Localized Deformation in Plastic Liquids on Elastomers
Xavier P Morelle, Ruobing Bai, Zhigang Suo

To cite this version:

HAL Id: hal-03850957
https://hal.science/hal-03850957
Submitted on 2 Jan 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Localized Deformation in Plastic Liquids on Elastomers

A plastic liquid such as toothpaste and butter deforms like an elastic solid under a small stress and like a plastic solid under a large stress. Recently, plastic liquids have been used as compliant electrodes for elastomeric transducers. Here, we study the deformation of a plastic liquid adherent on an elastomer when the elastomer is stretched monotonically. We observe that deformation in the plastic liquid localized into shear bands and necks. We further observe that the plastic liquid slips near the interface between the plastic liquid and the elastomer. Each pulling edge of the plastic liquid develops a shear tail, a thin layer of the plastic liquid adherent to the elastomer. As the elastomer is stretched, the tail conforms to the deformation of the elastomer, and the plastic liquid above the tail slips. Finite element simulations confirm that localization occurs even for a relatively simple elastic–plastic model, but require a boundary condition that allows the near-interface slip. [DOI: 10.1115/1.4037410]

Introduction
Plastic liquids are all around us, from consumer products such as toothpaste, butter, and ketchup, to industrial products such as lubricants and conductive greases. These materials, also known as viscoplastic fluids, soft jammed solids, and yield stress liquids, are commonly made of concentrated emulsions, colloidal suspensions, physically crosslinked gels, granular pastes, and foams [1–4]. Their rheological behavior has long been studied using shear rheometers [5–7] and extrusion channels [8,9]. These experimental setups closely resemble traditional applications of plastic fluids.

The growing interest in stretchable electronics, biomedical engineering, and soft lithography has motivated new applications of plastic liquids. In particular, electrically conductive plastic liquids such as carbon grease have been used as compliant electrodes. Applications include electromechanical actuators [10,11], electrical energy generators [12,13], and extension sensors [14]. In such an application, thin layers of carbon grease are spread over the surfaces of a sheet of elastomer. The plastic liquid fulfills the basic rheological requirements of the application. When the elastomer is stationary, the plastic liquid also remains stationary and does not flow and drip under gravity or small disturbance. When the elastomer undergoes large and repeated elastic deformation, the plastic liquid conforms and undergoes viscoplastic deformation.

It has been discovered recently that a plastic liquid develops a wavy pattern when the underlying elastomer is stretched cyclically [15]. The surface of the plastic liquid is initially flat. As the elastomer is stretched and released cyclically, a wavy pattern emerges on the surface of the plastic liquid. The wavelength remains unchanged, but the amplitude of the wave increases cycle by cycle, and then saturates after some number of cycles. Here, we report further experiments to show that the deformation in the plastic liquid can localize even when the underlying elastomer is stretched monotonically. When the stretch of the elastomer is small, the deformation in the plastic liquid is homogeneous. When the stretch of the elastomer is large, the plastic liquid forms many shear bands or a single neck. Furthermore, the pulling edges of the plastic liquid develop shear tails, corresponding to large slips in the plastic liquid, parallel to and near the interface between the plastic liquid and elastomer. We conduct a finite element simulation to understand these experimental findings. We find that the near-interface slip is essential for localized deformation to occur in the plastic liquid on the elastomer. Without the slip, the deformation in the plastic liquid will not localize even when the elastomer is under a very large stretch. With the slip, the deformation in the plastic liquid will localize when the elastomer is under a similar stretch as observed in experiments.

Fig. 1 (a) A plastic liquid deforms like an elastic solid of Young’s modulus \(E \) when the stress is small and like a plastic solid when the stress is above the yield stress \(\sigma_y \). Some strain hardening can be observed. (b) Examples of applications of plastic liquids.
Experimental Setup

Following Ref. [15], we use lithium grease (AGS Company, Catalog No. WL-15, Lith-Ease White) as the plastic liquid and an acrylic elastomer (3M VHB 4910) as the substrate. We have observed similar phenomena using other plastic liquids (carbon grease, toothpaste, butter, etc.). The choice of lithium grease over other plastic liquids comes from the following facts. (i) The solvent of the lithium grease is silicone oil, which evaporates negligibly at room temperature. (ii) The lithium grease has finer particles than the carbon grease does and is more uniform. (iii) The yield stress of lithium grease is high enough for the material to retain its shape under gravity, allowing us to use a vertical experimental setup. The choice of VHB over other elastomers comes from the following facts. (i) The VHB is highly stretchable, readily beyond ten times its original length. (ii) The elastic modulus of the VHB is small enough to be stretched even by hands and is much larger than the elastic modulus of the lithium grease. (iii) The adhesion between the VHB and lithium grease is strong enough to avoid debonding.

The lithium grease consists of an uncrosslinked or partially crosslinked polymer network, fine particles (e.g., lithium-containing compound, calcium carbonate, and titanium dioxide), and silicone oil (Fig. 2a) [7,16]. The stress–strain curve of the grease is close to that of an ideal elastic–plastic solid with some hardening [15] (Fig. 2b). A small rate-dependency is observed when the applied shear rate is varied over two orders of magnitude. We will not study the rate effect in the present study and will keep a constant loading rate of \(\sim 0.2 \, \text{s}^{-1} \) in our experiments.

Care was taken to deposit flat layers of lithium grease on the surface of the VHB elastomer. To obtain a layer of the grease of a certain thickness, acrylic sheets of the corresponding thickness were placed on the surface of the elastomer as spacers. An excessive amount of the grease was first roughly placed in between those spacers on the elastomer. A razor blade was used to slide over the spacers to remove the excess of the grease. The low adhesion between the grease and the razor blade ensures flat surfaces. The layer of the grease so obtained had a root mean square roughness around 5 \(\mu \text{m} \) [15]. After the spacers were removed, the razor blade was used to cut the grease into rectangular shape with straight edges. We made layers of the grease of thickness \(H \) ranging from 1 to 6.5 mm, and width \(W \) ranging from 5 to 30 mm. The thickness of the elastomer was 1 mm, and its width and length were always larger than those of the grease layer.

The elastomer was then stretched up to four times its initial length, in a universal testing machine (Instron 5966) with a 50 N load cell. The deformation of the grease was videotaped with both front and lateral views (Fig. 3).

Experimental Observations

The shear modulus of the VHB elastomer (~600 kPa) [17] is much higher than that of the lithium grease (~16.6 kPa) [15]. When the stretch of the elastomer is small, the grease deforms nearly homogeneously and conforms to the deformation of the elastomer. When the stretch of the elastomer is large, the deformation of the grease becomes inhomogeneous (Fig. 4). For a specimen of a large initial width-to-thickness ratio, numerous shear bands form in the grease as the elastomer is stretched (Fig. 5). The first shear bands initiate from imperfections on the side edges or the top surface of the grease (Fig. 5b). After initiation, each shear band is thin, and runs across the width of the grease at an angle close to 45 deg (Fig. 5c). As the elastomer is stretched further, more shear bands form, soon covering the grease, with nearly even spacing. As the elastomer is stretched even further, the shear bands rotate to accommodate the reduction in the width due to Poisson’s effect (Fig. 5d). The initial shear bands are thin and shallow (approximately a few tens of microns), but grow wide and deep (approximately hundreds of microns). The side edges become more and more uneven (Fig. 5e).

At the initiation stage, the distance between the first shear bands is of the order of millimeters, comparable to the initial thickness of the layer \(H \). When the layer reaches the later stage with evenly distributed shear bands, the distance between shear bands decreases to hundreds of microns (Fig. 6). It can thus be stated...
that the larger the applied stretch, the more the distance between shear bands is reduced, confirming an earlier observation in Ref. [15]. For a specimen of a small width-to-thickness ratio, shear bands still form, but the localization is much more strongly marked with a neck in the center of the specimen (Fig. 7). The deformation is almost solely concentrated in the neck and shows much deeper grooves (>1 mm). As the neck extends to form a significantly thinner band at larger stretch, some secondary necks form (Fig. 7(c)). Meanwhile, thin shear bands can still coexist with the main neck. However, bifurcation concentrates on a single localized region instead of being evenly distributed over the specimen. In both cases, the shear bands and necks persist upon unloading and form irregular surface patterns. No significant difference was observed in terms of the critical stretch for the onset of localization ($\lambda_c = 1.71 \pm 0.39$) between the two types of localization. For layers of intermediate width-to-thickness ratios, it was observed that the two types of localization modes gave some mixed behavior (Fig. 4).

In all experiments that we have performed, each pulling edge of the grease develops a shear tail (Fig. 8). The tail is a thin layer of grease, about 100 μm thick, adherent to the elastomer. As the elastomer is stretched, the tail also deforms, conforming to the deformation of the elastomer. A block of the grease above the tail
slips relative to the tail, deforming only slightly. The middle portion of the grease, away from the two pulling edges, deforms substantially. Consequently, the grease deforms into a shape of a dumbbell (e.g., Fig. 7(c)).

The formation of the shear tails highlights shear localization in the grease. The thickness of the shear tail is much smaller than the initial thickness H of the grease, so that the thickness of the slipping block is approximately H. The shear stress required for slip is denoted by τ_s and the length of a slipping block by B. The bottom surface of the slipping block is subject to the shear stress τ_s, and the top surface of the slipping block is traction-free. One end of the slipping block is the edge of the grease and is traction-free. The other end of the block is connected to the middle portion of the grease and is subject to the stress at the level of the yield stress σ_Y. The forces acting on the slipping block were balanced, and we obtain that $\tau_s B = \sigma_Y H$. In the case of Fig. 7, for example, $H = 6.5$ mm, and we take the length of slipping block to be $B \approx 20$ mm, so that $\tau_s = 0.3 \sigma_Y$.

Numerical Simulations

To understand the experimental findings, we conduct finite element simulations using the commercial software ABAQUS 6.12/standard. The observed localization in the grease is three-dimensional, and the rheology of the grease is not fully characterized. The detailed numerical simulation is beyond the scope of this paper. Instead, we will use an idealized model to identify basic ingredients that trigger localization.

Specifically, we simulate the plane strain deformation of a time-independent, isotropic-hardening, elastic–plastic material. Since the elastomer is far stiffer than the grease, we only simulate the grease and represent the elastomer by boundary conditions on the bottom boundary of the grease. Recalling that the experimentally observed distance between shear bands at initiation is comparable to the thickness H of the undeformed grease, we represented the undeformed layer by a rectangle of width $2H$ and height H in the simulation. To represent an initial imperfection on the top surface of the grease, we perturb the top edge of the rectangle into a sinusoidal shape, with wavelength $l = 2H$ and a small amplitude $A = 0.001H$. Similar approaches have been used to trigger surface instability in other works of the literature [15,18]. Because of symmetry, we only simulate the right half of the rectangle (Fig. 9(a)). The left boundary of the mesh

Fig. 8 The formation of shear tails. At each pulling edge of the grease, a thin layer of the grease remains adherent to the elastomer. Relative to the thin layer, a block of the grease slips. (a) A thin specimen ($H = 3$ mm, $W = 22.75$ mm, and $L = 32.7$ mm). (b) A thick specimen ($H = 6.5$ mm, $W = 18.8$ mm, and $L = 33$ mm). The side view also shows that the grease/elastomer interface remains flat.

Fig. 9 The effect of boundary conditions on localization. (a) In the reference state, the grease is represented by a rectangle, with top surface perturbed into a sinusoidal shape. (b) Under the no slip condition, the deformation does not localize even at $\lambda = 2.5$. (c) Under the free slip condition, deformation localizes at $\lambda = 1.6$. (d) Under the frictional slip condition, deformation also localizes at $\lambda = 1.6$.

Transactions of the ASME
shearing stress at the bottom, with a representative magnitude effect of the boundary layer was accounted for by a constant adherent to the elastomer. As noted above, this observation suggests the high shear localization between the boundary layer and bulk layer. Strain-hardening elastic–plastic materials are known to form localization at a stretch of thickness of the layer (1–6 mm). The no-slip model fails to simulate the high shear localization between the boundary layer and bulk part of the grease shows clear signs of sliding, while a thin "shear tail" clearly indicates an inhomogeneous shear strain distribution through the thickness of the grease. Similar observations with a material model that can predict the formation and thickness of deformation of a plastic liquid adherent on an elastomer. When the elastomer is stretched monotonically, the plastic liquid develops shear bands and necks. Each pulling edge of the plastic liquid develops a shear tail. The tail is a thin layer of plastic liquid adherent to the elastomer, and the block of the plastic liquid above the tail slips. Finite element simulations confirm that localization can be predicted through the use of a relatively simple elastic–plastic model but requires a careful definition of the applied boundary conditions. Further study is needed to account for the full spectrum of deformation of plastic liquids on elastomers, for instance, to formulate a material model that can predict the formation and thickness of shear tails.

Funding Data
- Belgian American Educational Foundation (Cabeaux-Jacobs 2015), Division of Materials Research (Grant No. 14-20570).

References