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Abstract
Walking stability is one of the key issues for humanoid robots. A self‐stabilised walking
gait for a full dynamic model of humanoid robots is proposed. For simplified models, that
is, the linear inverted pendulum model and variable‐length inverted pendulum model,
self‐stabilisation of walking gait can be obtained if virtual constraints are properly defined.
This result is extended to the full dynamic model of humanoid robots by using an
essential dynamic model, which is developed based on the zero dynamics concept. With
the proposed method, a robust stable walking for a humanoid robot is achieved by
adjusting the step timing and landing position of the swing foot automatically, following
its intrinsic dynamic characteristics. This exempts the robot from the time‐consuming
high‐level control approaches, especially when a full dynamic model is applied. How
different walking patterns/features (i.e., the swing foot motion, the vertical centre of mass
motion, the switching manifold configuration, etc.) affect the stability of the walking gait
is analysed. Simulations are conducted on robots Romeo and TALOS to support the
results.

KEYWORD S
dynamic stability, humanoid and bipedal locomotion, passive walking

1 | INTRODUCTION

When walking on the flat ground, human beings do not pay
sustained attention to this task. It can therefore be assumed
that the gait of human beings encodes a certain number of
properties that ensure the natural stability of the walk (i.e. self‐
stabilisation). The objective of this paper is to highlight some
walking characteristics leading to self‐stabilisation properties
and to show how it can be used for the stability of walking on a
complex humanoid robot.

Kajita et al. [1] introduced a preview control based on
optimization to generate walking patterns and compensate for

the zero moment point (ZMP) [2] error caused by the
modelling error. Faraj et al. [3] used a discrete‐time Model
Predictive Control (MPC) to determine future footstep loca-
tions. A simplified low‐dimensional model was used to release
the calculation burden. In contrast to [3], Romualdi et al. [4]
considered a reduced centroidal model instead of simplified
models for the MPC, which enables online step adjustment. As
this paper is meant to relieve the humanoid robot from the
cognitive load to ensure its balance, any approach using opti-
mization or predictive command mentioned above is excluded.

Another major difficulty of walking is to satisfy the con-
ditions of contact with the ground, and in particular, the
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condition of non‐rotation of the foot related to the ZMP. On
many humanoid robots, this task is performed by a stabilizer
[5] or considered as a constraint by using high‐level controllers
[6]. In our work, to ensure that this constraint is met, it is
assumed that the foot control allows the evolution of the ZMP
to be imposed. In this context, the two actuators at the ankle of
the robot during the single support (SS) phase are devoted to
achieving a good tracking of ZMP; thus, the robot loses two
control inputs and can be viewed as an under‐actuated system
or point contact robot. Since McGeer built the first planar
passive robot [7] with four links, a lot of passive‐based control
methods [8, 9] have been proposed for under‐actuated robots.
In human walking, the duration of the steps is not always
strictly identical, and biomechanists generally refer to the phase
of the step [10]. A lot of researchers [11–14] have used the
stance leg angle as the phase variable for defining the
remaining states instead of using time. Different from the time,
the phase variable allows the robot joints to be coordinated
without re‐synchronizing with an external clock in presence of
disturbance. The notion of virtual constraints [11] will there-
fore be used in this work. This approach has shown its effi-
ciency for experimental 3D walking in [15]. Our objective here
is to define physical parameters that lead to stability and not to
rely on optimization or machine learning [16].

The linear inverted pendulum (LIP) is a very popular and
efficient tool to design the walking of humanoid robots
[17–19]. The LIP model [20] assumes that the mass of the
humanoid robot is concentrated as a punctual mass in its
centre of gravity at a constant altitude. This model has been
used to present the notion of self‐synchronization and self‐
stabilisation [21]. The walking algorithm proposed in [21] has
been extended in [22] by taking into account the vertical
oscillation of the centre of mass (CoM). It has been proven in
[22] that the vertical oscillation of the CoM contributes to
obtaining self‐stabilisation during the walk. Given the results of
simplified models, the extension of the walking algorithm
considering the full dynamics of the robot is studied in this
paper. Here, a zero dynamic model called the essential model
proposed in [23] is used to extend these results. The advan-
tages of this essential model are as follows: (1) it has the same
dimension as the 3D LIP model but considers the full dy-
namics of the humanoid robots; (2) it allows the generation of
periodic walking gaits that ensure that the ZMP is kept in a
desired position or follows a desired path.

The overall block diagram of the walking algorithm pro-
posed in this paper is shown in Figure 1. The main contribu-
tions of this paper are as follows: (1) A new self‐stabilised
walking algorithm for a full dynamic model, which exempts the
robot from the time‐consuming high‐level control approaches;
(2) walking patterns/features that affect the stability of the
walking gait are compared. The paper body is structured as
follows. Section 2 concerns the dynamic modelling of the gait,
which is naturally a hybrid model because the different phases
of the SS and double support (DS) gait must be taken into
account. Section 3 includes a closed‐loop model to study
walking stability. A so‐called essential model [23], which has
the same order as the LIP model but takes into account the

dynamic characteristics of the complete humanoid robot, is
introduced. Section 4 presents the phase variable and the
condition of transition between steps. The desired trajectories
of the controlled variables (i.e. the vertical motion of the CoM,
the motion of the swing foot and the upper body) are defined
in Section 5. Then, the proposed walking algorithm is applied
to two complete humanoid robots in Section 6. Section 7 of-
fers our conclusions.

2 | THE HYBRID DYNAMIC MODEL

One step of the humanoid robot's walk contains two phases:
the SS phase and the DS phase. This DS phase is assumed to
be instantaneous. Continuous differential equations and
discrete components are used to describe the motion of the
robot and the transition between steps during the SS phase and
the DS phase.

2.1 | The continuous phase

For a robot with n joints, the dynamic model during the SS
phase can be defined as follows:

DðqÞ €q þH
�
q; _q

�
¼ BΓ; ð1Þ

where q ∈ Rn�1 denotes the generalised coordinates for a
humanoid robot, D(q) is the inertia matrix, H

�
q; _q

�
groups

the centrifugal, Coriolis and gravity terms, B is the input matrix
and Γ is the vector of torques applied by actuators at each

joint. Let x¼ qT; _qT
� �T

represent the states of the robot, and
the state‐variable model can be written as

_x¼ f ðxÞ þ gðxÞΓ: ð2Þ

2.2 | Transition between steps

The transition between steps happens when the swing foot
touches the ground, that is, at the end of the SS phase. Since
the reference frame is always attached to the stance foot, and
the y axis is directed towards the CoM, the joint variables need
to be relabelled at each transition, that is,

qþ ¼ Eq−; ð3Þ

where the superscripts + and − represent the instants just after
and just before the transition, and the constant matrix E de-
fines the interchange of joint positions. When the impact be-
tween the swing foot and the ground is considered, the joint
velocities change due to the reaction forces at the foot. The
velocities after impact can be expressed as:

_qþ ¼ ΔðqÞ _q−; ð4Þ

2 - LUO ET AL.
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where Δ(q) is a matrix that relates the joint velocities after and
before the impact. Note that if there is no impact at transition,
Δ(q) = E.

2.3 | The hybrid model

At transition, the height of the swing foot is zero. Thus, a
switching manifold can be defined:

S ≔ xjzs ¼ 0f g; ð5Þ

where zs represents the height of the swing foot.
By combining the continuous model Equation (2) and the

transition model Equations (3) and (4), the hybrid dynamic
model of the robot can be obtained:

Σ :
_x¼ f ðxÞ þ gðxÞΓ; x− ∉ S

xþ ¼ Δx x−ð Þ; x− ∈ S

�

ð6Þ

where Δx x−ð Þ ¼ Eq−ð Þ
T
; ΔðqÞ _q−ð Þ

T
h iT

.

3 | ZERO DYNAMICS: THE ESSENTIAL
MODEL

For a fully actuated humanoid robot, the dynamic equation in
the SS phase can be obtained with the Newton‐Euler method:

F 0
M 0

τ

2

4

3

5¼ AeðqÞ €q þ de
�
q; _q

�
; ð7Þ

where F 0 ∈ R3�1 is a ground reaction force vector expressed
in the world frame; M 0 ∈ R3�1 is a ground reaction moment
vector expressed in the world frame; τ ∈ Rn�1 is a torque
vector generated by actuators; Ae ∈ Rðnþ6Þ�n; de ∈ Rðnþ6Þ�1.
The last n lines of the model correspond to Equation (1), while
the first six lines give the reaction force acting on the stance
foot.

For a robot with flat contact between the foot and the
ground, the position of the ZMP is of primary importance. To
ensure good behaviour, a stabilizer can be designed to track the

desired path of the ZMP. Since the ZMP is defined via two
coordinates (in sagittal and frontal directions), two inputs must
be devoted to this task. Thus, only n − 2 other variables,
denoted qc, can be controlled. Since the robot joint variables q
are of dimension n, two degrees of freedom (DoFs) cannot be
controlled. Here, the horizontal position of the CoM, qf =
[x,y]⊤ is chosen as a non‐controlled variable, and a model
called the essential model [23] is used to define the evolution of
qf when the evolution of the ZMP and qc is known.
Furthermore, impacts of the swing foot with the ground can
be considered to compute periodic walking gaits.

Perfect tracking of the reference trajectories with virtual
constraints for the controlled variables qc is assumed. The
controlled joints qc are chosen such that an homeomorphism
exists between q and qc ;qf½ �⊤ and we can write:

q ¼ h qc ;qfð Þ: ð8Þ

In this study, the controlled variables qc are defined as
functions of a phase variable denoted by Φ instead of time.
The construction of the phase variable Φ is based on the non‐
controlled variables qf, and details will be explained in Section
4.2. In a closed loop, we have:

q ¼ h qc Φ qfð Þð Þ;qfð Þ: ð9Þ

The first and second time derivatives of q are:

_q ¼
∂h
∂qc

∂qc

∂Φ
∂Φ
∂qf

_qf þ
∂h
∂qf

_qf ¼ J f _qf ; ð10Þ

€q ¼ J f €qf þ
_J f
�
qf ; _qf

�
_qf : ð11Þ

Thus, by substituting Equation (11) into Equation (7), we
have:

F 0
M 0
τ

2

4

3

5¼ AeJ f €qf þ Ae _J f _qf þ de
�
qf ; _qf

�
: ð12Þ

F I GURE 1 Block diagram of the proposed walking algorithm

LUO ET AL. - 3
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The equilibrium given by the definition of the ZMP must
be satisfied for the desired ZMP positions px,d and py,d, that is,

px;dFz þMy ¼ 0;
py;dFz − Mx ¼ 0: ð13Þ

By taking into account of rows 3–5 of Equations (12) and
(13), the essential model is computed:

€qf ¼
€x
€y

� �

¼ f θ
�
qf ; _qf ; px;d; py;d

�
: ð14Þ

More details of the development of the essential model can
be found in [23].

4 | VIRTUAL CONSTRAINTS

When constraints are imposed on a system via feedback con-
trol, we call them virtual constraints [24]. In this paper, this is
realized by defining the trajectories of the controlled variables
qc as functions of the robot's internal states instead of time,
that is, qc = qc(Φ). Note that a phase variable must be strictly
monotonic. The phase variable Φ allows us to coordinate all
the joint motions of the robot without re‐synchronizing with
an external clock.

4.1 | Switching manifold

When the swing foot touches the ground, the geometric
condition zs = 0 has to be satisfied (where zs is the height of
the swing foot). There are infinite numbers of CoM positions
satisfying this condition, which are grouped in the switching
configuration manifold defined by

S¼ ðx; yÞjzsðΦðx; yÞÞ ¼ 0f g: ð15Þ

As shown in [21] for the study on the LIP model, the shape
of this switching manifold is important for stability. This result
is extended to the full dynamic model of the robot in our work;
thus, the switching manifold proposed in [21] is considered:

S¼ ðx; yÞj x − x∗−ð Þ þ C y − y∗−ð Þ ¼ 0f g: ð16Þ

where x*− and y*− denote the positions of the CoM in the
horizontal plane at the end of the SS phase for a periodic
motion. The switching manifold S is defined as a vertical
surface parameterised by C, represented by the grey surface in
Figure 2. The influence of C on stability will be studied later.
The transition occures when the CoM crosses the switching
manifold. Many other sets of positions can be considered, but
since stability studied here is a local property, a flat surface is a
convenient choice. The choice of S directly affects the final
CoM position for a step.

The phase variable should be chosen appropriately such
that the robot switches its stance leg when the CoM crosses the
switching manifold.

4.2 | Phase variable

It has been proven in [21] that when the phase variable is a
quadratic function of the non‐controlled variables qf, self‐
synchronization can be obtained for the LIP model. This
result is expanded in our work with the same phase variable. It
will be shown that self‐stabilisation can be obtained for a
complete model with appropriate values of C. According to
[21], the expression of the phase variable Φ is:

Φ¼ a1xþ a2yþ a3xyþ a4x2 þ a5y2 þ a6; ð17Þ

where {a1, a2, a3, a4, a5, a6} are the parameters that define the
value of Φ. In this paper, the phase variable is supposed to vary
from 0 to 1 even under the presence of perturbation. Thus, we
have Φ(x+, y+) = 0 and Φ(x−, y−) = 1 corresponding to the
beginning and end of the step. With the boundary condition
defined by the switching manifold, when the lateral CoM po-
sition error is δ at the end of a step, the sagittal CoM position
error should be −Cδ at the end of a step. To achieve a step
correctly, the condition Φ(x−, y−) = 1 must be satisfied for any
x− = x*− − Cδ and y− = y*− + δ; thus, four equations can be
obtained:

a1xþ þ a2yþ þ a3xþyþ þ a4 xþð Þ2 þ a5 yþð Þ2 þ a6 ¼ 0;
a1x∗− þ a2y∗− þ a3x∗−y∗− þ a4 x∗−ð Þ

2
þ a5 y∗−ð Þ

2
þ a6 ¼ 1;

−a3C þ a4C2 þ a5 ¼ 0;
−a1C þ a2 − a3Cy∗− þ a3x∗− − 2a4Cx∗− þ 2a5y∗− ¼ 0:

8
>><

>>:

ð18Þ

F I GURE 2 Illustration of the swing manifold S

4 - LUO ET AL.
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As there are only four equations, the values {a1, a2, a5, a6}
can be calculated as functions of the two terms, namely, a3 and
a4. The values of the a3 and a4 can be chosen by optimization
to minimise the difference between Φ(x, y) and t/T* in order
to guarantee the monotonicity of Φ, where T* is the desired
step duration for a periodic motion. The objective function for
the optimization tools is defined as

J ¼ Σ Φ xi; yið Þ − ti=T∗ð Þ
2
: ð19Þ

The criterion J is essentially sensitive to the step length and
width. Since the optimization of (19) is not an objective of the
proposed walking algorithm, and only monotonicity of the
phase variable is required, the optimization is done only once
unless the desired step length and width are changed.

5 | TRAJECTORIES OF THE
CONTROLLED VARIABLES

The CoM height and motions of the swing foot and the upper
body are defined by the desired controlled coordinates qc

d
�
Φ
�
qf

��
. The virtual constraints are firstly expressed as out-

puts of the model Equation (2), that is,

yout ≔ qc − qc
d�Φ

�
qf

��
: ð20Þ

Since the essential model is developed under the assump-
tion that the reference trajectories are followed all the time,
that is, the outputs of the system are identically zero:

yout ≡ 0; _yout ≡ 0; €yout ≡ 0: ð21Þ

Achievable desired trajectories for qc
dðΦÞ must be

designed properly so that they can be tracked precisely by any
well‐suited control law. Therefore, the changes of velocities of
the controlled variables due to impact (if they exist) must be
taken into account.

The motion of the swing foot can be split into two parts:
the vertical motion and the horizontal motion. The design of
the vertical trajectory is based on the goal of producing an
impact of the landing foot with the ground or not. For the
horizontal motion, the landing place to step the foot is an
important issue on which the performance of the walking gait
will largely depend.

On the other hand, several research works, as in [25, 26],
have proven that the motions of the trunk and arms help to
improve walking efficiency. Depending on the complexity of
the task, the desired upper‐body motion trajectories can be
defined by simple polynomials or more complex functions.

5.1 | Vertical motion of CoM

The desired vertical motion of the CoM is defined by using a
5th‐order polynomial function with the following boundary
conditions:

zdc Φ0ð Þ ¼ z0; zdc Φmð Þ ¼ z0 þ αz; zdc Φf
� �

¼ z0;

_zdc Φ0ð Þ ¼ _qþc;1; _zdc Φmð Þ ¼ 0; _zdc Φf
� �

¼ vm;
ð22Þ

where _qþc;1 is the vertical velocity of the CoM after the
transition of stance foot,1 Φ0 = 0 and Φf = 1 are the desired
initial and final values of Φ during a step, respectively, and
Φ0 < Φm < Φf is an intermediate value, which in this paper
is chosen as Φm = 0.6. The values of z0, αz, and vm will be
given for each different case in the following sections.

5.2 | Desired motion of the swing foot

It is desired that the swing foot lands on the ground with a
zero velocity or a negative velocity. When the vertical velocity
of the swing foot at landing is negative, the contact with the
ground is ensured when the ground is not flat, and an impact is
produced. A 5th‐order polynomial function is used to define
the vertical evolution of the swing foot by satisfying the
following boundary conditions:

zds Φ0ð Þ ¼ 0; zds Φmð Þ ¼ hs; zds Φf
� �

¼ 0;

_zds Φ0ð Þ ¼ _qþc;4; _zds Φmð Þ ¼ 0; _zds Φf
� �

¼ vs;
ð23Þ

where _qþc;4 is the vertical velocity of the swing foot after the
transition. The values of hs and vs will be given for each
different case in the following sections.

For the motion of the swing foot along the sagittal axis, 3rd‐
order polynomials are used with following boundary conditions:

xds Φ0ð Þ ¼ xs0; xds Φf
� �

¼ xsf ;

_xds Φ0ð Þ ¼ _qþc;2; _xds Φf
� �

¼ 0;
ð24Þ

where _qþc;2 is the velocity of the swing foot after transition
along the sagittal axis. The motion of the swing foot along the
frontal axis is similar to that along the sagittal axis. Here, the
desired landing positions of the swing foot along sagittal and
frontal axes are defined by

xsf ¼ 1 − kSð Þ x− − x∗þð Þ þ kSS; ð25Þ

ysf ¼ 1 − kDð Þ y− þ y∗þð Þ þ kDD: ð26Þ

to have a general expression of the expected landing position
of the swing foot. The notions S and D are the step length and
width, and kS, kD are two parameters that adjust the landing
position. The case kS = kD = 0 allows to nullify the initial CoM
position error at the beginning of the next step, while the case
kS = kD = 1 corresponds to the fixed step length and width.
The middle values 0 < kS < 1 and 0 < kD < 1 allow the landing
position to move between the two locations mentioned above.
The swing foot orientation is kept constant and parallel to the
ground all the time.

1 _qþc;i is the i‐element of the time derivative of qc after impact

LUO ET AL. - 5
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5.3 | The upper‐body motion

For the desired trajectories of the controlled variables for
the upper body qdc;i with i = 8, …, 29, 3rd‐order polynomial
functions are used with the following boundary conditions:

qdc;i Φ0ð Þ ¼ ki; qdc;i Φf
� �

¼ ki;

_qdc;i Φ0ð Þ ¼ _qþc;i; _qdc;i Φf
� �

¼ 0;
ð27Þ

where _qþc;i is the velocity after transition, and ki is the desired
joint position of the ith controlled variable.

6 | APPLICATION TO THE COMPLETE
MODEL BASED ON THE ESSENTIAL
MODEL

The essential model is exploited to take into account the
characteristics on the humanoid robots Romeo [27] and
TALOS [28]. Romeo has a weight of 40.8 kg, a height of
1.46 m, and 31 DoFs (6 DoFs for each leg, 1 DoF for the
torso, 7 DoFs for each arm and 4 DoFs for the neck and head).
Talos has a weight of 95 kg, a height of 1.75 m and 1 less DoF
than Romeo at the trunk. The position and orientation of the
swing foot, the height of the CoM and the upper‐body mo-
tions, are considered to be the controlled variables for both
robots.

6.1 | Stability analysis

The stability analysis of the proposed walking gait is performed
based on the stability of the Poincaré return map [11]. A
walking gait is stable when all the norms of the eigenvalues of
the Jacobian matrix of the Poincaré return map are strictly less
than one. Since x− and y− are coupled via the switching
manifold S, the Jacobian matrix of the Poincaré return map at
the fixed point and its eigenvalues are numerically calculated in
the coordinate system x; _x; _y½ �. Since it has been proven in [11]
that the stability properties of orbits of the hybrid restriction
dynamics carry over to the full‐dimensional dynamics, only the
stability of the uncontrolled variables is studied, and
the essential model is sufficient to analyse the stability of the
walking gaits.

How different parameters (i.e., the swing foot motion, the
vertical CoM motion, the switching manifold configuration,
the upper‐body motion, etc.) affect the stability of the walking
gait that considers the full dynamics of the robot is discussed.
Besides, how different walking postures and sizes of robots
affect the stability of the walking gait is also discussed.

In this section, comparisons will be done for five different
cases: (1) with different landing positions defined by kS and kD,
(2) with a constant height and a varying height of the CoM, (3)
with and without swing of arms and torso, (4) with a constant
ZMP and with a varying ZMP, and (5) for two different robot
prototypes Romeo and TALOS. The results of stability are

dependent on the choice of the switching manifold charac-
terised by the parameter C, and the duration T of the SS phase
of the periodic motion is also a key parameter. Thus, in the
following cases, the eigenvalues are expressed with contours as
functions of C and T.

6.2 | Influences of different landing
positions on the stability

How the values of kS and kD as well as C and T affect the
stability of the proposed walking gait based on the essential
model is discussed here. Eigenvalues are calculated numerically
as functions of C and T for four different cases: (1) kS = kD =
0; (2) kS = 1, kD = 0; (3) kS = 0, kD = 1; (4) kS = kD = 1. For
all the cases, the robot Romeo is considered and it is supposed
to have a constant height of the CoM z0 = 0.65 m, no impact
with the ground and a fixed upper‐body motion. The position
of the ZMP is supposed to be constant and kept at [0; 0]. The
step length and width are S = 0.3 m and D = 0.15 m,
respectively. The case with kS = kD = 0 is also used as a
reference case in further studies on the influence of other
parameters.

It can be seen from Figure 3 that when at least one of kS
and kD equals to zero, there exist some sets of parameters C
and T such that all the eigenvalues are smaller than one, and
thus, the walk is stable. However, it is unstable for any C and
T when the step length and width are fixed (kS = kD = 1)
with a constant height of the CoM, because all the eigenvalues
are larger than one as shown in Figure 3d. When the initial
CoM position error at the beginning of a step is nullified
(kS = kD = 0), a larger stability region can be observed. For
the case with a fixed step length but nullified initial lateral
CoM position error (kS = 1, kD = 0), stability can be obtained
when the value of C is small, while for the case with a fixed
step width but nullified initial sagittal CoM position error
(kS = 0, kD = 1), no stability can be obtained for slow walking
velocity with a step timing bigger than 0.7 s.

6.3 | Influence of the vertical CoM motion

As observed in human walking, the CoM of human beings is
not constant during a step [29]. It has been proven in [22] that
the vertical CoM velocity vm being negative at transition is
crucial for obtaining stability for an inverted pendulum when
no high‐level control is performed. How the vertical CoM
motion affects walking stability of the robot Romeo is analysed
here. Two cases with the same magnitude α = 0.03 m of CoM
height but different vm (−0.1 m/s and −0.2 m/s, respectively)
are considered for comparison with the reference case with a
constant CoM height. The CoM height for the reference case is
0.65 m, while the mean CoM height for the comparison case is
0.65 m as well to avoid being out of the workspace. All the
reference and comparison cases are supposed to have the same
swing foot motion and upper‐body motion with S = 0.3 m,
D = 0.15 m, kS = kD = 0, [px; py] = [0; 0].

6 - LUO ET AL.
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It can be seen from Figure 4 that the norms of the eigen-
values are smaller for walking gaits with a larger amplitude of vm.
Stability cannot be obtained for slow walking velocities with step
timing larger than 0.8 s when vm = −0.2 m/s. The vertical ve-
locity of the CoM being negative is not a necessary condition for
the essential model to obtain stability, because the asymmetries
in the system during the gaits due to the repartition of masses are
enough to generate stability [30]. The vertical velocity of CoM

being negative enlarges the stability area, especially for small
values of C and reduces the norms of the eigenvalues.

6.4 | Influence of the upper‐body motion

As observed in human walking, human beings swing their arms
during a step to reduce the total angular momentum of the

F I GURE 3 Influence of kS and kD on the eigenvalues for robot Romeo. Contrary to the white areas, the coloured areas indicate the self‐stabilisation
condition. (a) kS = kD = 0. (b) kS = 1, kD = 0. (c) kS = 0, kD = 1. (d) kS = kD = 1.

F I GURE 4 Comparison of maximum norms of eigenvalues for different vm for robot Romeo. Contrary to the white areas, the coloured areas indicate the
self‐stabilisation condition. (a) vm = 0. (b) vm = −0.1 m/s. (c) vm = −0.2 m/s.

LUO ET AL. - 7
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body by creating an angular momentum in the direction
opposing lower limb rotation. How this motion affects the
stability of the walk is studied here. Two cases with and without
the upper‐body motion, that is, arm and torso swing are
compared for robot Romeo here. For the case with the upper‐
body motion, the motions of the torso, shoulders, and elbows
are shown in Table 1. Both cases are supposed to have no
impact and constant CoM height with S = 0.3 m, D = 0.15 m,
kS = 0, kD = 0, vs = 0, zm = 0.65 m and [px; py] = [0; 0].

It can be seen from Figure 5 that the result obtained for the
motion with arm and torso swings is almost the same as that
obtained with a fixed upper‐body motion. Although it is
believed that the upper‐body swing helps reduce the energy
cost [31], the contribution of the upper‐body swing to the
stability is not as obvious with the walking algorithm proposed
in this work. On the other hand, this conclusion is interesting
since it shows that the stability condition obtained for one
fixed upper‐body motion can be used for the case with a
different upper‐body motion.

6.5 | Influence of ZMP evolution

One main advantage of the proposed essential model is that a
desired location or a path can be imposed for the ZMP
during a whole step. This section studies the influence of the
ZMP evolution on the stability of walking gaits. Two cases

with a constant ZMP and a varying ZMP are compared. For
the case with a constant ZMP, the ZMP is constrained at the
zero position, that is, [px0; py0] = [0; 0] and [pxf; pyf] = [0; 0].
For the case with a varying ZMP, 3rd‐order polynomial
functions are applied with [px0; py0] = [−0.01; 0.02] m and
[pxf; pyf] = [0.08; 0.02] m. Both cases are supposed to have no
impact, constant CoM height and fixed upper‐body motion,
with S = 0.3 m, D = 0.15 m, kS = 0, kD = 0, vs = 0 and
zm = 0.65 m.

It is shown in Figure 6 that a varying ZMP enlarges the
area of stability in general. However, for slow motions with
T > 0.65 s, the maximum norm of the eigenvalues of the case
with a varying ZMP is larger than that of the case with a
constant ZMP.

6.6 | Comparison of Romeo and TALOS

Romeo and TALOS are two humanoid robots with different
heights, weights, and inertias. It is interesting to validate the
stability of the proposed walking algorithm on different robots.
The CoM heights of Romeo and TALOS are 0.7008 and
0.9424 m, respectively, when their legs are straightened. During
walking, the CoM height of Romeo is chosen to be 0.65 m and
that of TALOS is 0.8 m to avoid being out of workspace. With
the larger size, the step length and width of TALOS are 0.4 and
0.2 m, respectively, while those of Romeo are 0.3 and 0.15 m. In
this comparison, both robots are supposed to have a constant
CoM height, no impact between the swing foot and the ground,
and a fixed upper‐body motion. The position of the ZMP is
supposed to be constant and kept at the position [0; 0]. The
positions of the swing feet for the two robots are chosen to
nullify the initial CoM position error, that is, kS = kD = 0.

It can be seen from Figure 7 that the stability area for
TALOS is slightly larger than that for Romeo. When the step
duration increases, the range of proper values of C decreases
for both robots. In conclusion, a similar choice of C and T can
be used for the two robots.

TABLE 1 Upper‐body parameters for Romeo (Unit: rad)

Description Label k0,i kf,i

Torso yaw qdc;10 0.1757 −0.1757

R. shoulder yaw qdc;15 −0.3 0.2

R. elbow pitch qdc;18 −0.3491 −0.7854

L. shoulder yaw qdc;22 −0.2 0.3

L. elbow pitch qdc;25 −0.7854 −0.3491

F I GURE 5 Comparison of maximum norms of eigenvalues for different upper‐body motions for robot Romeo. Contrary to the white areas, the coloured
areas indicate the self‐stabilisation condition. (a) Fixed upper‐body motion. (b) Motion with arm and torso swings.

8 - LUO ET AL.
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6.7 | Simulations

By considering the stability conditions discussed in the previ-
ous section, simulations will be performed for robots Romeo
and TALOS in this section. The starting phase strategy used in
[22] is applied here. Since the motion at the starting phase does
not affect the stability of walking during the periodic motion,
the starting phase strategy will not be discussed here.

6.8 | Change of step width

In this section, a human‐like walking pattern is considered for
robot Romeo, that is, with a varying CoM height and swing of
arms and torso. The parameters of the CoM and swing foot
motions are shown in Table 2. Except for the first step, the
position of theZMP is expected to followa 3rd‐order polynomial
function varying from [ px0; py0] = [−0.01; 0.02] m to [ pxf ; pyf ] =
[0.08; 0.02] m, and the step timing for the periodic motion is
expected to be 0.7 s. A change of step width fromD1 = 0.15m to
D2 = 0.2 m is expected at the 15th step. The step length for the
periodic value remains S = 0.3 m. Since the proper value
of switching manifold parameter C is proportional to the ratio

F I GURE 7 Comparison of maximum norms of eigenvalues for Romeo and TALOS. Contrary to the white areas, the coloured areas indicate the self‐
stabilisation condition. (a) Romeo and (b) TALOS.

F I GURE 6 Comparison of maximum norms of eigenvalues for different zero moment point (ZMP) evolutions for robot Romeo. Contrary to the white
areas, the coloured areas indicate the self‐stabilisation condition. (a) Motion with a constant ZMP. (b) Motion with a varying ZMP.

TABLE 2 Gait parameters for simulations of Romeo and TALOS

Parameter Unit Romeo TALOS Description

kS [m] 0 0 Landing position parameter
along the x axis

kD [m] 0 0 Landing position parameter
along the y axis

T [s] 0.7 0.5 Step time

z0 [m] 0.6 0.8 Height of the CoM

hs [m] 0.05 0.05 Maximum swing foot
amplitude

φf,0 [deg] 0 0 Free foot initial rotation

φf,f [deg] 0 0 Free foot final rotation

αz [m] 0.05 0.05 Maximum CoM amplitude

vm [m/s] −0.1 −0.1 Desired vertical CoM velocity
at transition

vs [m/s] −0.1 −0.1 Desired landing velocity

[ px0; py0] [m] [−0.01; 0.02] [0; 0] Starting point of ZMP

[ pxf ; pyf ] [m] [0.08; 0.02] [0; 0] Ending point of ZMP

Abbreviations: CoM, centre of mass; ZMP, zero moment point.
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of S
D, whenC1 forD1 = 0.15 m is chosen to be 3, the value ofC2

for D2 = 0.2 m should be C2 ¼
C1D1
D2
¼ 2:25. The fixed value

defining the state of CoM for D1 = 0.15 m is:

X ∗−
c1 ¼

S
2
þDx1;

D1

2
þDy2; _x∗−

c1 ; _y∗−
c1

� �
⊤

¼ ½0:193 m; 0:077 m; 0:544 m=s; 0:177 m=s�⊤:

and that for D2 = 0.2 m is:

X ∗−
c2 ¼

S
2
þDx2;

D2

2
þDy2; _x∗−

c2 ; _y∗−
c2

� �
⊤

¼ ½0:192 m; 0:102 m; 0:543 m=s; 0:257 m=s�⊤:

The maximum eigenvalues for these two cases are:

λD¼0:15 ¼ 0:726;

λD¼0:2 ¼ 0:787:

The schematic illustration of the first 5 steps including the
starting phase for Romeo is shown in Figure 8. Figure 9 pre-
sents the projections of the CoM motion in horizontal, sagittal
and frontal planes and the position of the stance ankle for each
step. Note that the local reference frame is attached to the
projection of the stance ankle on the ground, the circles in
Figure 9a also represent the positions of the local frame in the
world frame. From Figure 9, it can be seen that the trajectory
of the CoM starts from a position close to the stance foot at
the starting phase and converges to the periodic motion for D1

= 0.15 m after several steps. At the 15th step, it can be seen
clearly that the step width is increased. The change in the step
width at the 15th step causes an initial CoM position error at
the 16th step, which is regarded as a disturbance, and then the
CoM converges to the periodic motion for D2 = 0.2 m. The

F I GURE 9 Projections of the centre of mass (CoM) trajectory in horizontal, sagittal and frontal planes. (a) Horizontal plane, the blue lines
represent the switching manifold for each step, and the circles represent the positions of the zero moment point. (b) Sagittal plane. (c) Frontal plane.

F I GURE 8 Illustration of 5 steps for Romeo

10 - LUO ET AL.
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blue lines in Figure 9a represent the switching manifold given
by (16). The cyclic motion in the frontal plane shown in
Figure 9c is displaced along the y axis due to the change of D.
The evolutions of the ZMP for the first 5 steps are shown in
Figure 10. It can be seen that except for the starting phase, the
ZMP moves from the rear to the front of the sole, following a
straight segment given by the desired values. Figures 11 and 12
present the evolutions of the step timing and the state of the
robot corresponding to the value of the Poincaré return map in
the Poincaré section. Since the step timing is not imposed by
the control law, its value varies after the starting phase and
during the change of step width and eventually converges to
the expected value. The variation in step timing contributes to
resisting the perturbation. It can be seen that the change of
step width D has a larger influence on the state along the y axis
than that along the x axis. The tracking of controlled variables
and the ZMP is imposed, and the free variables, that is, the
horizontal position of the CoM converges to the periodic
motion. Thus, self‐stabilisation is obtained.

6.9 | Simulations of TALOS

In this section, another humanoid robot TALOS is analysed. A
human‐like walking pattern that has vertical CoM motion and
swing of torso and arms with parameters shown in Table 3 is

F I GURE 1 2 State evolution of Romeo. (a) The position of centre of mass (CoM) along the x axis. (b) The position of CoM along the y axis. (c) The velocity
of CoM along the x axis. (d) The velocity of CoM along the y axis.

F I GURE 1 0 The zero moment point (ZMP) evolution of Romeo.
The circles and the crosses represent the starting and ending points of the
ZMP at each step.

F I GURE 1 1 Evolution of step timing for Romeo

LUO ET AL. - 11
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considered. The position of the ZMP is expected to be fixed at

the point pdx ; p
d
y

h i
¼ ½0; 0�, and the step timing for the periodic

motion is expected to be 0.5 s. A change of step length from
S1 = 0.4 m to S2 = 0.5 m is expected at the 10th step, while the
step width remains D = 0.2 m. The switching manifold
parameter C1 for S1 = 0.4 m is chosen to be 5 and C2 for S2 =
0.5 m is C2 ¼

C1S2
S1
¼ 6:25. The fixed value defining the state of

CoM for S1 = 0.4 m is:

X ∗−
c1 ¼

�
x∗−
c1 ; y

∗−
c1 ; _x∗−

c1 ; _y∗−
c1
�⊤

¼ ½0:224 m; 0:100 m; 0:933 m=s; 0:227 m=s�⊤:

and that for S2 = 0.5 m is:

X ∗−
c2 ¼

�
x∗−
c2 ; y

∗−
c2 ; _x∗−

c2 ; _y∗−
c2
�⊤

¼ ½0:278 m; 0:100 m; 1:168 m=s; 0:226 m=s�⊤:

The maximum eigenvalues for these two cases are:

λS¼0:4 ¼ 0:483;

λS¼0:5 ¼ 0:485:

F I GURE 1 4 Projections of the centre of mass trajectory in horizontal, sagittal and frontal planes. (a) Horizontal plane, the blue lines represent the
switching manifold for each step, and the circles represent the positions of the zero moment point. (b) Sagittal plane. (c) Frontal plane, the red curve is almost
invisible because it overlaps with the blue curve.

F I GURE 1 3 Illustration of 5 steps for TALOS

TABLE 3 Upper‐body parameters for TALOS (Unit: rad)

Description Label k0,i kf,i

Torso yaw qdc;10 0.1757 −0.1757

R. shoulder yaw qdc;15 −0.3 0.2

R. elbow pitch qdc;18 −0.3491 −0.7854

L. shoulder yaw qdc;22 −0.2 0.3

L. elbow pitch qdc;25 −0.7854 −0.3491

12 - LUO ET AL.
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The schematic illustration of the first 5 steps, including the
starting phase, is shown in Figure 13. Figure 14 presents the
projection of the CoM motion in horizontal, sagittal and
frontal planes and the position of the ZMP for each step. Since
the ZMP is constrained to be located at the projection of the
stance leg ankle on the ground due to the condition

pdx ; p
d
y

h i
¼ ½0; 0�, the circles in Figure 14 indicate also the

stance foot locations. Figure 14 shows that the CoM converges
to the periodic motions corresponding to different step
lengths. The distance between the positions of two stance feet
is obviously larger after the 10th step due to the change of step
length. In Figure 14c, the periodic motions for S = 0.4 m and
S = 0.5 m overlap because the step width stays the same.

Figures 15 and 16 present the evolution of step timing and the
state of the robot, respectively. The state of the robot con-
verges to the periodic motion during the first 10 steps and is
perturbed due to the change of step length. The increase of
sagittal position and velocity is obvious because the step length
is increased. Meanwhile, only slight changes of the lateral po-
sition and velocity can be observed. Both the step timing and
the state of the robot converge to the new expected periodic
motion after the change of step length; thus, self‐stabilisation is
obtained.

7 | CONCLUSIONS

This paper studied the stability of periodic walking gait when
the positions of the ZMP and n − 2 outputs (i.e. the swing foot
motion, the CoM height and the upper‐body motion) are
controlled while the evolution of the CoM is kept free. Virtual
constraints are constructed carefully to generate the motions of
the controlled variables to obtain stability. A switching mani-
fold that decides when to change the stance foot first proposed
in [21] is used. By doing this, the step timing is implicitly
changed under perturbation. The influence of different walking
patterns/features (i.e., the swing foot motion, the vertical CoM
motion, the switching manifold configuration, etc.) on the
walking stability applied to the essential model is analysed. It
has been shown that the upper‐body motion barely affects the

F I GURE 1 6 State evolution of TALOS. (a) The position of centre of mass (CoM) along the x axis. (b) The position of CoM along the y axis. (c) The
velocity of CoM along the x axis. (d) The velocity of CoM along the y axis.

F I GURE 1 5 Evolution of step timing

LUO ET AL. - 13
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stability of the walking gait, while the landing position of the
swing foot affects stability the most. The vertical CoM motion
and ZMP evolution affect the stability slightly but not greatly.
Then, simulations are carried out for robots Romeo and
TALOS to validate the stability of the proposed walking al-
gorithm on the essential model. The states of the robot
converge to the desired periodic motion automatically after the
change of step length or width; thus, self‐stabilisation can be
proven. Due to the robustness of the proposed walking al-
gorithm, it is promising to apply this method on a real hu-
manoid robot despite modelling errors and other disturbances.
Experiments will be performed on a real robot in the future to
validate this conclusion.
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