Alejandro Ribés
email: alejandro.ribes@edf.fr

Ruben Persicot
email: ruben.persicot@eleves.enpc.fr

Lucas Meyer
email: lucas.meyer@inria.fr

Jean-Pierre Ducreux
email: jean-pierre.ducreux@edf.fr

A hybrid Reduced Basis and Machine-Learning algorithm for building Surrogate Models: a first application to electromagnetism

A surrogate model approximates the outputs of a Partial Differential Equations (PDEs) solver with a low computational cost. In this article, we propose a method to build learning-based surrogates in the context of parameterized PDEs, which are PDEs that depend on a set of parameters but are also temporal and spatial processes. Our contribution is a method hybridizing the Proper Orthogonal Decomposition and several Support Vector Regression machines. We present promising results on a first electromagnetic use case (a primitive single-phase transformer).

Introduction

In the context of numerical simulation, a surrogate model approximates the outputs of a solver with a low computational cost. Solvers of differential equations, for instance, those based on finite element methods, often require long runs. Thus, they are not well-suited for real-time applications, prediction, or the resolution of inverse problems requiring multiple executions. In the last five years, the use of deep learning for constructing surrogate models has gained a lot of attention from industry and academics. These surrogates learn from simulation results and/or experimental data. One important example is the seminal work of Raissi et al. [START_REF] Raissi | Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[END_REF], which introduces physics-informed neural networks (PINNs). In the same context, other techniques have been proposed. When the meshes supporting the numerical simulations are regular the use of traditional deep learning algorithms for image analysis tasks is possible. For instance, U-Net architectures are employed in [START_REF] Thuerey | Deep learning methods for reynolds-averaged navier-stokes simulations of airfoil flows[END_REF][START_REF] Wang | Towards physicsinformed deep learning for turbulent flow prediction[END_REF], or auto-encoders in [START_REF] Kim | Deep fluids: A generative network for parameterized fluid simulations[END_REF]. For non-regular meshes Graph Neural Networks (GNNs) [START_REF] Michael M Bronstein | Geometric deep learning: going beyond euclidean data[END_REF][START_REF] Peter W Battaglia | Relational inductive biases, deep learning, and graph networks[END_REF] have been used. As an example, Deep-Mind recently introduced a GNN-based framework for learning mesh-based simulations [START_REF] Pfaff | Learning meshbased simulation with graph networks[END_REF][START_REF] Sanchez-Gonzalez | Learning to simulate complex physics with graph networks[END_REF]. Numerous methods for building surrogates have been proposed, we just cited some examples to show their variety.

Machine Learning and the Physical Sciences workshop, NeurIPS 2022.

In this article, we propose a method to build surrogates in the context of parametrized Partial Differential Equations (PDEs), which are PDEs that depend on a set of parameters (or indexed by a parameter vector that we call λ). The Reduced Order Model (ROM) community has traditionally tackled this problem. In fact, a ROM can be considered a type of surrogate model. Quarteroni et al. [START_REF] Quarteroni | Reduced Basis Methods for Partial Differential Equations: an introduction[END_REF] give a complete introduction to ROMs in which it is evident that constructing surrogates for parameterized PDEs is, in the general case, a very complex task. Technical literature on the use of machine learning techniques for parameterized PDEs is, to our knowledge, much less numerous than for building surrogates of single spatio-temporal simulations.

Our contribution is a method hybridizing the Proper Orthogonal Decomposition (POD, see chapter 11 of [START_REF] Brunton | Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control[END_REF]) and several Support Vector Regression machines (SVR, see [START_REF] Drucker | Support vector regression machines[END_REF]). This method is non-invasive because we do not perform Galerkin projection, the Reduced Basis obtained by the POD is only used to facilitate the training of our Machine-Learning system. Some approaches to building data-driven surrogates mimic the solver iterative process: they infer the next state of the physical system given its previous one. We take a less popular approach by directly inferring the state from a time input. Our system accepts as inputs the time and the vector of parameters to output the current spatio-temporal and parametric state of the system. We present promising results on a first electromagnetic use case (a primitive single-phase transformer).

Proposed Method

This section presents the technical details of the conceived algorithm that combines model reduction via the POD and support vector regression (SVR). It consists of two main steps: first, a reduced basis is found using the POD, and second several SVRs are trained. We remark that prior to these two steps an ensemble of N h high-fidelity simulations should be run. It is important to note that we allow using a different number of simulations in our two steps: N P OD simulations for finding the reduced basis and N SV R for training the SVRs. This can have a great impact on computing time when a large number of simulations are treated.

Finding a Reduced Basis

We obtain a Reduced Basis using the Proper Orthogonal Decomposition (POD), see chapter 11 of [START_REF] Brunton | Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control[END_REF] or chapter 6 of [START_REF] Quarteroni | Reduced Basis Methods for Partial Differential Equations: an introduction[END_REF]. The fundamental step of the POD is the application of a Singular Value Decomposition [START_REF] Gilbert | Introduction to linear algebra[END_REF] to a so-called snapshot matrix. Thus we define here how we construct this matrix for parameterized problems.

Snapshot matrix for a parametric problem: When dealing with parametric and spatio-temporal problems, we have an ensemble of N spatio-temporal simulations. In this case, we can build the snapshot matrix by defining fields indexed by (λ, t), which represents the field of interest provided by the solver in a linearized vector. We thus build a matrix of snapshots X of size (n, m) by concatenating each of these vectors as presented below. Note that n is equal to the number of mesh nodes used to perform the simulations and that m = N h T (number of high fidelity simulations N h by number of time steps T).

X = X λ1,t1 . . . X λ1,t T . . . X λ N ,t1 . . . X λ N ,t T (1)
Each column X λi,tj of X is associated with a vector x i,j = (λ i , t j). We can form a matrix x of parameters from these vectors. In this article, we use N P OD < N h thus we will denote X by X P OD to indicate the snapshot matrix used for finding the reduced basis.

SVD: A description of the singular value decomposition (SVD) can be found in any introductory linear algebra book, such as [START_REF] Gilbert | Introduction to linear algebra[END_REF].

Let X ∈ R n×m , U ∈ R n×n , V ∈ R n×m , Σ ∈ R m×m the SVD of X is the decomposition X = U • Σ • V T
, where U and V are unitary matrices and Σ is a diagonal matrix containing the singular values of X, which are ordered by decreasing value.

Applying a Singular Value Decomposition to the snapshot matrix allows for finding an orthogonal basis. However, this basis is of the same size as the original non-transformed problem. The key to finding a Reduced Basis (RB) comes from the fact that not all the principal components need to be kept. Keeping only the first r principal components, produced by using only the first r eigenvectors, gives the truncated transformation. The value r is typically found by looking at the accumulated energy (also called accumulated variance), which is defined by:

E = σ 1 + σ 2 + ... + σ r σ 1 + σ 2 + ... + σ m (2)
where the σ i (i = 1...m) values are the diagonal elements of the matrix Σ. Once the value r is chosen we obtain the following approximation of the matrix X:

X r = U r • Σ r • V T r . (3)

Training the SVRs

The SVR being a supervised learning algorithm, it is necessary to constitute (input, output) pairs for its training. In figure 1, we depict what a single SVR takes in and out. The SVR accepts (t, λ) as inputs, where t is a time step and λ a vector of parameters. The SVR outputs a prediction ĉi , corresponding to the i-th coefficient on the reduced space, i = 1...r.

SV R ĉi t λ

Figure 1: A SVR takes as input a time step t and one or several parameters λ. It outputs a prediction ĉi , corresponding to the i-th coefficient on the reduced space, i = 1...r.

Preparing for the training phase. Our idea is to project a snapshot matrix X SV R into the reduced space C, both these matrices contain N SV R < N h simulations. X SV R is a sub-sampled version of the X presented in equation 2.2 and thus present the same encoding. In order to project this snapshot matrix in the reduced space we use U r from equation 3. Strictly speaking we should call this projection matrix U r P OD because X r P OD = U r P OD •Σ r P OD •V T r P OD . The operation C = U r P OD •X SV D projects the snapshot matrix on the reduced space. However, we need not only a matrix for training but also a matrix for validation. The matrix X SV R is therefore subdivided into X train and X val , thus X = [X train X val]. We can then construct the corresponding matrices of coefficients C train and C val by matrix product:

C = [C train = U r P OD • X train C val = U r P OD • X val].
At this point, we have defined how to form the training and validation sets (matrices in this case) for the outputs of the SVR. In figure 1, we observe that the SVR accepts (t, λ) as inputs. These inputs can be coded in the following matrix:

x =    t 1 t 2 . . . t P . . . t 1 t 2 . . . t P λ 1 λ 1 . . . λ 1 . . . λ N λ N . . . λ N    (4)
where each column X λi,tj of X (in equation) is associated with a vector x i,j = (λ i , t j). Thus the matrix x encodes the time and parameters in exactly the same way as X. Similarly, x is therefore subdivided into x train and x val , thus x = [x train

x val]. Now it is possible to constitute the training and validation datasets which are respectively (x train , C train) and (x val , C val).

Training of r SVRs

The second stage of the training phase is to train r SVRs, one for each line of C train . For example, the first SVR is trained to predict the first line of C train from x train . In other words, we can say that the i-th SVR is led to predict the value of the parametro-temporal coefficients of the i-th mode in the reduced space U r pod , from the parameter values contained in x train . We note that it is in general necessary to center and reduce the training and validation data sets before training the SVRs. The boundary condition B • n = 0 corresponding to a magnetic wall is imposed on all the boundaries of the domain. All the simulations were carried out using Code_Carmel (code-carmel.univ-lille.fr).

A magnetic vector potential type formulation A was used, and the numerical problems were solved by conjugate gradient and using a Jacobi pre-conditioner. The mesh of the use case shown in figure 3 is irregular and composed of extruded triangles. It has 10,840 cells. The amplitude A 1 of the current I 1 is varied between 1A and 20A. The amplitude A 2 of the current I 2 is fixed at 0A. Current I 1 is imposed and is sinusoidal with frequency f = 50Hz (I 1 (t) = A 1 • sin (2πf t), I 2 (t) = 0). Each simulation is composed of 41 time steps. Among all the information provided by Code_Carmel once each simulation has been completed, we are only interested here in the magnetic field B (this is one of the most interesting quantities) and more particularly in B x , its component along the x-axis, for the sake of simplicity.

Results

We apply the POD to a snapshot matrix built from ten simulations (N P OD = 10), which are run with different values of A 1 ∈ [1, 20]A. We observe a clear decrease in the singular values associated to the POD decomposition, by choosing the first three we keep more than 99.9% of the variance. Thus, we train three SVRs taking the same two inputs (the electric current λ = I 1 and the time step t), and each SVR outputs one of the singular values. One hundred simulations are used to train the SVRs (N SV R = 100) using the method described in section 2. For this, A 1 is drawn from a uniform distribution in the interval [START_REF] Peter W Battaglia | Relational inductive biases, deep learning, and graph networks[END_REF]20]A. The choice of the interval [START_REF] Peter W Battaglia | Relational inductive biases, deep learning, and graph networks[END_REF]20]A is justified by the current-voltage characteristic of the constituent material of the cylinder. The operating range of the material is between 0A and approximately 7A, beyond which there is saturation. Thus, this interval contains material non-linearities. We run the algorithm in a single GPU node of CRONOS (a supercomputer included in the list www.top500.org) and the training took less than 2 seconds. However, we have not yet performed testing on large simulations. Figure 4 shows that the algorithm succeeds in learning the temporal evolution of the coefficients of the first three modes in the reduced base. We observe that the fitting of the evolution of the coefficients is excellent. Furthermore, the mean root square error on the validation set is 8.95 • 10 -5 , which is a remarkably small error for this use case. However, these results are preliminary and, even promising, more extensive testing and probably an evolution of the presented algorithm will be necessary.

Conclusion

We have conceived a method that combines model reduction via the Proper Orthogonal Decomposition (POD) and Support Vector Regression (SVR). The aim is the construction of a learning-based surrogate model for parameterized PDEs, which are also temporal and spatial processes. This method is non-invasive and uses a direct-time estimation strategy. We have performed tests on a first parametric electromagnetic use case, which presents dependence on a single parameter (an electric current) and contains material non-linearities. Obtained results are promising. However, we have presented ongoing research and these results are still preliminary.

Figure 2 :Figure 3 :

 23 Figure 2: Geometry of the use case

Figure 4 :

 4 Figure 4: Temporal evolution of the coefficients of the first three modes (A 1 = 11.36A, r=3, s=0.5)

Acknowledgments

This work was partially funded by REGALE (https://regale-project.eu/), part of the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 956560.