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ON TWO-COLOURED NONCROSSING PARTITION QUANTUM GROUPS

AMAURY FRESLON

Abstract. We classify compact quantum groups associated to noncrossing partitions coloured
with two elements x and y which are their own inverses. Together with the work of P. Tarrago
and M. Weber, this completes the classi�cation of all noncrossing partition quantum groups on
two colours. We also give some general results on the class of all noncrossing partition quantum
groups and suggest some wider classi�cation statements.

1. Introduction

T. Banica and R. Speicher developped in [3] a combinatorial machinery to build families of
compact quantum groups. The idea is to start with a suitable collection of partitions of �nite
sets, to build a tensor category out of it and then to use a Tannaka-Krein type argument to
obtain a compact quantum group (called an easy quantum group). This idea proved fruitful and
was followed by many works both exploring the construction and generalizing it. One of the
interesting features is that this produces new examples of compact quantum groups. Another
one is that the objects thus obtained are naturally linked to (free) probability, in particular
through De Finetti theorems (see for instance [2]).
Our main interest in the present paper lies in quantum groups built from partitions which are

noncrossing (see De�nition 2.2). It turns out that in this setting, the theory of T. Banica and R.
Speicher gives a uni�ed construction of several important examples of compact quantum groups
studied up to now. While it was known from the beginning that the original construction would
not give anything more for noncrossing partitions, it soon became clear that it could be extended
in several ways (see for instance [16], [7] and [15]). In [9], we introduced a general setting called
partition quantum groups using coloured partitions to generalize easy quantum groups. We
were in particular motivated by the following question of T. Banica and R. Vergnioux in [4] :
can all quantum groups with free fusion semi-ring (in the sense of [4, Def 10.2]) be described by
partitions ? The a�rmative answer relies on the crucial fact that the lack of one-dimensional
representations (which is closely linked to freeness of the fusion ring) translates into a stability
property for the collection of partitions, so that we were then able to classify them. In that
way, we obtained as a by-product a model for all possible compact quantum groups with free
fusion semiring. The present work complements [9] since we will now deal with the non-free
case.
Such results naturally rise the question of classifying all partition quantum groups associated

to noncrossing partitions. Let us recall what is known on this problem. The case of orthogonal
easy quantum groups was completed by S. Raum and M. Weber in [19] and [14] (and the authors
in fact classi�ed all easy quantum groups, not only the noncrossing ones). In the unitary case,
things are more involved but P. Tarrago and M. Weber were able to classify all noncrossing
unitary easy quantum groups in [16] and [17]. In Sections 4 to 7 we will classify all noncrossing
partition quantum groups on two colours which are their own inverses. Together with the
results above, this completes the classi�cation of noncrossing partition quantum groups on one
or two colours. Beyond these results, the aim of this paper is to highlight two points concerning
the general classi�cation program.
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Key words and phrases. Compact quantum groups, representation theory, noncrossing partitions.

1



2 AMAURY FRESLON

The �rst point is the method. In all previous works, the classi�cation is done by combinatorial
arguments on the set of partitions so that the associated quantum groups never enter the
picture. Here we take another point of view since we are more interested in classifying the
quantum groups rather than the underlying categories of partitions. We therefore use a di�erent
strategy relying on the results of [10] linking the partitions with the representation theory of the
associated quantum group (see Subsection 2.3 for details). Considering a category of partitions
C, we �rst build a subcategory of partitions C′ ⊂ C satisfying two properties :

● it is simpler in the sense that we can easily describe the associated compact quantum
group,

● it is large in the sense that any projective partition (see De�nition 2.13) of C lies in C′.
Then, any partition p ∈ C ∖ C′ is equivalent, when rotated on one line, to the triviality of a
one-dimensional representation of the quantum group associated to C′. Thus, the quantum
group associated to C is simply the quotient of the one associated to C′ by some relations which
can be expressed in the group of one-dimensional representations (we will call these group-like
relations in De�nition 3.9).
The second point is the way of stating the classi�cation. We want to state our classi�cation

not as a list of all possible categories of partitions, but rather as a list of relations by which one
may quotient. It is possible however to push our work further to produce the list of all possible
categories of partitions, and we will do it for the sake of completeness in Section 8, Theorem
8.1. In our opinion, this list is not very enlightening. More importantly, this approach would
become intractable when the number of colours increases. On the contrary, the description
given afterwards in Section 8 is amenable to generalizations and we will suggest how it could
be extended to give a description of the class of all noncrossing partition quantum groups.
Let us end this introduction with an outline of the paper. In Section 2 we introduce some

notations and recall the main results needed in the paper. Then, we describe in Section 3
some basic operations preserving the class of noncrossing partition quantum groups. We also
introduce a new family of compact quantum groups called free wreath products of pairs, which
will be important in Section 6. The classi�cation of noncrossing partition quantum groups on
two colours is split into four parts : in Sections 4 and 5 we deal with categories of partitions
where all blocks have size less than two and in Sections 6 and 7 we treat the other cases. We
end with Section 8 where we summarize our results and restate them in a way which makes
sense for more colours.

Acknowledgment. We are grateful to Moritz Weber for his comments on a early version of
this work. We also thank the anonymous referee for carefully reading the manuscript and
making suggestions which improved the exposition.

2. Preliminaries

In this section we introduce some basic material, mainly to �x notations. The reader may
refer to [10] for more background on the link between partitions and quantum groups and to
the book [13] for details and proofs concerning the theory of compact quantum groups.

2.1. Coloured partitions. The main topic of this work is partitions of �nite sets. Even
though these may seem to be very simple objects, they exhibit rich combinatorial properties.
These properties are best seen using a graphical representation of the partitions. Let us denote
by P (k, l) the set of partitions of the set {1,2, . . . , k + l}. We represent such partitions in the
following way : we draw a row of k points above a row of l points and then connect the points
which belong to the same subset of the partition. Here is for instance the representation of
p = {{1,5,6,7},{2,4},{3}} ∈ P (5,2) :
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p =

This pictorial description makes it easy to work with blocks, which we now de�ne.

De�nition 2.1. Let p be a partition.

● A maximal set of points which are all connected (i.e. one of the subsets de�ning the
partition) is called a block of p.

● If moreover this block consists only of neighbouring points, then it is called an interval.
● If b contains both upper and lower points (i.e. the subset contains an element of {1, . . . , k}
and an element of {k + 1, . . . , k + l}), then it is called a through-block.

● Otherwise, it is called a non-through-block.

The total number of through-blocks of the partition p is denoted by t(p).
This work focuses on a special type of partitions which are said to be non-crossing.

De�nition 2.2. Let p be a partition. A crossing in p is a tuple k1 < k2 < k3 < k4 of integers
such that :

● k1 and k3 are in the same block,
● k2 and k4 are in the same block,
● the four points are not in the same block.

If there is no crossing in p, then it is said to be a non-crossing partition. The set of non-crossing
partitions will be denoted by NC.

The example given above is a non-crossing partition. We now add some further structure on
the partitions by introducing colours.

De�nition 2.3. A colour set is a set A together with an involution denoted by x ↦ x−1.
An A-coloured partition is a partition together with an element of A attached to each point.
A coloured partition is said to be non-crossing if the underlying uncoloured partition is non-
crossing. The set of A-coloured non-crossing partitions will be denoted by NCA.

Let p be an A-coloured partition. Reading from left to right, we can associate to the upper
row of p a word w on A and to its lower row (again reading from left to right) a word w′ on
A. For a set of partitions C, we will denote by C(w,w′) the subset of all partitions in C such
that the upper row is coloured by w and the lower row is coloured by w′ and we will denote by
∣w∣ the length of a word w. There are several fundamental operations available on partitions
called the category operations :

● If p ∈ C(w,w′) and q ∈ C(z, z′), then p⊗q ∈ C(w.z,w′.z′) is their horizontal concatenation,
i.e. the �rst ∣w∣ of the ∣w∣ + ∣z∣ upper points are connected by p to the �rst ∣w′∣ of the
∣w′∣ + ∣z′∣ lower points, whereas q connects the remaining ∣z∣ upper points with the
remaining ∣z′∣ lower points.

● If p ∈ C(w,w′) and q ∈ C(w′,w′′), then qp ∈ C(w,w′′) is their vertical concatenation,
i.e. ∣w∣ upper points are connected by p to ∣w′∣ middle points and the lines are then
continued by q to ∣w′′∣ lower points. This process may produce loops in the partition.
More precisely, consider the set L of elements in {1, . . . , ∣w′∣} which are not connected
to an upper point of p nor to a lower point of q. The lower row of p and the upper row
of q both induce a partition of the set L. For x, y ∈ L, let us set x ∼ y if x and y belong
either to the same block of the partition induced by p or to the y induced by q. The
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transitive closure of ∼ is an equivalence relation on L and the corresponding partition
is called the loop partition of L, its blocks are called loops and their number is denoted
by rl(q, p). To complete the operation, we remove all the loops. Note that we can only
perform this vertical concatenation if the words associated to the lower row of p and
the upper row of q match.

● If p ∈ C(w,w′), then p∗ ∈ C(w′,w) is the partition obtained by re�ecting p with respect
to an horizontal axis between the two rows (without changing the colours).

● If w = w1 . . .wn, w′ = w′
1 . . .w

′
k and p ∈ C(w,w′), then rotating the extreme left point of

the lower row of p to the extreme left of the upper row and changing its colour to its
inverse yields a partition q ∈ C((w′

1)−1w1 . . .wn,w′
2 . . .w

′
k). The partition q is called a

rotated version of p. One can also perform rotations on the right and from the upper
to the lower row.

Let us say that for an element x ∈ A, the x-identity partition is the partition ∣ ∈ C(x,x)
coloured with x on both ends. We are now ready for the de�nition of a category of coloured
partitions, the fundamental object of this work.

De�nition 2.4. A category of A-coloured partitions C is the data of a set of A-coloured par-
titions C(w,w′) for all words w and w′ on A, which is stable under all the category operations
and contains the x-identity partition for all x ∈ A.
Using the category operations one can de�ne another operation on partitions which will play

an important role in the sequel. If w = w1 . . .wn is a word on A, we set w = wn . . .w1.

De�nition 2.5. The conjugate of a partition p ∈ NCA(w,w′) is the partition p ∈ NCA(w′,w)
obtained by rotating p upside down. Note that categories of partitions are by de�nition stable
under taking conjugates.

In the next subsection, we will explain the link between categories of partitions and compact
quantum groups. This link relies on the following way of associating linear maps to partitions :

De�nition 2.6. For any partition p, and multi-indices i = (i1, . . . , ik) and j = (j1, . . . , jl), we
can attach the elements of i to the upper row of p (from left to right) and the elements of j to
the lower row of p (from left to right). We then set δp(i, j) = 1 if whenever two points of p are
connected, the attached numbers are equal. Otherwise, we set δp(i, j) = 0.
Now, for any integer N , let (e1, . . . , eN) be the canonical basis of CN . We de�ne a linear map

Tp ∶ (CN)⊗k ↦ (CN)⊗l

by the following formula :

Tp(ei1 ⊗ ⋅ ⋅ ⋅ ⊗ eik) =
n

∑
j1,...,jl=1

δp(i, j)ej1 ⊗ ⋅ ⋅ ⋅ ⊗ ejl .

Note that the colours do not play any role in this de�nition. The reason why non-crossing
partition quantum groups are easier to handle than general partition quantum groups is the
following well-known fact (see e.g. [10, Lem 4.16] for a proof). This result is also responsible
for the restriction N ⩾ 4 in most of the statements of the present work.

Proposition 2.7. Let N ⩾ 4 be an integer and let w and w′ be words on A. Then, the linear
maps (Tp)p∈NCA(w,w′) are linearly independent.

2.2. Partition quantum groups. Partition quantum groups were introduced in [9] as a gen-
eralization of the easy quantum groups de�ned by T. Banica and R. Speicher in [3]. They �t
into the general setting of compact quantum groups of S.L. Woronowicz [22]. We therefore �rst
recall some basic de�nitions and results of this theory. The reader may refer for instance to the
book [13] for details and proofs.
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De�nition 2.8. A compact quantum group is a pair G = (C(G),∆) where C(G) is a unital
C*-algebra and

∆ ∶ C(G)→ C(G)⊗C(G)
is a unital ∗-homomorphism such that (∆ ⊗ ı) ○ ∆ = (ı ⊗ ∆) ○ ∆ and the linear spans of
∆(C(G))(1⊗C(G)) and ∆(C(G))(C(G)⊗1) are dense in C(G)⊗C(G) (all the tensor products
of C*-algebras are spatial).

The fundamental notion for our purpose is that of a �nite-dimensional representation.

De�nition 2.9. Let G be a compact quantum group. A representation of G of dimension n is
a matrix

(uij)1⩽i,j⩽n ∈Mn(C(G)) ≃ C(G)⊗Mn(C)
such that

∆(uij) =
n

∑
k=1

uik ⊗ ukj

for every 1 ⩽ i, j ⩽ n. Its contragredient representation u is de�ned by uij = u∗ij. A representation
u is said to be unitary if it is a unitary element of Mn(C(G)). The trivial representation of G
is ε = 1⊗ 1 ∈ C(G)⊗C.

An intertwiner between two representations u and v of dimension respectively n and m is a
linear map T ∶ Cn → Cm such that

(ı⊗ T )u = v(ı⊗ T ).
The set of intertwiners between u and v is denoted by MorG(u, v), or simply Mor(u, v) if there
is no ambiguity. If there exists a unitary intertwiner between u and v, then they are said to
be unitarily equivalent. A representation u is said to be irreducible if Mor(u,u) = C. Id. The
tensor product of two representations u and v is the representation

u⊗ v = u12v13 ∈ C(G)⊗Mn(C)⊗Mm(C) ≃ C(G)⊗Mnm(C),
where we used the leg-numbering notations : for an operator X acting on a twofold tensor
product, Xij is the extension of X acting on the i-th and j-th tensors of a triple tensor prod-
uct. Compact quantum groups have a tractable representation theory because of the following
fundamental result from [20] :

Theorem 2.10 (Woronowicz). Every unitary representation of a compact quantum group is
unitarily equivalent to a direct sum of irreducible unitary representations and any irreducible
representation is �nite-dimensional. Moreover, coe�cients of irreducible representations span
a dense subalgebra of C(G).
This theorem implies that �nite-dimensional representations contain all the information

about a compact quantum group G. It should therefore be possible to recover G from its
representation theory. Taking a more categorical point of view, this is the content of S.L.
Woronowicz's Tannaka-Krein theorem proved in [21]. We will not give a general statement
here, but simply apply it in our setting. To do this, we need to introduce some notations. Let
G be a compact quantum group and let (ux)x∈A be a family of �nite-dimensional representations
of G, each acting on a �nite-dimensional Hilbert space V x. If w is a word on A, then we set
u⊗w = uw1⊗⋅ ⋅ ⋅⊗uwn , which is a representation acting on the Hilbert space V ⊗w = V w1⊗⋅ ⋅ ⋅⊗V wn .
We refer the reader to [9, Thm 3.2.8] for a proof of the next result, which is the starting point
of the theory of partition quantum groups.

Theorem 2.11. Let C be a category of A-coloured partitions and let N be an integer. Then,
there exists a unique (up to isomorphism) compact quantum group G together with representa-
tions (ux)x∈A such that
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● Any representation of G is equivalent to a subrepresentation of a direct sum of tensor
products of the representations ux,

● For any words w and w′ on A, MorG(u⊗w, u⊗w′) = Span{Tp, p ∈ C(w,w′)}.
De�nition 2.12. Let C be a category of partitions and let N be an integer. The compact
quantum group given by Theorem 2.11 will be denoted by GN(C) and called the partition
quantum group associated to C and N .

2.3. Projective partitions and representations. Let C be a category of partitions and
let N be an integer. The compact quantum group GN(C) is de�ned through its category of
representations, which is itself completely determined by C. Hence, it should be possible to
describe the representations of G solely in terms of the partitions in C. This was done in a joint
work with M. Weber [10] (it is restricted to the one-colour case but generalizes straightforwardly
to the general case, see [9, Sec 3.3]). A crucial role is played by the so-called projective partitions,
which we now de�ne.

De�nition 2.13. A partition p ∈ P (w,w) is said to be projective if pp = p = p∗. Moreover,

● A projective partition p is said to be dominated by another projective partition q if
qp = p. Then, pq = p and we write p ⪯ q.

● Two projective partitions p and q are said to be equivalent in a category of partitions
C if there exists r ∈ C such that r∗r = p and rr∗ = q. We then write p ∼ q or p ∼C q if we
want to keep track of the category of partitions.

Note that if p ∼ q, then t(p) = t(q).
Remark 2.14. A straightforward induction on the number of blocks shows that any projec-
tive noncrossing partition decomposes as horizontal concatenations of through-block projective
partitions with exactly one through-block and non-through-block projective partitions with
endpoints connected in each row. This decomposition will be used repeatedly throughout this
work.

The order relation ⪯ is not to be confused with the usual order relation ⩽ (sometimes called
"being coarser") on partitions. Note also that if p and q are equivalent in C, then they in fact
both belong to C. Moreover, the equivalence is implemented by a unique partition denoted by
rp1p2 . Here is a kind of converse to this statement, proved in [10, Prop 2.18] :

Proposition 2.15. For any partition r, the partitions r∗r and rr∗ are both projective partitions
(and r is an equivalence between them).

It was shown in [10] that one can associate to any projective partition p ∈ C(w,w) a subrep-
resentation up of u⊗w. More precisely, set

Pp = Tp − ⋁
q⪯p,q≠p

Tq,

where ⋁ denotes the supremum of projections. Then, Pp is an intertwiner of uw so that we
can de�ne up = (Pp ⊗ id)(uw). The study of these representations can be very complicated in
general but in the noncrossing case things become more tractable.

Theorem 2.16. Let N ⩾ 4 be an integer and let C be a category of noncrossing partitions.
Then,

● up is a non-zero irreducible representation for any projective partition p,
● up ∼ uq if and only if p ∼ q,
● u⊗w = ⊕

p∈ProjC(w)
up as a direct sum of representations, where ProjC(w) denotes the set of

projective partitions in C(w,w). In particular, any irreducible representation is equiva-
lent to up for some projective partition p.
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3. General results on noncrossing partition quantum groups

The aim of this section is to give some general results on the class of compact quantum
groups associated to categories of noncrossing partitions. As will appear in this work, a com-
plete classi�cation seems out of reach for the moment. However, one can at least describe some
constructions which preserve the class of noncrossing partition quantum groups. One way of
completing a classi�cation in that direction would then be to prove that any noncrossing par-
tition quantum group can be obtained by applying these constructions to a certain elementary
class (see Section 8 for details).
We �rst �x some shorthand notations. If w and w′ are words on A, we denote by π(w,w′)

the unique one-block partition in NCA(w,w′). We also denote by β(w,w′) the partition in
NCA(w,w′) having exactly one upper block and one lower block. These partitions can be
pictorially represented as follows :

. . .

. . .

w1 w2 wn−1 wn

w′
1 w′

2 w′
k−1 w

′
k

π(w,w′) =
. . .

. . .

w1 w2 wn−1 wn

w′
1 w′

2 w′
k−1 w

′
k

β(w,w′) =

Note that for x ∈ A, π(x,x) is simply the x-identity partition.

3.1. One-dimensional representations. In this subsection we study one-dimensional repre-
sentations, which are the crucial point to understand noncrossing partition quantum groups.

3.1.1. Structure. In [9], we classi�ed a class of noncrossing partition quantum groups which we
called free quantum groups, which can be de�ned as follows :

De�nition 3.1. A partition quantum group is free if it has no nontrivial one-dimensional
representation.

Thus, the rest of the classi�cation must deal with one-dimensional representations. At the
level of categories of partitions, this can be easily translated (see [8, Thm 4.18] for details).

Theorem 3.2. Let C be a category of noncrossing partitions and let N ⩾ 4 be an integer. Then,
GN(C) is free if and only if C is block-stable, i.e. for any partition p ∈ C and any block b of p,
we have b ∈ C.

Dealing with categories of partitions which are not block-stable is di�cult in general and
one aim of this subsection is to develop some tools to describe the e�ects of this lack of block-
stability. We start with some elementary properties.

Lemma 3.3. Let C be a noncrossing category of partitions and let p be a projective partition.
Then, up is one-dimensional if and only if t(p) = 0. Moreover, p is then equal to b∗b for some
partition b lying on one line.

Proof. The fact that dim(up) = 1 if and only if t(p) = 0 was proved in [8, Lem 5.1]. Under this
assumption, let b be the upper row of p. Then, b∗b = p∗p = p. �

Thus, we will focus on non-through-block projective partitions. There is a useful way to
produce such partitions, which requires introducing some vocabulary.

De�nition 3.4. Let p be a partition of {1,⋯, k}. The partition induced by p on a subset of
{1,⋯, k} is called a subpartition of p. A subpartition q ⊂ p is said to be full if it is a partition
of a subset of the form {a, a + 1,⋯, a + b} for some 1 ⩽ a ⩽ a + b ⩽ k.
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Pictorially, this de�nition means that we can rotate p on one line so that between any two
points of q, all the points are also in q. The idea is that a full subpartition can be "isolated"
from all the other points and this makes it possible to build from it a projective partition
without through-blocks. Note that the main example of full subpartitions are intervals.

Proposition 3.5. Let p ∈ C and let q ⊂ p be a full subpartition in p lying on one line. Then,
q∗q ∈ C.
Proof. By de�nition, we can rotate p so that the upper points are exactly the points of q.
Denoting by p′ this partition, we get q∗q = p′∗p′ ∈ C. �

Proposition 3.5 gives in particular a way of producing one-dimensional representations out of
arbitrary partitions. We then need to be able to compare them with respect to the equivalence
relation on projective partitions. If they have the same colouring, then this is easy.

Lemma 3.6. Let p, q ∈ C(w,w) be projective partitions with t(p) = t(q) = 0. Then, p ∼ q.
Proof. Because p and q have the same colouring, the composition r = pq makes sense and
belongs to C. We claim that r is an equivalence between p and q. Indeed, recall that there are
partitions, b and c lying on one line such that p = b∗b and q = c∗c. We have r = b∗c and the
claim follows. �

Let us end by recalling [8, Lem 4.17] which characterizes the triviality of up :

Lemma 3.7. Let N ⩾ 4, let C be a category of noncrossing partitions and let p be a non-
through-block projective partition. Then, up is trivial if and only if the upper row of p belongs
to C.
3.1.2. Group-like and commutation relations. Using what precedes, we can start giving some
general constructions preserving the partition structure of compact quantum groups. By de�-
nition, a one-dimensional representation is a unitary element t ∈ C(G) such that ∆(t) = t ⊗ t.
Such elements are often called group-like and they form a group, denoted by G(G). Before
going further, let us summarize the descriptions of one-dimensional representations that we
have so far :

● group-like elements, which are the same as one-dimensional representations,
● non-through-block projective partitions, which are the same as partitions of the form
b∗b for a partition b lying on one line.

Adding relations in G(G) preserves the fact of being a partition quantum group. This is our
�rst stability result.

Proposition 3.8. Let N ⩾ 4 be an integer, let C be a category of noncrossing partitions and let
t be a group-like element in C(GN(C)). Then, the quotient of C(GN(C)) by the relation t = 1
is a noncrossing partition quantum group.
Moreover, if C′ ⊂ C are categories of noncrossing partitions such that any projective partition

in C lies in C′, then C(GN(C)) is a quotient of C(GN(C′)) by relations of the form t = 1 for
t ∈ G(GN(C′)).
Proof. By Lemma 3.3, there exists a non-through-block projective partition p = b∗b such that
up is equivalent to t. Seen as group-like elements, two one-dimensional representations are
equivalent if and only if they are equal. Thus, adding the relation t = 1 is the same as adding
the relation up = 1, which in turn amounts to adding b to the category of partitions.
We now turn to the second part of the statement. Let p ∈ C ∖ C′ and rotate it on one line

to obtain a partition p′. If we set C′′ = ⟨C′, p⟩ = ⟨C′, p′⟩, then C(GN(C′′)) is the quotient of
C(GN(C′)) by the relation up′∗p′ = 1. Doing this for all partitions in C ∖C′ yields the result. �

Since this kind of quotient will appear in every step of the classi�cation, we give it a name.
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De�nition 3.9. Let G and H be compact quantum groups. We say that C(H) is a quotient
of C(G) by group-like relations if it is obtained by making some group-like elements trivial.

Here is another construction with one-dimensional representations involving commutation
relations :

Proposition 3.10. Let N ⩾ 4 be an integer, let C be a category of noncrossing partitions, let
t be a group-like element in C(GN(C)) and let u be an irreducible representation of GN(C).
Then, the quotient of C(GN(C)) by the relations

tuij = uijt
for all 1 ⩽ i, j ⩽ dim(u) is a noncrossing partition quantum group.

Proof. Let p be a projective partition such that up is equivalent to u and let q be a projective
partition such that uq = t. By Lemma 3.3, q = b∗b for some b ∈ C(w,∅) and we can consider

the partition r = b⊗ p⊗ b∗. The proof relies on the constructions of [10] but we will make it as
self-contained as possible.
If p has 2n2 points, then there exists a scalar λp ∈ C such that λp(id⊗Tp)u⊗n2(id⊗Tp) is a

representations which will be denoted by Up. If moreover b has n1 points, then for x2 ∈ (CN)⊗n2

and x1, x3 ∈ (CN)⊗n1 , we have

u⊗n2(id⊗Tr)(1⊗ x1 ⊗ x2 ⊗ x3) = Tb(x1)Tb∗(x3)u⊗n2 (1⊗ Tp(x2))
= N−rl(p,p)λ−1

p Tb(x1)Tb∗(x3)Up(1⊗ x2)

using the fact that Tp = N−rl(p,p)TpTp. On the other hand, if b has ` blocks then

(id⊗Tb∗b)u⊗n1(id⊗Tb∗b) = N2`(ub∗b ⊗ 1) = N2`(t⊗ 1),
so that for i = 1 or 3,

(id⊗Tb)u⊗n1(1⊗ xi) = N−`(id⊗Tb)(id⊗Tb∗b)u⊗n1(1⊗ xi)
= N−2`(id⊗Tb)(id⊗Tb∗b)u⊗n1(1⊗ Tb∗b(xi))
= (id⊗Tb)(t⊗ xi)
= Tb(xi)t.

The same holds for b
∗
with t replaced by t∗ = t−1, yielding

(id⊗Tr)u⊗(2n1+n2)(1⊗ x1 ⊗ x2 ⊗ x3) = N−rl(p,p)λ−1
p (id⊗Tb)(u⊗n1(1⊗ x1))Up(1⊗ x2)

× (id⊗T
b
∗)(u⊗n1(1⊗ x3))

= N−rl(p,p)λ−1
p Tb(x1)Tb∗(x3)(t⊗ id)Up(t∗ ⊗ id)(1⊗ x2).

Thus, making Tr an intertwiner is the same as adding the relation

(t⊗ id)Up(t∗ ⊗ id) = Up.
Now, it follows from [10, Rem 4.3] and [8, Prop 3.7] that Up splits as the direct sum of all

the representations up′ for p′ ⩽ p. Since by concatenating we have b ⊗ p′ ⊗ b∗ ∈ ⟨C, b ⊗ p ⊗ b∗⟩,
a straightforward induction then shows that (t ⊗ id)up′(t∗ ⊗ id) = up′ for all p′ ⩽ p, hence in
particular for p′ = p. This means that adding r to the category of partitions is the same as
adding the relations t(up)ij = (up)ijt for all 1 ⩽ i, j ⩽ dim(up).
Consider now a unitary matrix V ∈Mdim(u)(C.1) ⊂Mdim(u)(C(G)) such that V upV ∗ = u. If

T = t. Id, then the commutation relation of the previous paragraph can be written Tup = upT .
Since T commutes with Mdim(u)(C.1), TV = V T so that Tu = uT , which in turn translates into
the commutation relation in the statement. �
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3.1.3. Twisted amalgamation. One can also use one-dimensional representations to "twist" an
amalgamated free product. To explain this, let us �rst recall the usual construction of free
products from [18] : given two compact quantum groups G1 and G2, the free product C*-
algebra C(G1) ∗C(G2) can be turned into a compact quantum group called their free product
and denoted by G1 ∗G2. If the quantum groups come from partitions, then so does their free
product, and the associated category of partitions can be explicitly described.

De�nition 3.11. Let C1 and C2 be two categories of partitions coloured by A1 and A2 respec-
tively. Their free product is the category of partitions C = C1 ∗ C2 generated in NCA1⊔A2 by C1

and C2.

According to [9, Prop 4.12] GN(C1)∗GN(C2) = C(GN(C1∗C2)) which justi�es the terminology.
Assume now that G1 and G2 are two compact quantum groups with a common dual quantum
subgroup H in the sense that there are injective ∗-homomorphisms i1 ∶ C(H) → C(G1) and
i2 ∶ C(H) → C(G2) preserving the coproducts. The object H can be interpreted as the dual
of a common discrete quantum subgroup of the duals of G1 and G2, hence the name. The
quotient of C(G1) ∗ C(G2) by the ideal generated by elements of the form i1(x) − i2(x) is a
new C*-algebra called an amalgamated free product and denoted by C(G1)∗C(H)C(G2). It was
proved by S. Wang in [18] that there is a natural compact quantum group structure on this
C*-algebra. The resulting object is called the free product of G1 and G2 amalgamated over H
and denoted by G1 ∗H G2. If now t is a group-like element of G1 ∗G2, we may conjugate one
of the copies of H by it before identifying it with the other copy, yielding the following more
general notion of amalgamation :

De�nition 3.12. Let G1 and G2 be compact quantum groups, let H be a common dual
quantum subgroup and let K be a set of group-like elements in C(G1 ∗G2). The amalgamated
free product over H twisted by K is the quantum group obtained by quotienting C(G1 ∗G2) by
the relations

ti1(x)t−1 = i2(x)
for all x ∈ C(H) and all t ∈K.

This construction is interesting in our setting due to the following :

Proposition 3.13. Let N ⩾ 4 be an integer, let C1 and C2 be two categories of noncrossing
partitions and let H be a common dual quantum subgroup (which is not assumed to be a partition
quantum group) of GN(C1) and GN(C2). Then, for any set of group-like elements K, the
amalgamated free product over H twisted by K is a partition quantum group.

Proof. First note that because the coe�cients of irreducible representations generate a dense
subalgebra of C(H), it is enough to prove that, for any irreducible representation α of H and
any t ∈K, we may add to C1 ∗ C2 partitions realizing the relations

ti1(uαij)t−1 = i2(uαij)
for all 1 ⩽ i, j ⩽ dim(α). So let α be an irreducible representation of H, let p1 be a projective
partition in C1 such that up1 is equivalent u′ = (i1 ⊗ ı)(uα) and let p2 be a projective partition
in C2 such that up2 is equivalent to u′′ = (i2 ⊗ ı)(uα). Let also q = b∗b be a non-through-block
projective partition such that uq = t as group-like element. The colours of p1 and p2 do not
match, but we can still build a partition out of them using the following construction, which is
a particular case of the through-block decomposition of [10, Prop 2.9] :

● we cut p1 in the middle, keeping its upper row together with t(p1) lower points which
we colour by some �xed element a ∈ A, and denote the resulting partition by p′1.

● we cut p2 in the middle, keeping its lower row together with t(p2) upper points which
we also colour by a, and denote the resulting partition by p′2.
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● because dim(u′) = dim(u′′), t(p1) = t(p2) by [10, Prop 2.16] so that the composition
p′2p

′
1 makes sense. We denote it by r.

The same argument as in the proof of Proposition 3.10 then shows that quotienting by the
relations tu′ijt−1 = u′′ij for all 1 ⩽ i, j ⩽ dim(u) is the same as adding the partition s = b⊗r⊗ b∗ to
the category of partitions. Because the relations tu′ijt−1 = u′′ij can also be written ti1(uij)t−1 =
i2(uij), doing this for all irreducible representations of H and all t ∈ K we get the twisted
amalgamated free product. �

Note that the fusion rules of these compact quantum groups can be computed using the results
of [10]. This is in sharp contrast with the fact that there is no general method to compute the
representation theory of an amalgamated free product of compact quantum groups.

Remark 3.14. If two elements t1 and t2 satisfy the twisting relation above, then t−1
1 t2 commutes

with i1(C(H)). This means that the group-like elements satisfying the twisted amalgamation
relation form a coset with respect to the subgroup of group-like elements commuting with
i1(C(H)). In the sequel, we will directly consider the amalgamated free product twisted by a
coset.

For further use, we will state a more explicit description of the category of partitions asso-
ciated to a twisted amalgamated free product. For any irreducible representation α of H, let
pα1 and pα2 be partitions representing it in C1 and C2 respectively and let r(α) be the partition
constructed in the proof of Proposition 3.13 above by connecting pα1 and pα2 .

Corollary 3.15. Let C1 and C2 be two categories of noncrossing partitions, let H be a common
dual quantum subgroup of GN(C1) and GN(C2) and let K be a coset in G(GN(C1) ∗GN(C2)).
For each t ∈ K, let b(t) ∈ C1 ∗ C2 be such that t = ub(t)∗b(t). Then, the category of partitions of
the amalgamated free product over H twisted by K is

⟨C1 ∗ C2, b(t)⊗ r(α)⊗ b(t)∗ for t ∈K and α ∈ Irr(H)⟩ .
3.2. Free wreath products of pairs. Starting from free quantum groups and applying the
constructions above repeatedly yields a large class of noncrossing partition quantum groups, but
not all of them. That is the reason why we now introduce another class by slightly extending
the free wreath product construction. Recall from [12] that given a group Γ and a symmetric
generating set S ⊂ Γ, one can consider the category CΓ,S of all S-coloured partitions such that
in each block, the product of the upper colouring (from left to right) equals the product of
the lower colouring (also from left to right) as elements of Γ. This is a category of partitions

and the associated compact quantum group is the free wreath product Γ̂ ≀∗ S+N as de�ned by J.
Bichon in [6] (it does not depend on the choice of S). Note that by de�nition, CΓ,S contains the
partition π(w,w) for any word w on S.
Now let γ ∈ Γ and choose g1, . . . , gn ∈ S such that g1 . . . gn = γ. If we add to CΓ,S the partition

βγ = β(g1 . . . gn, g1 . . . gn),
we produce a new compact quantum group with a non-trivial one-dimensional representation.
If γ = g1⋯gn and γ′ = g′1⋯g′n, then

π(g1⋯gng′1⋯g′n, g1⋯gng′1⋯g′n)(βγ ⊗ βγ′)π(g1⋯gng′1⋯g′n, g1⋯gng′1⋯g′n) = βγγ′ .
Since moreover βγ = βγ−1 , adding βγ is the same as adding βλ for all λ in the subgroup of Γ
generated by γ, so that our construction only depends on the choice of a subgroup of Γ. This
leads to the following de�nition :

De�nition 3.16. Let Λ ⊂ Γ be a subgroup. We denote by CΓ,Λ,S the category of partitions
generated by CΓ,S and βλ for all λ ∈ Λ. The associated compact quantum group will be denoted
by H+

N(Γ,Λ) and called the free wreath product of the pair (Γ,Λ).
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Remark 3.17. If λ = h1⋯h` is another decomposition of λ with respect to the generating set
S, then because π(g1⋯gn, h1⋯h`) ∈ CΓ,S by de�nition, adding β(g1⋯gn, g1⋯gn) is equivalent to
adding β(h1⋯h`, h1⋯h`). This means that our de�nition only depends on Λ and not on the
choice of a particular decomposition of each of its elements.

The quantum groups H+
N(Γ,Λ) will be our main tool for the classi�cation of two-coloured

noncrossing partition quantum groups in the hyperoctahedral and symmetric cases. This is
because of the next statement, which is the �rst illustration of the classi�cation technique
explained in the introduction.

Proposition 3.18. Let N ⩾ 4 be an integer, let Γ be a discrete group with a symmetric gener-
ating set S, let Λ ⊂ Γ be a subgroup and let C be a category of S-coloured noncrossing partitions
containing CΓ,Λ,S. Then, GN(C) is a free wreath product of a pair.

Proof. We need to show that there exists a group Γ̃ and a subgroup Λ̃ ⊂ Γ̃ such that C = CΓ̃,Λ̃.
We will split the proof into three steps.

Step 1. We will �rst prove that for any projective partition p ∈ C, there exists Λ ⊂ Λ′ such
that p ∈ CΓ,Λ′,S ⊂ C. Let us start with the case of a non-through-block projective partition of
the form p = q∗q for some q ∈ C(w,∅) such that the endpoints (the �rst and the last one) of q
are connected. We will prove the result by induction on the number of blocks of q.

● If q has one block, assume it is coloured by g1,⋯, gn and let γ = g1⋯gn ∈ Γ, then q∗q = βγ
so that the result holds for the subgroup Λ′ generated by Λ and γ.

● Consider now a general q and let w be its colouring. The structure of q is as follows :
we have a block containing the endpoints and coloured by, say, h1,⋯, h`. Between the
points coloured with hi and hi+1 we have a block bi (which may be empty). Note that
β(w,w) = π(w,w)(q∗q)π(w,w) ∈ C and let us set

r = β(w,w) [π(h1, h1)⊗ b∗1b1 ⊗ π(h2, h2)⊗⋯⊗ b∗`−1b`−1 ⊗ π(h`, h`)] .
By the straightforward generalization of [8, Lem 4.3], b∗i bi ∈ C for all i. Thus, by
induction we can �nd Λ ⊂ Λ′ such that β(w,w) ∈ CΓ,Λ′,S ⊂ C and b∗i bi ∈ CΓ,Λ′,S ⊂ C for all
i. Then, r ∈ CΓ,Λ′,S and p = q∗q = r∗r ∈ CΓ,Λ′,S so that the proof is complete.

Next we consider a one-block partition π(h1⋯h`, h1⋯h`) with non-through-block partitions
b1,⋯, b`−1 between the points. If p denotes the whole partition and w is its upper colouring, we
know by [8, Lem 4.2] and Step 1. that b∗i bi ∈ CΓ,Λ′,S for all 1 ⩽ i ⩽ ` − 1. Moreover,

r = π(w,w) [π(h1, h1)⊗ b∗1b1 ⊗ π(h2, h2)⊗⋯⊗ b∗`−1b`−1 ⊗ π(h`, h`)] ∈ CΓ,Λ′,S

satis�es r∗r = p. Thus, p ∈ CΓ,Λ′,S.
Eventually, as mentioned in Remark 2.14, any projective partition can be obtained by hori-

zontal concatenation of ones with exactly one through-block and non-through-block ones with
endpoints connected. Thus, we have proved that there exists Λ ⊂ Λ′ such that CΓ,Λ′,S ⊂ C and
all projective partitions of C lie in CΓ,Λ′,S.

Step 2. Let us �x now Λ′ as above. Let q ∈ C be a partition lying on one line and let us denote
by C′ the category of partitions generated by CΓ,Λ′,S and q. If the colouring of q is g1,⋯, gn, we
claim that C′ coincides with the category of partitions C′′ generated by CΓ,Λ′,S and β(g1⋯gn,∅).
The inclusion C′′ ⊂ C′ follows from

β(g1⋯gn,∅) = qπ(g1⋯gn, g1⋯gn) ∈ C′.
Conversely, q∗q is projective and hence belongs to CΓ,Λ′,S by Step 1., thus

q = β(g1⋯gn,∅)(q∗q) ∈ C′′.
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It follows from this that C is the category of partitions generated by CΓ,Λ′,S and β(g1⋯gn,∅)
for all g1,⋯, gn's corresponding to colourings of partitions of C once rotated on one line.

Step 3. The last step is to show that C is indeed equal to the category of partitions of a free
wreath product of a pair. To do this, let us denote by Θ the set of all elements γ ∈ Γ such that
there exists g1,⋯, gn ∈ S satisfying γ = g1⋯gn and β(g1⋯gn,∅) ∈ C. It follows from the following
observations :

● [β(w,∅)⊗ β(w′,∅)]π(w.w′,w.w′) = β(w.w′,∅),
● β(g1⋯gn,∅)

∗
= β(g−1

n ⋯g−1
1 ,∅),

● β(g1⋯gn,∅)∗β(g1⋯gn,∅) = β(g1⋯gn, g1⋯gn)
that Θ is a subgroup of Λ′. Moreover, if γ ∈ Θ can be represented by a word w and γ′ ∈ Γ
can be represented by the word w′, then rotating π(w′,w′) ⊗ β(w,∅) on one line we can get
a partition with colouring w′.w.w′−1. Concatenating with π(w′.w.w′−1,w′.w.w′−1) then shows
that β(w′.w.w′−1,∅) ∈ C. In other words, Θ is a normal subgroup of Γ (hence also of Λ′).
Let us denote by Γ̃ and Λ̃ the quotients of Γ and Λ′ by Θ. Identifying the elements of S
with their images in the quotient, we can see CΓ̃,Λ̃,S as a category of S-coloured partitions
containing CΓ,Λ,S as well as β(g1⋯gn,∅) as soon as g1⋯gn ∈ Θ, i.e. C ⊂ CΓ̃,Λ̃,S. Conversely, let

π(g1⋯gn, g′1⋯g′m) ∈ CΓ̃,Λ̃,S. This means that g1⋯gn = g′1⋯g′m in Γ̃, which in turn translates into
the existence of an element γ′′ = h1⋯h` ∈ Θ such that g1⋯gn = g′1⋯g′mh1⋯h` in Γ. At the level
of partitions, we then have that

π(g1⋯gn, g′1⋯g′m) = [π(g′1⋯g′m, g′1⋯g′m)⊗ β(h1⋯h`,∅)]π(g1⋯gn, g′1⋯g′mh1⋯h`) ∈ C.

A similar argument shows that β(g1⋯gn, g1⋯gn) ∈ C as soon as g1⋯gn ∈ Λ̃, completing the
proof. �

4. Classification I : pair partitions

We will now start the classi�cation of noncrossing partition quantum groups on a set of two
colours A = {x, y}. If x−1 = y, then we are considering the unitary easy quantum groups which
have been completely classi�ed by P. Tarrago and M. Weber in [16]. We can therefore assume
that x−1 = x and y−1 = y. We will consider a category of A-coloured noncrossing partitions C.
Note that if C contains the partition π(x, y), then by de�nition the identity map on CN is an
equivalence between ux and uy. In other words, they are equal and the quantum group GN(C) is
an orthogonal easy quantum group, we therefore exclude that case. Since the founding work [3],
it is known that classi�cations of partition structures naturally split into four cases depending
on the sizes of the blocks and we will follow this distinction hereafter.
The �rst case is when all the blocks of the partitions in C have size two, such partitions

being called pair partitions. The classi�cation then relies on a two-coloured version of the free
orthogonal quantum group which we now introduce. Recall that PO+

N is the so-called projective
version (see for instance [5, Sec 3]) of O+

N , i.e. C(PO+
N) is the subalgebra of C(O+

N) generated
by all the elements of the form uijukl for 1 ⩽ i, j, k, l ⩽ N .

De�nition 4.1. The compact quantum group O++
N is de�ned as the amalgamated free product

O++
N = O+

N ∗
PO+

N

O+
N .

According to Proposition 3.13, O++
N is a noncrossing partition quantum group and we can

give a simple generator of its category of partitions. For two (not necessarily di�erent) colours
a, b ∈ A, we denote by Dab ∈ NC(ab,∅) the partition ⊔ with colours a and b.

Lemma 4.2. The category of partitions of O++
N is the category CO++ generated by D∗

xyDxy.
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Proof. If x and y are the colours corresponding to the two copies of O+
N , then the two copies of

PO+
N that we have to identify are generated by the coe�cients of uxx and uyy respectively. By

the results of [10, Ex 5.10], they correspond to the partitions π(x,x) ⊗ π(x,x) and π(y, y) ⊗
π(y, y). We now use Corollary 3.15 with K = {1}, so that b = ∅. We therefore have to add
s = r = π(x, y) ⊗ π(x, y). Moreover, once the generators are identi�ed, the whole C*-algebras
that they generate are identi�ed. Thus, O++

N is the partition quantum group associated to
the category of partitions CO++ generated by π(x, y) ⊗ π(x, y), which is a rotated version of
D∗
xyDxy. �

Note that it is known since [3] that pair partitions are preserved under all the category
operations, hence CO++ is a category of pair partitions. The compact quantum group O++

N is not
free because ux ⊗ uy contains the non-trivial one-dimensional representation associated to the
projective partition D∗

xyDxy which is non-trivial since Dxy ∉ CO++ (this is just a rotated version
of π(x, y), which has been excluded). Let us give another description of this representation :

Lemma 4.3. Let N ⩾ 4 be an integer. For 1 ⩽ k ⩽ N , set

s =
N

∑
m=1

uxkmu
y
km ∈ C(O++

N ).

Then, s is a group-like element which does not depend on k. Moreover, it generates the group
of group-like elements G(O++

N ) (which is therefore cyclic).

Proof. This is a standard computation. The fact that TD∗
xyDxy ∈ Mor(ux ⊗ uy, ux ⊗ uy) is equiv-

alent to the following relation between the generators : for any 1 ⩽ i, j, k, l ⩽ N ,

δkl
N

∑
m=1

uxmiu
y
mj = δij

N

∑
m=1

uxkmu
y
lm.

In particular, the sum does not depend on the choice of i, j, k, l as soon as i = j and k = l and is
then equal to s. A straightforward computation then yields ∆(s) = s⊗s so that s is a group-like
element. Since s is contained as a representation in ux ⊗ uy, it is equal to uD∗

xyDxy .
Let now t be a group-like element and let p ∈ CO++ be a non-through-block projective partition

such that up = t. By concatenating any two neighbouring points with the same colour with Dxx

or Dyy, we see that p is equivalent to a projective partition p′ in which the colours alternate in
each row. Since p′ is alternating and of even size, it has the same colouring as (D∗

xyDxy)⊗` or

(D∗
yxDyx)⊗` = (D∗

xyDxy)
⊗`

for some ` ∈ N. Thus, Lemma 3.6 ensures that t = up = up′ = s±`, concluding the proof. �

We are now ready for our classi�cation theorem.

Theorem 4.4. Let N ⩾ 4 be an integer and let C be a category of noncrossing partitions which
is not a free product and such that all blocks have size two. Then, C(GN(C)) is the quotient of
C(O++

N ) by group-like relations (i.e. sd = 1 for some integer d). We will denote this quotient by
O++
N (d).

Proof. Let us �rst remark that since CO+

N
∗ CO+

N
is generated by Dxx and Dyy, this free product

of categories of partitions is contained in C. We now proceed in several steps.

Step 1. We �rst claim that there is a partition p in C with a block b having two di�erent
colours. To show this, let us assume the converse and prove by induction on the number of
blocks that any partition in C is in fact in CO+

N
∗ CO+

N
. If p has one block, the result is clear.

Otherwise, by noncrossingness p contains an interval b. We can therefore rotate p to put it in
the form b⊗ q. Since b ∈ C, so is q and by induction it is in the free product, as well as b⊗ q and
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its rotated version p. Thus, C is a free product, contradicting the assumptions of the Theorem.

Step 2. We now prove that CO++ ⊂ C. Indeed, there exists p ∈ C such that one block of p is
(up to relabelling the colours) Dxy. Let us consider, among all such partitions p lying on one
line, one with a block b of the form Dxy such that the number of points between its endpoints
is minimal. The blocks nested inside b must be either Dxx or Dyy but these can be removed by
concatenation. Thus, there is no point between the endpoints of b, i.e. it is an interval. Then,
by Proposition 3.5, D∗

xyDxy ∈ C and CO++ ⊂ C.

Step 3. Let p ∈ C be a projective partition. We want to prove that it is in CO++ . By non-
crossingness, p can be written as an horizontal concatenation of identity partitions and non-
through-block projective partitions (recall that we only have pair partitions). Let us consider
a non-through-block projective partition q∗q where q lies on one line and has its endpoints
connected. We will prove by induction on the number of blocks of q that q∗q ∈ CO++ .

● If q has only one block, then q ∈ {Dxx,Dyy,Dxy,Dyx} and the result follows by de�nition.
● If q has at least two blocks, its two endpoints (the �rst and the last one) are connected
and we have another pair partition b in the middle with one block less. Rotating q∗q
yields the partition

b⊗ π(a1, a2)⊗ π(a1, a2)⊗ b∗ ∈ C
for some colours a1, a2 ∈ A. By Proposition 3.5, b∗b ∈ C so that by induction, b∗b ∈ CO++

and is equivalent to (D∗
xyDxy)⊗` or to (D∗

xyDxy)
⊗`
. Moreover, rotating D∗

xyDxy yields
the partition R =Dxy ⊗ π(y, x) and

r = RR =Dxy ⊗ π(y, y)⊗D∗
yx ∈ CO++

satis�es r∗r = (D∗
xyDxy)⊗ π(y, y) and rr∗ = π(y, y)⊗ (D∗

yxDyx). In other words,

(D∗
xyDxy)⊗ π(y, y) ∼CO++ π(y, y)⊗ (D∗

xyDxy).

Starting instead from S = π(x, y)⊗Dxy, one ends up with the equivalence

(D∗
yxDyx)⊗ π(x,x) ∼CO++ π(x,x)⊗ (D∗

yxDyx)

which, after horizontally concatenating both sides by D∗
xyDxy on the left and on the

right and using the fact that (D∗
xyDxy)⊗ (D∗

yxDyx) ∼ ∅ yields

(D∗
xyDxy)⊗ π(x,x) ∼CO++ π(x,x)⊗ (D∗

xyDxy).

Using these equivalences twice, we see that in CO++ ,

(D∗
xyDxy)⊗ π(a, a)⊗ π(a, a) ∼CO++ π(a, a)⊗ π(a, a)⊗ (D∗

xyDxy)

for all a ∈ {x, y}. Back to our rotated version of q∗q, it follows that it is enough to prove
that π(a1, a2)⊗π(a1, a2)⊗b∗b ∈ CO++ . We already know by induction that b∗b ∈ CO++ and
the result is clear for a1 = a2. If a1 ≠ a2, then π(a1, a2)⊗π(a1, a2) is a rotated version of
D∗
xyDxy and the result again holds.

Since any non-through-block projective partition is a tensor product of those we just studied,
we have proved that all projective partitions of C lie in CO++ .

Step 4. We can now conclude by Proposition 3.8 : any other partition, when rotated on one
line, gives a group-like relation, which is sd = 1 for some d ∈ N by Lemma 4.3. �
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5. Classification II : blocks of size at most two

The next step is to consider categories of partitions C such that all the partitions have blocks
of size one or two. Let us �rst recall that if there were only one colour, then according to [3]
and [19] there would be three possible compact quantum groups, namely

● B+
N (the quantum bistochastic group) whose category of partitions is generated by the

identity partition and a singleton {{1}} ∈ P (1,0),
● B+ ♯

N = B+
N ∗ Z2 whose category of partitions is generated by the identity partition and

the double singleton {{1},{2}} ∈ NC(2,0),
● B+′

N = B+
N × Z2 whose category of partitions CB+ ♯ is generated by the identity partition

and {{1},{2,4},{3}} ∈ P (4,0).
It is known that B+

N is isomorphic to O+
N−1 so that we could expect this step to be easily

deduced from the previous one. This fails however because the non-trivial one-dimensional
representations of the one-coloured case enter the picture. More precisely, there will be two
families of compact quantum groups in this section, one involving only relations with the group
of one-dimensional representations and the other one involving a twisted amalgamated free
product.

5.1. The non-amalgamated case. Assume that all the partitions in C contain only blocks
of size one and two but that blocks of size two are all of the form Dxx or Dyy. We �rst need
some results about one-dimensional representations. For any 1 ⩽ i ⩽ N , we set

sx =
N

∑
k=1

uxik and sy =
N

∑
k=1

uyik

and for a word w on A we denote by Pw the unique partition in NCA(w,∅) all of whose blocks
have size one.

Lemma 5.1. Let N ⩾ 4 be an integer and let C be a category of noncrossing partitions such that
Pxx, Pyy ∈ C. Then, the elements sx and sy do not depend on i. Moreover, they are group-like
elements satisfying s2

x = 1 = s2
y and they generate G(GN(C)).

Proof. The computation is similar to that of Lemma 4.3 and it is of course enough to do it for
x. More precisely, rotating Pxx we get P ∗

xPx ∈ C, implying that the sum de�ning sx does not
depend on i. Checking that the element is group-like is straightforward. Eventually, Pxx is an
equivalence between (P ∗

xPx)⊗2 and ∅, hence s2
x = 1. The fact that sx and sy generate the group

of group-like elements is a direct consequence of Lemma 3.6. �

Let p be a partition in C with a block of size one which can be assumed (up to relabelling
the colours) to be coloured with x. This block is full, hence P ∗

xPx ∈ C by Proposition 3.5 and
Pxx ∈ C. However, Pyy need not be in C and we �rst treat the case where Pyy ∉ C. To do this,
we introduce another compact quantum group :

De�nition 5.2. The C*-algebra of the compact quantum group BO+ ♯
N is de�ned to be the

quotient of C(B+ ♯
N ∗O+

N) by the relations

sxu
yy
ij = uyyij sx

for all 1 ⩽ i, j ⩽ dim(uyy).
By Proposition 3.13, BO+ ♯

N is a noncrossing partition quantum group. Moreover, its category
of partitions is generated by the free product CB+ ♯ ∗ CO+ together with the partition

Px ⊗ π(y, y)⊗ π(y, y)⊗ Px.
The idea for the classi�cation is that if C is not a free product, then the corresponding compact
quantum group is a quotient of BO+ ♯

N .
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Lemma 5.3. Let N ⩾ 4 be an integer and let C be a category of noncrossing partitions such
that all blocks have size at most two, Pxx ∈ C, Pyy ∉ C and Dxy is not a block of any partition in
C. If it is not a free product, then Px ⊗ π(y, y)⊗ π(y, y)⊗ Px ∈ C.
Proof. Let Cx be the category of all partitions in C which are only coloured by x. By the
classi�cation of orthogonal easy quantum groups, it is the category of partitions of one of the
three bistochastic quantum groups since by assumption Dxx, Pxx ∈ C. Moreover, Cy = CO+ since
Pyy ∉ C. Set D = Cx ∗ Cy and note that D ⊂ C. We claim that if C is not a free product, then at
least one of its projective partitions is not in D. Indeed, if all projective partitions in C lie in D,
then GN(C) is a quotient of GN(D) by group-like relations by Proposition 3.8. But [18, Thm
3.10] implies that GN(D) has only one non-trivial one-dimensional representation sx, which is
moreover of order two. Thus, the only possible group-like relation is sx = 1, which is equivalent
to C = ⟨D, Px⟩. But if Px ∈ C, then Px ∈ Cx ⊂ D so that C = D.
We will now prove the statement. Let p be a projective partition in C such that any projective

partition with strictly less blocks is in D. If p decomposes as an horizontal concatenation
p = p′ ⊗ p′′, then p′, p′′ ∈ D by assumption so that p ∈ D, a contradiction. Thus, p cannot be
decomposed, which means that the endpoints of each row are connected. Rotating p then yields
the partition b ⊗ π(a, a) ⊗ π(a, a) ⊗ b∗ for some partition b ∈ C(w,∅) (recall that π(a, b) never
occurs in C for a ≠ b). By Proposition 3.5, b∗b ∈ C and since it has less blocks than p, b∗b ∈ D.
Because the only possible non-trivial one-dimensional representation of GN(D) is sx = uP ∗xPx ,
either b ∈ D or b∗b ∼D P ∗

xPx. In the �rst case p ∈ D, a contradiction. Thus we are in the second
case and using the equivalence we see that Px ⊗ π(a, a) ⊗ π(a, a) ⊗ Px ∈ C. If a = x, this is a
partition in Cx, hence in D. This forces p ∈ D, a contradiction. Thus, a = y and the proof is
complete. �

The partition Px ⊗ π(y, y) ⊗ π(y, y) ⊗ Px can be rotated to produce the non-through-block
projective partition

x○

○
x

y y

y y

p♯ =

In general, the corresponding one-dimensional representation is non-trivial and together with
sx they generate the group of one-dimensional representations. This makes room for many
possible commutation relations and group-like relations and our classi�cation result will be
that everything can be obtained in that way. Before that, let us be more precise about the
one-dimensional representations of BO+ ♯

N .

Lemma 5.4. Setting s♯ = up♯, the group of one-dimensional representations of BO+ ♯
N is gener-

ated by sx and s♯. Moreover, for any t ∈ G(BO+ ♯
N ),

tuyyij = uyyij t
for all 1 ⩽ i, j ⩽ dim(uyy).
Proof. We �rst show that the group of group-like elements is generated by sx and s♯. Let
p = q∗q ∈ CBO+ ♯ be a non-through-block projective partition with q lying on one line. Any two
neighbouring points with the same colour can be removed up to equivalence by concatenation
with Dxx or Dyy. Thus, we may assume that q is alternating (in the sense that the colours
alternate). Moreover, since the blocks coloured by y must be Dyy, there is an even number of
y's in q. Therefore, there is an horizontal concatenation of Px and p♯ which has the same upper
colouring as q. By Lemma 3.6, p is equivalent to this partition, proving the �rst part of the
statement.
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As for the second part, �rst note that Px ⊗ π(y, y)⊗ π(y, y)⊗ P ∗
x , which is a rotation of p♯,

yields as in the proof of Proposition 3.10 that sx commutes with all the coe�cients of uyy.
Moreover,

Px ⊗ π(y, y)⊗4 ⊗ P ∗
x = [π(y, y)⊗2 ⊗ Px ⊗ π(y, y)⊗2 ⊗ P ∗

x ] [Px ⊗ π(y, y)⊗2 ⊗ P ∗
x ⊗ π(y, y)⊗2]

∈ CBO+ ♯

and rotating this partition yields q♯ ⊗ π(y, y) ⊗ π(y, y) ⊗ q∗♯ ∈ CBO+ ♯ , where q♯ is the upper row
of p♯. As before, this implies that s♯ commutes with all the coe�cients of uyy. By the �rst part
of the statement, sx and s♯ generate the group of group-like elements, thus the commutation
relation holds for all group-like elements. �

We are now ready for a classi�cation statement.

Proposition 5.5. Let N ⩾ 4 be an integer and let C be a category of noncrossing partitions
such that all blocks have size at most two, Pxx ∈ C, Pyy ∉ C and Dxy is not a block in C. If it is
not a free product, then C(GN(C)) is a quotient of C(BO+ ♯

N ) by

● Commutation relations with uxx,
● Group-like relations.

More precisely it is the quotient by one or several of the following relations :

● sx = 1,
● (sxs♯)d = 1 for some d ∈ N,
● (sxs♯)nuxxij = uxxij (sxs♯)n for some n ∈ N 1 ⩽ i, j ⩽ dim(uxx),
● ((sxs♯)msx)uxxij = uxxij ((sxs♯)msx) for some m ∈ N and all 1 ⩽ i, j ⩽ dim(uxx),
● ((s♯sx)`s♯)uxxij = uxxij ((s♯sx)`s♯) for some ` ∈ N and all 1 ⩽ i, j ⩽ dim(uxx).

This quantum group will be denoted by BO+ ♯
N (d,n,m, `).

Proof. Step 1. By Lemma 5.3, p♯ ∈ C. Moreover, the same argument as in Step 1. of the
proof of Theorem 4.4 shows that if Px ∈ C, then all partitions with blocks of size at most two
and only x-blocks of size one are in C. In other words, C = CB+ ∗ CO+ in that case. Thus, Px ∉ C.
As before, we denote by Cx the category of all partitions in C coloured only by x.

Step 2. Let D ⊂ C be the category of partitions generated by Cx ∗ Cy (seeing CO+ ⊂ Cy) and
p♯. We claim that for any projective partition p ∈ C there exists D ⊂ C′ ⊂ C such that p ∈ C′
and GN(C′) is obtained by quotienting GN(D) by the �rst relation in the statement. By the
same arguments as in the proof of Theorem 4.4, it is enough to consider partitions of the form
p = q∗q where q lies on one line and has its endpoints connected. Rotating yields the partition

r = b⊗ π(a, a)⊗ π(a, a)⊗ b∗ ∈ C.
If a = y, then r ∈ D by the second part of Lemma 5.4. Otherwise, if C′ is the category of
partitions generated by D and r, then C(GN(C′)) is the quotient of C(GN(D)) by the relations
ub∗buxxij = uxxij ub∗b for all 1 ⩽ i, j ⩽ dim(uxx), hence the result.

Step 3. According to the �rst two steps, there exists D ⊂ C′ ⊂ C such that C(GN(C′)) is a
quotient of C(GN(D)) by commutation relations and all projective partitions of C are in C′. It
follows from Proposition 3.8 that C(GN(C)) is a quotient of C(GN(C′)) by group-like relations.

Step 4. We now identify the possible commutation and group-like relations. These are de-
termined by two subgroups of G(BO+ ♯

N ) : the subgroup of elements commuting with uxx and
the subgroup of elements made trivial, which is normal and contained in the �rst one. Since
G(BO+ ♯

N ) is generated by two elements of order two, it is a dihedral group and so are its quo-
tients. Normal subgroups of G(BO+ ♯

N ) are therefore either generated by (sxs♯)d for some integer
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d ∈ N or by sx or s♯. But sx = 1 is equivalent to Px ∈ C which in turn is equivalent to s♯ = 1, hence
we do not need to include both in the group-like relations. Then, an arbitrary subgroup of a
dihedral group is generated by an element of minimal even length and an element of minimal
odd length. Here n is the length of the even element and m or ` the length of the odd one. �

Note that the relations in the statement are redundant. In fact, one can always choose n
to divide d and, if n ≠ 0, m can be chosen smaller than n. Moreover, the relations involving `
are redundant unless d, n and m are 0. However, splitting into more cases and breaking the
symmetry of the relations would have made, in our opinion, the statement too complicated by
hiding the very simple form of all the possible relations.
If now both Pxx and Pyy belong to C, then both sx and sy may be involved in commutation

relations, as well as any element of the in�nite dihedral group Z2 ∗Z2 that they generate inside
C(B+ ♯

N )∗C(B+ ♯
N ). Moreover, since points coloured with y need not be connected any more, the

proof of Lemma 5.3 breaks down so that there is no automatic commutation relation.

Proposition 5.6. Let N ⩾ 4 be an integer and let C be a category of noncrossing partitions
with blocks of size at most two such that Pxx, Pyy ∈ C and such that Dxy is not a block of any
partition in C. If it is not a free product, then there exists G1,G2 ∈ {B+

N ,B
+′
N ,B

+ ♯
N } such that

C(GN(C)) is the quotient of C(G1) ∗C(G2) by

● Commutation relations with uxx,
● Commutation relations with uyy,
● Group-like relations

More precisely, it is the quotient by one or several of the following relations

● (sxsy)d = 1 for some d ∈ N,
● (sxsy)nuxxij = uxxij (sxsy)n for some n ∈ N and all 1 ⩽ i, j ⩽ dim(uxx),
● ((sxsy)msx)uxxij = uxxij ((sxsy)msx) for some m ∈ N and all 1 ⩽ i, j ⩽ dim(uxx).
● ((sysx)`sy)uxxij = uxxij ((sysx)`sy) for some ` ∈ N and all 1 ⩽ i, j ⩽ dim(uxx).
● (sxsy)n′uyyij = uyyij (sxsy)n

′

for some n′ ∈ N and all 1 ⩽ i, j ⩽ dim(uyy),
● ((sxsy)m′

sx)uyyij = uyyij ((sxsy)m
′

sx) for some m′ ∈ N and all 1 ⩽ i, j ⩽ dim(uyy).
● ((sysx)`′sy)uyyij = uyyij ((sysx)`

′

sy) for some `′ ∈ N and all 1 ⩽ i, j ⩽ dim(uxx).
This quantum group will be denoted by BO+ ♯

N (d,n,m, `, n′,m′, `′).

Proof. Consider again the categories Cx and Cy of all partitions in C coloured only with x and
y respectively and set D = Cx ∗ Cy. If all projective partitions of C lie in D, then C(GN(C)) is a
quotient of C(GN(Cx)) ∗C(GN(Cy)) by group-like relations. It follows from the classi�cation
of noncrossing orthogonal easy quantum groups that each of the two factors of the free product
is itself a quotient of C(B+ ♯

N ) by group-like relations or commutation relations, hence the result
holds in that case.
Otherwise, the same argument as in the proof of Proposition 5.5 shows that there exists
D ⊂ C′ ⊂ C such that C(GN(C′)) is a quotient of C(GN(C)) by commutation relations and all
projective partitions in C lie in C′. We can then conclude as before by Proposition 3.8 and then
using the subgroup structure of G(GN(C)). �

Once again, the set of relations in the statement is redundant but this enables us to give a
tractable description of all the possible quotients.

5.2. The amalgamated case. We will now consider categories of noncrossing partitions C
containing at least one partition having Dxy as a block. The idea is that this block mixes the
two copies of B+

N so that the free product becomes amalgamated and the classi�cation should
be close to the case of pair partitions. The situation is however more complicated because
the amalgamation can be twisted by one-dimensional representations in the sense of De�nition
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3.12. More precisely, consider the free product B+ ♯
N ∗ B+ ♯

N . Each copy contains the subgroup
PB+ ♯

N ≃ PO+
N−1 generated by the coe�cients of uxx and uyy respectively and this is where

twisted amalgamation takes place.

De�nition 5.7. Let K ⊂ Z2 ∗ Z2 be a left coset. The C*-algebra of the compact quantum
group B++

N (K) is de�ned to be the quotient of C(B+ ♯
N ∗B+ ♯

N ) by the relation

tuxxij = uyyij t
for all 1 ⩽ i, j ⩽ dim(uxx) and all t ∈K.

By Proposition 3.10, B++
N (K) is a noncrossing partition quantum group. Let us denote by

x and y the free generators of Z2 ∗ Z2. If t ∈ Z2 ∗ Z2 can be written as a word g1⋯gn on
the generators, we denote by Pt ∈ P (g1⋯gn,∅) the unique partition all of whose blocks are
singletons. Then, by Corollary 3.15, the category of partitions CB++(K) of B++

N (K) is generated
by Pxx, Pyy and Pt ⊗ π(x, y)⊗ π(x, y)⊗ P ∗

t for all t ∈ K. Using B++
N (K), we can complete the

classi�cation for blocks of size at most two.

Theorem 5.8. Let N ⩾ 4 be an integer and let C be a category of noncrossing partitions with
blocks of size less than two and assume that Pxx ∈ C and Dxy is a block in C. Then, there exists
a left coset K ⊂ Z2∗Z2 such that C(GN(C)) is a quotient of C(B++

N (K)) by group-like relations,
i.e.one of the following relations :

● sx = 1,
● sy = 1,
● (sxsy)d = 1 for some d ∈ N.

These quantum groups will be denoted respectively by B++
N (K,x), B++

N (K,y) and B++
N (K,d).

Proof. Step 1. We �rst prove that CB++(K) ⊂ C for some K. Let p ∈ C be a partition containing
Dxy as a block and note that concatenating with P ∗

xPx we can produce a y-singleton which is
a full subpartition, hence P ∗

y Py ∈ C by Proposition 3.5. Consider now a full subpartition q of
p delimited by Dxy. Again by Proposition 3.5, q∗q ∈ C and rotating it gives a partition of the
form b⊗ π(x, y)⊗ π(x, y)⊗ b∗ ∈ C. If b has colouring g1,⋯, gn and t = g1⋯gn ∈ Z2 ∗Z2, then

Pt ⊗ π(x, y)⊗ π(x, y)⊗ P ∗
t = [π(y, y)⊗ π(y, y)⊗ (P ∗

t Pt))] (q∗q) [(P ∗
t Pt)⊗ π(x,x)⊗ π(x,x)]

∈ C
and the claim is proved.

Step 2. Our next step is to prove that for any projective partition p ∈ C, there exists K ⊂ K ′

such that p ∈ CB++(K′) ⊂ C. To see this, we can as before focus on a non-through-block projective
partition of the form q∗q where the endpoints of q are connected. If the colours of these
endpoints are x and y, then Step 1. of this proof shows that q∗q ∈ CB++(K′) for a suitable K ′.
If the colours of the endpoints are the same, say x, then rotating q∗q yields the partition

s = b⊗ π(x,x)⊗ π(x,x)⊗ b∗

for some partition b lying on one line. Let t ∈K and let c∗c be a non-through-block projective
partition such that uc∗c = t. Then, s′ = c⊗π(x, y)⊗π(x, y)⊗ c∗ ∈ CB++(K) and rotating s′s yields

s′′ = c⊗ b⊗ π(x, y)⊗ π(x, y)⊗ c∗ ⊗ b∗.
Adding this partition to CB++(K) is the same as adding u(c∗c)⊗(b∗b) = uc∗c ⊗ ub∗b to K. A similar
argument shows that conversely, if s′, s′′ ∈ K then s ∈ C. Summing up, we can enlarge K so
that s ∈ CB++(K′).

Step 3. Using now Proposition 3.8, we can only add group-like relations, which are precisely
the ones given in the statement. �
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6. Classification III : even partitions

When classifying orthogonal easy quantum groups, four families appear : the orthogonal one,
the bistochastic one, the hyperoctahedral one and the symmetric one. The last two families
are very similar since they are the two simplest examples of free wreath products. Similarly
here, they will both appear through the free wreath products of pairs construction introduced
in Subsection 3.2. However, there is a fundamental distinction which will prove practical for
our study : the presence or the absence of a block of odd size.
We will now assume that C contains only partitions with blocks of even size. We will moreover

assume that there is a partition p with a block of size at least 4. In this context, things are
di�erent from the �rst two cases and free wreath products are needed. For d ∈ N, we will denote
by Γd the quotient of the group Z2 ∗ Z2 by the relation (xy)d = e, where x and y are the two
generators. By convention, we set Γ0 = Z2∗Z2. It is easy to check that the category of partitions
generated by π((xy)d,∅) is exactly CΓd,{x,y}. For simplicity, we will omit the generating set from
now on since it is always {x, y}. To apply Proposition 3.18 we need to know that C already
contains the category of partitions of a free wreath product of pair. Let us start with a simple
lemma.

Lemma 6.1. Let C be a category of noncrossing partitions such that all blocks have even size.
If C contains a partition with a block of size at least four, then π(xx,xx) ∈ C or π(yy, yy) ∈ C.
Proof. Let p ∈ C be a partition with a block of size at least 4 and let q be a minimal full subpar-
tition containing all the points of this block, so that q∗q ∈ C by Proposition 3.5. We therefore
have a through-block and between the points on each row, a non-through-block partition. As
in the proof of [8, Lem 4.2], we can reduce q∗q by concatenations until the through-block has
only four points left while still being in C. Rotating it then yields

r = b⊗ π(a1a1, a2a2)⊗ b
∗ ∈ C

for some a1, a2 ∈ A and a non-through block partition b. Then, π(a1a1, a1a1) = r∗r ∈ C and the
proof is complete. �

With this in hand, we can already rule out the case where no partition has two colours.

Lemma 6.2. Let C be a category of noncrossing partitions such that all blocks have even size
and containing a block of size at least four. If no partition in C has two colours, then it is a
free product.

Proof. From Lemma 6.1 we know that, up to relabelling the colours, all even partitions coloured
by x are in C. As for y, we have two possibilities : either only pair partitions are in C, or all even
partitions are in C. In the �rst case we have CH+

N
∗CO+

N
⊂ C and in the second case CH+

N
∗CH+

N
⊂ C.

Let us consider the category of all partitions such that all blocks have only one colour and all
blocks have even size (resp. and all blocks coloured by y have size two). In both cases, an
easy induction as in Step 1. of the proof of Theorem 4.4 shows that this category is equal to
CH+

N
∗ CH+

N
(resp. to CH+

N
∗ CO+

N
) and since it contains C, we have equality. �

We are now ready to prove that the quantum groups that we are trying to classify are all
quotients of the aforementioned free wreath products of pairs.

Proposition 6.3. Let C be a category of noncrossing partitions such that all blocks have even
size and which is not a free product. Then, CΓd ⊂ C for some integer d ∈ N.
Proof. We �rst prove that π(xy, xy) ∈ C by dividing into two cases. First assume that there
is a partition p ∈ C lying on one line with an interval b of size at least four with two colours.
Then, b∗b ∈ C by Proposition 3.5 and by the same technique as in the proof of Lemma 6.1 we
can end up with π(xy, xy) ∈ C. Assume now that all intervals of size at least four have only one
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colour. Then, they can be removed by concatenation with Dxx or Dyy and since C contains a
block with two colours, we deduce that Dxy is an interval. Hence, D∗

xyDxy ∈ C by Proposition
3.5. Rotating it gives π(x, y)⊗ π(x, y) ∈ C so that

π(xx, yy) = [π(x, y)⊗ π(x, y)]π(xx,xx) ∈ C
and rotating π(xx, yy) yields π(xy, xy) ∈ C. Setting d = min{k, β((xy)k,∅) ∈ C}, we can now
conclude that CΓd ⊂ C. �

By Proposition 3.18, we will get free wreath products of pairs. The only thing that we do not
know is what kind of subgroup Λ ⊂ Z2 ∗Z2 can appear for the one-dimensional representations.
To �nd it, let us set n = min{k ⩾ 1, β((xy)k, (xy)k) ∈ C}, where by convention n = 0 if this set
is empty.

Lemma 6.4. Assume that n ⩾ 1. For 1 ⩽ i ⩽ N , set

s =
N

∑
k=1

(uxikuyik)n ∈ C(GN(C)).

Then, s is a group-like element which does not depend on k. Moreover,

● s generates the group of group-like elements of G,
● n divides d and s has order d/n (this statement being empty if d = 0).

Proof. The fact that β((xy)n, (xy)n) ∈ C translates into the equation

N

∑
k=1

(uxikuyik)n =
N

∑
m=1

(uxmjuymj)n

for any 1 ⩽ i, j ⩽ N , the fact that the sums do not depend on i and j and the fact that s is a
group-like element are proved as in Lemma 4.3. Let p = q∗q ∈ C be a projective partition with
t(p) = 0. Up to equivalence, we can assume (using Dxx and Dyy) that its upper colouring is
alternating. Let 2m be the number of points of q and assume without loss of generality that
the colouring is (xy)m. If m < n, let b be an interval of q. Then, b∗b ∈ C by Proposition 3.5 and
has size smaller than n, contradicting its minimality. Thus, m ⩾ n. Let m = n × ` + r be the
euclidean division of m by n and notice that (up to relabelling the colours)

[(β((xy)n, (xy)n)⊗` ⊗ (π(x,x)⊗ π(y, y))⊗r]p = β((xy)n, (xy)n)⊗` ⊗ q
for some projective partition q of size 2r. If q is not empty, then any of its interval again
contradicts the minimality of n. Hence, q = ∅ and the left-hand side is an equivalence between
p and β((xy)n, (xy)n)⊗`. This implies that the one-dimensional representation associated to p
is equivalent to s⊗`. By de�nition, n ⩽ d so let d = n × ` + r be the euclidean division of d by
n. The same reasoning as before shows that either r = 0 or β((xy)r, (xy)r) ∈ C, from which the
last assertion follows.

�

For n dividing d, let us denote by Λn the subgroup of Γd generated by (xy)n. A consequence
of the previous statement is that the only subgroups of Γd which can appear in the even case
are the Λn's. We can now complete the classi�cation of the even case.

Theorem 6.5. Let N ⩾ 4 be an integer and let C be a category of noncrossing partitions which
is not a free product, such that all blocks have even size and with a block of size at least four.
Then, there exist two integers d and n, with n dividing d, such that G =H+

N(Γd,Λn).

Proof. This is a direct consequence of Proposition 6.3, Lemma 6.4, Lemma 6.2 and Proposition
3.18. �
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One may be surprised that there is no group-like relations in the statement. This is because
in the case of free wreath products of pairs, adding group-like relations is the same as replacing
Γ and Λ by some suitable quotient, as explained in Step 3. of the proof of Proposition 3.18.

7. Classification IV : other cases

There is one case left : when some partitions contain odd blocks of size at least three. In the
orthogonal case, there are two possibilites :

● the quantum permutation group S+N whose category of partitions is NC,
● its symmetrized version S+′N = S+N × Z2 whose category of partitions NC ′ consists in all
noncrossing partitions with an even number of odd blocks.

As for the bistochastic case, the main distinction will be the presence or absence of two-coloured
partitions in C. If there are some, we will get free wreath products of pairs. If there is none,
we will be adding commutation relations between one-dimensional representations and higher-
dimensional ones, as well as group-like relations.

7.1. The non-amalgamated case. We start with the non-amalgamated case. We will obtain
quotients of a free product by some commutation relations. As one may expect, any pair of
orthogonal easy quantum groups which did not appear in Subsection 5 may appear here. This
can be seen from the following simple lemma :

Lemma 7.1. Let C be a category of noncrossing partitions such that all blocks have only one
colour, with an odd block of size at least three. Then, up to exchanging the colours, Pxx ∈ C and
C contains a four-block.

Proof. Recall that we are assuming that all blocks have only one colour. Let p ∈ C, let b be an
odd block of p of size at least three and assume without loss of generality that it is coloured
by x. If it is an interval, then b∗b ∈ C and concatenating with Dxx yields Pxx ∈ C. Assume now
that no odd block of size at least three is an interval. Since any even block can be removed by
concatenating with Dxx or Dyy, this means that there are two points of b between which there
is a singleton. Thus, we have again that Pxx ∈ C.
Let now p be a partition containing a block of size at least three and let q be a minimal full

subpartition containing this block. By Proposition 3.5, q∗q ∈ C and the same argument as in
Lemma 6.1 yields a four-block in C. �

We will now split the classi�cation into several cases, depending on the category Cy of all
partitions in C coloured only with y.

7.1.1. First case. We start with the case where blocks in Cy have size less than two.For conve-
nience, we �rst treat the case where Pyy ∈ C.
Proposition 7.2. Let N ⩾ 4 be an integer and let C be a category of noncrossing partitions
such that Pxx, π(xx,xx) ∈ C, all blocks coloured only with y have size at most two and Pyy ∈ C.
If C is not a free product, then there exist two orthogonal easy quantum groups G1 ∈ {S+N , S+′N }
and G2 ∈ {B+ ♯

N ,B
+′
N ,B

+
N} such that C(GN(C)) is a quotient of C(G1) ∗C(G2) by

● Commutation relations with uxx,
● Commutation relations with uyy,
● Group-like relations.

More precisely, it is the quotient by one or several of the following relations

● (sxsy)d = 1 for some d ∈ N,
● (sxsy)nuxxij = uxxij (sxsy)n for some n ∈ N and all 1 ⩽ i, j ⩽ dim(uxx),
● (sxsy)n′uyyij = uyyij (sxsy)n

′

for some n′ ∈ N and all 1 ⩽ i, j ⩽ dim(uyy),
● ((sxsy)m′

sx)uyyij = uyyij ((sxsy)m
′

sx) for some m′ ∈ N and all 1 ⩽ i, j ⩽ dim(uyy).
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● ((sysx)`′sy)uyyij = uyyij ((sysx)`
′

sy) for some `′ ∈ N and all 1 ⩽ i, j ⩽ dim(uxx).
Depending on G1, the quantum groups will be denoted respectively by SB+ε

N (d,n, n′,m′, `′) with
ε ∈ {+, ′, ♯}.

Proof. Set D = Cx ∗ Cy. We will �rst prove that there is a category of partitions C′ ⊂ C such
that C(GN(C′)) is a quotient of C(GN(D)) by commutation relations with uxx or uyy and any
projective partition in C lies in C′.

Step 1. We start with a non-through-block projective partition p = q∗q where the endpoints of q
are connected. If the endpoints of q form a two-block, then we conclude as in Proposition 5.5 for
the bistochastic case. Otherwise, the endpoints must be coloured by x so let us assume that we
have an x-block of size n with other partitions b1,⋯, bn−1 between its points. As in [8, Lem 4.2],

after rotating and capping we get ri = bi ⊗ π(xx,xx)⊗ b
∗
i ∈ C for any 1 ⩽ i ⩽ n− 1. Moreover, by

the assumptions and the classi�cation of orthogonal easy quantum groups, π(xx,x)⊗Px ∈ Cx ⊂ C
so that

si = (π(xx,x)⊗ P ∗
x )ri(b∗i bi ⊗ π(x,xx)⊗ Px ⊗ bib

∗
i ) = bi ⊗ π(x,x)⊗ Px ⊗ b

∗
i ⊗ P ∗

x ∈ C
Now, we can simplify si ⊗ s∗i by concatenating neighbouring points with the same colour until

we get the partition ti = bi ⊗ π(x,x) ⊗ π(x,x) ⊗ b
∗
i . Thus adding p implies adding ti for all

1 ⩽ i ⩽ n − 1, and each ti yields a commutation relation with uxx.
We now claim that the category of partitions C′ generated by D and all the ti's also contains

p. This can be proved by induction on the number n of points in the large x-block of q. For
n = 2, p is a rotated version of t1. For n ⩾ 3, let q′ be the partition with an x-block of n−1 points
and the partitions b1,⋯, bn−2 in between, i.e. q with the bn−1-part removed. By the induction
hypothesis, q′∗q′ ∈ C′. Recalling that π(xx,x)⊗ π(xx,x) ∈ NC ′, let us set

z = [π(xx,x)⊗ π(xx,x)] [π(x,x)⊗ tn−1 ⊗ π(x,x)] ∈ C′.
Rotating q′∗q′ on one line and concatenating in the middle by z then produces a rotated version
of p.

Step 2. We now consider a general projective partition and write it as an horizontal concate-
nation of non-through-block partitions with endpoints connected and through-block partitions
with endpoints connected as in Remark 2.14. We have to focus on the second type. If the end-
points are coloured by y, this is just π(y, y) so that we assume that the endpoints are coloured
by x. We therefore have π(xn, xn) with partitions b1,⋯, bn−1 between the points. Using again

[8, Lem 4.2], we see that ri = bi ⊗ π(xx,xx)⊗ b
∗
i ∈ C for all 1 ⩽ i ⩽ n − 1. Let C′ be the category

of partitions generated by D and all the ri's. By the same proof as in Step 1. above, q∗q ∈ C
where q lies on one line and consists in an x-block of size n with the partitions b1,⋯, bn−1 in
between the points. Now, concatenating q ⊗ q∗ with π(xx,xx) in the middle yields a rotated
version of our initial projective partition, hence the result.

Step 3. By Proposition 3.8, we are left with group-like relations. As for the possible relations,
we proceed as in Proposition 5.6 with an extra fact : sx always commutes with uxx, hence to
generate the group of elements commuting with uxx we only need to add an element of the form
(sxsy)n. �

As in the bistochastic case, some of these relations are redundant. As for the case Pyy ∉ C, it
removes sy from the previous proposition, thus yielding :

Proposition 7.3. Let N ⩾ 4 be an integer and let C be a category of noncrossing partitions
such that Pxx, π(xx,xx) ∈ C, all blocks coloured only with y have size at most two and Pyy ∉ C. If
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C is not a free product, then C(GN(C)) is the quotient of C(S+′N ) ∗C(O+
N) by the commutation

relation
sxu

yy
ij = uyyij sx

for all 1 ⩽ i, j ⩽ dim(uyy). This quantum group will be denoted by SO+′
N .

7.1.2. Second case. In this second case, we will assume that Pxx ∈ C and that there is a partition
with a y-block of even size at least four. The same argument as in Lemma 7.1 then shows that
π(yy, yy) ∈ C so that any y-coloured partition with all blocks of even size is in C. It turns
out that this is the most complicated case of the classi�cation. To explain this, we need some
notations. Let pk be the partition π(yk+1, yk+1) together with an x-singleton between each
point of the upper and lower row (but not between the endpoints of each row) and let qk be
the non-through-block version of pk. Here is a picture :

. . .

. . .

y x○
y y x○

y

y
○
x y y

○
x y

pk =
. . .

. . .

y x○
y y x○

y

y
○
x y y

○
x y

qk =

These partitions will be our key tool for the classi�cation. Here are some elementary prop-
erties :

Lemma 7.4. Let C be a category of noncrossing partitions such that Pxx ∈ C and all partitions
coloured by y have even size. The following are equivalent :

(1) pk ∈ C for all k ∈ N,
(2) pk ∈ C for some k ∈ N,
(3) Px ⊗ π(yy, yy)⊗ P ∗

x ∈ C.
Proof. (1) ⇒ (2) is clear, so let us assume that pk ∈ C for some k. Rotating it on one line
and concatenating as in the proof of [8, Lem 4.1], we get p1 ∈ C, which is a rotated version of
Px ⊗ π(yy, yy)⊗ P ∗

x .
If now we assume (3), we already noted that rotating we get p1 ∈ C. Moreover, using this

partition we can make singletons "jump" over two neighbouring y-points which are connected.
More precisely, if a partition is in C, then the same partition where an x-singleton has been
moved over two consecutive connected y-points is also in C. Using this, we will prove by
induction that pk ∈ C. For k = 1 there is nothing to prove. For k ⩾ 1, let us rotate pk on one
line and denote the corresponding partition by p′k. Then, concatenating the last point of p′k by
π(yyy, y) yields a partition s with a y-block of size 2k + 2 and x-singletons between the �rst
k points and the k + 2-th to 2k-th points. This is the same as a rotation of pk+1 except that
between the last two y-points there is nothing. Now consider s ⊗ Pxx ∈ C. Then, using the
"jumping property" we obtain a rotated version of pk+1. Here is an illustration for the process
building p2 from p1 :

y x○
y y x○

y
p1 ↝

rotation

y x○
y y x○

y y y
↝

π(y,yyy)

y x○
y y x○

y y y x○ x○↝
⊗Pxx

y x○
y y x○

y x○
y y x○↝

jumping

y x○
y x○
y y x○

y x○
y

↝
rotation

�

The idea for the classi�cation is as follows : if the partition quantum group is not a free
product, then its category of partition contains Px ⊗ π(yy, yy) ⊗ P ∗

x . To get all projective
partitions, one may have to add qk for some k, and then group-like relations. However, the
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proof of this involves the structure of x-coloured partitions, which is not easy to deal with.
To keep things clear, we will therefore split the arguments into several statements but before
we prove the claim at the beginning of this paragraph. From now on, we write NCev for the
category of all noncrossing partitions with blocks of even size.

Lemma 7.5. Let C be a category of noncrossing partitions with Pxx ∈ C and such that Cy = NCev.
If it is not a free product, then Px ⊗ π(yy, yy)⊗ Px ∈ C.
Proof. Writing D = Cx ∗ Cy, the same argument as in Lemma 5.3 shows that if C is not a free
product then there is a projective partition in C ∖ D. Let p be such a projective partition of
minimal size. It cannot be decomposed as a tensor product p = p′ ⊗ p′′ by minimality, so that
the endpoints of each row must be connected. We therefore have a block with points coloured
by a and between these points partitions bi lying on one line. By minimality, b∗i bi ∈ D so that,
again as in Lemma 5.3, we can either remove bi or replace it with Px. Since p ∉ D, there is at
least one Px and a = y.
Let us assume that the y-block is a through-block. Then, using [8, Lem 4.1] we can rotate

and concatenate until we have a rotated version of Px ⊗ π(yy, yy) ⊗ Px. If now the y-block
is not a through-block, there are again two cases. If the y-blocks have size two, we have a
rotated version of Px⊗π(y, y)⊗π(y, y)⊗Px and concatenating with π(yy, yy) yields the result.
Otherwise, since there is at least one i such that bi = Px, by [8, Lem 4.2] we can produce a
rotated version of Px ⊗ π(yy, yy)⊗ Px in C. �

For the classi�cation, let us �rst assume that qk ∉ C for any k ∈ N. Then, there is nothing
that one can add. To state this more precisely, let us set v = uπ(yy,yy).
Proposition 7.6. Let N ⩾ 4 be an integer and let C be a category of noncrossing partitions
containing an odd block coloured with x and such that Cy = NCev. If qk ∉ C for all k ∈ N and C
is not a free product, then there exists G ∈ {S+N , S+′N ,B+

N ,B
+′
N ,B

+ ♯
N } such that C(GN(C)) is the

quotient of C(G) ∗C(H+
N) by the relations

sxvij = vijsx
for all 1 ⩽ i, j ⩽ dim(v). Depending on G, this quantum group will be denoted BH+ε

N with
ε ∈ {+, ′, ♯} or SH+ε

N with ε ∈ {+, ′}.
Proof. Step 1. Let D be the category of partitions generated by Cx ∗Cy and p1. We claim that
all projective partitions in C lie in D. By contradiction, consider a non-through-block projective
partition p = q∗q of minimal size among those not belonging to D. As in the proof of Lemma
7.5, we can assume that q is a y-block with either nothing or Px between the points. Let us
prove by induction on the number of points that such a partition is always in D. If there are two
y-points then the partition cannot contain a singleton since it would be equal to q1 ∉ C. Thus
there is nothing between the points and it therefore belongs to D. If there are more points,
there cannot be singletons between each point since otherwise it would be equal to qk ∉ C. Thus
there are at least two neighbouring y-points. If there are x singletons on both sides of these two
neighbouring y-points, we can use p1 to make one of them "jump", so that we may assume that
there are three neighbouring y-points. Then, concatenating with Dyy produces an equivalent
partition which, by induction, is in D. Moreover, the original partition can be recovered from
this one by concatenating with π(y, yyy), hence is in D. Thus, all non-through-block projective
partitions are in D.

Step 2. Consider now a through-block projective partition p with t(p) = 1. Again we can as-
sume that the through-block is coloured with y and that there are either nothing or x-singletons
between the points and the same argument as in Lemma 7.4 shows that p ∈ D. Since any pro-
jective partition in C can be written as an horizontal concatenation of those studied in Step
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1. and Step 2., we conclude that they all belong to D.

Step 3. As a consequence of the two previous steps and Proposition 3.8, C(GN(C)) is a
quotient of C(G) ∗ C(H+

N) by the relations in the statement plus some group-like relations.
However, we have seen in Step 1. that non-through-block projective partitions are always
equivalent either to a y-block (which yields the trivial representation) or to an x-singleton. All
we can do is therefore add Px to C, but if Px ∈ C, then by de�nition Px ∈ Cx ⊂ D. �

We now assume that qk ∈ C for some k ⩾ 1. Let us �rst see which other qk′ 's can then be in C.

Lemma 7.7. Let C be a category of noncrossing partitions such that qk ∈ C for some k. Then,
the following hold :

(1) p1 ∈ C.
(2) If qk, qk′ ∈ C, then qk+k′+1 ∈ C and qk+k′+1 ∼ qk ⊗ P ∗

xPx ⊗ qk′,
(3) If qk, qk′ ∈ C for k > k′, then qk−k′−1 ∈ C and qk ∼ qk′ ⊗ P ∗

xPx ⊗ qk−k′−1.

As a consequence, there exists an integer k0 such that {k ∣ qk ∈ C} = {nk0 + n − 1 ∣ n ∈ N}.

Proof. To prove (1) we distinguish two cases. If q1 ∈ C, then rotating it we get Px ⊗ π(y, y) ⊗
π(y, y)⊗Px. Concatenating with π(yy, yy) then yields a rotated version of p1. If qk ∈ C for some
k ⩾ 2, rotating it on one line and concatenating with Dyy we can glue the blocks to produce a
rotated version of pk−1 and the result again holds by Lemma 7.4.
For (2), note that

r = [qk ⊗ P ∗
xPx ⊗ qk′] [π(y, y)⊗ π(x,x))⊗k ⊗ p1 ⊗ (π(y, y)⊗ π(x,x))⊗k′ ⊗ π(y, y)] ∈ C

satis�es r∗r = qk+k′+1 and rr∗ = qk ⊗ P ∗
xPx ⊗ qk′ , hence the result. For (3), simply concatenate

qk with qk′ ⊗ (π(x,x)⊗ π(y, y))⊗2(k−1) to get the equivalence.
Now, if k0 is the smallest k such that qk ∈ C, it follows from point (3) that any other k is of

the form nk0 + (n − 1) while point (2) shows that all such k's occur. �

The classi�cation result of this subsection is that once qk has been added to the free product,
all we can do is add commutation relations with uxx and group-like relations. To prove this, we
will have to show that some projective partitions in a category belong to a given subcategory.
For the sake of clarity, we split this argument using the following de�nition :

De�nition 7.8. Let NC1,2(x) be the category of all x-coloured noncrossing partitions with
blocks of size at most two and let NCev(y) be the category of all y-coloured noncrossing
partitions with all blocks of even size. A projective partition p is said to be x-simple if it is
equivalent in NC1,2(x) ∗NCev(y) to a partition in which all x-blocks are singletons.

Lemma 7.9. Let C be a category of noncrossing partitions containing NC1,2(x)∗NCev(y) and
let D be the subcategory of C generated by NC1,2(x) ∗NCev(y) and qk for all k > 0 such that
qk ∈ C. Then, any x-simple projective partition in C lies in D.

Proof. Assume that there is an x-simple projective partition in C ∖ D. By de�nition, there
is then a projective partition p ∈ C ∖ D such that its x-blocks are all singletons and we can
consider such a p with a minimal number of points. By minimality, p cannot be written as a
tensor product of two projective partitions so that its endpoints are connected, hence coloured
by y. Let us �rst assume that t(p) = 0 and write p = q∗q. Thus, q consists in a y-block with
a partition bi between the points. If bi = Px for all i, then we have qk which is already in D.
Otherwise, we can concatenate with Dyy to produce a projective partition which is equivalent
to p in NC1,2 ∗ NCev but smaller, a contradiction. Assuming now that t(p) = 1, the same
argument works : if bi = Px for all i then p = pk which is in D by Lemma 7.7 and otherwise we
can reduce p, contradicting minimality. �
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We will now complete the classi�cation. To do this, we have to consider general projective
partitions in C, which should amount to commutation relations and then add group-like rela-
tions. Before that, note that adding qk may be seen as a commutation relation. Indeed, thanks
to Lemma 7.7 we may always assume that we are adding qk for some odd k = 2k′ − 1. Then,
rotating it gives an equivalence between Px⊗pk′−1⊗pk′−1 and pk′−1⊗pk′−1⊗Px. Let us introduce
some notations to make things clear :

De�nition 7.10. Let Cx ⊂ NC1,2(x) and let C be a category of noncrossing partitions containing
Cx ∗NCev(y) and q2k−1 for some k > 0. We will denote by w(k) the following representation of
GN(C) :

w(k) = upk−1⊗pk−1
with the convention that w(1) = uy ⊗ uy.
We can now give our classi�cation result. To identify the one-dimensional representations

involved in the relations, let us write k0 for the smallest integer such that qk ∈ C and denote by
sk0 the one-dimensional representation corresponding to qk0 .

Proposition 7.11. Let N ⩾ 4 be an integer and let C be a category of noncrossing partitions
containing Pxx and such that Cy = NCev(y) and qk ∈ C for some k > 0. Then, there exists
G ∈ {B+ ♯

N ,B
+′
N ,B

+
N , S

+
N , S

+′
N } such that C(GN(C)) is a quotient of C(G)∗C(H+

N) by the relations

sxw
(k)
ij = w(k)ij sx

for all 1 ⩽ i, j ⩽ dim(w(k)) and

● Commutation relations with uxx,
● Group-like relations.

More precisely, it is the quotient by one or several of the following relations :

● (sxsk0)d = 1 for some d ∈ N,
● (sxsk0)nuxxij = uxxij (sxsk0)n for some n ∈ N and for all 1 ⩽ i, j ⩽ dim(uxx).

Depending on G, this quantum group will be denoted by BH+ε
N (k, d, n) for ε ∈ {+, ′, ♯} or by

SH+ε
N (k, d, n) for ε ∈ {+, ′}.

Proof. Step 1. Let D be the category of partitions generated by Cx ∗Cy and qk. We claim that
there exists a category of partitions D ⊂ C′ ⊂ C such that GN(C′) is a quotient of GN(D) by
commutation relations with uxx and all projective partitions in C lie in C′.
We will prove this by induction on the number of blocks of p. If p has one block, it is in D.

Assume now that p has n ⩾ 2 blocks. If it can be written as a horizontal concatenation, then
we conclude by induction. We may therefore consider that the endpoints of p on each row are
connected. There are now two cases :

● If they are coloured by x, then the upper row of p consists of an x-block of n points
together with partitions (bi)1⩽i⩽n−1 between the points. However, we have seen in Step
1. of the proof of Proposition 7.2 that in that case,

⟨D, p⟩ = ⟨D, bi ⊗ π(x,x)⊗ π(x,x)⊗ b∗i for 1 ⩽ i ⩽ n − 1⟩.
And we can therefore obtain p by adding a �nite number of commutation relations with
uxx.

● If they are coloured by y, then by concatenating any two neighbouring x-points with
Dxx, we obtain an equivalent projective partition in which all x-points are isolated,
in the sense that there is at least one y-point between any two x-points. Because
y-singletons cannot be blocks of partitions in C and no block contains two di�erent
colours, it follows from the fact that the partition is noncrossing that all x-points of this
equivalent partition are singletons, hence p is x-simple and we conclude by Lemma 7.9.
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By Proposition 3.8, we are then left with group-like relations.

Step 2. It remains to identify the one-dimensional representations appearing in the relations.
To do this, we will �rst describe the group of one-dimensional representations. Consider a
non-through-block projective partition p = b∗b and note that concatenating with Dxx, Pxx and
Dyy we can assume that the colouring of b is alternating and that all x-points are singletons.
Let us assume for the moment that the endpoints of b are both coloured by y. Consider now a
y-block in b of minimal length and let c be the full subpartition delimited by this block. Then,
c∗c = qk for some k so that b has at least k0 y-points. Now, p has the same colouring as qk for
some k ⩾ k0, hence is equivalent to it by Proposition 3.6 and by Lemma 7.7, qk is equivalent to
an horizontal concatenation of copies of qk0 and P

∗
xPx. If now some endpoints of b are coloured

by x, the it is obtained from one with endpoints coloured by y by horizontally concatenating
with P ∗

xPx so that we conclude that the group of one-dimensional representations is generated
by sx and sk0 , which both have order two.
This implies that the possible group-like relations are sx = 1, sk0 = 1 and (sxsk0)d = 1. The

�rst one just means changing the compact quantum group G and we claim that the second one
is equivalent to sx = 1. Let Qk0 denote the upper row of qk0 and assume that Qk0 ∈ C. If k0 is
odd, then we can rotate the endpoints on the lower line and concatenate them with Dyy, then
rotate the x singletons which are now the endpoints and concatenate them with Dxx and so on
until we are left with Px, implying Px ∈ C. If k0 is even, then the same procedure leaves us with
Py, contradicting Cy = NCev(y). Thus, Qk0 ∈ C is equivalent to Px ∈ C in that case.
As for commutation relations with uxx, note that sx always commutes with uxx in S+

′

N . Thus,
(sxsk0)nsx commutes with uxx if and only if (sxsk0)n commutes with it and similarly, (sk0sx)nsk0
commutes with uxx if and only if (sk0sx)n+1 does. Consequently, the relations in the statement
are enough to cover all cases. �

7.1.3. Third case. The last case to consider is quotients of S+′N ∗ S+′N .

Proposition 7.12. Assume that Pxx, Pyy, π(xx,xx), π(yy, yy) ∈ C. Then, there exists G1,G2 ∈
{S+N , S+′N } such that GN(C) is a quotient of C(G1) ∗C(G2) by

● Commutation relations with uxx,
● Commutation relations with uyy,
● Group-like relations.

More precisely, it is the quotient by one or several of the following relations :

● (sxsy)d = 1 for some d ∈ N,
● (sxsy)nuyyij = uyyij (sxsy)n for some n ∈ N and all 1 ⩽ i, j ⩽ dim(uyy),
● (sysx)n′uxxij = uxxij (sysx)n

′

for some n′ ∈ N and all 1 ⩽ i, j ⩽ dim(uxx).
This quantum group will be denoted by S++N (d,n, n′).

Proof. Let us write D = NC ′ ∗NC ′ ⊂ C. The same arguments as in the previous cases show
that there exists D ⊂ C′ ⊂ C such that GN(C′) is a quotient of GN(D) by commutation relations
with uxx and uyy and all projective partitions in C lie in C′. Indeed, since now Pyy ∈ C, the
argument used for partitions with connected endpoints coloured by x now also works when the
endpoints are coloured by y. This is why there is no more pk or qk appearing in the statement.
Now we have to determine the precise relations which may occur. Once again, G(S+′N ∗ S+′N )

is the in�nite dihedral group with sx and sy as free generators, so that the group-like relations
must be of the form (sxsy)d = 1, sx = 1 or sy = 1 but the last two amount to changing the
compact quantum groups G1 and G2. Moreover, because sy commutes with uyy, the same
argument as in the end of the proof of Proposition 7.11 shows that the relations above are the
only possible ones. �
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As for all the other cases, they are, up to exchanging the colours, equivalent to one of the
previous ones.

7.2. The amalgamated case. If we now assume that there are partitions with two colours,
we will get a free wreath product of a pair. To prove this, all we have to do is to show that
CΓd ⊂ C for some d.

Lemma 7.13. Let C be a category of noncrossing partitions containing a partition with an odd
block of size at least three and a partition with a two-coloured block. Then, C contains Pxx, Pyy
and π(xy, xy).

Proof. Let p ∈ C be a partition containing a block b with two colours and let q be a minimal full
subpartition containing b so that q∗q ∈ C and the endpoints of q are those of b. If b has size at
least three, then using the same operations as in the proof of Lemma 7.1 we see that π(xy, xy) ∈
C. If b has size two, i.e. is equal to Dxy, then rotating q∗q yields q′ = r ⊗ π(x, y)⊗ π(x, y)⊗ r∗
for some r ∈ C(w,∅). But then, π(yy, yy)q′ contains a four-block with two colours and we can
conclude with the �rst part of the proof. �

The classi�cation will now follow from Proposition 3.18. We need however to identify the
subgroups Λ ⊂ Γd appearing as one-dimensional representations. For n dividing d and 1 ⩽m ⩽ n,
let us denote by Λn,m the subgroup of Γd generated by (sxsy)n and (sxsy)msx.

Theorem 7.14. Let C be a category of noncrossing partitions with at least one block of even
size greater than or equal to three and at least one block with two colours. Then, GN(C) =
H+
N(Γd,Λn,m).

Proof. The isomorphism withH+
N(Γd,Λ) is a direct consequence of Lemma 7.13 and Proposition

3.18. As for the form of Λ, simply recall that any subgroup of Γd is of the form Λn or Λn,m.
Since in the �rst case there is no odd partition in the category, we must be in the second
case. �

8. Summary and further questions

In this �nal section, we will restate our main results in a di�erent form. This will give more
insight into possible generalizations to an arbitrary number of colours. But before that, we will
summarize our results as an explicit list of all possible categories of partitions. To do this, we
will denote by P♯ the upper row of p♯ and by Qk the upper row of qk. Moreover, we set by
convention p⊗0 = ∅.

Theorem 8.1. Up to exchanging the colours, any category of noncrossing partitions on two
mutually inverse colours is one of the following :

● A free product of two categories of uncoloured noncrossing partitions,
● CO++(d) = ⟨D∗

xyDxy,D⊗d
xy ⟩ for some d ∈ N,

● CBO+ ♯(d) = ⟨Pxx, p♯, (Px ⊗ P♯)⊗d⟩ for some d ∈ N,
● CBO+ ♯(d,n) = ⟨CBO+ ♯(d), (Px ⊗ P♯)⊗n ⊗ π(x,x)⊗ π(x,x)⊗ (Px ⊗ P♯)⊗n∗⟩ for some n ∈ N,
● CBO+ ♯(d,n,m) = ⟨CBO+ ♯(d,n), ((Px ⊗ P♯)⊗m ⊗ Px)⊗ π(x,x)⊗ π(x,x)⊗ ((Px ⊗ P♯)⊗m ⊗ Px)∗⟩
for some m ∈ N,

● CBO+ ♯(d,n,m,`) = ⟨CBO+ ♯(d,n,m), ((P♯ ⊗ Px)⊗` ⊗ P♯)⊗ π(x,x)⊗ π(x,x)⊗ ((P♯ ⊗ Px)⊗` ⊗ P♯)∗⟩
for some ` ∈ N,

● CB++
x (d,n,m,`) which is the same as CBO+ ♯(d,n,m,`) but with P♯ replaced by Py and p♯ replaced

by Pyy.
● CB++

y (d,n,m,`) which is the same as CB++
x (d,n,m,`) but with π(x,x) replaced by π(y, y),

● CB++(d,n,m,`,n′,m′,`′) = ⟨CB++
x (d,n,m,`),CB++

y (d,n,m′,`′)⟩,
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● CB++(K) = ⟨Pxx, Pyy, Pt ⊗ π(x, y)⊗ π(x, y)⊗ P ∗
t for all t ∈K⟩ where K ⊂ Z2 ∗ Z2 is a

coset,
● CB++(K,d) = ⟨CB++(K), (Px ⊗ Py)⊗d⟩ for some d ∈ N,
● CB++(K,a) = ⟨CB++(K), Pa⟩ for a ∈ {x, y},
● CSB+ ♯(d,n,n′,m′,`′) = ⟨CB++

y (d,n,n′,m′,l′), π(xx,xx)⟩,
● CSB+′(d,n,n′,m′,`′) = ⟨CSB+ ♯(d,n,n′,m′,`′), Py ⊗ π(y, y)⊗ Py⟩,
● CSB++(d,n,n′,m′,`′) = ⟨CSB+ ♯(d,n,n′,m′,`′), Py⟩
● CSO+′ = ⟨Pxx, Px ⊗ π(y, y)⊗ π(y, y)⊗ Px⟩,
● CBH+ ♯ = ⟨Pxx, π(yy, yy), p1⟩, CBH+′ = ⟨CBH+ ♯ , Px ⊗ π(x,x)⊗ Px⟩, CBH++ = ⟨CBH+ ♯ , Px⟩,
● CSH+′ = ⟨Pxx, π(xx,xx), π(yy, yy), p1⟩, CSH++ = ⟨CSH+′ , Px⟩,
● CBH+ε(k,d,n) = ⟨CBH+ε , (Px ⊗Qk)⊗d, (Px ⊗Qk)⊗n ⊗ π(x,x)⊗ π(x,x)⊗ (Px ⊗Qk)⊗n∗⟩ for ε ∈

{+, ′, ♯}, d,n ∈ N,
● CSH+ε(k,d,n) = ⟨CSB+ε , π(xx,xx)⟩ for ε ∈ {+, ′}, d,n ∈ N,
● CS++(d) = ⟨Pxx, π(xx,xx), Pyy, π(yy, yy), (Px ⊗ Py)⊗d⟩ for some d ∈ N,
● CS++(d,n,∞) = ⟨CS++(d), (Px ⊗ Py)⊗n ⊗ π(x,x)⊗ π(x,x)⊗ (Px ⊗ Py)⊗n∗⟩,
● CS++(d,∞,n) which is the same as CS++(d,n,∞) with π(x,x) replaced by π(y, y),
● CS++(d,n,n′) = ⟨CS++(d,n,∞),CS++(d,∞,n′)⟩,
● CΓd,Λ for some d ∈ N and a subgroup Λ ⊂ Γd.

As we see, the list is rather long and perhaps not very enlightening. If we have also expressed
our results in terms of quotients by relations in the main text, it is because we think it naturally
suggests generalizations. To explain this, let us give a name to the fact that each colour is its
own inverse, since this was used crucially in our work :

De�nition 8.2. A noncrossing partition quantum group is said to be of orthogonal type if all
the colours are their own inverses.

We have highlighted in Section 3 three basic constructions on the class of noncrossing parti-
tion quantum groups : (twisted) amalgamated free products, group-like relations and commu-
tation relations between one-dimensional representations and higher-dimensional ones. Since
free quantum groups are in some sense the simplest examples of noncrossing partition quantum
groups, we will say that a noncrossing partition quantum group is elementary if it can be ob-
tained from free quantum groups using only these three operations. The complete classi�cation
can now be stated as follows :

Theorem 8.3. Let G be a noncrossing partition quantum group of orthogonal type with two
colours. Then, G is either elementary of a free wreath product of pair.

Remark 8.4. This statement is less precise than what we have obtained. In fact, we have proven
that we only need very few commutation relations : in all cases but the symmetric one (Section
7), it is enough to consider commutation relations with a quantum subgroup of one of the
factors. This means that all other commutation relations can be obtained by these simple ones
and group-like relations. In the symmetric case however, we also need commutation relations
with w(k).

In this form, it naturally suggests the following question : is any noncrossing partition
quantum group of orthogonal type either elementary or a free wreath product of pair ?
If we now drop the "orthogonal type" assumption, there is another basic operation to con-

sider. Its origin is a description of the free unitary quantum group U+
N as a complex version

of the free orthogonal group O+
N given by T. Banica in [1]. It has later been generalized by P.

Tarrago and M. Weber in [16] as follows : let G be a compact quantum group together with a
fundamental representation u, let d ⩾ 0 be an integer and let z be the canonical generator of



32 AMAURY FRESLON

C∗(Zd) (with the convention Z0 = Z). Then, the d-free complexi�cation of G is the quantum
subgroup of C(G) ∗ C∗(Zd) generated by uz. One can similarly de�ne the d-tensor complex-
i�cation. These two constructions were used to describe all noncrossing partition quantum
groups on two mutually inverse colours in [16] (note that they use the word "free" to denote
any quantum group which is just "noncrossing" in our sense) :

Theorem 8.5 (Tarrago-Weber). Any noncrossing partition quantum group on two mutually
inverse colours can be obtained from free orthogonal easy quantum groups or free wreath products
by using complexi�cations.

Again, this leads to a natural question : can any noncrossing partition quantum group
be obtained from noncrossing partition quantum groups of orthogonal type and free wreath
products of pairs using only complexi�cations ? The �rst step here would be to give an explicit
construction of the category of partitions of a complexi�cation from the original one and [11]
may provide a starting point for this.

References

1. T. Banica, Le groupe quantique compact libre U(n), Comm. Math. Phys. 190 (1997), no. 1, 143�172.
2. T. Banica, S. Curran, and R. Speicher, De Finetti theorems for easy quantum groups, Ann. Probab. 40

(2012), no. 1, 401�435.
3. T. Banica and R. Speicher, Liberation of orthogonal Lie groups, Adv. Math. 222 (2009), no. 4, 1461�1501.
4. T. Banica and R. Vergnioux, Fusion rules for quantum re�ection groups, J. Noncommut. Geom. 3 (2009),

no. 3, 327�359.
5. , Invariants of the half-liberated orthogonal group, Ann. Inst. Fourier, vol. 60, 2010, pp. 2137�2164.
6. J. Bichon, Free wreath product by the quantum permutation group, Algebr. Represent. Theory 7 (2004),

no. 4, 343�362.
7. G. Cébron and M. Weber, Quantum groups based on spatial partitions, arXiv preprint arXiv:1609.02321

(2016).
8. A. Freslon, Fusion (semi)rings arising from quantum groups, J. Algebra 417 (2014), 161�197.
9. , On the partition approach to Schur-Weyl duality and free quantum groups � with an appendix by

A. Chirvasitu, Transform. Groups 22 (2017), no. 3, 705�751.
10. A. Freslon and M. Weber, On the representation theory of partition (easy) quantum groups, J. Reine Angew.

Math. 720 (2016), 155�197.
11. D. Gromada, Classi�cation of globally colorized categories of partitions, In�n. Dimens. Anal. Quantum

Probab. Relat. Top. (2019).
12. F. Lemeux, Fusion rules for some free wreath product quantum groups and applications, J. Funct. Anal. 267

(2014), no. 7, 2507�2550.
13. S. Neshveyev and L. Tuset, Compact quantum groups and their representation categories, Cours Spécialisés,

vol. 20, Société Mathématique de France, 2013.
14. S. Raum and M. Weber, The full classi�cation of orthogonal easy quantum groups, Comm. Math. Phys. 341

(2016), no. 3, 751�779.
15. R. Speicher and M. Weber, Quantum groups with partial commutation relations, Indiana Univ. Math. J.

(2019).
16. P. Tarrago and M. Weber, Unitary easy quantum groups : the free case and the group case, Int. Math. Res.

Not. 18 (2017), 5710�5750.
17. , The classi�cation of tensor categories of two-colored noncrossing partitions, J. Combin. Theory

Ser. A 154 (2018), 464�506.
18. S. Wang, Free products of compact quantum groups, Comm. Math. Phys. 167 (1995), no. 3, 671�692.
19. M. Weber, On the classi�cation of easy quantum groups � The nonhyperoctahedral and the half-liberated

case, Adv. Math. 245 (2013), no. 1, 500�533.
20. S.L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), no. 4, 613�665.
21. , Tannaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) groups, Invent. Math.

93 (1988), no. 1, 35�76.
22. , Compact quantum groups, Symétries quantiques (Les Houches, 1995) (1998), 845�884.



NONCROSSING PARTITION QUANTUM GROUPS 33

Laboratoire de Mathématiques d'Orsay, Univ. Paris-Sud, CNRS, Université Paris-Saclay,

91405 Orsay, France

Email address: amaury.freslon@math.u-psud.fr


	1. Introduction
	Acknowledgment

	2. Preliminaries
	2.1. Coloured partitions
	2.2. Partition quantum groups
	2.3. Projective partitions and representations

	3. General results on noncrossing partition quantum groups
	3.1. One-dimensional representations
	3.2. Free wreath products of pairs

	4. Classification I : pair partitions
	5. Classification II : blocks of size at most two
	5.1. The non-amalgamated case
	5.2. The amalgamated case

	6. Classification III : even partitions
	7. Classification IV : other cases
	7.1. The non-amalgamated case
	7.2. The amalgamated case

	8. Summary and further questions
	References

