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CUTOFF PROFILES FOR QUANTUM LÉVY PROCESSES AND QUANTUM
RANDOM TRANSPOSITIONS

AMAURY FRESLON, LUCAS TEYSSIER, AND SIMENG WANG

Abstract

We consider a natural analogue of Brownian motion on free orthogonal quantum groups and prove that it
exhibits a cuto� at time N ln(N). Then, we study the induced classical process on the real line and compute
its atoms and density. This enables us to �nd the cuto� pro�le, which involves free Poisson distributions and
the semi-circle law. We prove similar results for quantum permutations and quantum random transpositions.

Résumé

Nous considérons un analogue naturel du mouvement brownien sur les groupes libres quantiques orthogo-
naux et montrons qu'il a une coupure au temps N ln(N). Nous étudions ensuite le processus classique induit
sur la droite réelle et calculons ses atomes et sa densité. Cela nous permet de trouver le pro�l de coupure,
qui fait intervenir des lois de Poisson libres et la loi du semi-cercle. Nous prouvons des résultats similaires
pour les permutations quantiques et les transpositions aléatoires quantiques.

1. Introduction

Let (XN )N∈N be a sequence of irreducible aperiodic �nite state Markov chains, µN (t) the distribution of
XN after t steps, and µN (∞) the stationary measure of XN . Let also

dN (t) = dTV(µN (t), µN (∞))

be the distance of the process to equilibrium at time t, where the total variation distance dTV(µ, ν) between
two probability measures µ and ν on a �nite set E is de�ned by the formula

dTV(µ, ν) =
1

2

∑
x∈E
|µ(x)− ν(x)| .

Let (tN )N∈N be a sequence of times. We say that (XN )N∈N exhibits a cuto� in total variation distance at
time (tN )N∈N if for all ε > 0,

dN ((1− ε)tN ) −−−−→
N→∞

1 and dN ((1 + ε)tN ) −−−−→
N→∞

0.

This means that the convergence to equilibrium occurs through a sharp phase transition, falling rapidly from
1 to 0 around time tN

1.
To get a better understanding of this phenomenon, one may try to zoom in on the window where the

�fall� occurs. The cuto� phenomenon tells us that the width of this window is negligible with respect to the
sequence (tN )N∈N, and the next step is therefore to �nd the next signi�cant �higher order term�. Here is a
way to formalize this. If there exists a sequence (wN )N∈N and a continuous function f decreasing from 1 to
0 such that for all c ∈ R,

dN (tN + cwN ) −−−−→
N→∞

f(c),

then we say that f is the cuto� pro�le or limit pro�le of (XN )N∈N.
Computing the cuto� pro�le is a di�cult task in general, but it could already be done for some important

families of Markov chains and commonly involves important probability distributions shaping the pro�le.
For instance, for the lazy random walk on the hypercube (which is equivalent to the Ehrenfest Urn) we have
by [36, 31]

dN

(
1

2
N ln(N) + cN

)
−−−−→
N→∞

dTV

(
N
(
e−c, 1

)
,N (0, 1)

)
,

1We do here (and sometimes in the sequel) a common abuse of notations, not writing the sequence indices. We also do not
always write integer parts for random walk times.
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involving Gaussian distributions. Similar pro�les were found for the dovetail shu�e [5], simple exclusion
process on the circle [24], Ehrenfest Urn with multiple urns [29], or Gibbs Sampler [29]. For random trans-
positions, we have by [34]

dN

(
1

2
(N ln(N) + cN)

)
−−−−→
N→∞

dTV

(
Poiss

(
1 + e−c

)
,Poiss (1)

)
,

involving Poisson distributions. The same pro�le appears also for k-cycles [29].
This last result on random transpositions, by the second-named author, is one of the motivations of the

present article, where we endeavour to compute the cuto� pro�le for some speci�c processes. One important
di�erence however is that we will not work with �nite classical groups, but with in�nite compact quantum

groups.
Compact quantum groups were introduced by S.L. Woronowicz in [39] as a generalization of classical

compact groups. In particular, many results from the representation theory of compact groups carry on to
this setting, providing tools similar to those used in the study of random transpositions. A recent work of the
�rst-named author [22] showed that indeed, there are natural quantum Markov chains on compact quantum
groups exhibiting a cuto� phenomenon in a way paralleling the classical case. However, the cuto� pro�le
was not studied there.

In the present paper, we will push further the study of the cuto� phenomenon for stochastic processes on
compact quantum groups in two ways. First, we will consider continuous processes instead of discrete ones
and second, we will study and describe the cuto� pro�les.

The most natural continuous process on a simple compact Lie group is certainly Brownian motion. Recall
that this is the process whose di�usion kernel is the heat kernel corresponding to the canonical Riemannian
structure on the group. Unfortunately, for quantum analogues of compact Lie groups there is to our knowledge
no canonical Riemannian-like structure available to provide an analogue of the heat kernel. However, a
result of M. Liao in [25] shows that if (gt)t∈R+ is a Lévy process on a simple compact Lie group which
is invariant under the adjoint action, then its in�nitesimal generator is the sum of the Laplace-Beltrami
operator (which is the in�nitesimal generator of Brownian motion) and a �jump part� given by a so-called
Lévy measure. It turns out that a similar decomposition also holds for some compact quantum groups.
Indeed, F. Cipriani, U. Franz and A. Kula proved in [14] that on the quantum orthogonal group O+

N , there
exists a distinguished process (ψt)t∈R+ such that for any Lévy process which is invariant under the adjoint
action, the corresponding in�nitesimal generator splits as the sum of the in�nitesimal generator of (ψt)t∈R+

and a �jump part� characterized by a Lévy measure. As a consequence, (ψt)t∈R+ can be seen as an analogue
of Brownian motion.

Our main result is the computation in Section 3 of the cuto� pro�le for this Brownian motion on the
quantum orthogonal group O+

N , a compact quantum group which can be thought of as analogue of the group
SO(N), for which the cuto� phenomenon was proven by P.-L. Méliot in [27]. More precisely, we prove in

Theorem 3.9 that for any c ∈ R and suitable extensions d̃N of the distances dN to the quantum setting,

d̃N (N ln(N) + cN) −−−−→
N→∞

dTV

(
Poiss+

(
e2c,−e−c

)
∗ δec+e−c , νSC

)
.

where νSC denotes the semi-circle distribution and Poiss+ denotes the free Poisson distribution. It is known
that the correspondence between SO(N) (or rather O(N)) and O+

N has to do, at the probabilistic level, with
the Bercovici-Pata bijection [6] (for instance the law of fundamental characters change under the liberation
procedure according to that bijection, see [?, Sec 5]). From that point of view, the appearance of the semi-
circle distribution in the cuto� pro�le is quite satisfying. On the contrary, the appearance of the free Poisson
distribution is surprising because it is not a priori a �deformation� of the semi-circle distribution. The picture
becomes clearer when written in terms of free Meixner distributions (see Section 3.2 for the de�nition) :

d̃N (N ln(N) + cN) −−−−→
N→∞

dTV

(
Meix+

(
−e−c, 0

)
∗ δe−c ,Meix+(0, 0)

)
.

Let us brie�y comment on the proof. On the one hand, the quantum group O+
N is easier to study than

SO(N), because its representation theory is simpler (the underlying combinatorics is essentially that of the
representation theory of SU(2)). This enables to reduce the problem to the study of a classical process on the
interval [−N,N ]. But this is compensated by an analytic issue which is absent from the classical case : the
measure associated with the quantum process has atoms as soon as c < 0, hence is not absolutely continuous
with respect to the limiting distribution. These issues are the translation of a failure of absolute continuity
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of the process with respect to the Haar measure, which is a purely quantum phenomenon (see Proposition
3.6). As a consequence, our strategy is �rst to compute the cuto� pro�le for c > 0 in Proposition 3.10, where
we have absolute continuity and can therefore reduce the problem to the convergence of the densities, and
then to guess from it the form of the cuto� pro�le for c < 0. With this in hand and a method inspired
from P. Biane in [8], we are then able to compute the measure of the process also for c < 0 and prove the
convergence to the cuto� pro�le in Proposition 3.14.

In the end of Section 3, we investigate other types of convergence and prove that the convergence to
the cuto� pro�le for c > 0 also occurs in Lp-norm for all 1 6 p 6 ∞. Let us mention that for c < 0, the
aforementioned analytic issues enter the picture again, making the very de�nition of the Lp-norm problematic,
but we nevertheless have convergence of the absolutely continuous part. We furthermore investigate analogues
of Brownian motion on some homogeneous spaces of O+

N called free real spheres, the computations essentially

boiling down to the previous ones for O+
N .

The article concludes in Section 4 with a second family of examples called the quantum permutation groups
and denoted by S+

N . Despite bearing strong analogies with the classical permutation group SN justifying

its name, S+
N is an �in�nite� compact quantum group. In particular, it has a well-de�ned Brownian motion,

given by a Lévy-Khintchine decomposition similar to that of O+
N . After computing its cuto� pro�le, we

turn to a problem which was left open in [22] : the quantum random transposition walk. Here, the absolute
continuity issue of the orthogonal case becomes critical : the measure of the corresponding classical process
always has an atom so that we cannot resort to densities for c > 0. We therefore have to resort to another
idea, which is to compare the process with the so-called pure quantum transposition random walk and prove
that they asymptotically coincide. This is a speci�cally quantum phenomenon connected to the fact that the
pure quantum transposition walk has no periodicity issue because there is no quantum alternating group.
More precisely, we show in Theorem 4.4 that for c > 0,

d̃N

(
1

2
(N ln(N) + cN)

)
−−−−→
N→∞

dTV

(
D√1+e−c

(
Meix+

(
1− e−c√
1 + e−c

,
−e−c

1 + e−c

))
∗ δe−c ,Meix+(1, 0)

)
.

As Meix+(1, 0) = Poiss+(1, 1) ∗ δ−1 is the standard free Poisson distribution, this provides a quantum
analogue of the result of [34].

Acknowledgments. The authors are indebted to Uwe Franz for pointing out to them the article [8], the
ideas of which helped to improve signi�cantly the results of an earlier version of the present work, and
to P.-L. Méliot for discussions on topics linked to the subject of the present paper. A.F. and S.W. were
partially funded by the ANR grant �Noncommutative analysis on groups and quantum groups� (ANR-19-
CE40-0002) and the PHC Polonium �Quantum structures and processes�, A.F. was also partially funded
by the ANR grant �Operator algebras and dynamics on groups� (ANR-19-CE40-0008), the PHC Procope
�Quantum groups and quantum probability� and the PHC Van Gogh �Quantum groups, harmonic analysis
and quantum probability�. S.W. was also partially supported by a public grant as part of the Fondation
Mathématique Jacques Hadamard.

2. Preliminaries

Compact quantum groups will be one of our main objects of studies in this work, and the one the probabilist
reader may be least acquainted with. We will therefore devote this preliminary section to some de�nitions and
fundamental results concerning them. In order to keep things simple, we will only introduce free orthogonal
quantum groups for the moment, as well as some results concerning Lévy processes on them. Details on
quantum permutation groups will be given when needed later on.

2.1. Free orthogonal quantum groups. Free orthogonal quantum groups are examples of compact quan-
tum groups in the sense of S.L. Woronowicz [39] which were �rst introduced by Sh. Wang in [37]. The
original de�nition uses C*-algebras, as may be expected for objects of noncommutative topological nature.
We will nevertheless use a di�erent de�nition which we believe may be easier to understand for the non-
expert reader, by focusing �rst on the purely algebraic aspects. We refer to the books [28] and [35] for a
comprehensive treatment of the theory and proofs of the main results.
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2.1.1. De�nition and representation theory. We recall that a ∗-algebra is an algebra A endowed with an
involution x 7→ x∗, i.e. an antimultiplicative linear map such that (x∗)∗ = x and (λx)∗ = λ̄x∗ for all x ∈ A
and λ ∈ C. Also, a ∗-ideal B of A is a ∗-subalgebra of A such that {ba, ab} ⊂ B for all a ∈ A and b ∈ B.

De�nition 2.1. We de�ne O(O+
N ) to be the universal ∗-algebra generated by N2 self-adjoint elements uij

(i.e. u∗ij = uij) such that for all 1 6 i, j 6 N ,

N∑
k=1

uikujk = δij =
N∑
k=1

ukiukj .

In other words,

O(O+
N ) = C〈uij : 1 6 i, j 6 N〉/I,

where C〈uij : 1 6 i, j 6 N〉 denotes the ∗-algebra of noncommutative polynomials in variables uij , u
∗
ij with

1 6 i, j 6 N , and I denotes the ∗-ideal generated by the elements{
u∗ij − uij ,

N∑
k=1

uikujk − δij ,
N∑
k=1

ukiukj − δij , 1 6 i, j 6 N

}
.

Let ON be the usual orthogonal group, let cij : ON → C be the function sending a matrix to its (i, j)-th
coe�cient and let O(ON ) be the algebra of regular functions on ON , i.e. the ∗-algebra generated by the
functions cij , where the involution corresponds to the complex conjugation : c∗ij = cij . Then, quotienting

O(O+
N ) by its commutator ideal yields a surjection

π : O(O+
N )→ O(ON )

so that O+
N can be seen as a �noncommutative version� of ON . The group structure can be encoded in this

setting thanks to the following remark : for any two orthogonal matrices g and h,

cij(gh) =
N∑
k=1

cik(g)ckj(h) =
N∑
k=1

(cik ⊗ ckj)(g, h),

where we identify O(ON × ON ) with O(ON ) ⊗ O(ON ). The �group law� of O(O+
N ) will therefore be given

by the unique ∗-homomorphism ∆ : O(O+
N )→ O(O+

N )⊗O(O+
N ), called the comultiplication, such that

∆(uij) =

N∑
k=1

uik ⊗ ukj .

The existence of ∆ follows from the universal property of O(O+
N ), since the elements Uij =

∑
uik ⊗ ukj

satisfy the de�ning relations of the algebra O(O+
N ).

Probability measures can be generalized to this setting by identifying them with their integration linear
form. They then correspond to states, i.e. linear maps

ψ : O(O+
N )→ C

such that ψ(1) = 1 and ψ(x∗x) > 0 for all x. There is a particular state which plays the rôle of the uniform
measure on O+

N :

Theorem 2.2 (Woronowicz). There is a unique state h on O(O+
N ) such that for all x ∈ O(O+

N ),

(id⊗h) ◦∆(x) = h(x)⊗ 1 = (h⊗ id) ◦∆(x).

It is called the Haar state of O+
N .

Since the founding works of P. Diaconis and his coauthors, it is known that representation theory is a
powerful tool to study the asymptotic behaviour of random walks on groups (see for instance [16, Chap 4]).
For O+

N , the representation theory was computed by T. Banica in [1]. However, for our purpose we will only

need to understand the subalgebra O(O+
N )central generated by the characters of the irreducible representations

(we refer the reader for instance to [28, Sec 1.3] for the de�nitions of these notions and details).
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Theorem 2.3 (Banica). Let us set χ0 = 1 and χ1 =
∑N

i=1 uii. Then, the irreducible representations of O+
N

are labelled by the integers such that if χn denotes the character associated to the integer n ∈ N, we have the

recurrence relation :

∀n > 1, χ1χn = χn+1 + χn−1.

Note that this implies that χ∗n = χn for all n ∈ N. This recurrence relation is reminiscent of Chebyshev
polynomials, and one can indeed express χn in terms of χ1 using them. More precisely, let (Pn)n∈N be the
sequence of polynomials de�ned by P0(X) = 1, P1(X) = X and

XPn(X) = Pn+1(X) + Pn−1(X).

In particular, Pn(2) = n+ 1, Pn(−2) = (−1)n(n+ 1), and for θ ∈]0, π[ and n ∈ N,

Pn(2 cos(θ)) =
sin((n+ 1)θ)

sin(θ)
.

Then, the map ι : χn 7→ Pn yields an isomorphism between O(O+
N )central and C[X]. Moreover, by [2, Prop 1],

the restriction of the Haar state to this subalgebra coincides with integration with respect to the semicircle
distribution νsc. More precisely, for any x ∈ O(O+

N )central we have

h(x) =

∫
[−2,2]

ι(x)dνsc,

where νsc denotes the measure on [-2,2] with density

dνsc =
1

2π

√
4− x2dx.

The polynomials Pn are exactly the orthogonal polynomials for this measure. Moreover, denoting by dn the
dimension of the n-th irreducible representation, we have for n ∈ N,

dn = Pn(N).

2.1.2. Central Lévy processes. Let us now describe what the analogue of a Lévy process is on O+
N . On a

classical group, this is a càdlàg stochastic process (Xt)t∈R+ with independent and stationary increments. In

particular, if µt is the distribution of XtX
−1
0 then we have

• µ0 = δId,
• µt ∗ µs = µt+s,
• lim
t→0

µt = µ0 weakly.

In other words, we have a right-continuous convolution semigroup of probability measures. Because this
semigroup contains most of the probabilistic information about the process, and in particular concerning
its asymptotic behaviour, we will focus on it and de�ne a quantum Lévy process to be a right-continuous
convolution semigroup of states. More precisely, given two states ϕ,ϕ′ on O(O+

N ), their convolution is de�ned

by ϕ ∗ ϕ′ = (ϕ ⊗ ϕ′) ◦ ∆. A family (ψt)t∈R+ of states on O(O+
N ) is called a right-continuous convolution

semigroup of states if it satis�es

• ψ0 = ε, where ε : O(O+
N ) → C is the co-unit, i.e. the unique ∗-homomorphism determined by

ε(uij) = δij ,
• ψt ∗ ψs = (ψt ⊗ ψs) ◦∆ = ψt+s,
• lim
t→0

ψt(x) = ψ0(x) for all x ∈ O(O+
N ).

Let us mention that the theory of Lévy processes on compact quantum groups can be developped in full
generality (not just restricted to marginals), see for instance the survey [18].

As mentioned in the introduction, we will be interested in the case where the Lévy process is invariant
under the adjoint action. In other words we will focus on states which are central, in the sense that they are
invariant by conjugation (see the beginning of [14, Sec 6] for the de�nitions). By [14, Prop 6.9], such states
have a speci�c form. First, there is a conditional expectation

E : O(O+
N )→ O(O+

N )central ,
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that is to say a linear map satisfying E(x∗x) > 0 for all x, and E(x) = x for all x ∈ O(O+
N )central. Then, a

state ψ is central if and only if there exists a state ψ̃ on O(O+
N )central such that

ψ = ψ̃ ◦ E.

De�nition 2.4. A central Lévy process on O+
N is a continuous convolution semigroup of states (ψt)t∈R+ on

O(O+
N ) such that ψt is central for all t.

Central Lévy processes on O+
N were classi�ed by F. Cipriani, U. Franz and A. Kula in [14, Thm 10.2]

through an analogue of the Lévy-Khinchine formula. Note that because of centrality, it is enough to know
the image of χn for all n ∈ N.

Theorem 2.5 (Cipriani-Franz-Kula). Any central Lévy process (ψt)t∈R+ on O+
N is of the form

ψt : χn 7→ Pn(N)e−tλn ,

where

(1) λn = b
P ′n(N)

Pn(N)
+

1

Pn(N)

∫ N

−N

Pn(N)− Pn(x)

N − x
dν(x)

for some b > 0 and a �nite measure ν on [−N,N ] such that ν({N}) = 0.

Comparing this formula with the one proved by M. Liao for classical compact Lie groups in [25], we see
that the process corresponding to λn = P ′n(N)/Pn(N) plays a role analogous to the one associated to the
Laplace-Beltrami operator. As a consequence, we will call this process the Brownian motion on O+

N . The
term is further justi�ed by a recent result of M. Brannan, M. Junge and L. Gao. They show in [?, Prop 3.9]
that the semigroup (ψt)∈R+ can also be constructed from the usual Brownian motion on ON (that is to say
with in�nitesimal generator given by the Laplace-Beltrami operator) through an averaging procedure.

2.2. The cuto� phenomenon. This work is mostly concerned with the di�usion of central Lévy processes
and in particular the time needed for the process to spread all over the group. This can be rigorously de�ned
by measuring the distance between ψt and the Haar state h. Classically, one interesting and widely used
distance for this is the total variation distance

dTV(µ, ν) = ‖µ− ν‖TV = sup
A⊂G
|µ(A)− ν(A)|,

where the supremum is taken over all Borel subsets A of the classical group G. For quantum groups, the
corresponding de�nition requires the introduction of a suitable version of the Borel σ-algebra.

To this end, one may consider the universal enveloping C*-algebra (see for instance [9, Sec II.8.3]) C(O+
N )

of O(O+
N ). By de�nition, any state on O(O+

N ) has a unique extension to a state on C(O+
N ), hence yields

an element of the Fourier-Stieltjes algebra, which is the topological dual C(O+
N )∗ of C(O+

N ). In view of the
Riesz representation theorem, this dual space is thought of as a noncommutative analogue of the measure
algebra equipped with the total variation norm. Let us denote by ‖ · ‖FS the norm on this dual space and
call it the Fourier-Stieltjes norm. Moreover, the topological double dual C(O+

N )∗∗ of C(O+
N ) is known to

be the universal enveloping von Neumann algebra of C(O+
N ), which is regarded as a noncommutative and

universal analogue of measure spaces. Using the theory of Haagerup's noncommutative Lp-spaces, we may
easily adapt the argument in [22, Lemma 2.6] to show that

1

2
‖ϕ− ψ‖FS = sup

p∈P
|ϕ(p)− ψ(p)|,

where P denotes the set of orthogonal projections in C(O+
N )∗∗ (thought of as indicator functions of Borel

subsets). We omit the details of the proof since we do not need it in this paper. We will use this generalized
total variation distance in our cuto� statements and write :

‖ · ‖ =
1

2
‖ · ‖FS .

In the classical setting, a particularly important case is that both µ and ν are absolutely continuous
with respect to the Haar measure. We may consider the similar situation in the quantum setting. Let us
de�ne an inner product on O(O+

N ) by the formula 〈x, y〉 = h(xy∗). Then, taking the completion yields a

Hilbert space L2(O+
N ), and O(O+

N ) embeds through left multiplication into B(L2(O+
N )) (see [28, Cor 1.7.5]



CUTOFF PROFILES FOR QUANTUM LÉVY PROCESSES AND QUANTUM RANDOM TRANSPOSITIONS 7

and the comments thereafter). The weak closure of the image is denoted by L∞(O+
N ) and is a von Neumann

algebra. If ϕ : O(O+
N ) → C is a linear map which extends to a normal bounded map on L∞(O+

N ), then ϕ

becomes an element of the Fourier algebra, which is the Banach space predual L∞(O+
N )∗ of L

∞(O+
N ) and

‖ϕ‖FS = ‖ϕ‖L∞(O+
N )∗

(see for instance [12, Prop 3.14]), which further implies by [22, Lem 2.6]:

‖ϕ− ψ‖ = sup
p∈P̃
|ϕ(p)− ψ(p)|,

where P̃ is the set of orthogonal projections in L∞(O+
N ). Note that in order for this formula to make sense,

the states ϕ and ψ must extend to the von Neumann algebra L∞(O+
N ). This is not always the case due to

absolute continuity issues (see for instance Proposition 3.6).
Let us mention an elementary but useful fact on the monotonicity of that norm which is well-known in

the classical case.

Lemma 2.6. For N �xed, the map t 7→ ‖ψt − h‖ is decreasing.

Proof. First note that for any two bounded linear forms ϕ,ψ on C(O+
N ),

‖ϕ ∗ ψ‖FS = ‖(ϕ⊗ ψ) ◦∆‖FS 6 ‖ϕ⊗ ψ‖FS 6 ‖ϕ‖FS‖ψ‖FS .

Thus, for any t > s,
‖ψt − h‖FS = ‖(ψs − h) ∗ ψt−s‖FS 6 ‖ψs − h‖FS ,

where we used the fact that any state ψ on a C*-algebra has norm one (see for instance [32, Lem 9.9]). The
result follows. �

The evolution of the distance from the process to the Haar state can exhibit various behaviours. One
which is especially striking is the so-called cuto� phenomenon. Here is a precise de�nition of what we mean
by this :

De�nition 2.7. Let (GN , (ψ
(N)
t )t∈R+)N∈N be a family of compact quantum groups with a Lévy process

(ψ
(N)
t )t∈R+ on each of them. We say that the processes exhibit a cuto� phenomenon at time (tN )N∈N if for

any ε > 0,

lim
N→+∞

‖ψ(N)
(1−ε)tN − hN‖ = 1 and lim

N→+∞
‖ψ(N)

(1+ε)tN
− hN‖ = 0.

One very useful tool to prove that such a phenomenon occurs is the following lemma originally due to
P. Diaconis and M. Shahshahani in [17] for �nite groups and to J.P. McCarthy in [26] for �nite quantum
groups. A proof for compact quantum groups can be found in [22, Lem 2.7], but we simply state it in our
particular case.

Lemma 2.8. Let ψ be a central state on O+
N . If for some t > 0 the sum

∑+∞
n=1 d

2
ne
−2tλn is �nite, then

(2) ‖ψt − h‖2 6
1

4

+∞∑
n=1

d2ne
−2tλn .

Remark 2.9. The right-hand side is nothing but the L2-norm of the density of ψt − h with respect to h,
computed using the Plancherel formula. We recover in that way the fact that as soon as a state has an
L2-density with respect to the Haar state, it has an extension to L∞(O+

N ).

Let us end these preliminaries with some computational results concerning the Chebyshev polynomials
introduced above. First, there is an explicit formula to compute these numbers for t > 2 : setting

q(t) =
t−
√
t2 − 4

2
,

it is easily checked by induction that

Pn(t) =
q(t)−(n+1) − q(t)n+1

q−1 − q
.

This enables us to give a precise expansion of the polynomials Pn.
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Proposition 2.10. For any n > 1, we have as t→∞

Pn(t) = tn
(

1− 1

t2
+O

(
1

t4

))n−1
.

Proof. Let n > 1. First, as t→∞, we have

q(t) =
t−
√
t2 − 4

2
=

1

t
+

1

t3
+O

(
1

t5

)
and q(t)−1 = t− 1

t
+O

(
1

t3

)
.

We deduce, writing q for q(t), that for t > 2 we have

ln(Pn(t)) = ln

(
q−(n+1)

q−1
1− q2(n+1)

1− q2

)
= n ln(q−1) + ln

(
1− q2(n+1)

)
− ln

(
1− q2

)
.

Note that − ln(1− q2) = q2 +O
(
q4
)

= 1
t2

+O
(
1
t4

)
and 2(n+ 1) > 4 so ln

(
1− q2(n+1)

)
= O

(
1
t4

)
, hence

ln(Pn(t)) = n

(
ln(t)− 1

t2
+O

(
1

t4

))
+O

(
1

t4

)
+

1

t2
+O

(
1

t4

)
.

Hence, putting the three O
(
1
t4

)
together (it might change the implicit constant, but we can still take it to

be independent of n), we �nally have

ln(Pn(t)) = n ln(t) + (n− 1)

(
− 1

t2
+O

(
1

t4

))
,

i.e.

Pn(t) = tn exp

(
− 1

t2
+O

(
1

t4

))n−1
= tn

(
1− 1

t2
+O

(
1

t4

))n−1
.

�

3. The quantum orthogonal brownian motion

In this section we study the cuto� phenomenon for the analogue of Brownian motion on O+
N . As explained

above, this means that we will take ν = 0 in Equation (1). Once that choice is made, changing the value of
b is equivalent to rescaling the time, so that there is no loss in generality in �xing b = 1 for all N , leading to

λn =
P ′n(N)

Pn(N)
.

3.1. The cuto� phenomenon. We �rst want to prove that the process (ψt)t∈R+ exhibits a cuto� phenom-
enon. It turns out that this result can be recovered as a consequence of the existence of a cuto� pro�le,
proven in Theorem 3.9, as will be explained in Remark 3.17 below. Nevertheless, the proof below is inde-
pendent of the computations of the cuto� pro�le and is interesting in its own right. One reason for this is
that, in particular as far as the lower bound is concerned, the argument below �lls a gap in the proof of
previous similar theorems in [22] and [21] (see in particular Remark 3.2). Another reason is that to compute
the pro�le, one must know the cuto� time and guess what the next order is, which we do when proving
the cuto� phenomenon. That being said, let us give some additional details concerning the Fourier-Stieltjes
norm needed for the proof.

As explained in Section 2.2, proving a cuto� phenomenon requires precise estimates for the Fourier-Stieltjes
norm. As soon as the right-hand side of Equation (2) is �nite, we can use it to bound the total variation
distance, which is then well-de�ned and coincides with the half of the Fourier-Stieltjes norm. This is the
strategy which was already used in [22] and the computations will be similar. To obtain the lower bound,
however, we need to deal directly with the Fourier-Stieltjes norm and this will require an alternate description
which we now detail.

By [11, Lem 4.2], the closure of O(O+
N )central in C(O+

N ) is a commutative C*-algebra isomorphic to
C([−N,N ]). Moreover, if ϕ = ϕ̃ ◦ E is a bounded central linear form, then

‖ϕ̃‖FS =

∥∥∥∥ϕ|O(O+
N )central

∥∥∥∥
FS

6 ‖ϕ‖FS = ‖ϕ̃ ◦ E‖FS 6 ‖ϕ̃‖FS
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so that the problem reduces to the computation of the norm of a bounded linear form on a commutative
C*-algebra. By the Riesz Representation Theorem, there exists a measure µ on [−N,N ] such that

ϕ̃(x) =

∫ N

−N
xdµ

and moreover, the Fourier-Stieltjes norm of ϕ̃ coincides with twice the total variation of µ. Using that
observation, we can now establish that Brownian motion on O+

N exhibits a cuto� phenomenon.

Theorem 3.1. Brownian motion on O+
N exhibits a cuto� phenomenon at time tN = N ln(N).

Proof. We start with the upper bound and we will obtain an estimate which is �ner than what is actually
needed. It was proven in [19, Lem 1.7] that (we will give in Lemma 3.5 on a �ner estimate, but that one is
su�cient for our present purpose)

n

N
6 λn 6

n

N − 2
.

Using this and the estimates of [22, Lem 3.3], and writing q = q(N) for simplicity, the sum in the right-hand

side of Lemma 2.8 applied to ψt can be bounded as soon as q−1e−t/N < 1 by

+∞∑
n=1

q−2n

(1− q2)2
e−2tn/N =

1

(1− q2)2
q−2e−2t/N

1− q−2e−2t/N
=

1

(1− q2)2
1

q2e2t/N − 1
.

For c > 0 and t = N ln(N) + cN , we get, using 1/2 > q(N) > 1/N (see for instance [22, Lem 3.8]),

1

(1− q2)2
1

q2N2e2c − 1
6

4

3

e−2c

1− e−2c
.

Taking c = ε ln(N) with ε > 0 then yields the upper bound part of the cuto� phenomenon.
For the lower bound, we will show that the character χ1 is a good witness of the distance between ψt and

h. To do that, let us �rst estimate its mean and variance. We have, for c < 0 and t = N ln(N) + cN ,

ψt(χ1) = Ne−t/N = e−c

and the variance varψt(χ1) = ψt(χ
2
1)− ψt(χ1)

2 is given, using the fact that χ2
1 = 1 + χ2, by

varψt(χ1) = 1 + (N2 − 1)e−2tN/(N
2−1) −N2e−2t/N

6 1 +N2e−2t/N −N2e−2t/N

6 1.

Let us now view χ1 as a continuous function on [−N,N ] and consider the Borel subset

B = {s ∈ [−N,N ] | |χ1(s)| 6 e−c/2}.
The indicator function p = 1B can be seen as a projection in the von Neumann algebra L∞([−N,N ]) of
essentially bounded functions. If we denote by νh (respectively µt) the unique Borel probability measure on
[−N,N ] such that for any x ∈ O(O+

N )central,

h(x) =

∫ N

−N
xdνh

(
respectively ψt(x) =

∫ N

−N
xdµt

)
,

then these formulæ provide norm-preserving extensions of the states h and ψt to L
∞([−N,N ]). Moreover,

because ψt(χ1) = e−c, we have B ⊂ {s ∈ [−N,N ] | |χ1(s) − ψt(χ1)| > e−c/2} so that by Chebyshev's
inequality

µt(B) 6
(
e−c/2

)−2
varµt(χ1) 6 4e2c.

Using again Chebyshev's inequality for νh with h(χ1) = 0 and varh(χ1) = 1, we eventually get

|µt(B)− νh(B)| > νh(B)− µt(B)

= 1− νh([−N,N ] \B)− µt(B)

> 1− 4e2c − 4e2c

= 1− 8e2c.



10 AMAURY FRESLON, LUCAS TEYSSIER, AND SIMENG WANG

To conclude, recall that because µt and νh are probability measures, the total variation norm of their
di�erence coincides with twice their total variation distance, so that

‖ψt − h‖ =
1

2
|µt − νh|([−N,N ]) = ‖µt − νh‖TV > |µt(B)− νh(B)| > 1− 8e2c.

For c = −ε ln(N) (ε > 0 �xed), the right-hand side becomes 1− 8N−2ε which tends to 1 as N → +∞, hence
the proof is complete. �

Remark 3.2. In the papers [22] and [21], the lower bounds were only proven for c such that the corresponding
state is absolutely continuous with respect to the Haar state. As a consequence, this does not yield a
cuto� phenomenon in the sense of De�nition 2.7 unless one makes sure that the states are asymptotically
always absolutely continuous. As we will show in Proposition 3.6, and this was already observed in the
aforementioned papers, this is never true. Hence, the term �cuto�� was slightly abusive there. However,
using the same argument as in the above proof together with the estimates of [22] and [21], one can easily show
that the random walks studied there indeed exhibit a bona �de cuto� phenomenon for the Fourier-Stieltjes
norm.

Remark 3.3. In [27], P.-L. Méliot proved that Brownian motion on SO(N) exhibits a cuto� phenomenon
at time 2 ln(N). The factor 2 comes from the fact that he chooses one half of the Laplace-Beltrami operator
as an in�nitesimal generator. As for the additional factor N in our result, it could be removed through
setting bN = N . A scaling-free statement on our case would therefore be that the cuto� time tN satis�es
tNbN = N ln(N) while in the case of P.-L. Méliot we have tNbN = ln(N).

Remark 3.4. Thanks to the work of F. Cipriani, U. Franz and A. Kula [14], it is possible to construct a
non-commutative Riemannian structure (a spectral triple) on O+

N out of a Lévy process. However, it was
already noted in [14, Sec 10] that in our case, and independently from the choice of b, the dimension of
the resulting object is in�nite, while one would expect a canonical Riemannian-like structure to be able to
recover N through a notion of dimension.

We mentioned earlier that the use of the Fourier-Stieltjes norm was necessary because ψt cannot be
extended to L∞(O+

N ) in general. This can be thought of as an absolute continuity issue in the following

sense. Let us denote by L1(O+
N ) the completion of L∞(O+

N ) with respect to the norm ‖x‖1 = h(|x|), where
|x| is obtained by functional calculus. A state ψt is then said to be absolutely continuous (with respect to
the Haar state) if there exists ρt ∈ L1(O+

N ) such that ψt(x) = h(ρtx) for all x ∈ O(O+
N ). It follows from the

general theory (see [32, Thm V.2.18]) that a state on O(O+
N ) is absolutely continuous with respect to the

Haar state if and only if it extends to a normal linear map on L∞(O+
N ).

We now want to give a precise result about absolute continuity, and this requires a �ner estimate on λn
than that of [19, Lem 1.7]. In fact, we will prove that λn is very close to being a�ne (and even linear).

Lemma 3.5. Set aN = 1/
√
N2 − 4 and bN = (N −

√
N2 − 4)/(N2 − 4). Then, for any n ∈ N and N > 4,

λn − (aNn+ bN ) = cN (n) :=
1

N

+∞∑
j=0

(
2

N

)2j

n+ 1

22j

2j∑
`=j+1

`≡j mod n+1

(
2j

`

) ,

and moreover,

0 6 cN (n) 6

(
2

N

)n
.

Proof. Let n ∈ N and N ≥ 4. Recall that the roots of Pn are xk = 2 cos(kπ/(n+ 1)) for 1 6 k 6 n, so that

λn =
P ′n(N)

Pn(N)
=

n∑
k=1

1

N − xk
=

n∑
k=1

1

N

+∞∑
j=0

(xk
N

)j
=

1

N

+∞∑
j=0

(
2

N

)j n∑
k=1

cos

(
kπ

n+ 1

)j
.

We are therefore led to compute some sums of powers of trigonometric functions.
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Let j ∈ N and set for convenience in the next computations θ = π
n+1 . Then we have,

n∑
k=0

cos(kθ)j =

n∑
k=0

(
eikθ + e−ikθ

2

)j
=

n∑
k=0

1

2j

j∑
`=0

(
j

`

)
eikθ(2`−j) =

1

2j

j∑
`=0

(
j

`

) n∑
k=0

eikθ(2`−j).

Now observe that
n∑
k=0

eikθ(2`−j) =

{
0 if 2(n+ 1) - 2`− j
n+ 1 if 2(n+ 1) | 2`− j.

From this we see immediately that if j is odd, then the sum vanishes. If j is even, it is possible that
2(n + 1) | 2` − j (i.e. that n + 1 | ` − j/2), and we have to consider all such `'s. We can hence rewrite the
sum as

n∑
k=0

cos(kθ)j =
n+ 1

2j

j∑
`=0

`≡j/2 mod n+1

(
j

`

)
.

We deduce, splitting the previous sum according to whether ` = j/2 or not, that

λn +
1

N

+∞∑
j=0

(
2

N

)2j

=
n+ 1

N

+∞∑
j=0

(
1

N

)2j (2j

j

)
+

1

N

+∞∑
j=0

(
2

N

)2j

n+ 1

22j

2j∑
`=j+1

`≡j mod n+1

(
2j

`

) ,

i.e., observing that (1− 4x)−1/2 =
∑∞

j=0

(
2j
j

)
xj for |x| < 1/4,

λn +
1

N

1

1− 4/N2
=
n+ 1

N

1√
1− 4/N2

+ cN (n),

which rewrites exactly as

λn = aNn+ bN + cN (n).

Let us now bound cN (n). Because the sum
∑2j

`=j+1,`≡j mod n+1 is empty if j < n, we get

cN (n) =
1

N

+∞∑
j=0

(
2

N

)2j

n+ 1

22j

2j∑
`=j+1

`≡j mod n+1

(
2j

`

) 6 1

N

+∞∑
j=n

(
2

N

)2j (n+ 1

22j
22j
)

=
n+ 1

N − 2

(
2

N

)2n

.

As N ≥ 4, we �nally obtain

cN (n) 6
n+ 1

N − 2

(
2

N

)2n

6
1

N − 2

n+ 1

2n

(
2

N

)n
6

(
2

N

)n
.

�

We can now give a precise criterion for absolute continuity.

Proposition 3.6. Let N > 4. Then, there exists a positive time tabscont(N) such that

• If t < tabscont(N), then ψt is not absolutely continuous with respect to the Haar state,

• If t > tabscont(N), then ψt is absolutely continuous with respect to the Haar state.

Moreover,

tabscont(N) =
− ln(q(N))

aN
= N ln(N)− 2 ln(N)

N
+ O
N→+∞

(
1

N

)
.

Proof. Let N > 4, and set

ρt =
+∞∑
n=0

dne
−tλnχn.
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If this series converges in L1(O+
N ), then ψt is absolutely continuous with respect to the Haar state with density

ρt. Moreover, if it converges in L2(O+
N ), then it converges also in L1(O+

N ) (as the L1-norm is dominated by
the L2-norm), and

‖ρt‖22 =
+∞∑
n=0

d2ne
−2tλn .

Recall that dn 6 q(N)−n/(1− q(N)2). Using Lemma 3.5,

ln
(
d2ne
−2tλn

)
6 2n ln(1/q(N))− ln(1− q(N)2)− 2tλn

6 2n (ln(1/q(N))− taN ) + ln(1/q(N))− ln(1− q(N)2)− (bN + cN )t

6 2n (ln(1/q(N))− taN ) + g(t,N)

where g(t,N) is a quantity independent of n. Consequently, ‖ρt‖2 is �nite (so that ψt is absolutely continuous
with respect to the Haar state) as soon as

ln(1/q(N))− taN < 0.

As for the second point, observe that

ψt(χn)

‖χn‖∞
=
dne
−tλn

n+ 1
.

If the right-hand side is not uniformly bounded with respect to n, then ψt cannot extend to L∞(O+
N ). Using

the previous lemma and the fact (see for instance [22, Lem 3.8]) that dn > Nq(N)−(n−1), and proceeding as

above, we see that dne−tλn
n+1 will not be bounded as soon as

ln(1/q(N))− taN > 0.

It follows from our two inequalities that tabscont = − ln(q(N))a−1N . Using the Taylor expansion of q(N)−1

computed in the proof of 2.10, we see that ln(1/q(N)) = ln(N) +O
(

1
N2

)
so that

tabscont(N) =

(
ln(N) +O

(
1

N2

))√
N2 − 4

=

(
N ln(N) +O

(
1

N

))(
1− 2

N2
+O

(
1

N4

))
= N ln(N)− 2 ln(N)

N
+O

(
1

N

)
.

This concludes the proof. �

Remark 3.7. This is in sharp contrast with the classical case, where any non-degenerate (a condition
analogous to requiring b > 0) Lévy process automatically has an L2-density with respect to the Haar
measure by [25, Thm 1], and is thus absolutely continuous. Indeed, the existence of bounded approximate
identities by convolutions of L1-densities is equivalent to the co-amenability of the quantum group, which
can not hold for O+

N (see for instance [?]).

Remark 3.8. As we will see in Proposition 3.14, ψt is absolutely continuous with respect to the Haar state
if and only if the measure of the corresponding classical process is absolutely continuous with respect to the
semi-circle distribution. Moreover, the lack of absolute continuity is witnessed by the appearance of an atom
in that measure.

In particular, ψN ln(N)+cN is absolutely continuous if and only if c > −2 ln(N)/N2 +O
(
1/N2

)
, which goes

to 0 as N goes to in�nity. Thus, the total variation distance is asymptotically only de�ned for c > 0.
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3.2. Cuto� pro�le. We will now try to get a better understanding of the cuto� phenomenon by computing
the corresponding cuto� pro�le, that is to say the limit of the distance between the process at time tc =
N ln(N)+cN and the Haar state as N goes to in�nity, c being �xed. Our main result is an expression of this
limit as the distance between two explicit probability measures. Before stating it, let us give some heuristics.

In the proof of Theorem 3.1, we saw that it was enough to consider the element χ1 to obtain a lower bound
of the correct order for the mixing time. In the case of a classical compact matrix group, χ1 is nothing but the
trace function, and this would mean that the trace of the matrices is the last thing to be mixed by Brownian
motion. In the case of O+

N , we know that the distribution of χ1 under the Haar state is the semi-circle
distribution νSC, so that we may expect the cuto� pro�le to be given by the distance between νSC and a
�deformation� of it. The whole problem of course lies in the vague meaning of the word �deformation�.

We will show in the �rst part of Theorem 3.9 that the pro�le indeed appears as the distance between νSC
and a family of closely related laws called the free Poisson distributions. Let us recall that the free Poisson
distribution with rate λ and jump size α is given, for λ > 1, by (see [30, Def 12.12] for details)

d Poiss+(λ, α)(t) =
1

2παt

√
4λα2 − (t− α(1 + λ))2dt.

Unfortunately, there is no value of the parameters for which the free Poisson distribution equals the semi-circle
one.

One can nevertheless write things di�erently using a larger family of probability distribution called the
free Meixner distributions. Let us denote by Meix+(a, b) the standardised (i.e. with mean 0 and variance 1)
free Meixner law with parameters a and b (see for instance [10, Sec 2.2] for details). Its absolutely continuous
part with respect to the Lebesgue measure is given by

d Meix+(a, b)(t) =

√
4(1 + b)− (t− a)2

2π(bt2 + at+ 1)
1[a−2

√
1+b,a+2

√
1+b]dt.

For a = b = 0, the formula reduces to the density of the semi-circular distribution, while for b = 0 it yields
the density of a free Poisson distribution with mean 0 and variance 1.

We will now state our result using both the free Poisson and the free Meixner settings, after introducing
some extra notations. If X is a random variable with law µ, then we denote by Dr(µ) the r-dilation of µ
(that is to say the law of rX) and by µ∗δa its translation by a (that is to say the law of X+a). Moreover, we

denote by dTV the usual total variation distance for Borel measure on R and by d̃N the distance associated
to the norm ‖ · ‖ on O+

N .

Theorem 3.9. Let c ∈ R, and recall tc = N ln(N) + cN . Then

d̃N (ψtc , h) −−−−→
N→∞

f(c) := dTV

(
Poiss+

(
e2c,−e−c

)
∗ δec+e−c , νSC

)
= dTV

(
Meix+

(
−e−c, 0

)
∗ δe−c ,Meix+(0, 0)

)
.

As the proof of this result is long, we will split it in two, depending on the sign of c. For convenience
and clarity, the two cases will be stated in the separate Propositions 3.10 and 3.14, each treated in a proper
subsection.

3.2.1. The pro�le on the right. We start with the case c > 0, which turns out to be the simplest one. The
reason for this is that it follows from Proposition 3.6 that ψtc is absolutely continuous with respect to the
Haar state in that case, so that the convergence in total variation distance boils down to L1-convergence of
the densities, which in turn follows from L2-convergence. The main part of the work is therefore rather the
identi�cation of the limit and its expression in terms of Poisson or free Meixner laws.

Proposition 3.10. For c > 0,

d̃N (ψtc , h) −−−−→
N→∞

f(c) = dTV

(
Poiss+

(
e2c,−e−c

)
∗ δec+e−c , νSC

)
= dTV

(
Meix+

(
−e−c, 0

)
∗ δe−c ,Meix+(0, 0)

)
.

Proof. Recall that as c > 0, ψtc has an L
1-density given by

ρtc =

+∞∑
n=0

dne
−tcλnχn.
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Moreover, we know from Lemma 3.5 that

λn = n

(
1

N
+ O
N→∞

(
1

N3

))
,

and an easy computation yields dn ∼
N→∞

Nn. In particular, for each n, dne
−tcλn converges to e−cn as N goes

to +∞. Moreover,

‖dne−tcλnχn‖1 6 ‖dne−tcλnχn‖2 = dne
−tcλn

and because qN > 1, for N > 3,

dne
−tcλn 6

q−n

(1− q2)
N−ne−nc 6

3

2
e−nc.

The latter being summable and independent of N , we can exchange the sum over n and the limit in N . This
yields (recall that there is an isomorphism between O(O+

N )central and C[X] sending χn to Pn and sending
the measure associated to h to the semi-circle distribution)

lim
N→+∞

‖ψtc − h‖ =
1

2

∥∥∥∥∥
+∞∑
n=1

e−cnPn

∥∥∥∥∥
1

,

where the L1-norm is computed with respect to the standard semi-circular distribution. Using the generating
series of the Chebyshev polynomials of the second kind (which is easily computed, multiplying by t and using
the recursion relation), we get for every t ∈ [−2, 2],

+∞∑
n=1

e−cnPn(t) =
1

1− te−c + e−2c
− 1

=
1

1 + β2
1

1− γt
− 1

= Fc(t)− 1.

where β = e−c and γ = β/(1 + β2) < 1/2. Thus, the cuto� pro�le is equal to

lim
N→+∞

‖ψtc − h‖ =
1

2

∫ 2

−2
|Fc(t)− 1| dνSC(t).

Performing the change of variables u = 1− γt,

Fc(t)dνSC(t) = Fc(t)

√
4− t2
2π

1[−2,2](t)dt =
1

2π(1 + β2)u

√
4−

(
1− u
γ

)2

1[1−2γ,1+2γ](u)
du

γ

=
1

2πγ2(1 + β2)u

√
4γ2 − (1− u)21[1−2γ,1+2γ](u)du.

Setting α = βγ = γ2(1 + β2) and λ = β−2 > 1, this density becomes

1

2παu

√
4λα2 − (u− α(1 + λ))21[α(1−

√
λ)2,α(1+

√
λ)2](u)du.

This is exactly the free Poisson distribution with rate λ = e2c and jump size α = e−2c/(1 + e−2c). Reversing
the change of variables, we see that Fc(t)dνSC(t) is the density of the law

D−1/γ
(
Poiss+

(
β−2,−βγ

)
∗ δ−1

)
= Poiss+

(
β−2,−β

)
∗ δ1/γ = Poiss+

(
e2c,−e−c

)
∗ δec+e−c ,

hence the result. Using the facts that Poiss+
(
a−2, a

)
∗ δ−a−1 = Meix+(a, 0) and that νSC = Meix+(0, 0), the

second formula follows. �

As explained heuristically at the beginning of this subsection, the fact that Brownian motion is not
completely mixed is witnessed by the �trace� it can attain, and the cuto� pro�le gives a precise quantitative
description of this phenomenon. In particular, it shows that the �trace� of Brownian motion is averagely
shifted to the right and more concentrated around its mean. Here is a plot of the density of Meix+(−e−c, 0)∗
δe−c with respect to the Lebesgue measure for values of c between 0 and 5 :
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For c = 0 we get a free Poisson law (this is the curve with a peak on the right) while for c = 5 the density is
already indistinguishable to the naked eye from that of the semi-circle distribution.

Remark 3.11. The quantity dTV (Meix+ (−e−c, 0) ∗ δe−c ,Meix+(0, 0)) can be computed explicitly in terms
of c through integration, yielding the formula :

f(c) =
e2c − 1

2π
arcsin

(
e−3c − 3e−c

2

)
+

1− e2c

2π
arcsin

(
e−c

2

)
+
e−2c + 2

4π

√
4e2c − 1.

Using the facts that 0 < e−c

2 < 1/2 and that 3 arcsin(x) = arcsin(3x − 4x3) for 0 6 x 6 1/2, this can be
rewritten as

f(c) = (1− e2c) 2

π
arcsin

(
e−c

2

)
+
e−2c + 2

4π

√
4e2c − 1.

3.2.2. The pro�le on the left. By Proposition 3.6, the computations above can only make sense for c > 0.
However, the free Poisson distribution makes sense even for λ < 1, with the only di�erence that some mass
is carried by an atom :

d Poiss+ (λ, α) (t) = (1− λ) δ0 +
λ

2παt

√
4λα2 − (t− α(1 + λ))21[α(1−

√
λ)2,α(1+

√
λ)2](t)dt

As a consequence, the formula

f(c) = dTV

(
Poiss+

(
e2c,−e−c

)
∗ δec+e−c , νSC

)
still makes sense for c < 0 and we will now show that this is indeed the pro�le. Let us start with a
characterization of the limit distribution in terms of �Chebyshev moments�.

Lemma 3.12. For any c ∈ R, the measure

µc = Poiss+
(
e2c,−e−c

)
∗ δec+e−c

is the unique probability measure on R such that for any n ∈ N,∫
R
Pndµc = e−cn.

Proof. Let us �rst recall that the free cumulants (see [30, Def 11.3] for the de�nition of free cumulants and
[30, Prop 12.11] for the free Poisson case) of the free Poisson distribution Poiss+ (λ, α) are given by

κn = λαn.

As a consequence, the free cumulants of Poiss+
(
e2c,−e−c

)
are Laurent polynomials in ec. The free additive

convolution with δec+e−c only modi�es the �rst cumulant κ1 by adding e
c+e−c to it, hence the free cumulants

of µc are Laurent polynomials in ec. Because the moments are polynomial functions of the free cumulants
(by virtue of the moment-cumulant formula, see [30, Prop 11.4]), we conclude that there exist Laurent
polynomials Ln such that for any c ∈ R,∫

R
Pn(x)dµc(x) = Ln(ec).
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Let us now assume that c > 0. Then, we know from the proof of Theorem 3.9 in Subsection 3.2.1 that for
c > 0, µc is absolutely continuous with respect to the semi-circle distribution νSC with density Fc. Using the
fact that the polynomials Pn are orthonormal for the semi-circle distribution, we get∫

R
Pndµc =

∫
R
Pn

(
+∞∑
n=0

e−cnPn

)
dνSC = e−cn.

As a consequence, Ln(x) = x−n for any x > 1, so that by uniqueness of the decomposition of a Laurent
polynomial, Ln(X) = X−n and the formula for the integral of Chebyshev polynomials also holds for c 6 0.

As for the uniqueness assertion, it simply follows from the fact that µc has compact support and is
consequently determined by its moments. �

With this in hand, we can complete our proof of the cuto� pro�le. To do so, let us de�ne, for t > 0 and

N ∈ N, a probability measure m
(N)
t on R by requiring that m

(N)
t (R \ [−N,N ]) = 0 and for all n ∈ N,∫ N

−N
Pn(x)dm

(N)
t = e−tλnPn(N).

Such a measure exists because it corresponds to the restriction of the state ψt to the algebra O(O+
N )central.

Using the centrality of the process and the Riesz representation theorem (see the discussion at the beginning
of Section 3.1), we know that

‖ψtc − h‖ =
∥∥∥m(N)

tc − νSC
∥∥∥
TV

.

To �nd the limit of the right-hand side, we will compute m
(N)
tc explicitly. Our approach is based on an idea

of P. Biane in [8, Sec 12.2] for the study of a similar process on the duals of free groups. One would naively
want the measure to be absolutely continuous with respect to the Haar measure with density

+∞∑
n=0

e−tλnPn(N)Pn

However, we know that for t = N ln(N) + cN with c < 0, this series does not converge in L2([−2, 2]) because
e−tλnPn(N) grows exponentially (this is the lack of absolute continuity with respect to the Haar state). The

idea is to �nd a point Ñ(t) such that e−tλnPn(N)−Pn(Ñ(t)) is small enough to be summable. Then summing

the previous di�erence to produce an absolutely continuous measure and adding a Dirac mass at Ñ(t) will

produce an expression of the measure. To �nd that Ñ(t), let us �rst recall that for x > 2, if 0 < q(x) < 1
denotes the unique number such that q(x) + q(x)−1 = x, then

Pn(x) =
q(x)−(n+1) − q(x)n+1

q(x)−1 − q(x)
.

In particular, considering (with the notations of Lemma 3.5) that λn is roughly equal to aNn, we have

e−tλnPn(N) ≈ e−ntaN q(N)−(n+1) − q(N)n+1

q(N)−1 − q(N)

≈ e−ntaN q(N)−n

≈ Pn
(
e−aN tq(N)−1 + eaN tq(N)

)
so that setting

Ñ(t) = e−aN tq(N)−1 + eaN tq(N)

has a good chance of giving the correct order of magnitude. There is still a normalization coe�cient required,
and the next result is meant to make all this precise and rigorous. We will write q for q(N) in order to lighten
notations.

Lemma 3.13. For any �xed c < 0 and tc = N ln(N) + cN , there exists Nc such that for all N > Nc,

m
(N)
tc = α(tc)δÑ(tc)

+
+∞∑
n=0

(
e−λntcPn(N)− Pn(Ñ(tc))yyy

)
Pn(y)dµSC(y),
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where

α(t) = eaN t−bN t
e−aN tq−1 − eaN tq

q−1 − q
and ∑

n>0

(
e−tcλnPn(N)− α(tc)Pn(Ñ(tc))

)
Pn ∈ L2([−2, 2], νSC).

Proof. To lighten notations, let us simply write a, b, c for aN , bN , cN . Since by de�nition q
(
Ñ(t)

)
= (eatq)±1

(depending on which one is less than one, but this does not change the expression of Pn(Ñ(t))),

(
q−1 − q

)
α(t)Pn

(
Ñ(t)

)
= eat−bt

(
e−atq−1 − eatq

) q (Ñ(t)
)−n−1

− q
(
Ñ(t)

)n+1

q
(
Ñ(t)

)−1
− q

(
Ñ(t)

)
= eat−bt

(
e−a(n+1)tq−(n+1) − ea(n+1)tqn+1

)
= e−(an+b)tq−(n+1) − ea(n+2)t−btqn+1,

from which we deduce that

α(t)Pn

(
Ñ(t)

)
= e−(an+b)tPn(N) +

qn+1

q−1 − q

(
e−(an+b)t − e(a(n+2)−b)t

)
,

which eventually leads to the equality

α(t)Pn

(
Ñ(t)

)
− e−λntPn(N) =

(
ec(n)t − 1

)
e−λntPn(N) +

qn+1

q−1 − q

(
e−(an+b)t − e(a(n+2)−b)t

)
.

Using that ey − 1 6 (e− 1)y 6 2y for 0 6 y 6 1 and using Lemma 3.5, we see that for N > 4,

0 6 ec(n)t − 1 6 2

(
2

N

)n
.

Moreover, a > 1/N and b, c(n) > 0 so that e−λnt 6 e−ant 6 e−nt/N (remember that c < 0). Taking
t = tc = N ln(N) + cN (and of course N large enough so that tc > 0), and using also |Pn(N)| 6 Nn we can
bound the �rst term :∣∣∣(ec(n)tc − 1

)
e−λntcPn(N)

∣∣∣ 6 2

(
2

N

)n
e−ntc/NNn = 2

(
2e−c

N

)n
.

Taking N greater than some Nc depending on c, this converges exponentially fast to 0.
Let us now bound the second term. First observe that q−1−q =

√
N2 − 4 and e−(an+b)t 6 1 6 e((n+2)−b)t,

hence we have∣∣∣∣ qn+1

q−1 − q

(
e−(an+b)t − e(a(n+2)−b)t

)∣∣∣∣ 6 qn+1

√
N2 − 4

e(a(n+2)−b)t 6
qn+1

√
N2 − 4

ea(n+2)t.

At t = tc, we then get as N →∞, using a = 1
N +O

(
1
N3

)
, that

qn+1

√
N2 − 4

ea(n+2)tc =

(
1

N
+O

(
1

N3

))n+2 (
ea(N ln(N)+cN)

)n+2

=
(
e− ln(N)+O(1/N2)

)n+2 (
eln(N)+c+O(ln(N)/N2)

)n+2

=
(
ec+o(1)

)n+2
.

Hence, as c < 0 and N > Nc is �xed, this term converges exponentially fast to 0 as n → ∞. Combining
those two bounds, we conclude that for N �xed large enough,∣∣∣α(t)Pn

(
Ñ(t)

)
− e−λntPn(N)

∣∣∣
converges exponentially fast to 0 as n → ∞. Because (Pn)n∈N is a Hilbert basis for L2([−2, 2], νSC), this
proves that the sum stated in the lemma belongs to L2([−2, 2], νSC).
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Now the �rst formula in the statement makes sense for N large enough and de�nes a probability measure
on [−N,N ]. Moreover, the integral of any Chebyshev polynomial with respect to that measure coincides

by construction with its integral with respect to m
(N)
tc . Because Chebyshev polynomials form a basis of

C[X], it follows that the two measures have the same moments and hence coincide since they have compact
support. �

We are now ready to establish the cuto� pro�le for negative c.

Proposition 3.14. For any �xed c < 0 and tc = N ln(N) + cN , we have

d̃N (ψtc , h) =
∥∥∥m(N)

tc − νSC
∥∥∥
TV

−→
N→+∞

∥∥Poiss+
(
e2c,−e−c

)
∗ δec+e−c , νSC

∥∥
TV

.

Proof. To compute the limit of the total variation distance, let us �rst notice that if m̃
(N)
tc = 1[−2,2]m

(N)
tc ,

then ∥∥∥m(N)
tc − νSC

∥∥∥
TV

=
∥∥∥1[−2,2] (m(N)

tc − νSC
)∥∥∥

TV
+
∥∥∥1R\[−2,2] (m(N)

tc − νSC
)∥∥∥

TV

=
∥∥∥m̃(N)

tc − νSC
∥∥∥
TV

+ α(tc).

We will deal with each part separately :

• It is straightforward to see that as N goes to in�nity, α(tc) → 1 − e2c and that Ñ(tc) → ec + e−c,
which are exactly the parameters of the atom of the free Poisson distribution in the statement.

• Observe moreover that m
(N)
tc converges in moments to a measure for which the integral of Pn equals

ecn. By Lemma 3.12, this must be the free Poisson distribution in the statement. Therefore, if

we can prove that m̃
(N)
tc converges in total variation distance, then its limit must be the absolutely

continuous part of Poiss+
(
e2c,−e−c

)
∗ δec+e−c . The density of m̃

(N)
tc with respect to νSC is

+∞∑
n=0

(
e−λntcPn(N)− Pn(Ñ(t))

)
Pn

and each term of the sum converges as N goes to in�nity. Therefore, if we can bound these terms in
L2-norm by a summable sequence not depending on N , then we can conclude. But this was already
done in Lemma 3.13, since it follows from it that such a bound exists at least for N large enough
depending on c.

�

Remark 3.15. Note that we do not prove that m
(N)
tc converges in total variation to Poiss+

(
e2c,−e−c

)
∗

δec+e−c . This is actually false since their atoms are not at the same place. If we change slightly the time by
setting

t̂c =
− ln(q(N)) + c

aN
= tabscont(N) +

c

aN
,

then Ñ(t̂c) = ec+e−c andm
(N)

t̂c
converges in total variation distance to Poiss+

(
e2c,−e−c

)
∗δec+e−c . However,

this would be somewhat unnatural, and we prefer to state only results which are true for all times tc + o(N)
than for a very speci�c sequence of times.

Remark 3.16. Once again, the integral giving the total variation distance can be computed explicitly in
terms of c. The computation di�ers however depending on whether c is greater or smaller than − ln(2)
(because of the absolute value in the integral). For − ln(2) < c < 0, the result is the same as the �rst
expression given in Remark 3.11 for c > 0, except for an extra (1−e2c)/2. However, this time 1/2 6 e−c/2 6 1
and for x ∈ [1/2, 1], π − 3 arcsin(x) = arcsin(3x− 4x3) so that we end up with the same result, namely

f(c) = (1− e2c) 2

π
arcsin

(
e−c

2

)
+
e−2c + 2

4πe−c

√
4− e−2c

while for c 6 − ln(2),

f(c) = 1− e2c.
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The combination of Propositions 3.10 and 3.14 yields the complete proof of Theorem 3.9, therefore yielding
the cuto� pro�le for Brownian motion on O+

N . As an illustration, here is a plot of the pro�le :

Remark 3.17. Theorem 3.9 is not just a re�nement of the cuto� phenomenon established in Theorem 3.1,
but a stronger result. In other words, the existence of a cuto� pro�le implies the cuto� phenomenon, as was
already mentioned in the beginning of the proof of Theorem 3.1. This follows from the fact that the pro�le
converges to 1 at −∞ and 0 at +∞, together with the monotonicity of Proposition 2.6.

3.3. Further results. Let us complete this section with some additional remarks and results concerning
various generalizations of the original problem.

3.3.1. Other norms. We have worked so far with the Fourier-Stieltjes norm, because it is the only natural
norm available which makes sense for all t ∈ R+. However, the upper bound was computed using the total
variation distance, and one may wonder whether the cuto� upper bound also holds with respect to other
distances. It turns out that the answer is yes.

Corollary 3.18. Brownian motion on O+
N satis�es, for all 1 6 p 6∞ and c > 0, with tc = N ln(N) + cN ,

lim
N→+∞

‖ψtc − h‖Lp =
∥∥Meix+

(
−e−c, 0

)
∗ δe−c −Meix+(0, 0)

∥∥
Lp
.

Proof. Recall that the density of the process at time t is, if the series makes sense,

ρt =
+∞∑
n=0

dne
−tλnχn.

Using the fact that ‖χn‖∞ = Pn(2) = n+ 1, we see that the density converges in L∞-norm at tc as soon as
c > 0 since (for N > 3) and ∥∥∥dne−tcλnχn∥∥∥

∞
6 (n+ 1)dne

−tcλn 6
3

2
(n+ 1)e−nc.

Moreover, using this bound the same strategy as for Proposition 3.10 yields the cuto� pro�le in the case
p = ∞. As for �nite p, it follows from the noncommutative Hölder inequality (see for instance [33, Thm
2.13.iv]) that for any 1 6 p 6∞,

‖dne−tcλnχn‖p 6 ‖dne−tcλnχn‖∞
hence we can once again resort to the same argument. �

Remark 3.19. Note that for c < 0, according to the discussions in the previous subsection, we may

decompose ψtc into an absolutely continuous part ψ̃tc which admits a Lp-density for all 1 6 p 6∞ and such

that ψtc − ψ̃tc is singular with respect to h. It is easy to see that the above theorem still holds for ψ̃tc even
for c < 0.

Let us compare this with the classical case. P.-L. Méliot proved in [27, Thm 7], building on results of G.
Chen and L. Salo�-Coste in [13], that the cuto� phenomenon for Brownian motion on SO(N) indeed occurs
for all 1 6 p 6 ∞ and that the cuto� time is the same as for the L1-norm for all 1 6 p < ∞. However, for
p =∞, the cuto� time is doubled and becomes 4 ln(N). It is therefore quite surprising that in the quantum
case, the di�erence between the case of �nite and in�nite parameter p disappears. This must nevertheless
be tempered with the fact that there is no lower bound in our case, because our de�nition of the Lp norm
only makes sense for absolutely continuous states.
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3.3.2. The free real sphere. In [27], P.-L. Méliot did not only prove the cuto� phenomenon for compact simple
Lie groups, but also for their homogeneous spaces. In the quantum setting, there is no structure theory of
compact homogeneous spaces paralleling the classical one, but there are nevertheless some explicit examples.
We will now consider the simplest of them, which is an analogue of the real sphere on which the classical
orthogonal group acts. The same idea of �liberation� as for the de�nition of free orthogonal quantum groups
suggests that the free analogue of the real sphere should be described by the universal ∗-algebra generated
by N self-adjoint elements (xi)16i6N such that

N∑
i=1

x2i = 1.

Denoting by O(SN−1+ ) this object, it is endowed with an action of O+
N through the map

α : xi 7→
N∑
i=1

uij ⊗ xj .

Note that the abelianization of O(SN−1+ ) is exactly the algebra of polynomial functions on the N − 1 dimen-

sional sphere in RN and that the formula de�ning α also de�nes the usual action of ON on that sphere.
Intuitively, Brownian motion on such a space should be a Lévy process invariant under the action α, and

the analogue of the uniform measure should be the unique probability measure invariant under α. Such an
α-invariant state does indeed exist and can be constructed in the following way. Consider the subalgebra
O(XN ) ⊂ O(O+

N ) generated by the elements ui1 for 1 6 i 6 N . Then, there is a surjective ∗-homomorphism

π : O(SN−1+ )→ O(XN ) sending xi to ui1. Moreover, one has

(π ⊗ id) ◦ α = (∆⊗ id) ◦ π

so that the state ω = h ◦ π is invariant under the action α. As a consequence, we will only consider the
�concrete� model O(XN ) instead of O(SN−1+ ).

Brownian motion considered in [27] on a homogeneous space is then the projection of Brownian motion
coming from the group. In our case, this simply amounts to restricting ψt to O(XN ). Before giving the
expression, let us �rst recall that by [15, Lem 7.3], one may �nd a basis for the carrier Hilbert space of each
irreducible representation un of O+

N such that

O(XN ) = Span{uni1 | 1 6 i 6 N,n ∈ N}.

Proposition 3.20. The Lévy process given by the restriction of ψt to O(XN ) exhibits a cuto� phenomenon

at time tN = 1
2N ln(N). Morevoer, it has the same cuto� pro�le as Brownian motion on O+

N .

Proof. For t large enough, the density of ψt − h is

+∞∑
n=1

dne
−tP ′n(N)/Pn(N)un11

whose L2-norm squared is
+∞∑
n=1

dne
−2tP ′n(N)/Pn(N).

The di�erence with the previous case is that the dimension dn is not squared, due to the fact that coe�cients
of irreducible representations form an orthogonal but not orthonormal basis. This accounts for the factor
1/2 in the cuto� time, exactly as in [27]. The proof is now exactly the same as for Theorems 3.1 and 3.9. �

There is also another candidate for a Brownian motion on the real free sphere. Lévy processes on the later
quantum space were classi�ed by B. Das, U. Franz and X. Wang in [15, Thm 7.5] using a formula similar to
Equation (1), i.e. involving a positive constant b and a Lévy measure ν. Taking as before b = 1 and ν = 0
yields a reasonable notion of a Brownian motion on XN which is not the projection of the one on O+

N . The
convolution semigroup of states (ϕt)t∈R+ we are interested in is then given by :

ϕt : uni1 7→ δi1e
−tR′n(1),
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where the polynomials (Rn)n∈N are the orthogonal polynomials associated to the spectral measure of u11
(see [4] for details and explicit computations).

Proposition 3.21. The O+
N -invariant Lévy process on XN given by (ϕt)t∈R+ exhibits a cuto� phenomenon

at time tN = 1
2 ln(N).

Proof. For t large enough, ϕt has an L
2-density with respect to ω = h ◦ π given by

+∞∑
n=0

dne
−tR′n(1)un11

so that

‖ϕt − ω‖2 6
1

4
‖ρt − 1‖21 6

1

4
‖ρt − 1‖22 =

1

4

+∞∑
n=1

d2ne
−2tR′n(1)‖un11‖22 =

1

4

+∞∑
n=1

dne
−2tR′n(1).

Now, we know from [15, Cor 7.14] that

n 6 R′n(1) 6
N − 1

N − 2
n.

and combining this with [22, Lem 3.3] shows that t = 1
2(ln(N) + c) is enough to ensure the existence of the

L2-density and that

‖ϕt − ω‖2 6
1

4

1

(1− q2)

+∞∑
n=1

q−ne−2tn =
1

4

1

(1− q2)
1

qe2t − 1
6

1

2

e−c

1− e−c

and the upper bound follows.
As for the lower bound, it is obtained by using the element x =

√
Nu11 instead of χ1 and the computations

are similar to the proof of Theorem 3.1. �

Remark 3.22. Note that there is an abuse of notations since the polynomials Rn also depend on the integer
N . This is di�erent from the case O+

N where for all N , the orthogonal polynomials were always the same
Chebyshev polynomials Pn. That fact, combined with the cumbersome available descriptions of Rn (see for
instance [15, Sec 7.3]), make it di�cult to compute the cuto� pro�le. However, because the spectral density
of
√
N + 2u11 converges uniformly to the semi-circle distribution when N goes to in�nity by [4, Thm 5.3],

and because all these densities are supported on the closed unit disk, the convergence also holds in moments
hence

√
N + 2

n
Rn(X/

√
N + 2) converges to Pn(X) since the coe�cients of the orthogonal polynomials are

continuous functions of the moments. It is therefore reasonable to expect that the process has the same
cuto� pro�le as the Brownian motion on O+

N .

4. Quantum permutations

Our second family of examples will be quantum permutations. The quantum permutation groups S+
N

were introduced by Sh. Wang in [38]. The corresponding ∗-algebra O(S+
N ) is the quotient of O(O+

N ) by the
relations u2ij = uij . The coproduct factors through this and yields the compact quantum group structure.
The connection to classical permutation may seem loose from that de�nition, but one easily shows that if
cij : SN → C is the function sending a permutation σ to

(
δσ(i)j

)
ij
, then there is a surjective ∗-homomorphism

O(S+
N ) → O(SN ) sending uij to cij , and that O(SN ) is in fact the abelianization of O(S+

N ). Thus, S+
N is a

quantum version of SN somehow like O+
N is the quantum version of ON . Beyond this fact which motivated

the original de�nition, several connections between classical and quantum permutations have emerged which
strongly support the idea that S+

N is the correct generalization of SN . An example of particular interest from
the probabilistic point of view is the free De Finetti theorem of C. Köstler and R. Speicher [23].

The representation theory of S+
N is close to that of O+

N , with the di�erence that when multiplying two

characters (which are still indexed by the integers with χ0 = 1 and χ0 +χ1 =
∑N

i=1 uii), one gets the formula

χ1χn = χn+1 + χn + χn−1.

The corresponding orthogonal polynomials are then given by the restriction to [0, 4] of Qn(t) = P2n(
√
t),

yielding the free Poisson law Poiss+(1, 1) as spectral measure of χ1 under the Haar state. The associated
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dimensions of irreducible representations are dn = Qn(N). We are now going to study two examples of
processes on S+

N , one continuous and one discrete.

4.1. Brownian motion. The natural candidate for Brownian motion on S+
N can be constructed exactly as

in the case of O+
N . Indeed, U. Franz, A. Kula and A. Skalski proved in [20, Thm 10.10] a decomposition result

for central Lévy processes on S+
N involving as before a positive constant b and a Lévy measure ν. Setting

b = 1 and ν = 0 leads to a central Lévy process. We will again denote by (λn)n∈N the sequence determining
the process, which is in this case given by

λn =
Q′n(N)

Qn(N)
.

The previous arguments carry on almost verbatim to yield the cuto� phenomenon and one can once again
describe the cuto� pro�le as a distance between two free Meixner laws.

Theorem 4.1. The central Lévy process de�ned above exhibits a cuto� phenomenon at time N ln(N). More-

over, setting again tc = N ln(N) + cN , for every c ∈ R, we have

lim
N→+∞

‖ψtc − h‖ =

∥∥∥∥D√1+e−c (Meix+

(
1− e−c√
1 + e−c

,
−e−c

1 + e−c

))
∗ δe−c −Meix+(0, 1)

∥∥∥∥ .
Proof. As mentionned in Remark 3.17, the existence of the cuto� pro�le implies the existence of the cuto�
phenomenon, hence we will focus on the former. The proof proceeds as for Theorem 3.9 and involves similar
estimates. We will therefore focus on the features which di�er.

Assuming �rst c > 0 and setting

Gc(t) =
+∞∑
n=0

e−cnQn(t),

the cuto� pro�le equals
‖G2c(t)− 1‖1,

where the L1 norm is computed with respect to the spectral measure of χ1 with respect to the Haar state,
which is Poiss+(1, 1). Note that because P2n is an even function and P2n+1 an odd one,

G2c(t) =
+∞∑
n=0

e−2cnP2n(
√
t) =

Fc(
√
t) + Fc(−

√
t)

2
.

Setting β = e−c and γ = β/(1 + β2) as in Subsection 3.2, this leads to the formula

G2c(t) =
1

2(1 + β2)

(
1

1− γ
√
t

+
1

1 + γ
√
t

)
=

1

1 + β2
1

1− γ2t
.

Let us also set

η =
1−

√
1− 4γ2

2γ2
= 1 + β2.

Then, making the changes of variables u = t − η and v = u/
√
η, and observing that γ2 = (η − 1)η−2, the

density of G2c(t)d Poiss+(1, 1)(t) becomes

1

η

1

1− γ2t
1

2πt

√
4− (t− 2)21[0,4](t)dt

=
1

2πη

1

(1− γ2(u+ η))(u+ η)

√
4− (u− (2− η))21[−η,4−η](u)du

=
1

2πη

1

(1− (η − 1)η−2(v
√
η + η))(v

√
η + η)

√
4− (v

√
η − (2− η))21[−√η, 4√

η
−η](v)

√
ηdv

=
1

2π

1

1 + v(2− η)/
√
η + v2(1− η)/η

√
4/η − (v − (2− η)/

√
η)21[−√η, 4√

η
−η](v)dv.

Setting a = (2− η)/
√
η, and b = (1− η)/η, this is exactly the density of the standardised free Meixner law

with parameters a and b,

1

2π

√
4(1 + b)− (v − a)2

1 + av + bv2
1a−2

√
1+b,a+2

√
1+bdv.
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Thus, G2c(t)d Poiss+(1, 1)(t) is the density of the law

D√η

(
Meix+

(
2− η
√
η
,
1− η
η

))
∗ δη.

Writing Poiss+(1, 1) = Meix+(0, 1) ∗ δ1, applying ∗ δ−1 on both sides and replacing 2c by c now yields the
desired result.

Assume now that c < 0. Let us �rst mention that the free Meixner distribution in the statement then has
an atom given by the following formula :

(1− ec)δec√1+e−c .

Applying the dilation by a factor
√

1 + e−c and the translation by e−c changes the indices of the Dirac mass
into ec + 1 + e−c and translating again by 1 to turn Meix+(0, 1) into Poiss+(1, 1), we see that the atom of

the measures m
(N)
tc has to converge to ec + 2 + e−c = (ec/2 + e−c/2)2. The same argument as in Proposition

3.14 yields an explicit formula for the measure of the corresponding classical process at time tc and the proof
is done similarly. Note that by [10], the cumulants of Meix+(a, b) are polynomials in a and b, hence in our
case Laurent polynomials in e−c, so that the analogue of Lemma 3.12 holds. �

Here is an interpretation of this result inspired by the analogy with the classical permutation groups.
Indeed, the function giving the number of �xed points of a permutation is, in terms of the generators of
O(SN ), F =

∑
cii. Therefore, the elements χ1 =

∑
uii is the quantum version of the number of �xed points.

In particular, its law with respect to the Haar state, which is Poiss+(1, 1), can be considered as the ��xed
points law for quantum permutations�. As a consequence, the di�erence between Brownian motion and the
uniform measure on S+

N is asymptotically due to the fact that Brownian motion has �too many �xed points�.

4.2. Quantum random transpositions. We will conclude with a discrete example, namely the quantum
random transposition walk on the quantum permutation group. The reason for this is that the second-named
author recently computed the cuto� pro�le for the classical version of that walk, while nothing is known in
the quantum case.

Recall that if µtr is the uniform measure on the set of transpositions, then the classical random transpo-
sition walk has increment distribution

µ =
N − 1

N
µtr +

1

N
δe.

One of the �rst results in the theory of cuto� phenomenon was the proof by P. Diaconis and M. Shahshahani
in [17] that the random transposition walk exhibits a cuto� phenomenon at 1

2N ln(N) steps. The second
named author proved in [34] that the cuto� pro�le has the following form : for any c ∈ R,

dTV

(
µ∗

1
2
(N ln(N)+cN), h

)
−−−−→
N→∞

dTV

(
Poiss

(
1 + e−c

)
,Poiss(1)

)
.

Note that Poiss(1) is the asymptotic law of the number of �xed points of a uniformly distributed permutation,
which is the same as the law of the trace of a permutation matrix under the Haar measure, i.e. the law of
χ1 + χ0 = χ1 + 1.

The δe-part in the de�nition of µ appears in a natural way. If we had decided to work with the pure

random transposition walk, working with the transition law µtr instead of µ, we would have had periodicity
issues, as the signature would alternate from 1 to −1. Including an extra δe-part (sometimes refered to as
the �laziness� of the walk) in the de�nition of µ is the way used by P. Diaconis and M. Shahshahani to rule
out this problem. Note that in this case it is very natural to have a coe�cient 1/N if one thinks of the
random walk as a card shu�e : spread a deck of N cards on a table and then choose two cards uniformly at
random and swap them if they are di�erent. The probability that the same card has been selected twice is
then exactly 1/N .

On the quantum side, there is a natural analogue of µtr introduced in [22] and denoted by ϕtr. This is a
central state given on the characters by

ϕtr(χn) = Qn(N − 2),

where Qn(N) = P2n(
√
N) as in the previous subsection. We may then consider the quantum analogue of µ,

the walk given by

ϕ =
N − 1

N
ϕtr +

1

N
ε,
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where ε is the unique state on O(S+
N ) such that ε(uij) = δij and hence ϕ is a well-de�ned state in the

Fourier-Stieltjes algebra C(O+
N )∗.

It was proven in [22] that the random walk on S+
N corresponding to ϕtr exhibits a cuto� phenomenon

(with the same caveat as in Remark 3.2), and that there is no periodicity issue, unlike for the classical walk.
Consequently, in the quantum setting we can also naturally work with the pure random walk without extra
laziness. As for the quantum lazy random walk associated with ϕ, the study of cuto� phenomenon becomes
more delicate and was left as an open problem in [22]. In this subsection we will show that the two random
walks are asymptotically identical and hence have the same cuto� pro�le, which we will then compute.

For notational simplicity, we write for a state ψ on O(S+
N )

ψ(n) =
1

dn
ψ(χn).

It is well-known and easy to see from de�nition that ψ∗k(n) = ψ(n)k for all k ∈ N. Lemma 2.8 still holds if
we replace ψt by ψ

∗k and d−1n ψt(χn) = e−tλn by ψ(n)k.

4.2.1. The pure walk. We start by revisiting the work of [22] concerning the pure quantum transposition
walk. There, the upper bound of cuto� phenomenon was shown to happen at time N ln(N)/2, while the
lower bound can be deduced from these computations and the methods used in the proof of Theorem 3.1.

It is therefore natural to wonder whether the same strategy as in the orthogonal case can also yield the
cuto� pro�le. The answer turns out to be yes, but requires a �ne estimate on ϕtr(n), in the same spirit as
the a�ne approximation of λn in Lemma 3.5.

Lemma 4.2. There exist aN , bN < 0 depending only on N and a function cN of n such that for all n > 0,

ϕtr(n) = eaNn+bN+cN (n).

Moreover, 0 > cN (n) > −2q(
√
N − 2)4n+2.

Proof. First, set for this proof q = q(
√
N) and p = q(

√
N − 2), and recall that

ϕtr(n) =
Qn(N − 2)

Qn(N)
=
P2n(
√
N − 2)

P2n(
√
N)

=
p−(2n+1) − p2n+1

p−1 − p

(
q−(2n+1) − q2n+1

q−1 − q

)−1
.

Factoring, we obtain

ϕtr(n) =
p−(2n+1) − p2n+1

q−(2n+1) − q2n+1

q−1 − q
p−1 − p

=

(
p

q

)−(2n+1) q−1 − q
p−1 − p

1− p4n+2

1− q4n+2
=

(
q

p

)2n 1− q2

1− p2
1− p4n+2

1− q4n+2
,

so that setting aN = 2 ln(q/p), bN = ln
(
1−q2
1−p2

)
and cN (n) = ln

(
1−p4n+2

1−q4n+2

)
yields the �rst part of the

statement. As p > q, we have that bN 6 0 and cN (n) 6 0.
Let us now prove the lower bound on cN (n). Using that for x < 1, ln(1− x) 6 −x and for 0 6 x 6 1/2,

ln(1− x) > −2 ln(2)x, we have

cN (n) = ln
(
1− p4n+2

)
− ln

(
1− q4n+2

)
> −2 ln(2)p4n+2 + q4n+2 ≥ −2p4n+2.

�

We can now compute the measure of the classical process to prove the convergence of the complete pro�le,
de�ned through the formula ∫ N

0
Qn(x)dm

(N)
k (x) = ϕ(n)kQn(N).

Because of Lemma 4.2, it is natural to look for an Ñ(k) such that Qn(Ñ(k)) ≈ ϕ∗ktr (n)Qn(N), which leads
heuristically to

Ñ(k) =
(
e−kaN/2q + ekaN/2q−1

)2
Theorem 4.3. Set

α(k) = e−aNk/2+bNk
eaNk/2q−1 − e−aNk/2q

q−1 − q
.
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Then, for any c < 0, and N large enough, setting kc = d(N ln(N) + cN)/2e,

m
(N)
kc

= α(kc)δÑ(kc)
+

+∞∑
n=0

[
ϕ∗kctr (n)Qn(N)−Qn(Ñ(kc))

]
Qnd Poiss+(1, 1).

Moreover, for all c ∈ R,

(3)
∥∥∥ϕ∗kctr − h

∥∥∥ −→
N→+∞

∥∥∥∥D√1+e−c (Meix+

(
1− e−c√
1 + e−c

,
−e−c

1 + e−c

))
∗ δe−c −Meix+(0, 1)

∥∥∥∥
TV

.

Proof. We start by proving (3) for c > 0. This follows from the same argument as in Proposition 3.10 using
the following computations : by Proposition 2.10, we have for every �xed n ≥ 1, as N →∞,

Qn(N) = P2n(
√
N) = Nn

(
1− 1

N
+O

(
1

N2

))2n−1

and

ϕtr(n) =
Qn(N − 2)

Qn(N)
=

(
1− 2

N

)n(1− 1
N−2 +O

(
1
N2

)
1− 1

N +O
(

1
N2

) )2n−1

=

(
1− 2

N

)n(
1 +O

(
1

N2

))2n−1

where we recall that ϕtr(n) = d−1n ϕtr(χn). For c ∈ R �xed and kc = d(N ln(N) + cN)/2e, we have(
1− 2

N

)nkc
= exp

(
n

⌈
1

2
(N ln(N) + cN)

⌉(
− 2

N
+O

(
1

N2

)))
= exp

(
n

(
− ln(N)− c+O

(
ln(N)

N

)))
=
e−n(c+o(1))

Nn
.

It follows that

dnϕtr(n)kc = Nneno(1)
e−n(c+o(1))

Nn
= e−n(c+o(1)) −→

N→+∞
e−nc.

Moreover, forN large enough we have c+o(1) > c/2 > 0, hence we have a uniform bound dnϕtr(n)kc 6 e−nc/2,
which is summable with respect to n and enables us to conclude when c > 0.

We now assume, until the end of the proof, that c < 0. Let us set q = q(
√
N) and omit the N indices for

aN , bN , cN (n) for convenience. Then,

(q−1 − q)α(k)Qn(Ñ(k)) = e−ak/2+bk
(
ea(2n+1)k/2q−(2n+1) − e−a(2n+1)k/2q2n+1

)
= eank+bkq−(2n+1) − e−a(n+1)k+bkq2n+1

= (q−1 − q)eank+bkQn(N) + eank+bkq2n+1 − e−a(n+1)k+bkq2n+1

= (q−1 − q)ϕtr(n)ke−c(n)kQn(N) + ebk
(
eank − e−a(n+1)k

)
q2n+1,

so that∣∣∣ϕ∗ktr (n)Qn(N)− α(k)Qn(Ñ(k))
∣∣∣ 6 ∣∣∣1− e−c(n)k∣∣∣ϕtr(n)kQn(N) +

ebkq−1

q−1 − q

∣∣∣eank − e−a(n+1)k
∣∣∣ q2n+2.

Let us now bound both terms for k = kc :

• For the �rst term we use the fact that ϕtr(n)kQn(N) = O(e−cn) together with∣∣∣1− e−c(n)k∣∣∣ 6 2|c(n)|k 6 4kq
(√

N − 2
)4n+2

.

• As for the second term, the fraction involving b in front of the absolute value does not depend on n,
hence has no impact on the summability, while a < 0 for N large enough so that we can bound the
rest by

e−a(n+1)kq2n+2 =

(
e
ln(N)+c+o

(
ln(N)
N

)
q2
)n+1

=

(
e
c+o

(
ln(N)
N

)
(1 +O (1/N))

)n+1

.
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For N large enough, the term in parenthesis is bounded by ec/2, hence the whole thing is summable
with respect to n.

The proof is now concluded as in the proof of Proposition 3.14 to obtain the measure and the convergence of
the pro�le for c < 0. Note that α(k) converges to 1− ec, which is the mass of the discrete part of the limit,

and that Ñ(k) converges to
(
ec/2 + e−c/2

)2
.

Remark that the case c = 0, which was not treated above, follows from the monotonicity of the distance
proven in Lemma 2.6 and the continuity of the pro�le at 0. �

4.2.2. The lazy walk. We now turn to the lazy random walk associated with the state

ϕ =
N − 1

N
ϕtr +

1

N
ε.

As mentioned previously, the study of the corresponding cuto� phenomenon is subtler. Indeed, as pointed
out in [22], the states ϕ∗k never admit L2-densities and hence the previous method based on Lemma 2.8 for
c > 0 does not work any more. Our idea in the present work will be to approximate the lazy random walk
by the pure one by mimicking an alternative classical way of avoiding periodicity for Markov chains, which
was used for example to study the cuto� for k-cycles by Berestycki, Schramm and Zeitouni [7]. It consists in
working in continuous time and considering a clock which rings at a random time given by an exponential
law of parameter one. Each time the clock rings, we make one step, and reset the clock. Note that the
standard deviation of a sum of order N ln(N) independent variables of law Exp(1) is of the order

√
N ln(N),

which is negligible when compared to N , the size of the cuto� window, so it doesn't change the cuto� pro�le
at all. A similar comment can be made about adding extra laziness as long as the laziness coe�cient is not
too large.

As the next result will show, one can transfer this idea to the quantum setting and the result is formally
equivalent to adding laziness. Moreover, it leads to a simple proof of the cuto� phenomenon.

Theorem 4.4. The random walk associated to ϕ = N−1
N ϕtr+ 1

N ε exhibits a cuto� phenomenon at N ln(N)/2
steps in Fourier-Stieltjes norm. Moreover, the associated cuto� pro�le is given, for every c ∈ R, by

lim
N→+∞

∥∥∥ϕ∗d 12 (N ln(N)+cN)e − h
∥∥∥ =

∥∥∥∥D√1+e−c (Meix+

(
1− e−c√
1 + e−c

,
−e−c

1 + e−c

))
∗ δe−c −Meix+(0, 1)

∥∥∥∥
TV

.

Proof. As explained in Remark 3.17, it su�ces to prove the cuto� pro�le. For each j ∈ N, we denote by
Xj a random variable following the binomial distribution of parameters j and p = 1 − 1/N . Then for any
j ∈ N, we have

E
(
ϕ
∗Xj
tr

)
=

j∑
k=0

(
j

k

)(
N − 1

N

)k ( 1

N

)n−k
ϕ∗ktr = ϕ∗j ,

where we make the convention that ϕ∗0tr = ε. Write kc =
⌈
1
2(N ln(N) + cN)

⌉
. We have∥∥∥E(ϕ∗Xkctr

)
− ϕ∗kctr

∥∥∥
FS

=
∥∥∥E(ϕ∗Xkctr − ϕ∗kctr

)∥∥∥
FS
6 E

∥∥∥ϕ∗Xkctr − ϕ∗kctr

∥∥∥
FS

.

Note that E (Xkc) = pkc = kc +O(ln(N)), so that by the Markov inequality,

P
(
|Xkc − kc| <

√
N
)
−−−−→
N→∞

1.

Using this together with the dominated convergence theorem yields

lim
N→+∞

∥∥∥E(ϕ∗Xkctr

)
− ϕ∗kctr

∥∥∥
FS
6 lim

N→+∞
E
(
1|Xkc−kc|<

√
N

∥∥∥ϕ∗Xkctr − ϕ∗kctr

∥∥∥
FS

)
= E

(
lim

N→+∞
1|Xkc−kc|<

√
N

∥∥∥ϕ∗Xkctr − ϕ∗kctr

∥∥∥
FS

)
.

Let us �rst assume c > 0. The proof of Theorem 4.3 shows that for any sequence kN = kc+o(N), we have

dnϕtr(n)kN = e−n(c+o(1))
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as N → +∞, and moreover dnϕtr(n)kN −−−−→
N→∞

e−nc and dnϕtr(n)kN 6 e−nc/2 for N large enough. In

particular, applying the same strategy of exchange of sum and limit as in the proof of Proposition 3.14, we
have ∥∥∥ϕ∗kNtr − ϕ∗kctr

∥∥∥
FS
−−−−→
N→∞

0.

Together with the previous estimates, this yields

lim
N→+∞

∥∥∥ϕ∗kc − ϕ∗kctr

∥∥∥
FS
6 E

(
lim

N→+∞
1|Xkc−kc|<

√
N

∥∥∥ϕ∗Xkctr − ϕ∗kctr

∥∥∥
FS

)
= 0.

and the result follows from Theorem 4.3.
Now assume c < 0 and consider the measures m

(N)
k associated with the pure random walk which were

de�ned just before Theorem 4.3. Note that for any k ∈ N, E
(
m

(N)
Xk

)
is a bounded measure on [0, N ] such

that ∥∥∥ϕ∗k − h∥∥∥ =
∥∥∥E(m(N)

Xk

)
− Poiss+(1, 1)

∥∥∥
TV

.

Note also that∥∥∥1[0,4] (E(m(N)
Xkc

)
−m(N)

kc

)∥∥∥
TV

=
∥∥∥E(1[0,4] (m(N)

Xkc
−m(N)

kc

))∥∥∥
TV
6 E

∥∥∥1[0,4] (m(N)
Xkc
−m(N)

kc

)∥∥∥
TV

The same argument as for the case c > 0 yields that the right hand side tends to 0. So together with Theorem
4.3, we deduce that

lim
N→+∞

∥∥∥1[0,4] (E(m(N)
Xkc

)
− Poiss+(1, 1)

)∥∥∥
TV

= lim
N→+∞

∥∥∥1[0,4] (m(N)
kc
− Poiss+(1, 1)

)∥∥∥
TV

.

On the other hand, using again Theorem 4.3, we see that∥∥∥1R\[0,4] (E(m(N)
Xkc

)
− Poiss+(1, 1)

)∥∥∥
TV

=
∥∥∥1R\[0,4]E(m(N)

Xkc

)∥∥∥
TV

=
∥∥∥E(α(Xkc)δÑ(Xkc )

)∥∥∥
TV

=

∥∥∥∥∥∑
i∈N

P(Xkc = i)α(i)δ
Ñ(i)

∥∥∥∥∥
TV

=
∑
i∈N

P(Xkc = i)α(i)

= E (α(Xkc)) ,

which tends to the mass of the discrete part of the free Meixner law in the desired pro�le. The proof is now
concluded as in the proof of Theorem 4.3. �
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