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Abstract—Quantitative ultrasound (QUS) techniques for the
estimation of tissue microstructures are based on the frequency
analysis of backscattered signals from the tissue. One of these
QUS methods relies on theoretical scattering models that match a
theoretical backscatter coefficient (BSC) to the measured BSC in
order to estimate QUS parameters (such as the effective scatterer
size and acoustic concentration). The scattering models generally
assume that the tissue under consideration contains identical
scatterers in sparse medium and may provide QUS parameters
that are not representative of the actual tissue microstructure
when the medium is polydisperse in scatterer size and/or dense.
Our goal is to study the effects of scatterer polydispersity
on QUS estimates by considering three scattering models: the
monodisperse sparse model, the polydisperse sparse model and
the monodisperse concentrated structure factor model (SFM). In
that aim, simulations of backscatter coefficients are conducted
with different scatter size distributions for sparse or moderately
dense media. The QUS parameters are estimated at different
center frequencies f0 (from 10 MHz up to 50 MHz) by fitting
the simulated backscatter coefficient in the frequency bandwidth
[0.5f0 − 1.5f0], i.e. assuming a transducer with 100% usable
bandwidth. The choice of scattering models have a high impact
on the QUS parameter estimates as function of frequencies for
values of ka less than 1.2.

Index Terms—Backscatter, scattering, microstructure, scat-
terer size, polydisperse

I. INTRODUCTION

Quantitative ultrasound (QUS) techniques for the estimation
of tissue microstructures are based on the frequency analysis
of backscattered signals from the tissues. These techniques are
used to differentiate between healthy and pathological tissues,
to detect cancers or to monitor the response to a treatment.
One of these QUS methods relies on theoretical scattering
models that match a theoretical backscatter coefficient (BSC)
to the measured BSC to estimate QUS parameters, such as the
effective scatterer radius a and acoustic concentration nz (de-
fined as the product of the scatterer number density n and the
square of the relative impedance difference between the scat-
terers and the surrounding medium γz). The most frequently
used theoretical scattering models are the spherical Gaussian
model [1] that describe tissues as a random inhomogeneous
continuum with acoustic impedance fluctuations, and the fluid-
filled sphere model [2] that consider tissue as an ensemble
of discrete spherical scatterers. Both the spherical Gaussian
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model and the fluid-filled sphere model assume sparse scat-
tering media. The effective scatterer size corresponds to the
correlation length of impedance fluctuations when using the
continuous scattering model, or to the characteristic size of
scatterers when using the discrete scattering model. How-
ever, the estimation of a single-scatterer size may not be
representative of the actual tissue microstructure, since tissue
exhibit in the major cases different population sizes of scat-
terers. Lavarello & Oelze [3] studied the scattering of sparse
media whose scatterer size distribution follow a continuous
probability density function (PDF), and demonstrated that the
characteristic size estimates may not match the actual structure
sizes. Roberjot et al. [4] and Mamou et al. [5] estimated
the characteristic size by using single-scatterer models when
the sparse scattering media contains two-population sizes of
scatterers. It has been shown that scatterer size estimates vary
depending upon the chosen frequency bandwidth [4], and that
the smaller scatterers are resolved only when the number
density or acoustic impedance contrast of the smaller scatterers
is much larger than that of the larger scatterers [5].

Another class of theoretical scattering model is the concen-
trated Structure Factor Model (SFM), that describes tissue as
an ensemble of discrete scatterers and considers interference
effects caused by correlations among scatterer positions, which
are modeled using a structure factor [6]. The monodisperse
concentrated SFM parameterizes the BSC with three indices:
the scatterer size, the volume fraction and the impedance
acoustic contrast. The concentrated SFM was demonstrated to
be the most appropriate model for modeling densely packed
cells in in vitro cell pellet biophantoms [6]. This modeling was
used by Muleki et al. [7] and Muleki & O’Brien [8] to blindly
estimate the QUS parameters from a single measured BSC on
ex vivo tumors. The interpretation of these QUS parameters
suggest that the dominant source of scattering could be the
whole cells in ex vivo HT29 tumors [7], or the nuclei in ex
vivo tumors of other cell lines (4T1, JC, LMTK and MAT)
[8]. However, the polydispersity in scatterer size was shown
to affect the BSC behavior in the case of dense scattering
media [9]–[12]. An increase in cellular size variance has a
significant contribution to the increases in BSC amplitude after
cell death in cell pellet biophantoms exposed to chemotherapy
[9], [10]. The increase in the size distribution of red blood
cell aggregates strongly affect the BSC behavior in flowing
blood [11], [12]. So the QUS parameters estimated by the



monodisperse concentrated model may be biased when con-
sidering polydisperse scattering media. Franceschini et al. [13]
compares monodisperse and polydisperse concentrated SFM
to estimate scatterer size and acoustic concentration from cell
pellet biophantoms with a range of scatterer volume fractions.
They observed similar QUS parameters for both monodisperse
and polydisperse concentrated SFM for the studied case of
6.4±0.9 µm cell radii [13]. (Note that in this work [13], the
whole cell size variance was assumed to be known a priori
when using the polydisperse modeling, in order to reduce the
number of unknown parameters in the inverse problem.) But
wider size distribution needs to be studied to determine the
biases on scatterer size estimates when using the monodisperse
concentrated SFM.

The aim of this work is to study the effects of scatterer
polydispersity on QUS estimates by considering three scatter-
ing models: the monodisperse sparse model (fluid-filled sphere
model), the polydisperse sparse model and the monodisperse
concentrated SFM. To that aim, simulations of BSCs are
conducted with different scatterer size distributions (mean
radius a=5.8 µm and standard deviations from 0.6 to 2.4 µm)
for sparse or moderately dense media (volume fractions of
1% and 20%). The QUS parameters are estimated by fitting
the simulated BSC with one of the three scattering models at
different center frequencies f0 from 10 MHz up to 50 MHz.

II. METHODS

A. Scattering ultrasonic theories

Three discrete scattering theories were considered in this
study to estimate the QUS parameters: the monodisperse
sparse model (model 1), the polydisperse sparse model (model
2) and the monodisperse concentrated model (model 3). All
three models consider a collection of fluid spheres in a sur-
rounding fluid medium. We assumed weak scattering contrast
such that the differential backscattering cross section from a
single fluid-filled sphere σb was calculated as follows:

σb(k, r) =
k4V 2

s γ
2
z

4π2

(
3
sin(2kr) − 2kr cos(2kr)

(2kr)3

)2

, (1)

where r is the sphere radius, Vs the sphere volume and γz
the relative impedance contrast.

By considering an ensemble of identical fluid-filled spheres,
the theoretical BSC using the monodisperse sparse model
(model 1) is given by [2]

BSCmonodsparse (k) = nσb(k, a), (2)

where n is the number density of scatterers. With the model
1, the unknown parameters are the scatterer radius a∗ and the
acoustic concentration n∗z .

By considering a mixture of spheres differing only in
size, the theoretical BSC using the polydisperse sparse model
(model 2) can be expressed as:

BSCpolydsparse(k) = n

∫ ∞
0

p(r)σb(k, r)dr, (3)

where p(r) is the sphere radius probability distribution
function PDF (i.e., the probability that the sphere radius takes
the value r). The number density n is related to the total
sphere concentration φ as n = φ

(4/3)π
∫ ∞
0
p(r)r3dr

. The sphere
radius distribution is assumed to be gamma distributed, so
that the PDF is defined by the mean radius ā and the gamma
width factor ζ (a large value of ζ corresponds to a narrow
size distribution). With the model 2, the unknown parameters
are the scatterer radius ā∗, the gamma width factor ζ∗ and
the acoustic concentration n∗z .

The models 1 and 2 are only valid if the medium has a low
scatterer concentration. At high scatterer concentrations, the
interference effects caused by correlations between the spatial
positions of individual scatterers can be taken into account
by considering the structure factor S(k) [14]. The theoretical
BSC using the monodisperse concentrated model (model 3) is
given by [6], [14]

BSCmonoddense (k) = nσb(k, a)S(k, a, φ). (4)

With the model 3, the three unknown parameters are the radius
a∗, the volume fraction φ∗ and the relative acoustic impedance
difference γ∗z .

B. Simulations

Three-dimensional (3D) simulations were performed on an
ensemble of spheres uniformly randomly distributed within a
simulated volume Vsim using a Monte Carlo algorithm [15,
section II.B.A]. The simulated volume was fixed to be 400
× 400 × 400 µm3. Collections of fluid polydisperse spheres
were studied to mimic cell biophantoms as done previously in
[13]. The sphere size is gamma distributed. The mean radius
was equal to a=5.8 µm and the gamma width parameter ζ
vary between 5 and 80 (corresponding to standard deviations
varying from 0.6 to 2.4 µm). The relative acoustic impedance
difference was chosen to be equal to γz =0.11. Two volume
fractions were studied: a low volume fraction φ=1% and a
moderately dense volume fraction φ=20%.

The simulated BSCsim was computed as follows:

BSCsim(k) = nE

 1

N

∣∣∣∣∣∣
N∑
j=1

Φ(k, aj)e
−i2k·rj

∣∣∣∣∣∣
2
 , (5)

where E denotes the ensemble average, rj is the location of
the jth sphere, aj is the radius of the jth sphere, Φ(k, aj) is the
scattering amplitude of the jth sphere, N is the total number
of spheres that is set by the prescribed volume fraction and
n is the sphere number density equal to N/Vsim. The BSCsim
depends only on the modulus k of the wave vector k because
of the isotropic nature of the studied medium. One simulated
BSCsim was computed by averaging over 100 realizations. For
each tested volume fraction and each tested standard deviation,
this procedure was repeated 10 times to obtain 10 simulated
BSCsim.

The simulated BSC was fitted to a theoretical model to
estimate QUS parameters. QUS parameters were estimated at
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Fig. 1. (a) Scatterer radius PDF with mean radius a=5.8 µm and various
gamma width parameters ζ=5, 20 and 80. (b) Simulated BSCsim (symbols)
and theoretical BSCtheo computed with the polydisperse concentrated SFM
at volume fractions of 1% (dashed lines) and 20% (solid lines).

different center frequencies f0 by fitting the simulated BSCsim
in the frequency bandwidth [fmin − fmax] = [0.5f0 − 1.5f0],
i.e., assuming a transducer with 100% usable bandwidth.

III. RESULTS AND DISCUSSION

Figure 1 shows the simulated BSCsim in the case of fluid
spheres of radius a=5.8 µm with relative acoustic impedance
difference γz=0.11 for various gamma width parameters ζ=5,
20 and 80. Also plotted in Fig. 1 are the theoretical BSCtheo
computed with the polydisperse concentrated SFM given by
Eq. (4) in Ref. [13]. Both simulated BSCsim and theoretical
BSCtheo are in good agreement. Both changes in scatterer size
variance and in volume fractions produce changes in the BSC
slope and in the BSC amplitude.

Figure 2 gives the radius a∗ and the acoustic concentration
n∗z estimated by the three scattering models when considering
an ensemble of fluid spheres sparsely distributed at φ=1% and
ζ=5 and 80. The model 1, that does not take into account the
polydispersity, estimates correctly the radius and the acoustic
concentration for the narrower size distribution with ζ = 80.
However, when the actual scatterer size variance increases
with ζ=5, the model 1 overestimates the scatterer radius
and underestimates the acoustic concentration. The scatterer
size estimates are larger than the reality because the BSC
slope is more influenced by the larger scatterers. Since larger
radii have the effect to rise the BSC amplitude, the model
1 underestimates the acoustic concentration to compensate
for this effect. The model 2 considering the polydispersity
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Fig. 2. Scatterer radii ā∗ and acoustic concentration n∗
z estimated by inversion

procedure. Results are obtained from the simulated BSCsim for an ensemble
of fluid spheres at φ=1%, ā=5.8 µm, ζ=5 and 80.

shows different results. The mean scatterer radii estimated by
the model 2 match very well the actual mean radius for the
highly polydisperse medium ζ=5. In the other cases (ζ= 50,
80), the model 2 is less efficient than the models 1 and 3
(data not shown for ζ= 50). It is interesting to notice that both
monodisperse models 1 and 3 gave similar QUS parameters
for high frequency values (f0>20 MHz ζ=5 and f0>27 MHz
ζ=80). However, at low frequencies, the model 3 converges
more slowly towards actual values when compared to the
model 1: scatterer sizes are largely overestimated and acoustic
concentrations are underestimated. This is due to the difficulty
to estimate simultaneously three parameters a, φ and γz with
the model 3 for diluted media, as discussed previously in [13].

QUS parameters estimated for the moderately dense media
φ=20% are presented in Fig. 3. Overall, the model 3 provides
the best QUS estimates at sufficiently high frequencies (>30
MHz), and the sparse models 1 and 2 underestimate the mean
radius and overestimate the acoustic concentration for the
polydispersities ζ= 20, 50 and 80. This limitation is caused
by the inability of these sparse models to predict the BSC
slope of dense media [13]. For the highly polydisperse medium
ζ=5, the scatterer size estimated by the sparse models 1
and 2 fell within the actual size range for a wide range of
frequencies. Whatever the considered size variance, there are
always some frequencies for which the models 1 and 3 gave
similar QUS estimates: 30-50 MHz for ζ=5 and around 50
MHz for ζ= 20, 50 and 80. These results demonstrated that it
is not possible to identify a diluted or concentrated medium by
comparing the QUS parameters estimated by the sparse and
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Fig. 3. Scatterer radii ā∗ and acoustic concentration n∗
z estimated by inversion procedure. Results are obtained from the simulated BSCsim for an ensemble

of fluid spheres at φ=20%, ā=5.8 µm, ζ=5, 20, 50 and 80. In the top panel, the horizontal dashed lines indicate the lower and upper bounds of scatterer radii
in the actual radius distribution.

concentrated models, contrary to what we initially suggested in
our preliminary study limited to lower frequencies <30 MHz
[13].

IV. CONCLUSION

Three models (monodisperse sparse, polydisperse sparse
and monodisperse concentrated SFM) were assessed to esti-
mate the scatterer size and acoustic concentration for narrow
and wide scatterer size distributions. The results show the
limitations of the monodisperse concentrated SFM to estimate
scatterer size at low frequencies when considering highly
polydisperse scattering media. For the tested scatterer size
distributions, the three models converge towards actual values
at high frequencies corresponding to product ka around 1.2.
Further studies are required to determine the estimate biases
when using these models for greater volume fractions (>20%).
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