
scaling of the scattering phase matrix.

5.1 Graviton-scalar dispersion relation

The gravitational graviton-scalar amplitude can be written exposing the little-group de-
pendence which, in the all-incoming momenta convention, takes in the most general case
the following form

M(1λ1 , 2 , 3λ3 , 4) =
(
〈3k21]4F+−(s, t) [13]4F++(s, t)
〈13〉4F−−(s, t) 〈1k23]4F+−(u, t)

)
λ1λ3

≡Mλ1λ3(s, t) ≡M−λ3
λ1

(s, t) ,

(5.1)

with lower index helicities (λ1, λ3) = (±2,∓2) being helicity-preserving scattering, and
(λ1, λ3) = (±2,±2) helicity-flipping. We have introduced the formal notationM−λ3

λ1
(s, t) =

M(1λ12 −→ 3−λ34) =M(1λ1 , 2 , 3λ3 , 4) =Mλ1λ3(s, t).
By Bose symmetry, crossing, and neutrality of the scalar and graviton, it follows that

F+−(s, t) = F−+(u, t), F++(s, t) = F++(u, t), and F−−(s, t) = F−−(u, t).23 The tree-level
values are proportional to

F+−(s, t)
∣∣
tree ∝

G

t(u−m2)(s−m2) , F++(s, t)
∣∣
tree ∝

Gm4

t(u−m2)(s−m2) . (5.2)

The form factors Fij(s, t) are free of any kinematical singularity in both s and t, in agree-
ment with [70], and ready-to-use for unsubtracted dispersive relations thanks to the super-
convergence [70, 71], as provided by the little group factors.

We could work directly with the form factors in the following, but for the purpose of
studying causality constraints in the eikonal limit it is actually more convenient to deal
directly with the eikonal amplitude. In fact, since the little-group factors are

〈3k21]4 = 〈1k23]4 = (su−m4)2 , [13]4 = t2e4iφ , 〈13〉4 = t2e−4iφ , (5.3)

the analytic properties of form factors and amplitude are actually the same (at φ = 0) in
the complex s-plane at fixed (and negative) t. Hence, we can run the familiar dispersive
arguments directly on the amplitude matrix elements.

23This would restricts further to two independent form factors if one were to demand time-reversal or
parity.
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s′ ]

m2

m2−t

sx s

Figure 5. Thick blue lines represent the contour integral defining the arc (5.4). Lighter blue lines
correspond to the contour deformation giving rise to the UV representation (5.5). Orange lines on
the real axis represent s and u channel branch-cuts.

We define thus the following “arcs” as the contour integral over two half circles in the
upper and lower s′-plane centered at the s− u crossing symmetric point s×(t) ≡ m2 − t/2

a
(n)
λ1λ3

(s, t) ≡
∮
ds′

2πi
Mλ1λ3(s′, t)

[(s′ − u′)/2]2n+3 , (5.4)

and with radius s− s×(t) > t/2.24 We have u′ = u(s′) = 2m2− s′− t. We can deform their
contour along the real axis as shown in figure 5

a
(n)
λ1λ3

(s, t) = 2
2πi

∫ ∞
s
ds′

DiscMλ1λ3(s′, t)
(s′ − s×(t))2n+3 , (5.5)

where we recall that s > s×+ t
2 . We have used crossing symmetry to integrate only over a

single physical region, 12→ 34, and defined DiscMλ1λ3(s, t) ≡Mλ1λ3(s+iε, t)−Mλ1λ3(s−
iε, t). By hermitian analyticity the discontinuity is nothing but the matrix element

〈3λ3 4|M−M†|1λ1 2〉 = i〈3λ3 4|M†M|1λ1 2〉 (5.6)

so that the optical theorem in the forward elastic limit implies that both DiscM+−(s, t→ 0)
and DiscM−+(s, t→ 0) are positive,25 hence the positivity bounds

a
(n)
+−(s, t→ 0) > 0 , a

(n)
−+(s, t→ 0) > 0 . (5.7)

These two bounds hold as long as the dispersive integrals are convergent (n ≥ 0, due to
the Regge bound [72]), and the forward limit exists (n ≥ 1, due to the t-channel pole).

For example, the n = 1 bounds imply F+−(0, 0) > 0 whenever IR loops are negligible.
This corresponds to a tree-level bound on contact operators in scalar-tensor theories. For
instance, at the 8th order in derivatives there are 3 independent operators in a shift-
symmetric and parity-preserving scalar-tensor theory [73], but only one enters in F+−(0, 0),
that can be choosen e.g. to be δL8 = ξ/Λ6(∇µ∇νφRµανβ)2. Therefore, the n = 1 tree-level

24In the physical region, the s and u-branch cuts are superposed when m2 < |s| < m2 − t, so we choose
the arc large enough to avoid that region.

25We adopt the following notation for simplicity: M−+ ≡M−2,+2, a(n)
+− ≡ a

(n)
+2,−2 etc.
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bound is ξ > 0. In this example, the IR loops are negligible as long as Λ � mPl and the
insertions of other operators such as e.g. ξ̃(∂φ)2(∇∇φ)2/Λ6 into loops are not enhanced,
i.e. ξ̃/ξ � 16π2. Of course, IR loops in an EFT are calculable and they can always be
included systematically if needed, the sharp statement being (5.7). Notice, moreover, that
the s-derivative of the forward arcs in (5.5) is negative definite, ∂sa(n)(s, t = 0) < 0, so
that IR loops make the arcs larger as s is taken smaller.

More general positivity conditions can be extracted by exploiting the partial wave
expansion (3.4) with φ = 0 that makes the unitarity condition block-diagonal in `, that is26

1
2iDiscMλ1λ3(s > s× + t

2 , t) = 2π
√
s

|p|
∑
`

(2`+ 1)d`λ1,−λ3(θ(t, s))〈`λ3|M†M|`λ1〉 (5.8)

where cos θ(t, s) = 1 + 2ts/(s−m2)2. This exposes the fact that the arcs are integrals over
the sum of positive-definite “imaginary part” matrices I`λ1λ3

(s) modulated by some Wigner-
d function which is the only source of controlled negativity, away from the forward limit

a
(n)
λ1λ3

(s, t) = 2
√
s

|p|
∑
`≥2

(2`+ 1)
∫ ∞
s

ds′

(s′ − s×(t))2n+3d
`
λ1,−λ3(θ(t, s′))I`λ1λ3(s′) , n ≥ 0 (5.9)

I`λ1λ3(s′) = 2〈`λ1|M†M|`λ3〉 � 0 . (5.10)

5.1.1 The positive eikonal-arcs

So far we have been very general, with (5.9) and (5.10) holding even away from the eikonal
limit. Let’s restrict now to the eikonal regime by projecting both sides of (5.9) with the
Wigner-d matrix and taking the limits `→∞, |p| → ∞.

Therefore, we act on both sides of (5.9) with
∫∞

0 dq2d`λ1,−λ3
(θ(q, s)), after renaming∑

` →
∑
`′ . As repeatedly done in the previous sections, we approximate the Wigner-d in

the large ` limit with a Bessel function (3.14) (hence restricting to up to 2PM corrections,
included). The integral is then dominated by the region at θ(q, s)� 1, but as s′ > s, this
localizes as well the Wigner-d appearing in (5.9) around small values of θ(q, s′). The small
angle limit of the Wigner-d deviates from the trivial result only for large `, implying that
we can effectively replace also the second Wigner-d by a Bessel function. We replace the
sum on `′ with an integral on b′, obtaining27

∮
ds′

2πi
Mλ1λ3(p,b)
(s−m2)2n+2 = 1

π

∫ ∞
s

ds′

(s′ −m2)2n+2

×
∫ ∞

0
db′b′

∫ ∞
0

dqqJ−λ3−λ1(bq)J−λ3−λ1(b′q)Ĩλ1λ3(b′, s′) , (5.11)

where the two semi-circular contours are centered at s′ = m2 and have radius s−m2. The
matrix Ĩλ1λ3(s, b) ≡ c2e2iλ13(ϕ−π/2)I`(b)λ1λ3

(s) � 0 is positive definite because it differs from
I`(b) just by an unitary transformation and an irrelevant positive factor c2 > 0.

26We have resorted to a lighter notation where inessential labels, such as the 4-momentum are suppressed.
We have also removed the trivial 4-momentum conservation delta-function.

27We used (3.16) and (3.19), and that
√
s|p| = (s−m2)/2.
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Using the orthogonality condition (B.18) among Bessel functions we trivialize the in-
tegrals on the r.h.s. except for the one in s′ which is over a manifestly positive-definite
matrix, thus implying the positivity of the “eikonal arcs” of finite radius:

a
(n)
λ1λ3

(s,b) ≡
∮
ds′

2πi
Mλ1λ3(p′,b)
(s′ −m2)2n+2 � 0 (5.12)

where we remind that Mλ1λ3(p,b) is the Eikonal transform (3.17). More explicitly, this
means

a
(n)
+− > 0 , a

(n)
−+ > 0 , a

(n)
+−a

(n)
−+ − a

(n)
++a

(n)
−− > 0 , (5.13)

where we leave implicit the b and s dependence.
In the limit where the scalar is very massive, it is convenient to change integration

variable to s′ = m2 + 2mω, with (5.12) becoming a statement about arcs in the graviton’s
frequency ω, around the origin ω = 0 and radius 2mω∮

dω

2πi
Mλ1λ3(ω,b)

ω2n+2 � 0. (5.14)

These arcs are calculable in the EFT in terms of Wilson coefficients and therefore the
inequalities (5.13) and (5.14) provide positivity bounds on the EFT parameters. Whenever
the IR branch cuts can be neglected, these arcs are very simple to calculate, as they are
given by the (2n + 1) ω-derivative of the eikonal amplitude. For instance, for n = 0
neglecting the IR branch cuts, we have thus proven the positivity of the time-delay matrix

Tλ1λ3(ω,b) ≡ 2 ∂

∂ω
δλ1λ3(s,b)

∣∣
ω=0 � 0 (5.15)

hence of its eigenvalues, since αg ∝ ω while any higher derivative operator or any iteration
of the eikonal exponentiation can only increase the powers in ω, and as such it can be
discarded in the expression above that selects the value of the derivative at ω = 0.

From (5.14) it follows that higher values of n constrain further higher odd ω-derivatives
of the eikonal amplitude

∂2n+1

∂ω2n+1Mλ1λ3(ω,b)
∣∣
ω=0 � 0 , (5.16)

neglecting the IR branch cuts.
Including the IR branch cuts means working instead with the fully accurate arcs (5.13)

or (5.14) at finite radius. Similarly to the analysis in [22], the finite radius of the eikonal
arcs regulates the IR soft divergences that appear to higher PM or gauge order, and that
(partly) controls the running corrections to the Wilson coefficients. For example, the
2PM-1gauge corrections to the eikonal phase in the probe limit are expected to give rise
to δ = αg

[
− log b/bIR + c

2α(Rs/b) (logω + log−ω)
]
with c some number to be determined.

Since s- or ω-derivatives of arcs are negative definite, we anticipate that c < 0. These
log corrections change the arc as a(0)(ω,b) = 2Rs (− log b/bIR + cα(Rs/b) logω), which is
perfectly finite as long as ω is non-vanishing.

Notice, moreover, that in pure gravity (no gauge corrections) there is actually no IR
log until 3PM. Furthermore, to consistently go to 3PM and higher orders one should extend
eq. (5.11) by using the all-order expression (3.25) rather than its approximation (3.14).
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The connection to higher even derivatives of the time-delay matrix is no longer as
direct as in (5.15), because (5.12) and (5.14) are given in terms of iM(ω,b) = e2iδ − I
rather than in terms of δ itself.28 For example, the ω3-term in M(ω,b) can arise from a
higher derivative operator or just from three iterations of δ0 in the eikonal exponentiation.
Let’s discuss this in an explicit example below.

5.1.2 Example R4
µνρσ

An immediate application of the positivity of (5.16) is on the higher derivative terms
such as

S ⊃ 1
16πG

∫
d4x
√
−g

[
−R+ β1(RµναβRµναβ)2 + β3(Rµναβεαβγδ R

γδµν)2
]
. (5.17)

The contribution to the time delay has been computed in [74] and is given by

∆δλ1λ3(s, b) = 315π
16

G2m2ω3

b

 β̃
b4

β
16b4+

β
16b4−

β̃
b4

 (5.18)

where b± = (b1 ± ib2)/2, β = 4(β1 − β3) and β̃ = 4(β1 + β3). Notice that this contribution
to the time delay scales with ω2 compared to the linear dependence of the leading effect.
However, the third iteration in the eikonal exponentiation of δ0 produces a contribution to
M ∼ (Gmω)3 log3 b/bIR, and therefore the positivity of the first eigenvalue of ∂3M(ω =
0,b)/∂ω3 translates into the condition that β̃ can’t be too negative, parametrically β̃/b6 &
−Rs/b (up to log’s), where b can be lowered up to reaching b ∼ 1/Λ, i.e. the scale of new
dynamics UV-completing the (Riemann)4 operators. In the limit RsΛ → 0, one thus get
positivity of β̃. Analogous arguments constrain β not to be too negative, and demand
positivity only in the limit RsΛ→ 0, namely

β ≥ 0 β̃ ≥ 0 up to O(Λ/mPl ×m/mPl) corrections. (5.19)

That is, positivity of β and β̃ is recovered in the “weak and rigid limit” Λ/mPl×m/mPl → 0,
essentially QFT on a fixed and nearly flat background for m→∞ and mPl →∞, keeping
fixed their ratio and Λ. These results are in agreement with the positivity bounds [75]
obtained away from the eikonal and rigid limit.

5.2 Discussion on causality

We have showed that “asymptotic causality” in a scalar-tensor theory, i.e. positive defi-
niteness of the time-delay matrix for graviton-scalar scattering, is a direct consequence of
analyticity and unitarity exploited in the eikonal regime. Moreover, other positivity bounds
on higher derivative EFT coefficients follow as well in the rigid limit of QFT coupled to
gravity, see (5.19) for bounds on (Riemann)4 operators.

28Positivity of the even derivatives of time-delay matrix, as opposed to the odd-derivatives of M(s,b),
was used in [74] to argue for positivity bounds, but a derivation of this claim was not presented.

– 32 –



J
H
E
P
0
4
(
2
0
2
3
)
0
2
3

Since analyticity follows from micro-causality, see e.g. [28, 66, 76], we have basically
shown the implication Micro − Causality =⇒ Asymptotic Causality in the context of grav-
itational physics. In other words, QFT can tolerate non-vanishing correlators at spacelike
separation as long as the commutator of observables vanishes there, and this in turn implies
that asymptotic causality — positive time-delay — must be respected. This is a condition
on the global causal structure of the theory, extracted unambiguously from the eikonal
amplitude.

It does not imply, however, that signals should be confined inside some local, suitably-
defined, light-cone. For example, ref. [21] showed that “bulk causality”, the notion that all
species experience longer time-delay than gravitons, e.g. Tγ − Tg ≥ 0, is actually violated
quantum mechanically by a resolvable amount. Likewise, “infrared causality” demanding
positivity w.r.t. Shapiro time delay Tγ −TSh ≥ 0 [77], is violated as well quantum mechan-
ically in full QED with dynamical charged states of mass me, by a resolvable amount as
soon as b � 1/me. In fact, infrared and bulk causality are essentially the same condition
since Tg ' TSh within the 1PM approximation. Notice that for b � 1/me, removing the
EFT=QED contribution to T as prescribed in [77] corresponds to push to infinity the
Landau pole by either trivializing the gauge theory with a vanishing gauge coupling, or to
go outside this regime with me →∞, where IR and bulk causality are again the same.

In summary, propagation outside a local light-cone defined by the graviton can take
place within a gauge theory coupled to gravity, as long as the propagation is still confined
within the asymptotic Minkowski light-cone giving T ≥ 0.

As shown in the previous (Riemann)4-example in 5.1.2, positivity bounds on higher
odd derivatives of the eikonal amplitude (5.16) allow us to target contact terms by inserting
them into loops for the scattering phase matrix. One could extract even sharper bounds by
working away from the eikonal and rigid limit using (5.9) along the lines of [23, 24, 78, 79].
We leave this task to future work.

6 Conclusions

In this work we have investigated the eikonal scattering of two bodies interacting via gravity.
The eikonal amplitude is obtained by studying the limit of large angular momentum of the
system expanded in partial waves. We have shown the geometrical picture behind the
eikonal expansion is the same of the flat-earth approximation, where the SU(2) group
of rotations contracts to ISO(2). Moreover, the resulting continuous-spin representation
allows us to recover the 2D Fourier transform to b space, as well as the classical limit of
continuous angular momentum.

While physically intuitive and compelling, we have shown that this approach is valid
up to θ2 corrections. We have thus extended these results by finding an expression for the
eikonal amplitude valid at all orders in θ, extending in principle the validity of approxima-
tion beyond the small angle regime. What is the radius of convergence of this expansion?
Can we use the all-order expression to approach the region of black hole formation? These
remain, at the moment, open and interesting questions.
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We have also shown that quantum gravity corrections are never resolvable within the
eikonal transplanckian regime, i.e. they are always smaller than the quantum fuzziness on
the trajectories. Moreover, we have explained under what conditions classical corrections
are not always the largest ones, and we have provided an example of a gauge theory
coupled to gravity where quantum corrections to the eikonal scattering angle that are
more important than the classical Post-Minkowskian’s. We have argued that “classical” as
opposed to “quantum” is not quite an useful distinction for the various source of the eikonal
corrections. What matters instead in an EFT is just the largest length scale — provided
it has a non-negligible coupling associated — regardless of its classical or quantum origin,
that a low-energy observer cannot possibly know anyway.

In this respect, we have studied QFT contributions to eikonal scattering in a gauge
theory coupled to gravity, and contrasted it with the Post-Minkowskian corrections, work-
ing to two-loop order. We have explored the O(G2α) term in the scattering of photons
off some massless neutral scalar field, where α is the fine structure constant. As in the
purely massless gravitational case, however, we have found no resolvable effect beyond the
O(Gα) contribution to the eikonal that has been originally calculated in [21], and which is
nevertheless larger than pure to 2PM corrections as soon as (Rs/b)2 � α.

We plan to investigate further this problem in future work by introducing a mass to the
scalar spectator and exploit the same technology to compute the expected 2PM+1Gauge
resolvable effect. In particular, in the probe limit for the photons, the differential equations
relating Master Integrals are still a function of one kinematic variable, as the dependence
on the mass of the scalar trivializes. This means that most of techniques used in this paper
can be directly exported into the probe scenario.

Finally, we have investigated the causal properties of the eikonal amplitude including
the QFT corrections. By introducing certain “eikonal arcs” in complex energy space at
fix impact parameters, we have shown that the time delay and odd higher derivatives
of the eikonal amplitude satisfy infinitely many non-linear constraints, that can be used
to bound EFT coefficients. In an explicit example of this strategy, we have reproduced
the known positivity bounds for (Riemann)4/m2

PlΛ4 type of operators, in the rigid limit
Λ/mPl × m/mPl → 0, where m is the mass of one of the scattered particles. It is quite
remarkable that eikonal scattering allows to assess positivity bounds for contact operators
by including them into the loop corrections to the scattering phase.

A possible future direction is to explore these new causality bounds more systemati-
cally, away from eikonal and rigid limits, using (5.9). In particular, 5-point contact terms
would appear in the time delay as two loops contributions, and can in principle be tar-
geted by our bounds, circumventing the complications of knowing the analytic structure
of 5-point correlation functions. Ultimately, we expect that 2-to-n processes should be
constrained as well by fundamental principles.
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A The IR-divergent Coulomb phase via wordline eikonal

In this short appendix we discuss one particular type of infrared (IR) divergence that arises
already in the leading eikonal amplitude: the divergent Coulomb phase. We would like to
provide a simple physical understanding of this IR effect.

Given a scattering amplitude, one can define an associated potential by matching to
the amplitude that it would produce,

V (x) = N

∫
d3q

(2π)3 e
−iqxM(s, q) , (A.1)

up to a normalization factor N that we don’t need in the following. Inverting this relation
and expressingM in the eikonal limit (3.20) one gets

e2iδ(s,b) − I = i

4|p|
√
sN

∫ ∞
−∞
dzV (x)

∣∣
x=(z,b) (A.2)

which reproduces the textbook result in potential scattering theory [1]. The interpretation
of this result is straightforward now: the leading eikonal amplitude in impact parameter
space is just the wordline integral of the potential over the straightline geodesic.

This formula allows an immediate interpretation of the IR divergence for the time-
delay coming from the 1/|x| = 1/

√
z2 + b2-potential, which itself originates from the 3D

Fourier-transform of amplitudes with a 1/q2-pole of the massless graviton exchanged in
t-channel. At the lowest order in G and integrating over a finite travelled distance L from
the source to the detector,

δ(s,b) ∝ − 1
4|p|
√
sN

log b/L+ . . . (A.3)

The IR divergence arises because the time-delay is accumulated — logarithmically — over
the travelled distance L. Since the source and the detector are always at some finite
distance, we can choose L as small as the largest length scale we want to include in the
scattering. For instance, if we want to probe heavy physics at the mass scale Λ (no new
massless modes), then it’s enough to choose L a couple of orders of magnitude larger than
1/Λ. The precise hierarchy is not crucial, because it would impact the accuracy of the
results only logarithmically. A similar IR divergence arises in QED but in that case some
screening mechanism can always be devised by adding spectator charges to neutralise the
system as seen at long distance.

Other IR divergences than Coulomb’s can arise to higher orders. In a purely gravi-
tational theory there are soft divergences only [81, 82] , which cancel once including the

– 35 –



J
H
E
P
0
4
(
2
0
2
3
)
0
2
3

emission of real gravitational radiation, e.g. using the eikonal-operator approach [83, 84].
On the other hand, when also light matter fields are present, collinear divergences can be
present too. For example, [21] has shown how to deal with Sudakov (soft and collinear) IR
divergences in the context of gravitational eikonal scattering at 1PM-1gauge order. A gen-
eral treatment is however lacking at the moment, and it represents one of the limitations
to export sharp and IR-safe positivity bounds in the context of gravity.

B Partial waves: full monty

In this appendix we review how to obtain from scratch the partial wave expansion for
(distinct) particles of any mass and spin, reproducing the classic results of [85]. The
extension to identical particles is straightforward.

Let’s consider irrep of the Poincaré group which are labelled by the 4-momentum p

with p0 > 0, by the total angular J2 = `(`+ 1) and its projection λ (the helicity) along the
direction of motion, and possibly by some other internal collective label α = {q,m, λi . . .}
such as the conserved charges, the particle type and its mass, the helicities λi of the
constituents etc, that is needed to specify the irreps uniquely:

|p ` λ, α〉 , 〈p′ `′ λ′, α′|p λ `, α〉 = (2π)4δ4(p− p′)δ``′δλλ′δαα′ . (B.1)

We have chosen the relativistic normalization and δαα′ represents the product of Kronecker
deltas δqq′δmm′δλ′iλi . . . for the internal labels. The resolution of the identity

I =
∑
α

∑
`

∑̀
λ=−`

∫
d4p

(2π)4 θ(p
0)θ(p2)|p ` λ;α〉〈p ` λ;α| , (B.2)

allows to reconstruct any state from its projection on the irreps.
Single particle states are examples of irreps of definite mass p2 = m2 (hence often

labelled by 3-momentum and the mass m) where ` = S is their spin. The tensor product
of two-particle states, represented by

|p1 S1 λ1, α1〉|p2 S2 λ2, α2〉 ≡ |p1 S1 λ1, α1; p2 S2 λ2, α2〉 , (B.3)

has definite 4-momentum p1 + p2 but it is in general reducible into the sum of irreps of
various angular momenta, called the partial waves.

In order to determine the decomposition of a two-particle state in irreps, let’s consider
first the case of particles i and j moving along the z-axis in their c.o.m. frame, pi =
(ωi, 0, 0, pzi > 0) and pj = (ωj , 0, 0,−pzi ): by invariance under translations and rotations
around the z-axis, the state has definite momentum pi + pj = (ωi + ωj ,0) and definite
helicity λi − λj , therefore the projection over an irrep is actually fixed

〈p ` λ, α|pi Si λi, αi; pj Sj λj , αj〉 c.o.m.
θ=φ=0

= (2π)4δ4(p− p̄ij)δλλijδαᾱijC`(p2
i , α) (B.4)

up to some weight factor C`(p2
i , α) that is going to be fixed by a normalization condition,

and where we introduced the notation

p̄ij = pi + pj , λij = λi − λj , ᾱij = αi ∪ αj = {qi, qj ,mi,mj , λi, λj , . . .} . (B.5)
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We also used that all the invariant scalar products are just functions of the c.o.m. tree-
momentum squared |pzi | = p2

i = p2
c. i = p2

c. j , which can be written in a covariant form as

p2
c. i = p2

c. j = 1
4sij

(
sij − (mi +mj)2

) (
(sij − (mi −mj)2

)
) sij = (pi + pj)2 . (B.6)

The overlap (B.4) corresponds, via (B.2), to the decomposition over infinite partial waves29

|pi Si λi, αi; pj Sj λj , αj〉 c.o.m.
θ=φ=0

=
∑

`≥|λij |
C`(p2

i , ᾱij) |p̄ij ` λij , ᾱij〉 (B.7)

From this expression we can now obtain the irrep decomposition for a generic state by
suitable boosts and rotations. For example, boosting (B.7) along the z-direction we get

|pi Si λi, αi; pj Sj λj , αj〉θ=φ=0 =
∑

`≥|λij |
C`(p2

c. i, ᾱij) |p̄ij ` λij , ᾱij〉 . (B.8)

Or, to get from the θ = φ = 0 configuration to a generic one (but still in the c.o.m.),
we can apply a rotation R(φ, θ,−φ) where we define R(α, β, γ) = e−iαJ

3
e−iβJ

2
e−iγJ

3 .
Observing that in the c.o.m. frame p̄ij = Rp̄ij behaves just like any other internal index
transparent to rotations, and reminding the definition of the Wigner-d matrix (oblivious
of trivial internal indices, and chosen real)

〈`λ|e−iθJ2 |λ′`′〉 ≡ δ``′d`λλ′(θ) (B.9)

we get

R(φ, θ,−φ)|p̄ij ` λij , ᾱij〉 c.o.m.
θ=φ=0

=
∑
|λ|≤`

e−i(λ−λij)φd`λλij (θ) |p̄ij ` λ, ᾱij〉 (B.10)

which in turn gives

R(φ, θ,−φ)|pi Si λi, αi; pj Sj λj , αj〉 c.o.m.
θ=φ=0

=
∑
` λ

C`(p2
i , ᾱij)e−i(λ−λij)φd`λλij (θ) |p̄ij ` λ, ᾱij〉 .

(B.11)
The summation domain ` ≥ |λij | , |λ| ≤ ` is left understood hereafter. Notice, however,
that the left-hand side of (B.11) is the tensor product of the rotated one-particle states
only up to an overall e−2iλjφ-phase. Therefore, the decomposition would actually read

e2iλjφ|pi Si λi, αi; pj Sj λj , αj〉c.o.m. =
∑
` λ

C`(p2
i , ᾱij)e−i(λ−λij)φd`λλij (θ) |p̄ij ` λ, ᾱij〉 .

(B.12)
However, as it is customary in the literature since [85], we actually absorbe that e2iλjφ-
factor in the definition of the two-particle scattering state, see (3.1) and (3.2).

The first of the d-matrix orthogonality conditions∫ 1

−1
dcos θ d`′λ′λ(θ)d`λ′λ(θ) = 2

2`+ 1δ`
′` ,

∑
`

(2`+ 1)
2 d`λ′λ(θ)d`λ′λ(θ′) = δ(cos θ − cos θ′)

(B.13)
29For ease of notation, whenever the 3-momentum of the particles is the same as the c.o.m. 3-momentum

we omit the subscript c. unless needed otherwise.
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allow to invert the relation between the 2-particle states and the irreps

|p̄ij ` λ, ᾱij〉 = (2`+ 1)/2
C`(p2

i , ᾱij)

∫ 1

−1
d cos θ

×
∫ 2π

0

dφ

2πe
−i(λij−λ)φd`λλij (θ)

(
ei2λjφ|pi Si λi, αi; pj Sj λj , αj〉c.o.m.

)
(B.14)

where the left-hand side “knows” about the λi via its internal parameter ᾱij .
Finally, we can determine the weight factor C`(p2

i , α) by matching the normalization
induced by the one-particle tensor product, that in spherical coordinates reads

〈p3 S3 λ3, α3; p4 S4 λ4, α4|p1 S1 λ1, α1; p2 S2 λ2, α2〉c.o.m. = (B.15)

= (2π)4δ4(p̄12 − p̄34)16π2
√

s

|p1||p3|
δ(cos θ − cos θ′)δ(φ− φ′)δλ1λ3δλ2λ4δᾱ12ᾱ34 ,

with the normalization implied by (B.1) for the irrep on the left-hand side of (B.14),
yielding ∣∣∣C`(p2

i , ᾱij)
∣∣∣ = 4π(2`+ 1)

√
sij

|pi|
. (B.16)

This is determined only up to a phase that we reabsorb in the definition of the states.
Moreover, it is actually independent on ᾱij (except for the implicit dependence on mi in
sij) which will no longer be displayed.

Miscellaneous identities.

d`λ′λ(θ) = (−1)λ′−λ
√

(`+ λ′)!(`− λ′)!
(`+ λ)!(`− λ)!

(
sin θ2

)λ′−λ (
cos θ2

)λ+λ′

P
(λ′−λ,λ+λ′)
`−λ′ (cos θ) (B.17)

for λ′ ≥ λ; whereas for λ′ < λ one can use d`λ′λ(θ) = (−1)λ′−λd`λλ′ . The P (a,b)
` (cos θ) are

Jacobi polynomials in cos θ.

Bessel Orthogonality:
∫ ∞

0
dqqJν(qa)Jν(qb) = δ(a− b)/a (B.18)

C Two-loop master integrals

In this brief appendix we shall give the explicit expression of the two-loop scalar MIs
sketched in figure 4, section 4.1.2. Let us start with the planar MIs. Using the external
momenta defined in eq. (4.15) and calling the loop momenta `1 and `2, we introduce the
following propagators

ρ1 = `21 , ρ2 =
(
`1 + p̄2 −

q

2

)2
, ρ3 = (`1 + p̄1 + p̄2)2 ,

ρ4 =
(
`1 + p̄2 + q

2

)2
, ρ5 = `22 , ρ6 =

(
`2 + p̄2 −

q

2

)2
,

ρ7 = (`1 + p̄1 + p̄2)2 , ρ8 =
(
`2 + p̄2 + q

2

)2
, ρ9 = (`1 − `2)2 ,

(C.1)
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where we left implicit the +i0+ Feynman prescription. Then, all the MIs take the follow-
ing form

Gi1,i2,i3,i4,i5,i6,i7,i8,i9 ≡
∫

dd`1
(2π)d

dd`2
(2π)d

1
ρi11 ρ

i2
2 ρ

i3
3 ρ

i4
4 ρ

i5
5 ρ

i6
6 ρ

i7
7 ρ

i8
8 ρ9i9

. (C.2)

In the above equation we underlined the propagators that are cut as depicted in figure 4.
These propagators are to be replaced with on-shell delta functions [14, 15, 86], e.g.

1
ρ7
→ δ−+(ρ7) . (C.3)

Higher power of a cut propagators means derivative of the delta functions. Given these
definitions, the planar MIs ~g are explicitly

g1 = 1
(−q2)

(
−18ε3 + 27ε2 − 13ε+ 2

)
4(y + 1)ε3 G1,0,0,0,0,0,1,0,1 ,

g2 = (−q2)
(

1− 1
2ε

)
G1,0,0,0,0,1,1,1,1 ,

g3 = (−q2)1− y
2 G1,0,0,1,0,1,1,0,1 ,

g4 = −(−q2)3 1 + y

4 G1,1,0,1,0,1,1,1,1 ,

g5 = − 72g1
y + 1 −

18g2
(
ε2 + 5ε+ 2

)
(y + 1) (2ε2 + 3ε+ 1) + 18g3

y + 1 −
3g4

(
4y + 1

ε + 7
)

y + 1

− (−q2)4 3(y + 1)(ε+ 1)
8 (2ε2 + ε) G2,1,0,1,0,1,1,1,1 .

(C.4)

This planar MIs satisfy the differential equation written in eq. (4.19) where A±1 are ex-
plicitly

A+1 =


−2 0 0 0 0
−4 −2 0 0 0
−8 0 −2 0 0
−24 −12 6 −2 0
396 180 −99 39 1

 , A−1 =


0 0 0 0 0
4 1 0 0 0
0 0 2 0 0
24 12 −6 10 2

3
−396 −180 99 −135 −9

 , (C.5)

For the non planar MIs, we introduce the following basis of propagators

ρ̃1 = `21 , ρ̃2 =
(
`1 + p̄2 −

q

2

)2
, ρ̃3 = (`1 − q)2 ,

ρ̃4 = `22 , ρ̃5 =
(
`2 + p̄2 −

q

2

)2
, ρ̃6 = (`2 − q)2 ,

ρ̃7 =
(
`1 − p̄1 −

q

2

)2
, ρ̃8 = (`1 − `2)2 , ρ̃9 =

(
`1 − `2 + p̄1 + q

2

)
,

(C.6)

and the definition

G̃i1,i2,i3,i4,i5,i6,i7,i8,i9 ≡
∫

dd`1
(2π)d

dd`2
(2π)d

1
ρ1ρ̃i21 ρ̃

i3
3 ρ̃

i4
4 ρ̃

i5
5 ρ̃

i6
6 ρ̃

i7
7 ρ̃8i8ρ9

. (C.7)
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The MIs ~̃g are then given by

g̃1 = 2− 2ε
3ε g1 , g̃2 = 2− 2ε

3ε g2 , g̃3 = 2− 2ε
3ε g3 , g̃4 = (−q2)2− 2ε

3ε G̃0,1,0,0,0,1,1,1,1 ,

g̃5 =
[
y
(
19346ε4 + 26331ε3 + 11948ε2 + 2229ε+ 146

)
− 150ε

(
90ε3 + 111ε2 + 42ε+ 5

)
25y (y2 − 1) (ε+ 1)(2ε+ 1)2(4ε+ 1)

+ y
(
y
(
334ε4 − 21ε3 − 908ε2 − 699ε− 146

)
− 60ε

(
127ε3 + 185ε2 + 85ε+ 13

))
25 (y2 − 1) (ε+ 1)(2ε+ 1)2(4ε+ 1)

]
g̃1

+ 4
(
7y2 (43ε2 − 69ε− 34

)
− y

(
5999ε2 + 3093ε+ 238

)
+ 450ε(3ε+ 1)

)
75y(y + 1) (8ε2 + 6ε+ 1) g̃2

+ y2 (−334ε2 + 522ε+ 292
)

+ y
(
5906ε2 + 3282ε+ 292

)
− 300ε(3ε+ 1)

25y(y + 1) (8ε2 + 6ε+ 1) g̃3

+ 48ε
(
5y2(ε+ 1) + 7yε− 5(3ε+ 1)

)
5y (y2 − 1) (ε+ 1)(4ε+ 1) g̃4

− (−q2)3 2(ε− 1)
(
5y2(4ε+ 1)− 7y(3ε+ 1) + 10ε+ 5

)
15yε(4ε+ 1) G̃1,1,1,0,0,1,1,1,1

+ (−q4)((7y − 10)
(
y2 − 1

)
(ε2 − 1)

30yε (8ε2 + 6ε+ 1) G̃1,1,2,0,0,1,1,1,1 , (C.8)

g̃6 =
[
− 8

(
y
(
26902ε4 + 36747ε3 + 16726ε2 + 3123ε+ 202

)
− 225ε

(
90ε3+111ε2+42ε+5

))
25y (y2 − 1) (ε+ 1)(2ε+ 1)2(4ε+ 1)

+ 8y2 (−229ε2 + 357ε+ 202
)

(2ε+ 1) + 360yε
(
222ε3 + 325ε2 + 150ε+ 23

)
25 (y2 − 1) (2ε+ 1)2(4ε+ 1)

]
g̃1

− 12
(
y2 (43ε2 − 69ε− 34

)
− 2y

(
466ε2 + 237ε+ 17

)
+ 75ε(3ε+ 1)

)
25y(y + 1) (8ε2 + 6ε+ 1) g̃2

+ y2 (458ε2 − 714ε− 404
)
− 4y

(
2068ε2 + 1146ε+ 101

)
+ 450ε(3ε+ 1)

25y(y + 1) (8ε2 + 6ε+ 1) g̃3

− 72ε
(
5y2(ε+ 1) + 6yε− 5(3ε+ 1)

)
5y (y2 − 1) (ε+ 1)(4ε+ 1) g̃4

+ (ε− 1)
(
5y2(4ε+ 1)− 6y(3ε+ 1) + 10ε+ 5

)
5yε(4ε+ 1) G̃1,1,1,0,0,1,1,1,1

− (3y − 5)
(
y2 − 1

)
(ε2 − 1)

10yε (8ε2 + 6ε+ 1) G̃1,1,2,0,0,1,1,1,1 .

The non planar MIs satisfy eq. (4.20) where Ã±1 are

Ã+1 =



−2 0 0 0 0 0
−4 −2 0 0 0 0
−8 0 −2 0 0 0
8 0 0 −2 0 0

8048
25

4832
75 − 5036

75 24 − 27
5 −

68
15

− 11056
25 − 2168

25
2264

25 −36 24
5

22
5


, Ã−1 =



0 0 0 0 0 0
4 1 0 0 0 0
0 0 2 0 0 0
−8 0 0 −2 0 0
− 17872

75 − 1088
25

1156
25 −24 − 43

5 −
24
5

8368
25

1496
25 − 1592

25 36 66
5

38
5


.

(C.9)
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