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ABSTRACT

The deployment of artificial intelligence from experimental settings to concrete ap-
plications implies to consider the social aspects of the environment and consequently
to conceive the interaction between humans and computers endowed with the aim
of being partners in action. This paper proposes a review of the research initiatives
regarding human-artificial agents interaction, including eXplainable Artificial Intel-
ligence (XAI) and HRI/HCI. We argue that even if vocabulary and approaches are
different, the concepts converge on the necessity for the artificial agents to provide
an accurate mental model of their behavior to the humans they are interacting with.
This has different implications depending on whether we consider a tool/user inter-
action or a cooperation interaction - which is far less documented despite being at
the heart of the future concepts of autonomous vehicles. From this observation, the
paper uses the cognitive science corpus on joint-action to raise finer cognitive mech-
anisms proved to be essential for human joint-action which could be considered as
cognitive requirements for future artificial agents, including shared task representa-
tion and mentalization. Finally, interactions content hypotheses are arisen to satisfy
the identified mechanisms, including the ability for the artificial agent to elicit its
intentions and to trigger mentalization toward them from the human cooperators.

KEYWORDS
Human-Machine Teaming; eXplainable Artificial Intelligence; Joint-action; Mental
models;

1. Introduction

Academic technical progresses within Al techniques have led to outstanding capa-
bilities demonstrations such as AlphaGo [Silver et al., 2016]. Consequently industrial
companies have started to fund and realize projects integrating these techniques,
from personal assistants to autonomous cars. Indeed the 2019 AI Index Report
[Perrault et al., 2019] shows an average annual growth of 48% between 2010 and 2018
for AT private investments, reaching $40 billions in 2018. To our understanding the
advent of AT offers a new sub-field to Human-Computer Interaction(HCI) by providing
computers with agents’ abilities, where an agent is ”a person or entity that acts or
has the capacity to act, particularly on behalf of another or of a group” (American
Psychological Association, APA). Artificial agents (AAs) aim to integrate society at
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various levels by replacing humans in tasks they want to delegate (3Ds tasks for Dirty,
Dangerous and Demeaning) or are not as good as AAs at (for example big data pro-
cessing) but also - and especially - by taking part to a human-AA cooperative system
where every stakeholders’ skills are efficiently operated towards a common goal. As the
advent of the new Al techniques has been mainly driven by neural networks - which
huge potential comes at the price of opacity paving the way for trust and acceptability
questions - the whole interaction of AAs with humans has to be conceived.

The prevailing approach within Al research regarding cooperating humans and AAs
assumes that the combination of the growing powers of models and computation will
eventually allow to integrate human partners as any other environment variable. The
idea of modeling system’s users as a whole and by this mean meeting their expectations
about system interaction is not new, as the literature of the period of expert systems
shows [Kass and Finin, 1988], [Carberry, 1988], [Finin and Drager, 1986]. Today this
idea can be retrieved in the context of (deep) Reinforcement Learning (RL) agents
[Sutton and Barto, 2018] which relative RL techniques have brought to Al its best
successes, such as AlphaGo. In this research field many researchers advocate for an
approach of AT techniques where the less prior environmental knowledge the system
designer includes, the best it is. In this logic, time is at discovering the best RL
architecture for including humans as a variable while designing agents for cooperative
tasks. Despite research work on this topic severely lacking of user studies, recent efforts
have to be noted. Indeed, [Carroll et al., 2020] proposes a testbed allowing to make user
studies on an adapted version of the popular game ” Overcooked”. This game allows to
measure a performance on a cooperative task requiring goal and spatial coordination.
The paper’s authors use this testbed to show evidences about their model and learning
strategy to acquire the necessary skills to successfully perform the task with humans.
The combination of Al techniques proposal using an user study for evaluation can also
be found in [Choudhury et al., 2019], which tests different architectures of AAs being
inspired by the knowledge in cognition.

Without presuming nor denying a future breakthrough within AI techniques allow-
ing such human modeling, we argue that the knowledge about human-human coop-
erative interaction could at worst speed-up the advent of cooperative AAs and drive
the AI model design. The approach considering the knowledge from social sciences
which will be developed in this paper led to the introduction of the concept of eX-
plainable Artificial Intelligence (XAI), or how to allow Al algorithms to explain their
own behavior. The effort put into this problem has made it possible to progress in our
understanding of what a good explanation is in terms of acceptability, what makes a
human trust or distrust an algorithm. On the contrary, today little is known about
what a good explanation is in terms of cooperation - a process whereby two or more
individuals work together toward the attainment of a mutual goal or complementary
goals (APA) - even if the sophistication of these algorithms makes them more than
simple tools, precisely real teammates. In this paper, we assume that a prerequisite
to facilitate the adoption of Al tools and their integration into operations is the iden-
tification of the information to be provided to enable the human operator to work in
cooperation with Al. The objective of this paper is to bring together the recent ad-
vances around the notion of explainability for the human operator, to pose its limits
and to propose theoretical frameworks allowing to overcome them. In this sense, this
paper will first depict the minimum interaction requirements for AAs with a trust
and acceptability focus, before focusing on special abilities required for AAs sharing
high-level objectives - implying real time task allocation and coordination.



2. The need for eXplainable Artificial Intelligence (XAI)

When considering the ability of a human being to coordinate with a partner (human
or artificial), the development of an accurate mental model of that partner’s behavior
appears to be a central element. Rouse and Morris [Rouse and Morris, 1986] gave a
widely accepted definition of Mental Models (MMs) as ”mechanisms whereby humans
are able to generate descriptions of system purpose and form, explanations of sys-
tem functioning and observed system states, and predictions of future states”. The
accuracy of mental models have been known for leveraging both the performance in
using ”simple” tool systems [Kieras and Bovair, 1984] (in this case the mental model
means "how it works” knowledge) and in team work [Lim and Klein, 2006] (where
mental model is extended to shared mental model, itself including team model desig-
nating team members’ understanding of each others). However, with increase in sys-
tem complexity (for example, the multiplication of the number of possible “modes”),
it is sometimes difficult for the human operator to track the activities of their auto-
mated partners. The result can be situations where the operator is surprised by the
behavior of the automation asking questions like, what is it doing now, why did it
do that, or what is it going to do next [Wiener, 1989]. These “automation surprises”
are particularly well documented (e.g., [Degani and Heymann, 2000]; [Palmer, 1995]
[Sarter and Woods, 1994][Sarter and Woods, 1995]; [Van Charante et al., 1992] and
have been listed as one of the major cause of incidents (see for example
[Abbott et al., 1996]. The nature of Al algorithms is likely to exacerbate the propen-
sity of this phenomenon Rouse and Morris’ definition of MM collides with a specific
property of novel Al techniques known as the transparency/performance trade-off
[Gunning and Aha, 2019, Figure 1]. Indeed, the more AI models are able to seize the
nuance and abstraction of the data they aim to value, the less their internal states and
outputs are understandable by humans. The observation of this incompatibility be-
tween Al models and their intended use as A As has led to the emergence of eXplainable
Artificial Intelligence subfield within Al research. Though, XAl approach today suffers
of a lack of openness to other sciences which should be necessarily involved for answer-
ing fundamental questions such as ”what has to be explained and how ?”. This lack
of multidisciplinary approach may be imputed to the time pressure in product release,
the need for finding solutions to conform with new regulations introducing ”right to
explanations” [High-Level Expert Group on AI, 2019] for automatic decision systems
but also by a lack of understandings of the nature of Al from some human factor spe-
cialists. This observation has been brought to the scientific community by Tim Miller
in [Miller et al., 2017] who writes ”this paper argues most of us as Al researchers are
building explanatory agents for ourselves, rather than for the intended users.” but also
in the US Defense Advanced Research Project Agency (DARPA) which launched in
August 2016 a new XAI project. The project scope [DARPA, 2016, II-1-B] mentions:

”The target of XAl is an end user who depends on decisions, recommendations, or actions
produced by an Al system, and therefore needs to understand the rationale for the
system’s decisions.”

Both Tim Miller and the authors from DARPA’s program have given a big contribu-
tions for answering the questions of ”what should be explained and how 7”.
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2.1. Ezxplanations as a Mental Model modulator

In [Miller, 2018] it is claimed that explanations are especially needed when the system’s
operator switches from inductive to abductive reasoning. According to [Aliseda, 2006],
abduction (or Inference to the Best Explanation, IBE) is triggered by novelty and/or
anomaly with regards to the prevailing theory. This is consistent with the concep-
tual model of explaining process proposed by [Hoffman et al., 2019] (see Figure 1)
where explanations’ role is to revise the system operator mental model of the system
("user’s understanding of the AI system”, [Hoffman et al., 2019]). In the case of a sys-
tem operator, abduction triggers can be extended to a behavior inconsistent with the
representation the operator has of the system he is interacting with. In such cases, the
operator will browse hypotheses for an explanation. This is, according to Hoffman’s
model and Miller argumentation, where the explanation system should intervene.

2.2. Designing explanations to maintain an accurate mental model

As the need for explanation is indirectly triggered by a gap between the facts and
the mental model of the user, [Miller, 2018] therefore argues that explanations should
always be contrastive. Indeed, [Hesslow, 1988] and [Lipton, 1990] underline that when
going up the causal tree of an event, relevant causes for explanations are the exceptions
and should be selected regarding their pivotal role between what would have happened
with the prevailing theory (foil) and what actually happened (fact). Therefore, an
efficient explanation with respect to the contrastive explanation model answers the
question "why the fact is observed instead of the foil 7”. Such contrastive explanation
should revise the user’s mental model of the system, and according to Hoffman give way
to an appropriate trust and therefore an appropriate use of the system assessed by bet-
ter performance. [Hoffman et al., 2019] then proposes an explanation satisfaction scale
and methods for eliciting mental models. [Miller, 2019] reviews publications about bias
in explanation selection. Moreover, [Miller et al., 2017] claims that it is crucial to inte-
grate the subjectivity when dealing with explanations. Indeed, [Lombrozo, 2007] shows
in an experimental study how participants tend to select simpler causes over mathe-



matically more likely ones (complexity bias). Also, [McClure et al., 2007] found that
in an activation chains ”A allows B implying C” where participants where asked for
the cause of C, participants significantly preferred intentional over natural causes , no
matter if they were the activation event A or the direct event B (intentionality bias):

7 A person fanning flames is seen as a better explanation of a forest fire than the wind
fanning the flames, even though the forces at work are equivalent in terms of their effects
on the probability of the outcome” [McClure et al., 2007]

Finally, [Kahneman et al., 1982] and [Hilton and Slugoski, 1986] showed that partici-
pants prefer abnormal causes over more frequent causes in situations where objectively
both had the same influence (abnormality bias). These results raise a new challenge
while designing explanations: for AAs, it won’t be enough to select the most probable
foil when designing an explanation, they will have to integrate the specifics biases of
the individuals they are dealing with. Another difficulty in providing relevant expla-
nations is shown by [Mueller and Klein, 2011]: the need of explanations depends on
the operator experience with the system.

3. From decision aid systems to cooperating artificial agents

The previous section about XAI has brought precious knowledge about why explana-
tions are needed and how they should be given to an Al system operator. But this
knowledge is really centered on decision-aid systems already (or about to be) on the
market. In the scope of these products, the system is not considered as an agent, thus
explanations are not thought as cooperation enablers. The work in the XAI paradigm
is also relevant regarding the postulate that future systems including Al classifica-
tion/regression modules should meet the same acceptability and trust levels as classical
systems, entrusted with formal verification. This postulate is absolutely appropriate
when it is about improving existing formally-verified systems with machine learning
modules (for example, automatic landing systems for planes). Although, considering
changing the approach while designing ML-embedding systems intending to achieve
cooperation which could not be achieved with formally verified systems can be argued.

As briefly described in the introduction, AAs aim at accomplishing tasks on behalf
humans, among them and having influence on objectives they share with them. Easy
examples are autonomous cars, which will not be the norm overnight and will very
likely have to share the road with human-driven cars for a time. In this context,
human drivers and autonomous car will at least share the goal of avoiding accidents.
This is a cooperation situation, with the meaning of ”a process whereby two or more
individuals work together toward the attainment of a mutual goal or complementary
goals” (APA).

In this case of autonomous systems which considered as autonomous agents, the
entity {operator, AA} could be considered - and so evaluated - as a social system
{operatory, operators} would be on the same cooperation task. In other words, while
we consider entrusting to AA tasks which can only be achieved by humans so far, the
interaction between humans and artificial stakeholders in the task must be enlightened
by the interaction which would have appeared between human stakeholders, including
in the performance evaluation. In this paradigm, explanations are not only supporting
trust and acceptability, but are also task achievement and performance driving forces.
Miller’s and DARPA contributions must be taken into account while designing the
format of explanations, but more knowledge about cooperation mechanisms must be



included while designing the whole interaction between human and autonomous agent
cooperating.

3.1. Levels of automations : the need to share control

Researchers communities - HCI, but also Human-Machine System (HMS) and Sys-
tems, Man and Cybernetics (SMC) communities for example - have been exploring
solutions for designing efficient human- systems interaction for decades. Two distinct
but complementary questions have emerged (for a review see [Flemisch et al., 2019])
: 1/ how to share control between agents, 2/ how to ensure effective coordination
between the different agents?

Historically, the HCI community has been interested in the issue of shared control,
notably through the concept of levels of automation or LoA. Critically, automation is
not a unitary concept and there is not just one way to implement automation. Automa-
tion refers to the full or partial substitution of a task or function initially performed by
the human operator. As pointed by Paul Scharre, “it is meaningless to refer to a system
as ‘autonomous’ without referring to the specific task that is being automated. For
any given task, there are degrees of autonomy” [Scharre and Horowitz, 2015]. In that
sense, automation is not all or none but can vary across a continuum of levels. Each
of these classes of function can be automated on different levels, from “human does
everything manually” to “machine does everything and ignore human”. Following this
rationale, different scales of levels of automation (LoAs) have been proposed (see for
example [Sheridan and Verplank, 1978]; [Nuhuis, 1999]; [Kaber and Endsley, 2004]).

Starting from this premise, a classical approach was to manipulate the LoAs
in order to improve human automation interaction. In particular, a very clas-
sical method consisted in sharing the tasks to be carried out between man
and machine according to the strengths and weaknesses of each. MABA-MABA
lists, or ‘Men Are Better At—Machines Are Better At’ lists have appeared over
the decades in various guises (e.g. [Chapanis, 1965]; [Mertes and Jenney, 1974];
[Swain and Guttmann, 1983]; [Sheridan, 1987]). Later, similar design advice was
offered, but with a focus on functions rather than tasks. For example,
[Parasuraman et al., 2000] propose that designers divide the tasks between humans
and machines by considering four different groups of system functions: Information
acquisition, Information analysis, Decision and action selection, Action implementa-
tion. A simple flowchart is presented that leads the engineer from the question ”What
should be automated?” to identifying the types of automation (one choice from the
four functions above). Then the engineer can choose from a list of automation levels.
Then, in classic MABA-MABA style, the advantages and disadvantages of automating
parts of each of the four functions are discussed. Similarly, other authors have proposed
to decompose tasks into operational, tactical and strategic levels (e.g., [Abbink, 2006];
[Lemoine et al., 1996]; [Woods et al., 2004]). Interestingly, these different taxonomies
(see also the taxonomy in [Kaber and Endsley, 2004]) provide a systematic way to dis-
cover the important aspects of automating a task, based on a clear link to cognitive
theory.

Although these taxonomies are slightly different - because they are based on a de-
tailed breakout of the aspects of human performance that are being automated - it has
been possible to conduct research to determine much more precisely how the addition
of automation to various functions affects human performance and to address the diffi-
culties encountered by human operator interacting with automated systems. A central



finding is that intermediary levels of automation could maintain operator involvement
in system performance, leading to improvements in situation awareness and reductions
in out-of-the-loop performance problems ([Endsley et al., 1997]; [Manzey et al., 2012];
[Metzger and Parasuraman, 2001]; [Endsley, 2018b]). In summarizing the LoA litera-
ture, [Endsley, 2017] developed a model of LoA effects on operator engagement and
workload that can help to illuminate the design trade-offs involved. However, these
techniques have also received a lot of criticism, in particular because it does not take
into account the way in which the introduction of automation at different levels can
alter, modify the very nature of the work carried out by the human operator (see
[Dekker and Woods, 2002]). In this method, system automation is considered as a
simple substitution of a machine activity for human activity, a belief called “sub-
stitution myth” [Woods and Tinapple, 1999]. Unfortunately, such assumption corre-
sponds to a distorted reflection of the real impact of automation: automation tech-
nology transforms human work and forces people to adapt their skills and routines
[Dekker and Woods, 2002]. Whatever the merits of any particular automation tech-
nology are, automation does not merely supplant human activity but also transforms
the nature of human work.

Particularly, creating partially autonomous machine agents is, in part, like adding
a new team member. One result is the introduction of new coordination demands and
the emergence of new classes of problems which are due to failures in the human-
machine relationship. Many of the challenges faced by designers of human-machine
interactions involve teamwork rather than the separation of tasks between human
and machine [Klein et al., 2004]. Effective teamwork involves more than an efficient
division of labor; it seeks ways to support and enhance each member’s performance
- a need not addressed by the levels of autonomy conceptualization, nor by adaptive
automation methods.

3.2. Beyond sharing control on actions: escalating layers towards
cooperation

This issue of cooperation amongst team (and/with automates) has led research on
(team) performance and situation awareness investigating how system might support
collaboration between operators. Initially, [Dekker and Woods, 2002] proposed several
principles to shape how information about automation and the processes in controls
are displayed to the operator to enhance human-automation teaming: highlighting
changes, displaying future projections, and visually integrating information (see also
the “ten challenges for making automation a team player” proposed by Klein and
collaborators [Klein et al., 2004].

Since then, the issue of cooperation has been widely investigated and many
works underline the importance of taking it into account when designing artifi-
cial agents ([Banks et al., 2013]; [Flemisch et al., 2016]; [Hoc, 2001]; [Hoc et al., 2009];
[Millot and Lemoine, 1998]; [Hutchins, 1995]).These frameworks highlight the impor-
tance of the information processing and the communication between human opera-
tors and automated systems to create a shared representation. For instance, it has
been proposed to design automation systems as chatty co-drivers providing con-
tinuous relevant feedback to the driver to improve human automation interaction
([Eriksson and Stanton, 2015]; [Stanton et al., 2011]).

Regarding human-machine cooperation, [Hoc and Lemoine, 1998] observes that co-
operating partners ”interfere” positively or negatively at goal’s place like physical



waves and extends APA’s definition of cooperation by including the will for a cooper-
ator ”to make the activities of the other (partners) easier

Another interesting framework has been recently proposed by Pacaux and collab-
orators [Pacaux et al., 2011]. These authors distinguishes between the “know-how”
(to operate) and the “know-how-to-cooperate” both essentials to the cooperating
agents. Agent’s know-how refers to its task-related skills at diagnosis, decision or
action levels while agent’s know-how-to-cooperate covers its ability to identify what
its partners are doing or planning by ”interference” management at action level. This
know-how-to-cooperate extends itself at plan level by elaborating or maintaining a
common frame of reference regarding ”common goals, common plans, role alloca-
tion, action monitoring and evaluation, and common representations of the envi-
ronment” and at a meta-model -allowing meta-cooperation - providing agents with
models of the other agents. Critically, the ability to cooperate relies in this frame-
work on the existence of a “common work space” which provides the operator with
information about his own environment and action but also about the current and
future actions of other agents (see also [Pacaux-Lemoine and Debernard, 2000]). This
common work space aims to provide a shared mental model, here called team Situ-
ation Awareness [Millot and Pacaux-Lemoine, 2013]. This concept of shared mental
model has been largely used in the context of team work ([Converse et al., 1993];
[Mathieu et al., 2000]). The idea is that mental models are necessary for team
members to predict what their teammates will do and what they will need, thus
facilitating the coordination of actions between teammates. In this way, mental
models help to explain team functioning. This line of research has provided in-
teresting concepts and methods: team SA [Salas et al., 1995] [Gorman et al., 2006],
distributed cognition framework [Hutchins, 1995]; [Stanton, 2016] or adaptive au-
tomation [Miller and Parasuraman, 2007]. Interestingly, several studies have shown
a positive relation between team performance and similarity between mental mod-
els of team members (see, e.g., [Bolstad and Endsley, 1999];[Mathieu et al., 2000];
[Lim and Klein, 2006]. The next subsection will show how these concepts and prin-
ciples are being completed in another community working specifically on human au-
tonomy teaming.

3.3. Human Autonomy Teaming

Recently, another scientific community driven by AI progress has been working on
Human-Autonomy Teaming (HAT). According to [McNeese et al., 2018], the pro-
gresses in Al tends to make autonomous systems more intelligent. For this rea-
son they should no longer only be considered as servants but as teammates. Along
those lines, McNeese considers Human-Machine Interaction (HMI) has to be ex-
tended by a new scientific field he calls Human-Automation Teaming (HAT). In 2012,
[Johnson et al., 2012] already suggested to switch from the paradigm of AI systems
accomplishing tasks for humans to AAs working with humans. The authors of this
paper showed in a study (using opensource Blocks World for Teams (BWA4T) testbed)
that increasing AAs’ performance and autonomy is not enough for reaching better
performances on collaborative tasks with humans. [McNeese et al., 2018] completes
these results in the CERTT UAS-STE testbed [Cooke and Shope, 2002]: though the
overall performance is similar between groups, human-autonomy groups presents less
efficient targeting than the control group (human-human) and analyzing the communi-
cations shows less information push and more pulls from the human teammate perspec-



Situation awareness-based Agent Transparency

Level 1: Goals & Actions
Agent’s current status/actions/plans
e Purpose: Desire (Goal selection)
e Process: Intentions (Planning/Execution); Progress
e Performance
e Perception (Environment/Teammates)

Level 2: Reasoning
Agent’s reasoning process
e Reasoning process (Belief/Purpose)
e Motivations
Environmental and other constraints/affordances

Level 3: Projections

Agent’s projections/predictions; uncertainty
e Projection of future outcomes
e Uncertainty and potential limitations; Likelihood of success/failure
e History of Performance

Figure 2. Situation Awareness-based Agent Transparency model [Chen, 2018, Figure 1]

tive. Based on these results, HAT papers [O’Neill et al., 2020] [McNeese et al., 2018]
[Chen et al., 2014] [Grimm et al., 2018] have been pushing two key variables as co-
operation enablers (or mediators, acknowledging the Input-Mediator-Output model
from [Kazi et al., 2019, Figure 1]): shared mental models and team situation aware-
ness (TSA). [Gorman et al., 2006] is the reference for the HAT community re-
garding TSA (also introduced in [Salas et al., 1995]). This paper itself refers to
[Endsley and Jones, 1997, p17] for situation awareness definition:

”the perception of the elements in the environment within a volume of time and space,
the comprehension of their meaning, and the projection of their status in the near future”

but reject the ”comprehension of their meaning” part for breaking the continuous
" perception-action” process they mean by SA. Then SA is extended to TSA in the
same paper (p46):

"the degree to which every team member possesses the SA required for his/her job”

Hence, [Chen et al., 2014] proposes Situation Awareness-based Agent Transparency
(SAT) model. Figure 2 reproduces the updated SAT model from [Chen, 2018]. Empir-
ical studies using this model brought meaningful results: [Mercado et al., 2016] shows
that increased transparency leads to increased performance on task ”without addi-
tional costs” (on effectiveness and time). [Lyons, 2013] also studies the needed trans-
parency in HRI for human SA and developping a ”shared awareness” with robots.
The paper highlights behavioral models which should be transparent to humans :
intentional model, task model, analytical model, environment model and teamwork
model. This is an interesting precision of the notion of mental model presented earlier
(see section 2.1). Some of the suggested information such as the information on the
logic behind system’s decision [Lyons et al., 2017] - referring to the analytical model -
has been proven to improve trust in user-studies [Lyons et al., 2017]. As an extension
of the wide spread "mental model” concept, the American Psychological Association
defines Shared Mental Models (SMM) as

”in ergonomics, a mental model of a work system that is held in common by the members
of a team. Ideally, team members should have a shared mental picture of the system and



its attributes, a shared knowledge of all relevant tasks, and a shared understanding of
the team’s progress toward its goal. Coordination, efficiency, and accuracy will increase
as team members converge on a common mental model that is accurate and complete
yet flexible. Also called team mental model.”

SMM and TSA are two key intricated concepts of the teaming dynamic in ergonomic
[Ososky et al., 2012], they are powerful high-level analysis tools for human-AA coop-
eration. Because these tools have been used for at least 3 decades, measurements have
been tried and tested and concrete impact within HMI demonstrated [Endsley, 2018a).
Although, some authors point out the need of giving interest to lower-level psycholog-
ical mechanisms in order to improve SMM and TSA:

”The most serious shortcoming of the situation awareness construct as we have thought
about it to date, however, is that it’s too neat, too holistic and too seductive. We heard
here that deficient SA was a causal factor in many airline accidents associated with hu-
man error. We must avoid this trap: deficient situation awareness doesn’t cause anything.
Faulty spatial perception, diverted attention, inability to acquire data in the time avail-
able, deficient decision-making, perhaps,but not a deficient abstraction!” [Billings, 1995]

”This review points out confusion surrounding the concept and use of mental models from
the viewpoints of both human factors and psychology.” [Wilson and Rutherford, 1989]

At the end of this section, a first assessment can be drawn: first, the literature relevant
to the problem of task sharing and spatial coordination between humans and AAs is
rich, the problem has been stated and addressed from multiple angles for at least
three decades. Then this literature is coherent, though lacking of of semantic unity.
For example the notions of meta-model - belonging to the know-how-to-cooperate -
from [Pacaux et al., 2011] must be read in parallel with the HAT research as they
may encompass several concepts and ideas. Once this has been said, know-how-to-
cooperate, interference management, SMM and TSA can be considered as ”desirable
states” or meta-mechanisms which AAs design must must look for. Finally, the notions
presented in this section are also coherent with the research presented in section 2
while bringing a lot of precision and details: mental models keep holding a key role
while interferences echo the notion of contrastive explanations presented in subsection
2.2. The next section will describe lower-level cognitive mechanisms ”of interest” for
observing TSA and SMM during AA-human cooperation.

4. Cognitive mechanisms for shared-mental models and team situation
awareness

Previous sections allow to specify the requirements to reach in cooperative-AA de-
sign in scientific terms: AAs must be at least able to provide their human partners
with an appropriate mental model of their behavior (to generate a SMM), a team
situation awareness and being able to provide contrastive explanations including hu-
man biases. One can argue that the Chen’s SAT model and Lyons’ model give precise
lists of the required abilities for an AA cooperating with humans as well as the infor-
mation needed to acquire these abilities. However, it is reasonable to think that the
performance-transparency trade-off of Al techniques will compromise the availabil-
ity of some required information described in the model. Moreover, as human-human
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cooperative interactions do not require such formalism, we argue that the study of nec-
essary and sufficient information activating finer level cognitive mechanisms involved
in cooperation is of particular interest. In cognitive science, the study of cooperation
can be found in joint-action and intentional stance literature. If the concepts of mental
models and situation awareness are not mentioned, following descriptions will show
that both approaches are complementary.

4.1. Shared Task Representation

[Knoblich et al., 2011] introduces joint-action by "When two or more people coordi-
nate their actions in space and time to produce a joint outcome, they perform a joint
action.” and then distinguishes between emergent and planned coordination.

”In planned coordination, agents’ behavior is driven by representations that specify the
desired outcomes of joint action and the agent’s own part in achieving these outcomes.
[...] In emergent coordination, coordinated behavior occurs due to perception—action cou-
plings that make multiple individuals act in similar ways; it is independent of any joint
plans or common knowledge (which may be altogether absent).” [Knoblich et al., 2011]

To our understanding and given the definition of cooperation we adopt, planned co-
ordination is necessary in human/AA cooperation. Knoblich and his co-authors have
found that in effective planned coordination situations, agents performing joint-action
represents both their own task and their co-actors’: agents have a shared task represen-
tation. Shared task representation between human co-actors is not only supported by
behavioral studies (social Simon effect, [Sebanz et al., 2005]), but also with brain imag-
ing and electrophysiological studies [Ramnani and Miall, 2004] [Sebanz et al., 2006].
In [Sebanz et al., 2005], the authors perform experiments in order to show that par-
ticipants involved in joint action do not only represent their co-actor’s actions, but
also their co-actor’s task. The demonstration starts from Simon’s finding about slower
response times (RTs) from participants to a color stimulus when an irrelevant spa-
tial information is presented whether than a relevant, e.g.: participants have a green
button under their left hand they must press when a green stimulus is showed on a
screen, and a red one under their right hand they must press when a red stimulus
is showed on the screen. Simon’s results [Craft and Simon, 1970], [Simon, 1990] show
that there is a significantly slower RTs when the green (respectively red) stimulus is
presented incompatibly on the right (respectively left) side of the screen than on the
compatible left side (respectively right). In [Sebanz et al., 2003], Sebanz and colleagues
showed that this effect is also social by measuring significantly slower RTs with both
compatible, neutral and incompatible spatial information when a go/nogo action (e.g.
in response to a green stimuli) is performed spatially along someone performing the
same action in response to another color (e.g. red) than when the same go/nogo task is
performed alone. This suggests that when people think being engaged in joint-action,
they at least share a representation of their actions. Finally, in [Sebanz et al., 2005],
the authors want to elicit whether participants engaged in joint-action simply share
actions representations or also task representations: in this experiments, a participant
sitting left must respond to a spatial stimulus (finger pointing left) while another
one sitting right must respond to a color stimulus (green ring on the finger). The
experiment shows significantly slower RT's in ”double response situation” - meaning
that both the finger was pointing left and the ring green - than when only one of
the two participants had to respond (either only finger pointing left with red ring or
green ring with finger pointing right). This result suggests that co-actors do not only
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represent their partner’s action, but also their partner’s task. It was later enforced
with electroencephalography (EEG) studies : [Kourtis et al., 2013] shows by using an
electrophysiological evidence (contingent negative variation, CNV) that ”joint action
planning involves cognitive and motor representations of the action partner’s task”
and later in [Kourtis et al., 2014] shows that CNV is similar when asking participants
to clink two glasses by themselves or to clink one glass with another participant’s glass.

Although - and relevantly to our problem - experiments in [Tsai et al., 2008] con-
firmed in [Sahal et al., 2017] shows that shared task representations evidence are only
observed when participants are told that their co-actor is human (as opposed to ”al-
gorithm”). Indeed in their experiment Tsai and colleagues proposed a joint Simon
task to the participants. Participants where asked to respond to green stimuli with
compatible, neutral or incompatible - regarding participant’s seat position - position
on the screen. Then they were told that either a friend (condition 1) or an algorithm
(condition 2) would take care of the response to the red stimuli, while actually all the
red stimuli were managed by the computer. The study shows that social Simon effect
(significantly slower responses for incompatible stimuli) was only observed in condition
1, meaning that shared task representation mechanism is not triggered when we think
being co-acting with a computer. Meanwhile, there are electphysiological evidences
for participants mentally performing their co-actor’s task in condition 1. Following
[Tsai et al., 2008], the cognitive ambitions for autonomous agents must include the
ability of inducting shared task representation to its co-actors.

4.2. Mentalization

Mentalization is defined as ”the ability to understand one’s own and others’ mental
states, thereby comprehending one’s own and others’ intentions and affects.” (APA). It
is considered as metacognition applied to others where metagonition is ”the processes
by which we monitor and control our own cognitive processes” [Frith, 2012]. Mental-
ization is considered to participate into intentional stance (”a strategy for interpreting
and predicting behavior that views organisms as rational beings acting in a reasonable
manner according to their beliefs and desires (i.e., their intentions)” [Dennett, 1989])
which appears to be a requirement to social interactions, including cooperation
[Dennett, 1971].

In the seek for shared mental models between AAs and human partners, mentaliza-
tion appears by nature to be a cognitive mechanism of interest. Wako Yoshida while
studying Theory of Mind (ToM) - with the narrow definition of "how we represent
the intentions and goals of others to optimise our mutual interactions”, definition
equivalent to mentalization - provided precious results about mentalization towards
AAs. In a first experiment in 2008 [Yoshida et al., 2008], two hypothesis about par-
ticipants behavior were tested in a Sequential Stag-Hunt (SSH) game: ToM or not
ToM, meaning whether the participants infer the behavior of their co-actor in their
decision or not. SSH is derived from the game-theory situation of the stag-hunt, where
participants must chose between a cooperative but risky strategy - as if the co-actor
doesn’t chose to cooperate, everything is lost - or a selfish but sure strategy, guaranty-
ing a minimum reward no matter the choice of the co-actor. SSH is played in a maze
grid and co-actors must chose between hunting cooperatively a randomly-moving stag
by acting in order to find themselves at the same time on an adjacent to the stag
grid-spot, or hunting selfishly a static rabbit. Co-actors groups where formed with a
human participant and an artificial agent alternating between cooperative and self-
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ish policies. Participants behavior were then compared to behavior they would have
adopted with a fixed policy or a policy inferring the artificial agent intentions from his
behavior. Results showed evidence that human co-actors adapt their representations
of their co-actors depending of their actions. In a second experiment, a behavioral
study shows that the sophistication of our reasoning, meaning how many step forward
are integrated in the decision making during the stag-hunt is correlated to the co-
actor’s sophistication itself: the more our co-actors takes our intentions into account,
the more we are willing to infer theirs [Yoshida et al., 2010]. Furthermore, the study
is completed with brain imaging showing that the brain parts associated in the lit-
erature with ToM are actually activated by the subjects during the task. Although
according to [Perez-Osorio and Wykowska, 2020], the adoption of intentional stance
towards A As is not natural. The paper mentions studies including Prisoner’s Dilemma
game and Rock-Paper-Scissor games with opposite results to Yoshida and colleagues’
regarding brain imagery. The authors argue that human-like appearance of the agents,
the context, goal-oriented behavior as well as individual priors affect the adoption of
intentional stance towards AAs.

5. Hypotheses of informations to share in order to trigger shared-task
representation and mentalization

5.1. Intention sharing as shared-task representation and mentalization
enabler

The two bodies of literature of joint-action - bringing shared task representation - and
intentional stance have brought cognitive mechanisms to the seek of shared mental
models and team situation awareness. Although, both mechanisms have been shown
to be hard to activate towards computers or robots. To our understanding it is a
crucial requirement for AAs to be able to arise these mechanisms on their human
partners in action. Because AAs are not necessarily embodied robots, the content
and the format of the interaction between AAs and humans in cooperation - directed
towards STR and intentional stance - has to be found in the underlying mechanic of
the AAs. The literature leads us to the fundamental notion of intentions. The DPM
(Distal (or future-directed)-Proximal (or present-directed)-Motor) model of intentions
[Pacherie, 2008] first has to be introduced:

”F-intentions are formed before the action and represent the whole action as a unit. They
are usually detached from the situation of action and specify types of actions rather than
tokens. Their content is therefore conceptual and descriptive. [...] P-intentions serve to
implement action plans inherited from F-intentions. They anchor the action plan both
in time and in the situation of action and thus effect a transformation of the descriptive
contents of the action plan into perceptual-actional contents constrained by the present
spatial as well as non-spatial characteristics of the agent, the target of the action, and the
surrounding context. The final stage in action-specification involves the transformation
of the perceptual-actional contents of P-intentions into sensorimotor representations (M-
intentions) through a precise specification of the spatial and temporal characteristics of
the constituent elements of the selected motor program.” [Pacherie and Nicod, 2007]

At this point - and keeping in mind the importance of demonstrating the coherence
in the available literature - it is interesting to note the compatibility between distal
intentions and Lyons’ intentional model as well as between proximal intentions and
task model [Lyons, 2013].
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Abilities

Mechanisms

1 - Shared perceptual rep-
resentations of the situa-
tion of action

- joint attention (causal coordination & mutual manifest-
ness)

2 - Corepresenting the ac-
tions and proximal inten-
tions of other agents

- perception-action interface: motor resonance via mirror
neurons supporting action understanding and outcome pre-
diction (goal-to-action)

- action anticipation via goal-to-action + inference from tele-
ological reasoning

-task sharing

3 - Having an accurate
representation of the sys-
tem’s dynamic to allow
triadic adjustment

”agents should be capable of explicitly representing the in-
strumental relation of their individual actions to the situated
joint goal structure”

Table 1.
[Pacherie, 2012]

3 types of abilities the co-agents must be capable of and the proposed mechanisms after

In [Pacherie, 2012], Elisabeth Pacherie extends the DPM model to joint-action. The
existence of Shared Distal Intentions (SDI) derives from the intrinsic nature of planned
joint action which implies sharing the overall goal and including cooperators influence
on one’s subplan sketches. The paper then connects recent empirical evidences to
Shared Proximal Intentions (SPI) and Coupled Motor Intentions (CMI). There are 6
conditions characterizing SPI:

self-prediction
other-prediction

joint action plan
joint predictions

dyadic adjustment (representation on one’s action on others’)

triadic adjustment (joint progress monitoring and next move decision, including

moves which could help partner to achieve their contribution)

To observe these

characteristics in an

interaction, Pacherie relying on

[Sebanz et al., 2006] lists three types of abilities the co-agents must be capable
of and the proposed mechanisms. They are resumed in Table 1. Regarding Coupled
Motor Intentions, Pacherie considers their importance is correlated to the precision of
the space-time coordination needed in the task. Mentioned example include dancing
ballets and rowing. In this case, the entrainment mechanism proposed in emergent
coordination by [Knoblich et al., 2011] is proposed as a key to CMI, also explaining
why the author does not talk about shared but coupled motor intentions as it is more
dyadic than triadic adjustment.

We suggest that shared intentions must be further explored regarding their potential
to be facilitators towards shared task representation and mentalization in human-
AA cooperation. AS illustration, Le Goff and colleagues (2018) recently showed that
communicating information about the system’s intention to act improved the operator
sense of control and performance as well as system acceptability.
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5.2. Metacognitive representations as mentalization triggers

The studies mentioned in section 4.2 at least suggest that mentalization towards AAs
is neither natural nor automatic. In order to model the mental states of a partner
(mentalizing) after adopting toward him the intentional stance - meaning considering
the partner as an intentional agent - this partner has to provide clues about its own
mental processes. Although, the nature of these clues remain unclear [Johnson, 2003]
[Mar and Macrae, 2008].

One of this clue could be - as mentalization is metacognition applied to others
[Frith, 2012] - the ability to share metacognitive information. [Shea et al., 2014] ar-
gues that humans are provided with a ”system 2 metacognition” dedicated to supra-
personal cognitive control which allows the sharing of metacognitive information.
This system 2 metacognition would thereby permit "to coordinate the sensorimo-
tor systems of two or more agents involved in a shared task” by transmitting explicit
metacognitive representations about ongoing action process. Moreover communicat-
ing about metacognitive representations is known to make the joint-action smoother
[Lausic et al., 2009] and to contribute to joint performance [Bahrami et al., 2012].
Among the possible metacognitive representations, the confidence regarding its pro-
posed outputs is of particular interest by being technologically plausible regarding
the current trend in AI. Using an avoidance task, we have recently shown that
the metacognitive information provided by the system (i.e., its own confidence in
the solution proposed) helped restore the operator’s sense of control, and this in-
creased in feeling of control was also associated with greater system acceptability
[Vantrepotte et al., 2022].

6. Conclusion

The two first sections of this paper commits into building a consistent picture of the
disparate concepts from ergonomic, cognitive science and X AT relevant to the question
of interaction requirements for AAs aiming at cooperating with humans. Understand-
ing that most of these concepts are complementary rather than incompatible is reas-
suring: cooperating humans and AAs should share their mental models and hold the
same perception and interpretation of the situation. These findings question about the
possible cognitive mechanisms contributing to these desirable ergonomic states: While
the trends in Al drive the research to always less constrained models, lighter design
requirements coming from interactions abilities will be the more likely to be applied
in practice. The literature on joint action involves at least two candidate mechanisms:
shared-task representation and mentalization which are both demonstrated as unnat-
urally triggered in joint-action between humans and AAs, raising a new challenge.
This challenge is handled in the last section of the paper by proposing credible
hypotheses of content to be shared by artificial agents engaged in joint-action with
human partners in order to activate shared task representation and mentalization.
These hypotheses focus on intention sharing using [Pacherie, 2012]’s model of intention
is a joint-action context and the sharing of metacognitive representations (including
confidence level on the AA’s outputs). The reasoning process of this paper is summed-
up in the figure 3. Next step will include to measure the influence of intentions sharing
in cooperation. This implies to integrate the influence of each DPM level of intentions,
to evaluate to what extent the shared task representation mechanism is involved, and
to measure team situation awareness and shared mental models. This work must also
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as much as possible be enlightened by the knowledge from XAI about contrastive
explanations and bias.

Though the idea of manned and unmanned aerial or terrestrial vehicles working
jointly on search and rescue or firefighting situations being the starting point of our
research, this article is intended to be as generic as possible regarding human - AA co-
operation. This way, the article may provide Al engineers working on AA models with
the key principles of cooperation and assumptions about how the interaction can be
smoothed and improved. However, many questions remain to be addressed. For exam-
ple, does the proposed approach depend on whether the human-system relationship is
symmetric or not? Most of the work on joint actions in humans refers to symmetrical
situations, whereas the relationship between the human and the Al is asymmetrical in
most of the cases. Our recent work ([Le Goff et al., 2018]; [Vantrepotte et al., 2022])
seems to indicate that the proposed approach is not dependent on the symmetry of
the human-system relationship. Particularly, our first studies confirm the relevance
of this approach for two distinct situations in terms of the relative involvement of
the human operator and the automatism in the produced action. However, in both
cases, the information transmitted by the system - whether it is information related
to its intentions [Le Goff et al., 2018] or to the confidence in the proposed solutions
[Vantrepotte et al., 2022] - generate the same beneficial effect in term of experience of
control and system acceptability. Nevertheless, one might wonder whether this infor-
mation would continue to have a positive impact in situations of extreme complexity
where the human operator could hardly complement the actions of the Al.

Symmetry of the interaction is a complementary problem : to remain realistic, the
interaction hypotheses presented in the paper should stay in line with Al techniques.
As for now the interpretation of human joint action signals (natural language, body
language, gaze...) remains a challenge for computers, this paper mainly focuses on sig-
nals coming from AAs towards humans. Though communicating intentions adds con-
straints to the agent’s design, this remains realistic regarding Al state-of-the-art (see
[Vezhnevets et al., 2017] which hierarchichal reinforcement learning approach matches
some intentions communication requirements). Mechanically, being able to extract
such information from the agent’s model affects its ”black-boxness” and - referring
to the transparency/performance trade-off - may affects its performance along with
bringing constraints to engineers and researchers.

A second question refers to the applicability of these interaction principles to the dif-
ferent situations that may be encountered by operators. It is clear that we are dealing
here with cooperative situations, in particular when it comes to producing coordinated
behaviour or making so-called collaborative decisions. In these conditions where the
mutual understanding of each partner’s actions is relevant to the task, it is strongly
expected that the proposed principles will improve the performance of the human-AI
system. However, there are many other situations where the relevance of this infor-
mation is not guaranteed. For example, what about emergency situations for which a
negotiation in terms of decision making will not necessarily be expected. One could
also question the relevance of this information sharing in situations where the human
operator has a simple supervisory role (but see the results of [Le Goff et al., 2018]).

Although promising, the proposed framework requires further study to address the
concerns they raise and to test it in more complex and ecological situations than the
laboratory studies traditionally used.
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Figure 3. A summary of the reasoning held in the paper
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