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Abstract. Machine Learning (ML) has become state of the art for var-
ious tasks, including classification of accelerometer data. In the world
of Internet of Things (IoT), the available hardware with low-power con-
sumption is often microcontrollers. However, one of the challenges for
embedding machine learning on microcontrollers is that the available
memory space is very limited, and this memory is also occupied by the
rest of the software elements needed in the IoT device. The problem
is then to design ML architectures that have a very low memory foot-
print, while maintaining a low error rate. In this paper, a methodology is
proposed towards the deployment of efficient machine learning on micro-
controllers. Then, such methodology is used to investigate the effect of
using compression techniques mainly pruning, quantization, and coding
on the memory budget. Indeed, we know that these techniques reduce the
model size, but not how these techniques interoperate to reach the best
accuracy to memory trade-off. A Convolutional Neural Network (CNN)
and a Human Activity Recognition (HAR) application has been adopted
for the validation of the study.
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1 Introduction

Convolutional neural Networks (CNNs) are state-of-the-art solution for com-
puter vision tasks including image classification, object detection, etc. In the
last decade we have been witnessing an increased adoption of CNNs in a wider
range of applications such as voice recognition, near-sensor intelligence, human
activity recognition and more. These applications demand the availability of
smart devices that can perform inference in a faster and more energy efficient
fashion [1]. However, CNNs are both computationally intensive and memory in-
tensive, which makes it challenging for their deployment on the edge. This is
specifically the case for the deployment on memory-constrained devices such as
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Microcontroller Units (MCUs). The main challenge in embedding CNNs on mi-
crocontrollers is that the available volatile and non-volatile memories are in the
order of few hundred/thousand kilobytes [2]. For applications on the edge, the
available memory is also occupied by the rest of the software stack, e.g. WiFi,
Bluetooth, etc.

One of the widely used methods to reduce the computational and memory
requirements of CNNs is compression. Compressing a CNN can be achieved
through a set of techniques such as quantization, pruning, and coding (in our
work, coding refers to using lossless compression techniques when storing the
network parameters into memory). In principle, quantization and pruning are
known to reduce the memory footprint at the expense of accuracy reduction. As
for coding, it reduces the CNN memory requirement at the expense of adding a
latency overhead during inference to reconstruct the initial model parameters.
Applying the aforementioned techniques is not a straightforward process as it is
not known which quantization level to use, the amount of parameters to prune,
how to combine two or more techniques, and if coding is necessary or not. Also,
the existing deep learning frameworks fall short in some scenarios, for example
it is not possible to use any number of bits for quantization.

In this paper, such challenges and questions are tackled through the following
main contributions:

– A methodology towards embedding efficient CNNs on microcontrollers using
several compression techniques and open source frameworks for deep learning
training is proposed.

– A detailed study on the interoperability of compression techniques to achieve
a high accuracy to memory trade-off is presented.

The rest of the paper is organized as follows: Section 2 describes the compres-
sion techniques used in the study. Section 3 details the proposed methodology for
efficient CNN deployment on microcontrollers. Section 4 presents the experiment
performed during the study including, the CNN architecture, training procedure,
and the case study adopted for verification. Section 5 highlights the findings and
shows a thorough comparison between the different simulated scenarios. Section
6 concludes the paper and illustrates on future work.

2 Compression Techniques

Quantization has shown consistent reliability and success in addressing the
issues of deploying neural networks on constrained hardware platforms by re-
ducing the number of bits required for the representation of each weight. Several
works have tackled quantizing the training phase [3, 4], while others tackled the
quantization in the inference phase [5, 6]. However, it has been shown that go-
ing below half-precision is a challenging task and requires a lot of fine tuning
to maintain an acceptable error rate [7]. This challenge has provoked the need
for frameworks such as TensorFlow Lite Micro [8], Larq Compute Engine [9],
CMSIS-NN [10], and CMIX-NN [11] for the use of 8-bit and below quantization
for both training and deploying neural networks on microcontrollers.
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Pruning is the process of systematically removing parameters/neurons from
an existing network to reduce the overall size. Pruning methods usually differs
in their choices regarding sparsity structure, scoring, scheduling, and fine tun-
ing. Some methods adopt unstructured pruning i.e prune individual parameters,
others prune a fraction of the parameters with the lowest score (absolute value)
within a layer or prune all desired weights at once, etc [12]. During development,
pruning can be applied using built-in functions in frameworks such as PyTorch
and TensorFlow, or through a custom technique as the ones proposed in [13, 14].

Lossless Compression (Coding) as its name implies, permits the reconstruc-
tion of the original data from compressed data without any loss in information.
Lossless compression is widely used in “ZIP” file format and “gzip” tool in Linux
environments. One of the widely used lossless coding methods is the “Huffman
Coding” [15]. It uses a variable-length code-words to encode symbols based on
the probability of occurrence of each symbol. Huffman coding has been applied
to several state-of-art neural networks such as: ResNet-20, VGG-16, LeNet, etc.
and results showed that a compression ratio up to 31× can be achieved for such
architectures [16, 17].

3 Methodology

Figure 1 presents the proposed methodology towards the efficient deployment of
CNNs on microcontrollers with a set of compression techniques. This methodol-
ogy will be followed in order to study the interoperability of different compression
methods on the accuracy to memory trade-off. The process can be summarized
in five phases:

– P1: Define a CNN model using PyTorch where the number of feature maps
and kernel size can be altered at any time. This model will be the base-
line used for float32 training. Then, a second model will be defined where
each layer (convolution, linear, etc.) from the baseline model will be replaced
with its quantized implementation. Existing frameworks (PyTorch, Tensor-
Flow, etc.) offers quantization only for nbits ∈ [8, 16]. Thus, an ongoing
open-source framework called Brevitas is adopted [18]. Brevitas allows the
use of any number of quantization bits, offers the capability to quantize ei-
ther weights or activations or both, and provides choosing any quantization
method. However, using Brevitas for low bit quantization (nbits = 1, 2), the
training process requires extensive fine-tuning to maintain an acceptable ac-
curacy loss. Thus, a third model that extends Binary Connect [19] is defined.
This model can quantize the weights to [-1,1] or [-1,0,1] for 1−bit and 2−bit
quantization respectively.

– P2: Train all the models then fine tune them to obtain a comparable ac-
curacy with respect to state-of-the-art solutions. As fine-tuning is not an
easy task, techniques such as Neural Architecture Search (NAS) [20] can be
used to define a set of hyperparameters among which some lead to the best
possible accuracy.



Interoperability of Compression Techniques 5

Fig. 1. Proposed Methodology Towards Efficient CNN Deployment on Microcontrollers

– P3: Apply a pruning method on the pre-trained models and fine tune to
achieve a similar accuracy compared to the baseline model. It is worth men-
tioning that for low-bit quantization, pruning a CNN based on the weights
values tends to be less effective as the set of possible weight values is very
small (-1, 0, 1). A workaround could be to apply pruning before binarization.

– P4: For all the models, apply lossless compression using ZIP or gzip, which
offers the same compression style as Huffman coding.

– P5: For deployment on microcontroller, a traditional deployment pipeline
can be followed to obtain the flat buffer C array. Starting from a “.pth” file,
Open Neural Network Exchange (ONNX) can be used to obtain a “.onnx”
file, which is converted to a “.tflite” file. Finally, TFLite Micro library is used
to export the C array. Note that for quantized models, Brevitas exports the
weights in floating-point representation, thus it is necessary to apply post-
training quantization to obtain the quantized weights.

Although frameworks such as PyTorch and Tensoflow offer out of the box
pruning methods, they can only be combined with half-precision and 8-bit quan-
tization. Moreover, CMIX-NN offers quantization with less than 8-bits, but the
library is written in C and intended only for inference. Such problems are dimin-
ished with the use of the proposed methodology as it integrates several frame-
works and provides insight on their capabilities. In addition, we applied this
methodology to a case study and the results are thoroughly explained and dis-
cussed in Section 5.
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4 Experimental Setup

This section describes the experimental setup performed to obtain an under-
standing on the interoperability of compression methods on the memory require-
ments of CNNs. In this paper, a Human Activity Recognition (HAR) problem
[21] is adopted for derivation of the study. Such problem has been one of the tar-
gets for embedded machine learning on microcontrollers among the tiny Machine
learning (tinyML) community as it helps understanding the human movement
behaviour and how it could be extended to robotics and industrial applications
[22].

4.1 Case study: Human Activity Recognition using CNNs

In this work, we used the dataset hosted by the university of California (UCI-
HAR) [23]. The dataset describes 6 daily life activities: walking, walking up-
stairs, walking downstairs, sitting, standing, and lying. Each activity is a one-
dimensional time series of 2.56 s corresponding to 128 samples obtained at 50 Hz
sampling frequency. Each activity has 9 channels: 3 axes of total acceleration,
3 axes of angular velocity and 3 axes of body acceleration. The whole dataset
contains a total of 10299 samples. For all training configurations, the UCI-HAR
raw data has been normalized following the z-score of the training set.

As for the choice of CNN, a ResNet model with two blocks based on ResNet
v1-6 presented in [24] is selected for the baseline model.

4.2 Training Procedure

The training process differs from one model to another due to the different
representation of weights and hence different techniques could be required for
fine tuning. However, there some notes to highlight:

– The kernel size has been fixed for all models to 3, while the number of feature
maps (fmaps) is varied for 16, 32, 48, 64, and 96.

– L1-unstructured pruning from PyTorch has been applied to all models with
a pruning rate p ∈ [0.2, 0.4, 0.6, 0.8, 0.9, 0.95]. This technique zeroes out the
weights that have the lowest l1-norm.

– All models have been trained using 10-fold cross validation and the reported
accuracy result is computed as the average among these runs.

Baseline Training The model is trained for 300 epochs using a batch size of 64.
SGD has been chosen as an optimizer with a learning rate of 0.05 , momentum of
0.9, and a weight decay of 0.0005. A MultiStepLR scheduler is used to decrease
the learning rate by a factor of 0.13 at epochs 100, 200, 250. Mixup [25] has been
adopted for training with a factor of 0.2.
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Quantized Training The training procedure is similar to the baseline model
with few changes. Training is performed through Quantization Aware Training
(QAT) with uniform scale quantizer [26], where gradients are computed using the
quantized versions of the weights, while non-quantized parameters are updated
using them. For a weight value w, the quantized value wq is defined as:

wq = quantize(w, b, s) = clip(round(wq ∗ s),−2b−1 + 1, 2b−1 − 1) (1)

where nbits is the quantization bits, s is the quantization scale set as a
learnable parameter, and the clip function is defined as:

clip(w, l, u) =


l w < l

w l ≤ w ≤ u

u x > u

(2)

We trained three models where the quantization nbits ∈ [4, 8, 16].

Ternary/Binary Training For the training of these two models, the weight
decay is reduced to 0.004 while preserving other hyperparametrs from the base-
line model. To compensate for the accuracy drop introduced from precision loss,
batch normalization is applied after all convolution layers. Also, the model is
trained for 120 epochs using float32 weights, then we clip the weights to [-1,
1]/[-1, 0, 1] for the remaining epochs. As for Mixup, it hasn’t been used as the
performance of low-bit quantized CNNs tends to be unstable.

5 Results and Discussion

Figure 2 presents the error rate (computed as e = 1 − accuracy, shown in log
scale) versus the compressed model size for the models with different compres-
sion techniques. The compressed model size refers to the required non-volatile
memory, which is to be uncompressed (decoded) during inference. It is worth
mentioning that PyTorch framework keeps a value of zero in place of the pruned
weights, thus the pruned model size is the same as the baseline. Hence, it is
important to apply coding in order to get the real pruned model size. Moreover,
models with a compressed model size greater than 400 KB (e.g. float32 and
16-bit models with 96 feature maps) have been left out as such size, when un-
compressed, is already close to the maximum available volatile memory on main-
stream microcontrollers. The plot shows the configurations with a compressed
model size of 100 KB and less, such value is the target for most applications [1,
27]. The following observations can be highlighted by analyzing the plot:

– In most of the configurations, quantization offers a reduced error rate com-
pared to pruning for the same model size. As the number of feature maps
decreases, the error rate increases rapidly when pruning is applied regardless
of the quantization level.
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Fig. 2. Simulation Results for Models under Different Compression Techniques

– Low-bit quantization could achieve similar model size compared to high
pruning levels but with a much reduced error rate. For example, a bina-
rized model has the same size as a 95% pruned float32 model for about half
the error rate.

– The model size decreases as the pruning level increases for models with
float, 16-bit, and 8-bit quantization. However, for 4-bit quantization, a high
pruning level (> 60%) must be applied to obtain a noticeable decrease in the
model size. This is due to the fact that as the number of bits decreases, the
possible weight values decrease, hence weight-magnitude-pruning techniques
effect tends to be negligible.

– Reducing the number of feature maps often offers a better error to model
size trade-off compared to increasing the pruning level. For instance, a model
with 16 feature maps has a lower model size compared to a 95% pruned model
with 96 feature maps, with a slight difference in the error rate.

– Models with small number of feature maps offer a smaller size compared
to quantized models with nbits > 2. However, the error rate is lower when
quantization is adopted.

– Going for a region with a model size less than 20 KB is accompanied with
an high error rate. Typically, the models in this region have small number
of feature maps, a high pruning level, and 4-bit or less quantization.
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– Combining a quantization level n with a pruning rate p offers a smaller
model size compared to a model with n/2 quantization level at the expense
of increased error rate. Thus, as a trade-off, it is better to use a lower quan-
tization level instead of a higher one with pruning, but with an increased
number of feature maps.

– Regardless of the number of feature maps and quantization level, applying
more than 60% pruning results in an huge increase in the error rate. Thus,
the best pruning level to achieve an acceptable error rate is around 40%.
The model size of such configuration is then obtained based on the selected
quantization level.

– 16-bit and 8-bit quantized models offer a much reduced model size compared
to float32 with a similar error rate. The same could be said about lower
quantization levels but with a noticeable increase in the error rate.

– Combining pruning with low-bit quantization (1 and 2-bits), leads to huge
increase in error rate, hence such configurations are not present in the plot.
So, it is advisable to apply low-bit quantization after pruning.

Based on the target application and the available memory budget, one could
find several models that fits the need. For instance, an 8-bit quantized model
with 32 feature maps has the same size as a 16-bit quantized model with 60%
pruning. However, the error rate is much lower for the 8-bit model.

6 Conclusion

This paper presented a methodology for quantization aware training accompa-
nied with pruning and coding to reach an efficient model design for the de-
ployment on microcontrollers. The methodology has been applied on a human
activity recognition task to study the interoperability between different compres-
sion techniques. The study is thoroughly discussed to highlight various design
strategies for an error to model size trade-off. The findings paves the way to-
wards more extensive experimental setup in the future, including different task,
CNN architecture, and quantizer types. Moreover, for real-time applications, the
error to latency trade-off is another aspect that could be investigated.
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