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We consider the sequence of powers of a positive denite function on a discrete group. Taking inspiration from random walks on compact quantum groups, we give several examples of situations where a cut-o phenomenon occurs for this sequence, including free groups and innite Coxeter groups. We also give examples of absence of cut-o using free groups again.
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Introduction

Positive denite functions have been at the heart of the development of harmonic analysis on locally compact groups since its beginning (see for instance [START_REF] Godement | Les fonctions de type positif et la théorie des groupes[END_REF] and [START_REF] Eymard | L'algèbre de Fourier d'un groupe localement compact[END_REF]) and are still central in many works on this topic. They are connected to the fundamental notions of amenability, Property (T) and more generally to representation theory and the cohomology of ane isometric actions. In the present paper, we will consider an elementary problem involving these functions. Let Γ be a discrete group and let ϕ : Γ → C be a normalized positive denite function (see Denition 2.1). Under mild hypothesis (see Proposition 3.2), the sequence (ϕ k ) k∈N converges point-wise to a normalized positive denite function and we want to know how fast the convergence is.

If Γ is abelian, normalized positive denite functions ϕ correspond to probability measures µ ϕ on the Pontryagin dual Γ and under this identication, ϕ k corresponds to the k-th convolution power of µ ϕ : µ * k ϕ = µ ϕ k . In other words, the problem is equivalent to the study of a random walk on the dual of Γ. It is well-known since the founding works of P.

Diaconis and his coauthors (see for instance the survey [START_REF] Diaconis | The cuto phenomenon in nite Markov chains[END_REF]) that such random walks can exhibit a so-called cut-o phenomenon : for a number of steps, µ * k ϕ stays at distance almost one from the limiting measure, and then it suddenly converges exponentially fast to it. If Γ is not assumed to be abelian anymore, we can still think of our problem as a random walk on the dual compact quantum group Γ and ask whether a cut-o phenomenon occurs. -δ e = 0

One crucial point in the previous denition is that the cut-o phenomenon involves an innite family of groups. This means that we will have to build families of discrete groups with positive denite functions on them in as natural a way as possible.

Let us now outline the contents of this work. After shortly recalling some preliminary facts in Section 2, we give in Section 3 several general results concerning our problem. In particular, we give conditions for convergence to the canonical trace and absolute continuity.

We also gather several computations which will be used to produce examples of cut-o.

These examples are detailed in Section 4. They mainly rely on constructions of 1-cocycles and include free products (Proposition 4.6) and innite Coxeter groups (Theorem 4.4). We end in Section 5 with an example where there is no cut-o phenomenon, in the sense that the exponential convergence occurs from the rst step on for N large enough.

Preliminaries

Even though our motivation comes from random walks on compact quantum groups, we focus in the present work on the case of duals of discrete groups, for which everything can be written in a classical way through operator algebras. Here is a list of the notions needed (the reader may refer for instance to [START_REF] Bekka | Kazhdan's property (T)[END_REF]Sec F.4] for basics concerning operator algebras associated to discrete groups) :

• The Hopf- * -algebra associated to Γ is the group algebra C[Γ] together with the coproduct given by ∆(g) = g ⊗ g for all g ∈ Γ,

• The corresponding maximal C*-algebra C( Γ) is the full C*-algebra C * (Γ) of Γ,
• The Haar state is the canonical trace δ e , the Dirac mass at the neutral element.

• The GNS construction (see for instance [START_REF] Bekka | Kazhdan's property (T)[END_REF]Thm C.1.4]) with respect to δ e (which is faithful) yields the left regular representation of Γ on 2 (Γ), which in turn provides an embedding of C[Γ] into the group von Neumann algebra L(Γ).

A probability measure on Γ is simply understood as a state on C[Γ] and it is well-known that these admit a group-theoretic description thanks to the notion of positive denite function.

Denition 2.1. A function ϕ : Γ → C is said to be positive denite if for any integer n, any family (c i ) 1 i n of complex numbers and any g

1 , • • • , g n ∈ Γ, n i,j=1 c i c j ϕ(g i g -1 j ) 0.
xed. Classically, it is convergence in total variation distance which is mostly used. A natural choice could therefore by the norm . L(Γ) * as linear maps on the von Neumann algebra L(Γ), which coincides up to a factor one half with the classical notion in the abelian case. However, this requires the state to be dened on L(Γ), and this is not automatic (see Proposition 3.5). Even worse, we will see in our examples that ϕ k often becomes bounded precisely when the cut-o phenomenon occurs.

A better choice is to consider the norm • C * (Γ) * as linear forms in the full C*-algebra of Γ. Indeed, the universal property of C * (Γ) ensures that any positive denite function on Γ has a unique bounded extension to C * (Γ), so that this is always well-dened. Note nevertheless that as soon as a state ϕ on C[Γ] is bounded on L(Γ), then ϕ L(Γ) * = ϕ C * (Γ) * . Because, as already mentionned, the total variation distance on a von Neumann algebra is one half of the norm, we will from now one lighten notations by setting

• = 1 2 • C * (Γ) * .
The main tool for proving upper bounds is then the following Upper Bound Lemma, the proof of which uses the notion of an L 1 -density with respect to δ e that we now explain. The formula x 1 = δ e (|x|), where |x| is dened through functional calculus, denes a norm on L(Γ), and the corresponding completion is denoted by L 1 ( Γ). A state ϕ is said to have an L 1 -density with respect to δ e if there exists a ϕ ∈ L 1 ( Γ) such that for all x ∈ L(Γ),

ϕ(x) = δ e (a ϕ x).
This is the analogue of the probability measure on Γ having an L Proof. If the sum on the right-hand side diverges, then the statement is true. If it converges, then the sum a ϕ = g∈Γ ϕ(g -1 )g converges in 2 (Γ) and satises, for any g ∈ Γ, ϕ(g) = δ e (a ϕ g).

Taking linear combinations then shows that the equality holds for any element in C[Γ] and observing that x 1 x 2 for any x ∈ C[Γ], we see that the sum dening a ϕ also converges in L 1 ( Γ). Summing up, we have proven that ϕ has an L 1 -density a ϕ with respect to δ e . In particular, ϕ is bounded on L(Γ) and using the fact that the norm of a state on L(Γ) is twice the L 1 -norm of the density, we eventually have

ϕ -δ e 2 = 1 4 a ϕ -1 2 1 1 4 a ϕ -1 2 2 = 1 4 g =e |ϕ(g)| 2 .
In the sequel we will restrict to discrete groups which are nitely generated and growth considerations will come into the picture so that we recall some elementary facts. If S denotes a symmetric generating set not containing the neutral element e, the corresponding word length is dened by

|g| S = min{k ∈ N | g ∈ S k }.
Denoting by B(i) the corresponding ball of radius i, it follows from submultiplicativity that the sequence |B(i)| 1/i converges to a limite denoted by ω(S). If this number is 1, then the group has subexponential growth while it is said to have exponential growth otherwise. If we denote by S(i) the sphere of radius i for this metric and by s i its cardinality, it is easy to see that the sequence s 1/i i also converges to ω(S). Moreover,

s i |S|(|S| -1) i-1 .
Note that equality for all i holds if and only if the group Γ is free on S.

General results

In this section we give some general results concerning the powers of a xed positive denite function on a discrete group Γ. We discuss in particular simple convergence as well as estimates which will be needed to prove cut-o phenomena in the examples of Section 4. 

strict if |ϕ(g)| < 1 for all g = e.
It is clear that simple convergence to δ e is equivalent to the initial function being strict. A typical example of a non-strict positive denite function is the counit ε : Γ → C sending each g to 1. More generally, any character (i.e. one-dimensional representation) of Γ is not strict. The next result says that this is basically the only obstruction. Proposition 3.2. Let Γ be a discrete group and let ϕ : Γ → C be a normalized positive denite function. The following are equivalent :

(1) ϕ is not strict, (2) ϕ coincides with a character on a non-trivial subgroup Λ ⊂ Γ, (3) ϕ is bimodular with respect to a non-trivial subgroup Λ ⊂ Γ in the sense that for any h ∈ Λ and g ∈ Γ,

ϕ(gh) = ϕ(g)ϕ(h) = ϕ(hg).
Proof.

(1) ⇒ (2) : Assume that ϕ is not strict and set

Λ = {h ∈ Γ | |ϕ(h)| = 1}.
The GNS construction provides a unitary representation π : Γ → B(H) on a Hilbert space H and a unit vector ξ ∈ H such that for all g ∈ Γ, ϕ(g) = π(g)ξ, ξ . For h ∈ Λ, the Cauchy-Schwarz inequality being an equality, π(h)ξ is colinear to ξ, hence π(h)ξ = ϕ(h)ξ.

Thus, for any g ∈ Γ,

|ϕ(gh)| = | π(gh)ξ, ξ | = |ϕ(h) π(g)ξ, ξ | = |ϕ(g)|.
As a rst consequence, Λ is stable under multiplication. Since moreover ϕ(g -1 ) = ϕ(g) for any g ∈ Γ, we conclude that Λ is a subgroup. Moreover, ϕ : Λ → C is a character and for any h ∈ Λ and g ∈ Γ, ϕ(gh) = ϕ(g)ϕ(h) = ϕ(hg).

(2) ⇒ (3) : Considering again the GNS representation of ϕ, the assertion is equivalent to the fact that Cξ is globally invariant under the action of Λ, from which the bimodularity follows.

(3) ⇒ (1) : If ϕ is Λ-bimodular, then for any h ∈ Λ we have

|ϕ(h)| 2 = ϕ(h)ϕ(h) = ϕ(h -1 )ϕ(h) = ϕ(e) = 1
so that ϕ is not strict. Remark 3.3. If Γ is abelian, then there exists a probability measure µ ϕ on the dual compact abelian group Γ such that for all g ∈ Γ,

ϕ(g) = Γ χ(g)dµ ϕ (χ).
The second condition in Proposition 3.2 yields a character η ∈ Λ such that ϕ |Λ = η, hence for any h ∈ Λ,

Γ (η -1 χ)(h)dµ ϕ (χ) = 1.
This implies that the support of µ is contained in ηΛ ⊥ , where

Λ ⊥ = {χ ∈ Γ | Λ ⊂ ker(χ)}
is the annihilator of Λ. Since any subgroup is normal in the abelian case, we recover the classical criterion.

3.2. Absolute continuity. As we have seen in the proof, Lemma 2.2 is useful only when ϕ has an L 1 -density with respect to δ e , which by [20, Thm V.2.18] is equivalent to the fact that ϕ extends to a normal linear map on L(Γ). Moreover, as the proof of Lemma 2.2 shows, it is more practical to consider L 2 -densities, since this reduces the problem to the convergence of series in 2 (Γ). The latter problem naturally involves the rate of decay of ϕ and to make this more precise we introduce the following quantities :

ϕ + (i) = -inf g∈S(i) ln(|ϕ(g)|) and ϕ -(i) = -sup g∈S(i)

ln(|ϕ(g)|).

The denition may seem unnatural but is designed to t with growth conditions for cocycles, which will be our main source of examples in Section 4. Proposition 3.4. Let Γ be a discrete group and let S be a nite symmetric generating set.

Then,

• If

lim inf i ϕ -(i) i > ln(ω(S)) 2k , then ϕ k has an L 2 -density, hence also an L 1 -density, with respect to δ e , • If lim inf i ϕ + (i) i < ln(ω(S)) 2k
, then ϕ k has no L 2 -density with respect to δ e . Proof. We start from the straightforward inequalities

+∞ i=0 s i e -2kϕ + (i) g∈Γ |ϕ(g)| 2k +∞ i=0 s i e -2kϕ -(i) .
For the right-hand side, the Cauchy radical test gives a sucient condition for convergence, namely

lim sup i s 1/i i e -2kϕ -(i)/i < 1.
Because s 1/i i converges to ω(S), this gives the rst part of the statement. On the other hand, if the series in the middle converges, then so does the one on the left-hand side and using the Cauchy radical test again yields the second part of the statement. Proposition 3.4 settles the problem of the existence of L 2 -densities, which is what we need in order to apply Lemma 2.2. However, it can be that a state ϕ has an L 1 -density without having an L 2 -density. We will now give a criterion for absolute continuity for some particular class of groups. The idea will be to show that ϕ k is not bounded on L(Γ) if k is too small by evaluating it on suitable test functions. If a length function on Γ is xed, the natural candidates are the elements

χ i = g∈S(i) g.
Doing this requires a control on the norm of these elements in L(Γ) in terms of the sizes of the spheres and such a control is given by the Property of Rapid Decay [START_REF] Jolissaint | Rapidly decreasing functions in reduced C*-algebras of groups[END_REF]. We however need an extra positivity assumption on ϕ.

Proposition 3.5. Let Γ be a discrete group of exponential growth with the Property of Rapid Decay and let ϕ be a positive denite function on Γ taking only positive values. Then, ϕ k extends to a bounded normal functional on L(Γ) only if

lim inf i ϕ + (i) i ln(ω(S)) 2k .
Proof. The Property of Rapid Decay provides a polynomial P such that for any element

x ∈ S(i), x ∞ P (i) x 2 . Thus, since χ i 2 = √ s i , |ϕ k (χ i )| χ i ∞ 1 P (i) e ln(s i ) 2 -kϕ + (i) .
If the left-hand side is bounded, then there exists C > 0 such that for i large enough

ln(s i ) 2 -kϕ + i C. Then, k ϕ + (i) i ln(s i ) 2i - C i .
and because Γ is assumed to have exponential growth, the result follows.

Recall that an amenable group has the Property of Rapid Decay if and only if it has polynomial growth by [START_REF] Jolissaint | Rapidly decreasing functions in reduced C*-algebras of groups[END_REF]Cor 3.1.8]. The previous proposition is therefore useful only for non-amenable groups.

3.3. Estimates. In view of the results of the previous section, in order to be able to use Lemma 2.2 we need to make an assumption on the rate of decay of ϕ. Proposition 3.4 suggests the condition lim inf i ϕ + (i)/i > 0 but we will need a stronger one : Denition 3.6. Let Γ be a discrete group and let ϕ be a positive denite function on Γ. It is said to have exponential decay if there exists α > 0 and a nite symmetric generating set S such that for all g ∈ Γ, |ϕ(g)| e -α|g| S .

Having exponential decay is independent from the choice of a nite symmetric generating set S.

Remark 3.7. One may expect a bound of the form C 0 e -α|g| S in the above denition, but if we moreover assume that ϕ is strict then this is equivalent to our denition. Indeed, there exists n 0 and α > 0 such that for |g| S > n 0 , C 0 e -α|g| S e -α |g| S . Moreover, because ϕ is strict,

α = inf g∈B(n 0 )\{e} -ln(|ϕ(g)|) |g| S > 0 
and setting α = min(α , α ) yields the result. We are therefore including strictness in the denition of exponential decay.

By denition, α is less than lim inf i ϕ -(i)/i so that the latter is the best potential decay rate, and since it depends on S, we will denote it by α(S). With this in hand, we can give a general upper bound statement. The condition for the existence of an L 2 -density suggests that the threshold for exponential convergence should be ln(ω(S))/2α(S). However, because ω(S) is an inmum we cannot use it to bound the series appearing in Lemma 2.2. We will therefore have to take some room and use ln(|S| -1)/2α(S) instead. Proposition 3.8. Let Γ be a discrete group with nite symmetric generating set S and let ϕ : Γ → C be a positive denite function with exponential decay. Then, for any c > 0 and

k ln(|S| -1)/2α(S) + c, ϕ k -δ e e -α(S)c √ 2 -2e -α(S)c .
Proof. Lemma 2.2 yields (S) . To establish a cut-o phenomenon, it is necessary to have both an upper and a lower bound. Usually, the hard work concerns the upper bound but in our setting we will see that one needs specic arguments involving the particular form of the positive denite functions to prove lower bounds. For the moment we will nevertheless give a general lower bound which only requires ϕ to take positive values (which will always be the case in our examples), but which uses the norm on the von Neumann algebra L(Γ) (see below for comments concerning this).

ϕ k -δ e 2 1 4 g =e |ϕ(g)| 2k 1 4 +∞ i=1 s i e -2kα(S)i +∞ i=1 |S| 4 (|S| -1) i-1 e -2kα(S)i = |S| 4 e -2kα(S) 1 1 -(|S| -1)e -2kα
Recall that any nite generating set S of cardinality n gives rise to a quotient map p : F n → Γ. Let r i be the number of reduced words in ker(p) of length i. By [5, Prop 1], r 1/i i converges (once vanishing terms are removed) to a number γ(S) called the cogrowth rate of S. Proposition 3.9. Let Γ be a discrete group with a nite generating set S and let ϕ be a positive denite function on Γ such that ϕ(g) 0 for all g ∈ S. Then, for any c > 0 and k ln(|S| -1)/2ϕ + (1) -c such that ϕ k has a bounded extension to L(Γ),

ϕ k -δ e 1 -4 3 + γ(S) 2 |S| e -2ϕ + (1)c .
Proof. It is easy to prove (see for instance [START_REF] Freslon | Cut-o phenomenon for random walks on free orthogonal quantum groups[END_REF]Lem 2.6]) that the norm ϕ k -δ e L(Γ) * is equal to the supremum of |ϕ k (p) -δ e (p)| over all projections p ∈ L(Γ). Thus, the lower bound will be obtained by evaluating at a suitably chosen spectral projection p of χ 1 . Choosing the projection rst requires some estimates.

According to [5, Thm 3], χ 1 ∞ = γ(S) + (|S| -1)/γ(S). This only makes sense for groups which are not free on S, but the formula can be extended to the latter case by setting γ(S) = |S| -1 instead of 1. Since χ 1 is self-adjoint, it follows from this that var ϕ (χ 1 ) γ(S)

+ |S| γ(S) 2 ,
where var ϕ (χ 1 ) denote the variance of χ 1 under ϕ, that is to say

var ϕ (χ 1 ) = ϕ(χ 2 1 ) -ϕ(χ 1 ) 2 .
On the other hand, with our assumption we have the estimate 1) .

ϕ(χ 1 ) = g∈S ϕ(g) |S|e -kϕ + (
The lower bound can be obtained from this using the same arguments as in [START_REF] Freslon | Cut-o phenomenon for random walks on free orthogonal quantum groups[END_REF]Prop 3.15]. Namely, set η = |S|e -kϕ + (1) and let us view χ 1 as a classical random variable in the algebra L ∞ (Sp(χ 1 )) which it generates inside L(Γ). On the one hand, if |χ 1 | η/2 then |χ 1 -ϕ(χ 1 )| η/2 and the probability, with respect to ϕ, of this event can be bounded by the Chebyshev inequality. On the other hand, the probability, with respect to δ e , that |χ 1 | η/2 is one minus the probability that |χ 1 | > η/2 and the latter can also be bounded using the Chebyshev inequality. Putting things together yields

ϕ * k -δ e 1 - 4 |S| 2 γ(S) + |S| γ(S) 2 e 2kϕ + (1) - 4 |S| e 2kϕ + (1)
1 -4 γ(S)

|S| + |S| γ(S) 2 e -2ϕ + (1)c -4e -2ϕ + (1)c
and the result follows from the fact that γ(S)

|S| (see [START_REF] Cohen | Cogrowth and amenability of discrete groups[END_REF]Thm 1]).

That statement has two practical issues. The rst one is that there is no reason in general that ϕ k will have a bounded extension to L(Γ) for such k. At least, Proposition 3.4 ensures that this will work for c ln(|S| -1) 2 lim inf ϕ -(i)/i -ln(ω(S)) 2ϕ + (1) .

However, when considering a sequence of groups, that quantity may go to 0.

The second issue is that the lower bound involves a term depending on the size of S. In order to convert this into a cut-o statement, we would need to nd families of groups Γ N with generating sets S N such that we have a uniform bound on γ(S N ) 2 /|S N |. In a sense, this means that they are close to free groups. Note however that it is shown in [START_REF] Ollivier | Cogrowth and spectral gap of generic groups[END_REF] that for any > 0, groups with a nite generating set S such that γ(S)

|S| + are generic in the sense of random groups.

Because of these two reasons, we will proceed dierently to prove the lower bound in concrete examples, taking advantage of the peculiarities of the positive denite functions under consideration.

Examples

In this section we will give explicit examples of cut-o phenomena using states coming from 1-cocycles. An elementary calculation (see for instance [2, Ex C.2.2.ii]) shows that for any group Γ, the map g → e -b(g) 2 is positive denite as soon as b is a 1-cocycle in the following sense :

For the variance, note that because a product of two elements of S N has length two unless the elements are inverse to one another (by minimality of S N ), we have

χ 2 1 = |S N |e + (|S N | 2 -|S N |)χ 2 .
Thus,

var ϕ k b N (χ 1 ) |S N | + (|S N | 2 -|S N |)e -2k -|S N | 2 e -2k = |S N |(1 -e -2k
).

Let us now consider the C*-algebra generated by χ 1 in C * (Γ N ). It is commutative because χ 1 is self-adjoint, hence by Gelfand duality it is isomorphic to C(K), where the compact space K ⊂ R is teh spectrum of χ 1 . Let us set η = |S N |e -k and consider the spectral projection of χ 1 in L ∞ (K) corresponding to the interval [0, η/2]. Borel functional calculus asserts that there exists a Borel subset B ⊂ K such that p is the indicator function of B. Moreover, ϕ k and δ e both induce by the Riesz representation theorem Borel probability measures, say µ and ν, on K whose total variation distance equals their distance as states on C(K). The Chebyshev inequality applied to µ yields µ(B) = P (|χ 1 | η/2)

P (|E µ (χ 1 ) -χ 1 | η/2) 4 var ϕ (χ 1 ) η 2 = 4 |S N |(1 -e -2k ) |S N | 2 e -2k 4e -2c .
Furthermore, using δ e (χ 1 ) = 0 and δ e (χ 2 1 ) = |S N |, we have

ν(B) = 1 -ν(K \ B) 1 -4 |S N | η 2 1 -4e -2c .
We can now conclude that

ϕ k -δ e ϕ k |C(K) -δ e|C(K) = µ -ν T V ν(B) -µ(B) 1 -8e -2c .
Remark 4.5. The argument above is in fact more general : for any group Γ with a minimal symmetric generating set S and a positive denite function ϕ, if ϕ -(2) 2ϕ + (1) then for any c > 0 and k ln(|S| -1)/2ϕ + (1) -c,

ϕ k -h 1 -8e -2ϕ + (1)c .
Here are two families of examples one can build from this :

• For N ∈ N, let Γ N = F N be the free group on N generators and take for S N the canonical generators and their inverses. By [15, Lem 1.2], the associated word length is conditionally negative denite so that for the corresponding state, Theorem 4.4 yields a cut-o at ln √ 2N -1 steps. Note that in that case, the cut-o parameter is indeed equal to the exponential growth rate ω(S N ). Moreover, free groups have the Property of Rapid Decay by [START_REF] Haagerup | An example of a non nuclear C*-algebra, which has the metric approximation property[END_REF]Lem 1.4] so that by Proposition 3.5, the cut-o happens exactly when the state extends to a bounded normal functional on the von Neumann algebra.

• Let S N be a set with N elements and let W N be a Coxeter matrix of size N × N .

If the corresponding Coxeter group Γ N is innite, it follows from [START_REF] Bozejko | Innite Coxeter groups do not have Kazhdan's property[END_REF] that the word length associated to S N is conditionally negative denite. Then, by Theorem 4.4 there is a cut-o at ln( 2 (this is a Coxeter group) suggest to consider more general free products to build sequences of groups exhibiting a cut-o phenomenon. Indeed, there is a natural way to build a free product of two positive denite functions and the growth of the result is easily controlled. Given positive denite functions ϕ 1 and ϕ 2 on groups Λ 1 and Λ 2 , any element g ∈ Λ 1 * Λ 2 can be uniquely written as an alternating product g = h

1 k 1 h 2 k 2 • • • h n k n with h i ∈ Λ 1 and k i ∈ Λ 2 not being the neutral elements. Then, setting ϕ(g) = ϕ 1 (h 1 )ϕ 2 (k 1 ) • • • ϕ 1 (h n )ϕ 2 (k n )
denes a positive denite function (see for instance [START_REF] Cherix | Groups with the Haagerup property Gromov's a-(T)-menability[END_REF]Prop 6.2.3]). We will denote that function by ϕ 1 * ϕ 2 . Let us gather all the sucient conditions to produce a cut-o phenomenon in this context into a single proposition : Proposition 4.6. Let (Λ i , T i , ψ i ) i∈N be a sequence of discrete groups with a nite symmetric generating set T i and a positive denite function ψ i with exponential decay. Assume moreover that there exist constants α, β, δ > 0 such that

• The decay exponent of ψ i with respect to T i is bounded below by α for all i,

• var ψ i (χ

(i)
1 ) δ|T i | for all i, where χ (i) 1 is the sum of the generators of Λ i ,

• β ψ + i (1) for all i. Then, setting 

Γ N = Λ 1 * • • • * Λ N , S N = T 1 • • • T N and ϕ N = ψ 1 * • • • * ψ N , the sequence
1 i N ψ + i (1) β.
To be able to conclude we now need a lower bound which can be obtained by a free probability argument. More precisely, we can consider the elements χ (i) 1 as noncommutative random variables in the noncommutative probability space (C * (Γ N ), ϕ N ). Because ϕ N is a free product state, the aforementioned variables are freely independent with respect to it. Thus, the variance of their sum is the sum of their variances and

var ϕ N (χ 1 ) = N i=1 var ψ i (χ (i) 1 ) δ N i=1 |T i | = δ|S N |.
It now follows, as in the proof of Theorem 4.4, that for k ln(|S N | -1)/2β -c, ϕ k N -δ e 1 -4(δ + 1)e -2βc .

The simplest instance where the hypothesis of this proposition are satised is when the sequence is constant, i.e. we consider ϕ * N on Γ * N with generating set S N . All we need is then a positive denite function with exponential decay, or a cocycle with radical growth.

Examples of such cocycles will be given in the next subsection.

4.3. Geometric cocycles. We will now give examples of 1-cocycles with radical growth on discrete groups obtained by geometric means. To this purpose, let us say that a metric space (X, d) has an equivariant Hilbert embedding with radical growth if there exists

• A Hilbert space H together with an ane isometric action of the isometry group of X,

• An equivariant map f : X → H such that C -1 d(x, y) -C f (x) -f (y) Cd(x, y) + C
for some constants C > 0 and C 0.

Recall that a group Γ is said to act geometrically on a metric space (X, d) ). One can also consider product actions on direct products of those spaces. As an illustration, it is shown in [START_REF] Dreesen | Equivariant and non-equivariant uniform embeddings into products and Hilbert spaces[END_REF]Subsec 6.4] that Baumslag-Solitar groups BS(p, q) with p, q > 1 act geometrically on the product of the corresponding Bass-Serre tree and the real hyperbolic plane. Moreover, we have the following permanence properties for the existence of a 1-cocycle with radical growth :

• If Γ 1 and Γ 2 have a 1-cocycle with radical growth and Λ is a common nite subgroup, then the proof of [START_REF]Hilbert space compression for free products and HNN-extensions[END_REF]Thm 4.7] shows that the amalgamated free product Γ 1 * Λ Γ 2 has a 1-cocycle with radical growth, • If Γ is a nitely generated group together with a subgroup Λ and a monomorphism θ : Λ → Γ such that Λ ∪ θ(Λ) generates a nite subgroup of Γ, then any 1-cocycle with radical growth on Γ yields a 1-cocycle with radical growth on HNN(Γ, Λ, θ) by the proof of [START_REF]Hilbert space compression for free products and HNN-extensions[END_REF]Thm 4.9].

This gives a wealth of examples, including for instance any group built from Baumslag-Solitar groups, free groups, surface groups and innite Coxeter groups that one can iterate.

Absence of cut-off

In this nal section we will give a family of examples where there is no cut-o phenomenon, in the sense that for N large enough, exponential convergence occurs from the rst step on. This involves states not coming from cocycles as before. The general form of a state ϕ on a C*-algebra A is given by the GNS construction (see [START_REF] Bekka | Kazhdan's property (T)[END_REF]Thm C.1.4]), which yields a Hilbert space H, a unitary representation π : A → B(H) and a unit vector ξ ∈ H such that ϕ(x) = π(x)ξ, ξ . If A = C * (Γ), unitary representations are in one-to-one correspondence with unitary representations of Γ. From now on we will denote by ϕ π,ξ the state ϕ π,ξ : g → π(g)ξ, ξ . It is dicult to give a general criterion to know whether ϕ π,ξ will have exponential decay since this heavily depends on the representation π and therefore on the structure of the group Γ. The simplest case is certainly when π is the regular representation on 2 (Γ). In that case, we write ϕ ξ for ϕ reg,ξ . As a case study, we will focus on free groups and restrict our attention to a particular class of vectors : Denition 5.1. A vector ξ ∈ 2 (Γ) is said to be radial if it is of the form ξ = +∞ i=0 λ i χ i .

We will prove that such a state never exhibits a cut-o phenomenon. For convenience, let us set η i = (|S| -1) i/2 λ i , so that the assumption that ξ ∈ 2 (Γ) is equivalent to (η i ) i∈N ∈ 2 (N). Note moreover that (η i ) i∈N 2 ξ 2 = 1.

Theorem 5.2. Let Γ N be the free group on N generators with its canonical generating set S N . If ξ is a radial vector, then the state ϕ ξ has exponential decay for N 3 but the sequence The set appearing above is empty unless j i + |g|. Because we are considering free groups, an element h ∈ S(i) such that gh ∈ S(j) must be of the form g -1 p • • • g -1 p-t+1 w where t = (|g| + i -j)/2, g = g 1 • • • g p and w ∈ S(i -t) does not start with g -1 p-t+1 . Thus, there are exactly (|S N | -1) i-t such elements and For t ∈ Z, let T t be the shift operator on 2 (N) sending δ n to δ n-t if t n and 0 otherwise. 

  Before explaining the results of this work, let us give a rigorous denition of what we will call a cut-o phenomenon in the present article (see below for the denition of the norm • ) : Denition. Let (Γ N , ϕ N ) be a family of discrete groups with a normalized positive denite function ϕ N on each of them. We say that the sequence (ϕ k N ) k∈N has a pre-cut-o in the window [k (N ), k(N )] if there exists constants B, B , λ and λ such that for any c > 0 and N large enough,ϕ k N -δ e 1 -B e -λ cfor any integer k k (N ) -c andϕ k N -δ e Be -λcThe previous denition may seem technical and this is due to the fact that it is stronger than what is often called a cut-o phenomenon. Here is another, more appealing version :for any ε > 0

For 2 1 4 |S| (|S| - 1 )

 241 k = ln(|S|)/2α(S) + c we therefore get ϕ k -δ e e -2α(S)c 1 -e -2α(S)c e -2α(S)c 2 -2e -2α(S)c and the result follows.

√ N - 1 )

 1 steps. Moreover, ϕ ln(|S|-1)-c b N extends to L(Γ N ) at least for c < ln((|S| -1)/ω(S))/2. Note also that innite Coxeter groups satisfy the Property of Rapid Decay by [11, Cor 1]. 4.2. Free products. The examples of F N = Z * N and Z * N

N

  ) k∈N has a pre-cut-o in the window [ln( |S N |)/β, [ln( |S N |)/α]. Proof. Consider an element g = g 1 • • • g n ∈ Γ N where g j ∈ Λ i j and i j = i j+1 . By construction, ϕ N (g) = n j=1 ψ i j (g j ) n j=1 e -α i j |g j | S i j exp -α n j=1 |g j | S i j = e -α|g| so that we have a uniform control on the exponential growth rate. Moreover, because elements of length one are exactly generators of the initial groups, ϕ + N (1) = sup

(

  X, d) so that composing with the equivariant embedding of X we get a 1-cocycle b on Γ satisfying (1) b(g) 2 C 0 |g| S -C 1 for all g ∈ Γ, with constants C 0 > 0 and C 1 0. Set ϕ b (g) = e -b(g) 2 and Λ = {g ∈ Γ | b(g) = 0} = {g ∈ Γ | |ϕ b (g)| = 1}.

ξ

  ) k∈N has no cut-o. Proof. We haveϕ ξ (g) = π(g)ξ, ξ = +∞ i,j=0 λ i λ j g.χ i , χ j = +∞ i,j=0λ i λ j | (g.S(i)) ∩ S(j)|.

λ

  i λ i+|g|-2t (|S N | -1) i-t = (|S N | -1) -|g|/2

T

  |g|-2t ((η i ) i∈N ) and since the shifts have norm one, this vector has 2 -norm at most (|g|+1) (η i ) i∈N 2 |g|+1 so that by the Cauchy-Scharz inequality, |ϕ ξ (g)| (|g| + 1)(|S| -1) -|g|/2 e (1-ln(|S N |-1))|g|/2 .

  1 -density with respect to the Haar measure. If the same property holds instead for a ϕ ∈ L 2 ( Γ) = 2 (Γ), then ϕ is said to have an L 2 -density with respect to δ e . Lemma 2.2. Let Γ be a discrete group and let ϕ be a positive denite function on Γ. Then,

	ϕ -δ e	2	1 4	g =e	|ϕ(g)| 2 .

  if it acts properly and cocompactly by isometries. Here is a well-known recipe to produce 1-cocycles with radical growth : Proposition 4.7. Let Γ be a nitely generated discrete torsion-free group acting geometrically on a geodesic metric space (X, d) having an equivariant Hilbert embedding with radical growth. Then, Γ has a 1-cocycle with radical growth.

Proof. By the varc-Milnor Lemma (see for instance [6, Thm 23]), Γ is quasi-isometric to

  It follows from the proof of Proposition 3.2 that Λ is a subgroup. Moreover, because of (1), Λ is nite, hence by torsion-freeness it is the trivial subgroup. Thus, we can conclude by Remark 3.7 that ϕ b is strict, i.e. b has radical growth.There are many examples of groups and metric spaces satisfying the hypothesis above.

	This includes trees (see [2, Sec 2.3]) or even wall spaces (see for instance the comments after
	[18, Def 5.1]), real or complex hyperbolic spaces H n R , H n C (see [2, Sec 2.6]
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Denition 4.1. Let Γ be a discrete group and let π : Γ → B(H) be a unitary representation.

A 1-cocycle associated to π is a map b : Γ → H such that for any g, h ∈ Γ, b(gh) = π(g)b(h) + b(g).

The set of 1-cocycles associated to π is a vector space denoted by Z 1 (Γ, π).

Let us denote by ϕ b the state on C[Γ] associated to b, i.e.

The exponential decay property translates in this setting into a growth condition for b, cannot be bounded on L(Γ) for s arbitrarily close to 0, so that the values of c for which the lower bound applies is bounded below.

It turns out however that we can go round this probem. Note that if quantities are to depend on the size of S N , then we should assume that the generating set is minimal to get optimal constants. Theorem 4.4. Let (Γ N , S N ) be a family of discrete groups with minimal symmetric generating sets S N such that the corresponding length function is conditionally negative denite and

Proof. The upper bound comes directly from Proposition 3.8 with α(S) = 1. As for the lower bound, we will prove that for any c > 0 and k ln(

We will proceed in a similar way as in Proposition 3.9, using χ 1 , except that we cannot reason in L(Γ). Let us start by computing the expectation

It follows that for N 3, the state ϕ ξ has exponential decay with rate (ln(|S N | -1) -1)/2.

But then,

ln(|S

so that for N large enough the convergence is exponential from the rst step on and there is no cut-o phenomenon.

The functions in the statement are precisely those which are radial and associated with the regular representation. We cannot exclude that for some representation π which is not contained in the regular one, and a vector η, exists k such that ϕ k π,η = ϕ ξ , in which case ϕ π,η would exhibit a cut-o phenomenon. In that case our result shows that exponential converge occurs right when the function becomes associated with the regular representation.