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Abstract—This paper investigates the topology optimization of
the rotor of a 3-phase flux switching machine with 12 permanent
magnets located within the stator. The objective is to find the
steel distribution within the rotor, maximizing the average torque
for a given stator, permanent magnets, and electrical currents.
The optimization algorithm relies on a density method based on
gradient descent. The adjoint variable method is used to compute
the sensitivities efficiently. Since the rotor topology depends on
the current feedings, this approach is tested on several electrical
periods. The obtained structures are then analyzed and classified.
ERRATUM: the results below were obtained by mistake with no
current in A-, B-, and C+ (cf the note at the end of the article).

Index Terms—Density Methods, Flux-Switching Machine, Non-
linear Magnetostatics, Topology Optimization

I. INTRODUCTION

Topology optimization is a non-parametric conception tool
that has gained significant interest from engineers. It was first
developed in mechanical engineering by [1] and was intro-
duced in electrical engineering by [2]. Several techniques have
appeared, such as the level-set method [3], or the phase-field
approach [4]; see [5] for an overview. Among these various
methods, density-based approaches are the most popular. The
geometry to be optimized is represented by a discrete density
field as a pixelation on Ne elements, as shown in Fig. 1.

The following optimization problem is solved:

find ρopt = argmin f(ρ)
subject to ρ ∈ [0, 1]Ne ,

(1)

where f is the objective function to minimize, and ρ is the
vector of optimization variables, which represent the density
of each mesh element. A density value of 0 represents air, and
a density value of 1 represents iron in the corresponding mesh.

In order to avoid solving a combinatorial problem that
may be intractable, the density methods introduce intermediate
materials associated with density values strictly between 0 and
1. Their physical properties are continuously interpolated in
order to use a fast gradient descent algorithm. However, these

(a) Original domain Ω. (b) Density-based representation of Ω.

Fig. 1. Principle of density-based representation.

intermediate materials must be removed during optimization
because they do not necessarily have a proper physical inter-
pretation or may represent a microstructure that is complex to
manufacture, see [6].

In this work, we apply a density-based topology opti-
mization methodology to a Flux-Switching Machine (FSM).
Characteristics of FSM are a passive rotor with the field
inductor located in the stator only, which makes them suitable
for high-speed applications. Several types of SFM exist in the
literature, see [7]. The chosen test case is a 3-phase Permanent
Magnet Flux Switching (PMFS) machine with 12 permanent
magnets, as presented in [8] and shown in Fig. 2.
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Fig. 2. Reference PMSF machine adapted from [8].



This paper is structured as follows. First, the physical equa-
tions are recalled. The optimization algorithm is then detailed.
Next, the optimized designs are presented and discussed.
Finally, the conclusion summarizes the essential results and
draws perspectives on this work.

II. PHYSICAL PROBLEM

A. Material interpolation

Two possibilities are reported in the literature to interpolate
the magnetic properties of intermediate materials. One can
interpolate either the magnetic permeability µ as in [2] or
the magnetic reluctivity ν = µ−1 as in [9]. In this work, we
choose to interpolate linearly the magnetic reluctivity ν of a
FeCo alloy (AFK1 from Aperam):

ν̃(ρ, |b|) = ν0 + ρ · (νFeCo(|b|)− ν0). (2)

The corresponding BH curves are plotted in Fig. 3.

(a) Anhysteretic BH curve of
FeCo.

(b) BH curves of intermediate materials ob-
tained by (2) from air and FeCo behaviors.

Fig. 3. Magnetic behavior law used for the computation.

B. Physical equations

From the static Maxwell’s equations, one can write the
magnetostatics equation for a 2D problem:

−∇.(ν̃(ρ, |b|)∇az) = jz + ν0∇.

([
0 1
−1 0

]
br

)
, (3)

with ν̃ the non-constant magnetic reluctivity of any material
(intermediate or not), jz the current density, br the remanent
flux density of permanent magnets and az the z-component of
the magnetic vector potential a, related to the flux density by
the formula b = ∇×a. (3) should be discretized to be solved
numerically using, for instance, the Finite Element Method
(FEM). After discretization, it reads:

K(ρ,a)a = s, (4)

where K is the finite element matrix, a the vector containing
the discretized degrees of freedom az , and s the right-hand
side related to source terms. This nonlinear system is solved
with the Newton-Raphson scheme:

an+1 = −
(
drn
da

)−1

rn + an, (5)

with rn = K(ρ,an)an−s is the residual of (4) at iteration n.
After convergence, the torque can be computed from the flux
density field within the airgap e by Arkkio’s method [10]:

T (b) =
L

µ0(Rs −Rr)

∫∫
e

rbrbθ ds, (6)

where L is the axial length of the machine, Rs and Rr are
the radius of the stator and the rotor, respectively.

III. OPTIMIZATION ALGORITHM

The purpose of the optimization is to solve the problem (1).
The objective function to minimize is the opposite of the
average torque (i.e., the average torque should be maxi-
mized) computed with (6) on 360 angular positions along one
mechanical turn. Density-based approaches use the gradient
descent method. The gradient computation is non-trivial as
the objective function rarely depends on ρ explicitly. Indeed,
it rather depends on the physical state of the system (the
magnetic field, for example), which depends implicitly on
the density vector ρ through a material interpolation, such
as (2), and a physical equation, such as (4). The optimization
flowchart is given in Fig. 4.
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Fig. 4. Flowchart of the optimization algorithm.

A. Sensitivities computation
The Adjoint Variable Method (AVM) is the most efficient

approach to compute first-order derivatives from many vari-
ables. Once the FEM system (3) is solved, the sensitivities are
computed using the adjoint state λ, which is the solution of
the following linear system:(

dr

da

)T

λ =
∂f

∂a
, (7)

then the sensitivities with respect to each design variable ρi
can be calculated with:

df

dρi
= −λT ∂K

∂a
a. (8)

Note that (7) is linear and should be solved only once per
iteration. Consequently, the average single-thread computing
time per optimization iteration of AVM (34 s) is almost neg-
ligible compared to the one of the nonlinear FEM (478 s).



B. Update

In order to accelerate the optimization and promote the real
materials, the descent direction d is normalized as follows:

d = −sign (∇ρf) , (9)

with ∇ρf the sensitivity vector of f to the density vector ρ.
A simplified trust-region algorithm [11] adapts the step size
heuristically according to a quality indicator:

q =
∆f

∇ρfT ·∆ρ
, (10)

where ∆f is the variation of the objective function, and ∆ρ
the variation of the density vector. If q is too low, the iteration
is rejected, and the step size is reduced. If q is big enough, the
iteration is accepted, and the step size can also be increased.
The flowchart Fig. 5 gives more details about this algorithm.

∆ρ, ∆f , ∇ρf

q ∈ [0.005, 0.05[q < 0.005

ρn+1 ← ρn

αn+1 ← αn/2

ρn+1 ← ρn+αndn

αn+1 ← αn

ρn+1 ← ρn+αndn

αn+1 ← 1.2 × αn

ρn+1, αn+1

Model evaluation

q

q ≥ 0.05

Fig. 5. Flowchart of the update algorithm.

IV. RESULTS AND DISCUSSION

The machine given in Fig. 2 was discretized on a mesh with
16 239 nodes and 30 666 first-order triangles. The rotor con-
tains 11 724 triangles, each associated with a design variable.
The algorithm stops after 100 iterations. The convergences
of all optimizations are considered to be reached because the
relative increase of the objective function is then less than
0.1%. The FEM and MVA were implemented in Matlab 2020b
and verified by comparison with the results given by GetDp
[12] and centered finite differences, respectively. The current
density inside a conductor γ reads:

Jγ = J cos
(
Nθm − γπ

3

)
, γ ∈ J1, 6K, (11)

where J = 10A/mm2 is the current density amplitude,
N is the number of electrical periods during one complete
mechanical rotation, θm is the mechanical angle. The initial
situation of the optimization process is given in Fig. 6. The N
values between 1 and 23 corresponding to different electrical
frequencies were tested.

+
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Fig. 6. Initial material distribution (ρ = 0.5 in the optimization zone) with
boundary conditions and rotation direction.

The eight designs with the highest average torques are
given in Fig. 8, and their flux densities are plotted in Fig. 9.
N = 10 returns the highest torque at 1166Nm/m. This is
not a surprise since it corresponds to the configuration of the
reference machine in Fig. 2 that has a 1159Nm/m torque.
We also note that the number of rotor teeth Nr of all the
performing designs found by the algorithm is even. Indeed,
the condition to have a non-zero average torque [8] reads:

θr =
θs

1 + n
2q

, n ∈ Z, (12)

with θr the angle of a rotor cell, θs the angle of a stator cell,
q the number of electrical phases. In the present case, q = 3,
and there are 12 stator cells. As the number of rotor teeth
Nr = 2π/θr reads:

Nr = 12 + 2n = 2n′, n′ = 6 + n, (13)

which proves the parity of suitable Nr. Furthermore, the
final average torques given in Fig. 7 shows clearly that the
algorithm failed to find performing designs for some electrical
frequencies, especially for odd N . An example of such a "bad"
structure for an odd N is given in Fig. 10.
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Fig. 7. Final average torques of the optimized designs.

By definition of an electrical period that corresponds to a
magnetic (and necessarily mechanical) invariance, Nr and N
are related by:

Nr = kN, k ∈ N∗. (14)



(a) N = 10, ⟨T ⟩ = 1166Nm (b) N = 18, ⟨T ⟩ = 920Nm

(c) N = 6, ⟨T ⟩ = 535Nm (d) N = 14, ⟨T ⟩ = 460Nm

(e) N = 22, ⟨T ⟩ = 451Nm (f) N = 8, ⟨T ⟩ = 254Nm

(g) N = 4, ⟨T ⟩ = 188Nm (h) N = 16, ⟨T ⟩ = 161Nm

Fig. 8. Final designs of the 8 highest torque structures in decreasing order.
The color legend for the stator is given in Fig. 2, and the colorscale for
intermediate materials is given in Fig. 6.

(a) N = 10 (b) N = 18

(c) N = 6 (d) N = 14

(e) N = 22 (f) N = 8

(g) N = 4 (h) N = 16

Fig. 9. Flux densities associated with the designs of Fig. 8, corresponding to
θm = 0° with a current density J = 10A/mm2.



According to (14), the parity of N does not follow from
the established parity of Nr. However, the results found by
the algorithm seem to indicate that there is no suitable rotor
for odd N with this type of stator.

(a) Final design. (b) Associated flux density.

Fig. 10. Example of a "bad" design obtained for N = 13.

Note that this methodology returns traditional connected
rotors with k = 1 such as for N ∈ {10, 14, 18}. The algorithm
is also able to find unconventional topologies: some rotors are
made from separate parts, others have k = 2, or both. The
results for even N are classified in Table I according to their
k value and their connectivity (i.e., if the rotor is made of
one part or not). We notice that some designs are uncertain
and may be mixtures between the other categories represented
in the other columns of Table I, such as for N = 22 shown
in Fig. 8e or N = 16 shown in Fig. 8h. High Nr values
associated with high N values may also suffer from the fixed
mesh resolution that can be too coarse. Note also that some
gray material may remain especially for low-torque design,
for instance in Fig. 8h or Fig. 10a, because no penalization
scheme was set on intermediate materials.

TABLE I
CLASSIFICATION OF THE OBTAINED ROTORS FOR EVEN N

k = 1 k = 2 Uncertain
Connected Disconnected Connected Disconnected N = 12
N = 10 N = 2 N = 16
N = 14 N = 6 - N = 4 N = 20
N = 18 N = 8 N = 22

V. CONCLUSION AND PERSPECTIVES

In this work, we presented and detailed a topology optimiza-
tion algorithm to find a rotor that maximizes the average torque
of a 3-phase PMFS machine. Several electrical frequencies
were tested, and the obtained structures were analyzed and
classified. These results demonstrate the method’s adaptability,
which has found diverse topologies from scratch. However,
the algorithm found no meaningful structure for odd N ,
indicating that this electrical feeding choice may be unsuitable
for producing torque, regardless of the rotor.

Further investigation is required to justify the parity of N
and to ensure that the provided results are not local optima,
for instance with a multistart approach. More functionalities
can also be added to demonstrate the usefulness of topology

optimization in the design and analysis of electrical machines,
including sensitivity analysis on the source terms, and the con-
sideration of additional physics such as thermics or mechanics.

ERRATUM: the presented results were obtained uninten-
tionally with no current inside the conductors A-, B-, and
C+. With a proper 3-phase feeding, we find that significantly
fewer N values give suitable rotors. The results obtained with
N ∈ {4, 10, 16} are almost unchanged, but the rotors obtained
with other N values produce almost no torque, and their
designs are similar to Figure 10a. Our conclusion regarding the
adaptability of topology optimization is reinforced since suit-
able solutions are found even under highly unusual conditions.
However, the previously obtained designs for N /∈ {4, 10, 16}
should not be considered for practical applications.
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