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Abstract	
Peak fitting of X-ray photoelectron spectroscopy (XPS) data is the primary method for 
determining the identities and quantities of the chemical states of the atoms near the surface of 
a sample. Peak fitting is typically based on the minimization of a figure-of-merit, such as the 
residual standard deviation (RSD). Here we show that optimal XPS peak fitting is obtained 
when the peak shape (the synthetic mathematical function that represents the chemical states 
of the material) best matches the physics and chemistry of the underlying data. However, 
because this ideal peak shape is often unknown, constraints on the components of a fit are 
usually necessary to obtain good fits to data. These constraints may include fixing the relative 
full width at half maxima (FWHM) (peak widths), area ratios, and/or the relative positions of 
the fit components. As shown in multiple examples, while unconstrainted, less-than-optimal 
peak shapes may produce lower RSDs, they often lead to incorrect results. Thus, the 
‘suboptimal’ results (somewhat higher RSDs) that are obtained when constraints are applied to 
less-than-perfect peak shapes are often preferable because they prevent a fit from yielding 
unphysical or unchemical results. XPS peak fitting is best performed when all the information 
available about a sample is used, including its expected chemical and physical composition, 
information from other XPS narrow and survey scans from the same material, and information 
from other analytical techniques. 
 

Introduction	
X-ray photoelectron spectroscopy (XPS) is an indispensable tool for understanding surfaces 
and materials, and its use has greatly increased during the past two decades.1 XPS is based on 
the photoelectric effect, where X-radiation leads to the ejection of core electrons. This 
photoemission generally consists of a series of sharp signals on broad backgrounds that are the 
result of inelastically scattered electrons. Other peaks/features are also commonly observed in 
XPS spectra, including Auger and valence band signals. The positions of photoemission peaks 
are used to identify the elements at a surface and provide information about their oxidation 
states. The Lorentzian function is the theoretical peak shape for photoemission. However, the 
sample, instrument, and source of X-rays usually introduce some Gaussian character into it. 
Thus, XPS signals are often modelled using Voigt functions, which are convolutions of 
Lorentzian and Gaussian signals – the Voigt function is generally considered to be the most 
appropriate peak shape for fitting XPS spectra. In special cases, e.g., with conducting materials, 
asymmetry may need to be introduced into peak shapes.2 The Gaussian, Lorentzian, and Voigt 
functions all possess ‘bell’ shapes. Nevertheless, these functions, and those derived from them, 
often differ significantly at their edges/wings.3-6 



The successful use of bell-shaped curves in XPS to interpret and model the specific chemical 
states of a material depends on two overarching concepts. The first is the extent to which signals 
from different chemical states overlap. This is a limiting factor in successful peak fitting. The 
second is the choice of an appropriate model. In general, an XPS model consists of (i) a 
background, (ii) one or more synthetic fit components (bell-shaped peaks), including 
parameters that give their widths, positions, and areas, and (iii) constraints that are applied to 
the different fit components. In this work, we emphasize this third point. The case studies 
presented below provide examples that demonstrate both the use of constraints as well as some 
of the limitations of optimisation in XPS peak fitting. These examples show that peak fitting 
via minimization of a figure-of-merit can be very successful. However, only under certain 
conditions can the results obtained by optimization be deemed accurate/chemically 
meaningful. Furthermore, while the minimization of a figure-of-merit is desirable in peak 
fitting, it is not a necessary condition for the accuracy of a successful chemical state analysis. 
This assertion is demonstrated below by the peak fitting of spectra of known composition. 
 
In addition to the Voigt function, two pseudo-Voigt functions: the Gaussian-Lorentzian sum 
and product functions, are commonly used in XPS peak fitting. As their names would suggest, 
the Gaussian-Lorentzian sum (GLS or SGL) function is produced by summing together 
different amounts of a Gaussian and a Lorentzian function, while the Gaussian-Lorentzian 
product (GLP or GL) function is made by multiplying a Gaussian and a Lorentzian function 
together. In both cases, the relative contributions of the two underlying functions is controlled 
by a mixing parameter, m, as indicated by SGL(m) or GL(m), where m takes on values of 0 – 
100, or equivalently (with minor adjustments to the mathematics) from 0 – 1.3-6 Nevertheless, 
a given value of m does not mean the same thing in these pseudo-Voigt (or Voigt) functions. 
That is, the GL(30) and SGL(30) functions are somewhat different, especially at their wings, 
and they are also different from a comparable Voigt function.3, 6 A generalized Lorentzian 
function, the ‘asymmetric Lorentzian’ or LA function, has also been defined for XPS peak 
fitting. It employs different exponents on each side of the function to control the tail/introduce 
asymmetry into it, and it can be convolved with a Gaussian to produce a Voigt-like function. 
A recently formulated version of the Voigt function is also used in this study. It is a symmetric 
LA function with a single parameter (𝐿𝐴ሺ𝑚ሻ or 𝐿𝐴ሺ𝑥, 𝑚ሻ), where m varies from 0 – 100.6 
While the similarities and differences between the Voigt, GL, SGL, multiparameter LA, which 
allows asymmetry, and single parameter LA (a true Voigt) functions may introduce some 
complexity, and perhaps even confusion, into XPS peak fitting, the availability of different 
synthetic fit functions provides the XPS data analyst with increased flexibility. For example, it 
can be helpful to optimize the amount of Gaussian and Lorentzian character in the GL, SGL, 
and 𝐿𝐴ሺ𝑚ሻ synthetic peaks by optimizing the value of m in a fit. In this paper, the case for 
using appropriate synthetic peak shapes in fitting data is made by demonstrating that non-linear 
optimisation can deliver accurate results for data when the line shape is precisely known. 
However, when the optimal peak shape is not known, which is the typical case, less-than-
perfect peak shapes in a peak model may yield reasonably accurate information about a 
spectrum when appropriate constraints are applied to them. 
 
The message of this paper is summarized in the following four related observations: 
 
Observation 1. If constraints are not placed on peak shapes, and/or if there is insufficient 
background knowledge regarding the material being studied, optimization of a peak fit/model 
using a figure-of-merit alone may lead to suboptimal peak fitting. 
Observation 2. It is questionable whether arbitrary peak shapes can be appropriately used in 
XPS peak fitting unless constraints are placed on them. 



Observation 3. Constraints can prevent an optimization from reaching the mathematical 
minimum of a figure-of-merit. Thus, at least in a mathematical sense, we can define optimal 
peak fitting as peak fitting performed with unconstrained parameters, and vice versa for 
suboptimal peak fitting. 
Observation 4. For the purposes of determining physically meaningful quantities, suboptimal 
optimisation is desirable for peak models constructed from components with suboptimal peak 
shapes. 
 
These observations are illustrated with case studies based on semi-synthetic and real data fitted 
with synthetic peaks. The consequences of these observations, including the failure to heed the 
advice in them, have been previously noted – there are many examples in the scientific 
literature of peak fits that do not employ proper peak shapes or constraints. These concerns are 
part of the more general reproducibility crisis in science.7-10 Recently, to address some of these 
concerns, various XPS experts have published a series of guides on this topic.1 These guides 
cover many aspects of XPS, including a general introduction to the technique,11 the first steps 
in planning XPS measurements,12, 13 sample handling,14 instrument calibration,15 the use of 
backgrounds,16 the C1s spectrum,17 analysis of survey scans,18 and a general introduction to 
XPS peak fitting.13, 19 This guide here is part of a second series of papers that address the 
reproducibility crisis in both XPS and other surface analytical techniques. In it, we emphasize 
the importance of XPS analysts using correct synthetic peaks in their peak fitting. However, 
when this is not possible, which is often the case because of a lack of knowledge about a sample 
(for the most part there would be little point in characterizing a sample if we knew everything 
about it), appropriate constraints should be applied to the synthetic fit components. However, 
this latter statement should not be taken as a license to be careless in the choice of the peak 
shapes used in XPS peak fitting. For example, XPS signals with obvious Gaussian or 
Lorentzian character should be fitted with synthetic fit components that match these shapes. 
 
 

Theory		

This section describes the basic peak shapes/functions, backgrounds, and statistical tools that 
are commonly used in XPS peak fitting. More complete treatments of these subjects are 
available in the literature.3, 20-23  

The	Gaussian	and	Lorentzian	Functions	
A synthetic peak shape is defined here as a mathematical function used to fit XPS data. The 
Gaussian (Eq. 1) and Lorentzian (Eq. 2) functions form the basis of most XPS fit functions: 
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Of course, there are other mathematically similar/essentially identical definitions of these 
functions. As shown in Figure 1, the Gaussian and Lorentzian functions are similar at their 
peaks/apexes (although the Lorentzian is slightly narrower), but quite different on their 
edges/wings – the Lorentzian drops to zero relatively slowly; the Gaussian is more compact. 
An XPS analyst should be able to distinguish between these two functions and estimate whether 
a given experimental lines shape is more Gaussian or Lorentzian in nature.3, 6 
 



 
 
Figure 1. Gaussian (black) and Lorentzian (red) functions showing the more compact nature 
of the Gaussian function. 
 
 

The	Voigt	Function	
 
The Voigt function is often the best representation of photoemission signals in XPS. The Voigt 
function is the convolution of a Gaussian and a Lorentzian. In general, the underlying shape of 
photoemission signals in XPS is Lorentzian, which, as noted above, is then modified by several 
factors. The Voigt function V(x’,y) can be expressed as:5 
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where 
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and 
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where ghm and lhm are defined as the full width at half maxima of the Gaussian and Lorentzian 
functions, respectively. Finally, a mixing parameter, M, with a value between 0.0 and 1.0, with 
0.0 being a pure Gaussian and 1.0 a pure Lorentzian, is defined as: 
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where M a numerical representation of the mixing that is done in Eq. 3 (the amounts of 
Gaussian and Lorentzian character in the Voigt function are controlled by the widths of its 
Gaussian and Lorentzian components). Eq. 3 cannot be evaluated analytically, only 



numerically. Because of this, true convolution algorithms are computationally expensive,4, 5 
only becoming accessible on personal computers relatively recently. Prior to this time, pseudo-
Voigt functions (see discussion below) were often used. 
 

Gaussian‐Lorentzian	Sum	and	Product	Pseudo‐Voigt	Peak	Shapes	
 
The Gaussian-Lorentzian product (GL) pseudo-Voigt peak shape, Eq. 7, is formed from the 
product of Gaussian and Lorentzian functions (Eqs. 1 and 2),3  
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where the FWHM for each function, 𝑓௅and 𝑓 , Eq. 8, vary according to the parameter, 𝑚, as 
follows: 
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Similarly, the Gaussian-Lorentzian sum function (GLS) (Eq. 9) is a pseudo-Voigt peak shape 
that is created by summing Gaussian and Lorentzian functions (Equation 9). For this peak 
shape, m again takes on values from 0 to 100. 
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The	Generalized	Lorentzian	Peak	Shape	
 
Eq. 10 defines a generalized Lorentzian peak shape, lg or LA.21 Here, each side of a Lorentzian 
is raised to a different power: 𝛼 or 𝛽, which has the effect of introducing asymmetry into the 
function.  
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    (10) 

 
This generalized Lorentzian can then be convolved with a Gaussian function, g, to produce 
another pseudo-Voigt function (Eq. 11). 
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where N is a normalization factor. The 𝐿𝐴ሺ𝑥, 𝑚ሻ, or just 𝐿𝐴ሺ𝑚ሻ, peak shape (Equation 12) is 
constructed from Equation 10 with a mixing parameter, m, that ranges from 0, where the 
function has the greatest possible amount of Gaussian character, to 100 where it has the greatest 
possible amount of Lorentzian character, as follows: 
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This single-parameter function has been described in more detail in a recent publication.6 



Linear	Background	
 
The simplest background that is regularly used in XPS peak fitting is the linear background. It 
consists of a horizontal or sloped straight line. This background often effectively models 
signals for which there is no change in the baseline. These signals often come from materials 
with wide band gaps. 

Shirley	Background16	
 
The Shirley background is a common, semi-empirical background used in XPS peak fitting 
that is often used to model the large changes, e.g., steps, in the background that are observed 
for metallic materials. In general, this background is iterated until it converges, where this 
convergence is usually rapid. The Shirley calculation/iteration is based on the assumption that 
the background at any binding energy within the peak envelope is proportional to the integrated 
intensity of the peak at higher kinetic energies. In essence, the Shirley background is a 
Tougaard background (see below) with 𝐹ሺ𝐸ሻ equal to a step function. Another variation of the 
iterative Shirley background is the so-called ‘Smart background’ approach, which prevents the 
background from being above the actual data. The original Shirley background was not iterated 
– it was applied in one pass. 

U	4	Tougaard	Background16	
 
The peak models applied to the Si 2s spectra shown herein include background curves defined 
for SiO2 by Tougaard.24 The Tougaard background, 𝑇ሺ𝐸ሻ, is computed from the measured 
spectrum, 𝐽ሺ𝐸ሻ, representing the photoelectron peak, as it is multiplied by a shifted function, 
the Tougaard Universal Cross-Section, 𝐹ሺ𝐸ሻ, that accounts for electron energy losses/inelastic 
scattering in the material, as follows: 
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where 𝐹ሺ𝐸ሻ is defined as: 
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When used with the SiO2 spectra herein, the universal cross-section uses the parameters B = 
299, C = 542, D = 275, and T0 = 9.3, as calculated for SiO2 by Tougaard.24 

Residual	Plots	and	Statistics	
 
XPS experimental data is approximated in a peak model by summing the intensities of one or 
more synthetic peaks over a chosen background. As defined in CasaXPS,25 the residual plot 
gives the differences between the experimental data and the synthetic envelope. It may be 
presented directly or in normalised form. The residual plot is usually accompanied by one of 
two figure-of-merit statistics: the residual standard deviation (RSD) or the root mean square, 
which are defined as follows: 
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where the 𝑑௜ are the original data at a given bin i in units of counts per bin, and the 𝑒௜ are the 
corresponding values of the synthetic/model envelope. The RSD is more accurately described 
as the normalised RSD since the deviation between the data and the approximation when 
squared are normalised with respect to the value for one standard deviation in counts. The 
underlying assumption when computing the residual in normalised form is that the data 
correspond to pulse counted signal obeying Poisson Statistics. The act of normalising as 
performed in Eq. 15 implies that the expected value for the RSD statistic is unity for Poisson 
distributed intensities. 
 

Results	and	Discussion	

We now present four case studies that illustrate the four observations made in the Introduction 
of this paper. 
 

Case	1.	Fit	to	a	Semi‐Synthetic	N	1s	Spectrum	
 
In this section, we show that results obtained from peak fitting can be accurate for models 
constructed without constraints, provided that both the correct number of component curves 
and the appropriate functional forms for these curves are used. To illustrate this, we synthesized 
an N 1s spectrum by copying, shifting, scaling, and adding together the single N 1s signal from 
the spectrum of nylon 6 to generate a spectrum with three underlying components with a known 
area ratio of 2:5:1 (see Figure 2a). The lack of baseline rise in this composite spectrum (and 
therefore the linear baseline that was used) is consistent with the wide band gap (HOMO-
LUMO energy difference) of nylon 6. We first attempted to fit this semi-synthetic spectrum 
using GL line shapes, which are widely employed in XPS peak fitting. We introduced three 
GL peaks into our model and then varied the mixing parameter, m, from 0 to 100, in the peak 
fitting/optimization, where the same mixing parameter was used for all three peaks. No other 
constraints were applied to this model. As shown in Figure 2b, the minimum in the plot of the 
error of the fit (chi square) vs. m occurs at 55, which suggests that GL(55) peaks best fit this 
data. However, when our semi-synthetic spectrum is fit to three GL(55) peaks (see Figure 2c), 
area ratios of 1.8:5.5:1 are obtained, i.e., we do not obtain the correct (previously known) ratios 
of 2:5:1. Without this previous knowledge of the expected ratios, it would have been tempting 
to consider this an appropriate fit. Certainly, these results are not exceedingly far from the true 
results – we are off by ca. 10%. Nevertheless, because of our previous knowledge of the 
spectrum, we know to modify these peaks or place constraints on them to force the proper area 
ratios, which will hopefully also maintain the low figure-of-merit error for the fit. As shown in 
Figure 2d, changing the peak shape to a GL(45) produces the correct area ratios (see also the 
plot of the ratio of peaks B and C as a function of m in Figure 2e). However, the RSD for the 
fit with the GL(45) peaks (1.632) is higher than the RSD for the fit with the GL(55) peaks 
(1.427). Thus, the optimal mathematical fit (at m = 55) here does not match the optimal 
chemical fit/interpretation of the data (at m = 45). The errors in the peak areas were introduced 
by a lack of knowledge of the underlying peak shape. We end this paragraph with two 



additional observations about these fits. First, as judged by their edges, the underlying, raw 
signals in Figure 2a are rather compact, which suggests that peaks with a reasonable amount 
of Gaussian character would be appropriate for fitting them, and both the GL(45) and GL(55) 
are quite ‘Gaussian-like’. Second, it is possible to use an experimental peak as a fit component. 
When three copies of the raw N 1s data signal used to synthesize the spectrum in Figure 2a 
were used to fit the data, a perfect fit to the data was obtained (see Figure 2f). Of course, this 
was expected. In summary, these results underscore the fact that there is some uncertainty 
associated with XPS peak fitting when the underlying peak shape(s) for the components in a 
fit are unknown. Unfortunately, this type of situation is more the norm than the exception. 
 

 
 
Figure 2. (a) Semi-synthetic N 1s spectrum made by copying, shifting, and scaling the single 
N 1s peak from a sample of nylon 6. (b) Plot of the error of the fit to the semi-synthetic spectrum 
in (a) using GL(m) line shapes vs. m. (c) Fit to the semi-synthetic spectrum in (a) fit with 
GL(55) peaks. (d) Fit to the semi-synthetic spectrum in (a) with GL(45) peaks. (e) Plot of the 
ratio of Peak B to Peak C in the fit to the semi-synthetic spectrum in (a) vs. m. (f) Fit of the 
semi-synthetic spectrum in (a) using the original N 1s peak from the sample of nylon 6 to fit 
the data in (a).  
 	



Case	2.	Fit	to	the	C	1s	spectrum	of	cellulose	
 
 

 
Figure 3. (a) C 1s spectrum of coffee filter paper (mostly cellulose). (b) Plot of the error of the 
mixing parameter m for the GL(m) function. (c) The spectrum in (a) fitted using three GL(40) 
component peaks. Because the ratio of the C-OH and O-C-O peaks is 2.72:1, instead of the 
theoretical 5:1 ratio for cellulose, the GL(40) is an inappropriate peak shape for this fit. 
 
The C 1s narrow scan in Figure 3 is of coffee filter paper, which is mostly pure cellulose. Using 
the approach above for Figure 2, this spectrum was fit to unconstrained GL(m) peaks in Figure 
3, where the optimal value of m was determined to be 40. Based only on the RSD and 
distribution of the residuals in this fit, one might conclude that this fit is good. However, similar 
to the results from Figure 2, the fit gives a 2.72:1 ratio for the C-OH:O-C-O peaks, which is far 
from the ratio of these two components in cellulose (5:1). Additionally, the fit is inappropriate 
because the widths of the fit components vary noticeably. (Recall that a common error in XPS 
peak fitting is for fit components to have significantly different widths when there is no good 
chemical or physical reason for this to happen.19) Again, we see a case where unconstrained 
components with an ‘optimal’ value of m fit the data well/tightly, but do not produce a 
physically reasonable result. As we will see throughout this article, because we often do not 
know what the best fit function should be for a spectrum, constraints are usually necessary to 
give physically and chemically meaningful results in XPS peak fitting. 
 
 	



Case	3.	Fit	to	a	Semi‐Synthetic	Si	2s	Spectrum	
 

 
Figure 4. (a) Semi-synthetic spectrum made from real Si 2s peaks. (b) Fit of the semi-synthetic 
spectrum in (a) with unconstrained GL(40) line shapes, which results in improper peak area 
ratios. Also, components A and C having different widths. (c) Fit of the semi-synthetic 
spectrum in (a) with GL(40) line shapes with width constraints, which gives better peak area 
ratios, but result in a suboptimal mathematical fit, i.e., a higher RSD. (d) Fit of the semi-
synthetic spectrum in (a) with GL(40) line shapes with the peak widths constrained to have the 
same values and the relative peak areas in the fit constrained to the theoretical ratio of 2:5:1. 
This fit produces a poor RSD value and residuals. (e) Fit of the semi-synthetic spectrum in (a) 
with the exact, but unconstrained, underlying line shapes used to make the semi-synthetic 
spectrum, which returns the correct area ratios. (f) Original spectrum (single peak) used to 
create the semi-synthetic spectrum in (a) fitted using a Voigt function that was optimized to 
determine the mixing parameter. The LA(84) gave the best fit, with minor discrepancies on the 
high binding energy side of the peak. (g) Fit of the semi-synthetic spectrum in (a) to 
unconstrained LA(84) Voigt functions. (h) Fit of the semi-synthetic spectrum in (a) with 
LA(84) Voigt functions with constrained (equal) FWHM values. (i) The copied, shifted, and/or 
scaled peaks (as in (f)) that were summed to create the semi-synthetic spectrum in (a). 
 
We next created another semi-synthetic spectrum (Figure 4a) by copying, shifting, scaling, and 
adding together an experimental Si 2s peak to create a spectrum with three overlapping 
components with area ratios of 2:5:1. The Si 2s peak used to make Figure 4a has strong 
Lorentzian character. The purpose in making this semi-synthetic data was, again, to have a 
composite spectrum with well-known provenance and composition that could be used to test 
peak models. The semi-synthetic spectrum in Figure 4a was first fit with three unconstrained 
GL(40) peaks. As shown in Figure 4b, nonlinear least squares returns a 2.06:3.71:1 ratio, which 
is quite far from the true answer. However, the residuals of this fit are rather well distributed 
around zero, so from this limited (mathematical) perspective the fit is good. Next, these GL(40) 
peaks were constrained to have the same FWHM values (Figure 4c), which is often a reasonable 
assumption/approximation in XPS peak fitting. When this was done, the areas of the fit 



components have a 2:4.45:1 ratio. This result is closer to the correct answer, even though the 
residuals to this fit are not as well distributed as in Figure 4b, and the RSD of this fit is higher. 
An additional constraint was then placed on the fit components, which is to both constrain them 
to have the same FWHM values and to fix their areas to the correct 2:5:1 ratio (Figure 4d). The 
point of this exercise was to see how these constraints would affect the residuals. Interestingly 
(and perhaps ironically), although we have enforced both the correct sample chemistry (area 
ratios) and the reasonable constraint of equal FWHMs, the residuals and the RSD for this fit 
are rather poor. Finally, to again test the ability of nonlinear least squares to fit this data under 
ideal conditions, the semi-synthetic spectrum in Figure 4a was fit with the peak that was used 
to make it. This approach produced an essentially perfect fit, where the area ratio of the three 
resulting fit components is 2:4.99:1, and the RSD is 0.5838 (Figure 4e). 
 
In general, s orbitals produce broader XPS peaks with greater Lorentzian character than other 
orbitals. Figure 4f shows the fit of the Si 2s peak used to make the semi-synthetic spectrum in 
Figure 4a with an 𝐿𝐴ሺ𝑥, 𝑚ሻ function, which is a true Voigt function. In the 𝐿𝐴ሺ𝑥, 𝑚ሻ function, 
the mixing parameter, m, can take values from 0 – 100, where 0 and 100 correspond to highest 
degrees of Gaussian and Lorentzian character for the function, respectively. The mixing 
parameter, m, was a parameter in this fit, which yielded m = 84 (a high degree of Lorentzian 
character) as the optimal value. However, while the fit is quite good, its residuals reveal that it 
is not perfect – the fit component and the data neither agree exactly around the peak maximum 
nor on the lower binding energy side of this peak. This lack of fit may be due to the presence 
of a plasmon loss signal from the lower binding energy Si 2p peak. We justify the use of this 
imperfect signal to make Figure 4a because (i) the fit of the raw data to a peak with strong 
Lorentzian character is quite good, and (ii) many XPS spectra that are fit will similarly have 
imperfections in them, which makes constraints in peak models even more important. The 
semi-synthetic spectrum in Figure 4a was next fit both with (i) unconstrained LA(84) peaks 
(Figure 4g), which resulted in good area ratios for the peaks of 1.94:4.9:1, and (ii) LA(84) 
peaks that were constrained to have the same widths (Figure 4h), which also resulted in good 
area ratios for the peaks of 2.16:5.03:1. 
 
In summary, these results suggest that unconstrained, arbitrary peak shapes cannot be used to 
appropriately fit XPS data. In this particular case, unconstrained GL(40) peaks did not fit the 
semi-synthetic spectrum in Figure 4a well. However, unsurprisingly, an unconstrained peak 
that closely matches the original data, i.e., the LA(84) signal, does fit its corresponding semi-
synthetic spectrum well. 
 

Case	4.	Fit	to	the	C	1s	Spectrum	from	an	Ionic	Liquid	
 
In this example, we show that even with reasonable peak shapes, an unconstrained fit may 
produce unphysical results. Figure 5 shows the structure and C 1s spectrum of an ionic liquid. 
As their name implies, ionic liquids are ionic species that are liquids around room temperature. 
Many ionic liquids have extremely low vapor pressures and are thus compatible with 
conventional (high vacuum) XPS analysis. (Materials with higher vapor pressures can often be 
analyzed by near ambient pressure (NAP)-XPS.26) Before discussing attempts to fit this 
spectrum, note that the expected ratio of signal emanating from carbon bonded to carbon and 
hydrogen, carbon bonded to nitrogen, and carbon bonded to fluorine is 5:4:2. An initial attempt 
at fitting was with unconstrained GL(40) peak shapes (Figure 5b). The peak ratios obtained 
(4:4.26:1.72) were somewhat problematic. Accordingly, a more ideal peak shape (an 
unconstrained Voigt function with some asymmetry) was used next. (See the next paragraph 



for a discussion of the small amount of asymmetry introduced into this peak shape.) In this fit 
(see Figure 5c), the RSD value has decreased by about 40%, indicating a more appropriate fit. 
However, the area ratios of the components are still problematic (4:4.69:1.92). Finally, using 
the same peak shape, but constraining the area ratio of the carbon-nitrogen signal to the C-C/C-
H signal, we achieve both a good RSD value (only slightly higher than in the previous fit) as 
well as the expected area ratios (4:5:1.99). Note that the final, correct ratios among three 
components were achieved by constraining two of them to each other. These observations 
demonstrate that fitting XPS data without proper use of peak shapes and an appropriate number 
of relational constraints may result in less than fully accurate intensity ratios that do not fully 
elucidate the chemistry of the sample. 
 
The primary objective in creating an asymmetric peak shape is to match the shape of 
experimental XPS data, and not necessarily to model the underlying physical processes leading 
to the observed asymmetry. Indeed, in some cases, the asymmetry in a signal may be an artefact 
of the measurement process. For example, a slow change in surface potential during data 
acquisition may manifest itself as asymmetry in peaks. The apparent binding energies of the 
peaks from the ionic liquid tended to drift with time in repeated measurements. The asymmetry 
in the peak shapes in Figures 5c-d was generated using an adjustment to the symmetric LA 
peak shapes LA(20) and LA(70), which consisted of multiplication of these symmetric Voigt 
line shapes by a sigmoidal shape with its inflexion point at the maximum of these Voigt 
functions. The amount of asymmetry introduced into these signals was not large. 
 
We now discuss the reasons for using two different peak shapes (LA(20) and LA(70)) in the C 
1s fit in Figure 5. As discussed above, (i) the mixing parameter, m, of the 𝐿𝐴ሺ𝑥, 𝑚ሻ Voigt 
function determines the amount of Lorentzian character in the peak shape, with 100 being the 
highest (most Lorentzian shape), and (ii) the Lorentzian peak shape best represents the 
underlying shape of photoemission, with Gaussian character introduced into a peak shape 
because of, say, sample heterogeneity, or the instrument. Therefore, an LA(70) peak shape has 
quite a bit more Lorentzian character than the LA(20) peak shape, which is more Gaussian. 
The need for these different peak shapes in the fit in Figure 5 appears to follow from the 
chemistry/structure of the ionic liquid. At first glance, the C-N carbons in the cation of the ionic 
liquid appear to be in identical chemical environments – each carbon is bonded once to 
nitrogen. However, there are subtle differences between these carbons. These carbons appear 
as a methyl (CH3) and three methylene (CH2) units, where two of the methylene units are in a 
ring and the other is in a straight alkyl chain. Thus, the greater degree of Gaussian character of 
the LA(20) peak that describes this chemical state appears to be a result of these similar, but 
still distinct, chemical environments. That is, the single LA(20) peak shape can be seen as 
modeling three closely-spaced/overlapping signals. The C-C/C-H type carbons in the ionic 
liquid are similarly modeled with LA(20) peak shapes in this model – these carbons are also 
slightly different from each other in the molecule. In contrast, the C 1s peak at ca. 293.5 eV 
attributed to carbon in the ‘CF3’ groups in the anion of the ionic liquid only has one chemical 
form here, which is consistent with the more Lorentzian LA(70) peaks used to describe it. The 
other photoemission peaks from the ionic liquid of the N 1s, F 1s, S 2p, and O 1s regions 
similarly suggest the validity of the model proposed in Figure 5d. We therefore present it with 
a high degree of confidence that these components relate well to the material as specified. 
 
 
 
 
 



 

 
 
Figure 5. (a) Top: Ionic liquid cation: C4C1Pyrr+. Bottom: Ionic liquid anion: TF2N-. (b) C 1s 
XPS narrow scan of the ionic Liquid [TF2N][C4C1Pyrr] fit with a three-component peak model 
using unconstrained GL(40) peak shapes. (c) Same spectrum as in (b) fitted with unconstrained 
Voigt (LA(20) and LA(70)) functions. (d) Same spectrum as in (b) fitted as in (c), but with an 
area constraint, which provides a slightly less optimal fit (mathematically) compared to the fit 
in (c) that used unconstrained Voigt functions, but the correct ratios of chemical states.  
 

Conclusion	

We have presented four case studies of fitting bell-shaped curves to XPS data that illustrate the 
importance of both estimating the best possible peak shapes and using constraints in developing 
XPS peak models. Two of these examples were based on semi-synthetic spectra that had known 
component/peak ratios. Failure to obtain a good approximation for the bell-shaped curves (and 
the background shapes) in a fit creates uncertainties in the results. That is, fits based on 
unconstrained, less-than-ideal peak shapes generally produce fits with moderate to large errors 
in their predicted peak ratios that neither support nor rule out many chemical structures. 
Furthermore, relying on optimization to find the best parameters for peak shapes can lead to 
errors in peak ratios. In other words, the mathematically best fit is not always the most 
chemically reasonable fit. In summary, successful XPS chemical state analysis based on non-
linear optimization depends on developing peak shapes specific to given problems and 
applying appropriate constraints.  
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