
HAL Id: hal-03850550
https://hal.science/hal-03850550

Submitted on 13 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Classical n-body scattering with long-range potentials
Jacques Fejoz, Andreas Knauf, Richard Montgomery

To cite this version:
Jacques Fejoz, Andreas Knauf, Richard Montgomery. Classical n-body scattering with long-range
potentials. Nonlinearity, 2021, 34 (11), �10.1088/1361-6544/ac288d�. �hal-03850550�

https://hal.science/hal-03850550
https://hal.archives-ouvertes.fr


Classical n-body scattering
with long-range potentials

Jacques Fejoz* Andreas Knauf� Richard Montgomery�

August 29, 2021

Abstract

We consider the scattering of n classical particles interacting via pair
potentials, under the assumption that each pair potential is “long-range”,
i.e. being of order O(r−α) as r tends to infinity, for some α > 0. We define
and focus on the “free region”, the set of states leading to well-defined
and well-separated final states at infinity. As a first step, we prove the
existence of an explicit, global surface of section for the free region. This
surface of section is key to proving the smoothness of the map sending a
point to its final state and to establishing a forward conjugacy between
the n-body dynamics and free dynamics.

1 Main results and set-up

1.1 Main results

Consider n classical particles moving in d-dimensional Euclidean space under the
influence of a potential which is the sum of pair potentials. If the pair potentials
die off appropriately at infinity then we expect that, within any widely separated
fast-moving configuration of particles, the individual particles will move almost
along straight lines. In this case it makes sense to talk about “scattering”. See
for example [DG, Sim, He, Hu1], and [Hu2]. We will prove new facts regarding
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the relation between initial conditions and scattering data at infinity. The most
surprising of these is explicit criteria (1.9) which guarantee the escape to asymp-
totic freedom. See Theorem 1.10. Other facts, summarized by Theorems 1.12,
1.14 extend and refine results previously only known for short range potentials
to the case of long-range potentials (see Definition 1.1).

1.2 Setup and notation for n-body dynamics and potential
decay

A configuration q specifies the locations of all n masses, so that q = (q1, . . . , qn) ∈
Rdn with qa ∈ Rd. Thus our configuration space is

M ∶= Rdn
q , or M̂ ∶= Rdn

q /∆, (1.1)

depending on whether or not our pair potentials Vi,j = Vi,j(qi − qj) have singu-
larities at collision qi = qj; here

∆ ∶= {q = (q1, . . . , qn) ∈ Rdn
q ∣ qi = qj for some i ≠ j} (1.2)

is the collision set, also known as the “fat diagonal”. ∆ will also play an important
role in the velocity space.

Configurations evolve in time according to Newton’s equations

miq̈i = −∇qiV, i = 1, . . . , n, mi > 0 the masses, (1.3)

which we will formulate in the usual way in phase space, using momenta pi =miq̇i,
so that p = (p1, . . . , pn) ∈ Rdn

p . Thus our phase space P is

P ∶= T ∗M = Rdn
p ×Rdn

q , or P̂ ∶= T ∗M̂ = Rdn
p × (Rdn

q /∆) (1.4)

endowed with its canonical symplectic form. Identify Rdn with Rn ⊗Rd, let

M ∶= diag(m1, . . . ,mn) ⊗ 1ld

be the mass matrix, seen as an (invertible symmetric) operator on Rdn
p . Newton’s

equations can be rewritten as Hamilton’s equations

ṗ = −∇qV, q̇ =M−1p,

with Hamiltonian H ∶ P → R (or P̂ → R),

H(p, q) ∶=K(p) + V (q), (1.5)
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where the potential energy is assumed to be of the form

V (q) ∶= ∑
1≤i<j≤n

Vi,j(qi − qj),

where the pair potentials Vi,j satisfy Vj,i = Vi,j and Vi,i = 0 for all i, j, and where
K is the usual kinetic energy

K(p) ∶=
n

∑
i=1

∥pi∥2

2mi

= 1
2 ⟨p, p⟩

M−1 , ⟨p, p′⟩
M−1 ∶= ⟨p,M−1p′⟩ .

From now on we will use multi-index notation for partial derivatives.

1.1 Definition A pair potential Vi,j ∈ C2(Rd/{0},R) is

● long range if for some α > 0

∂γVi,j(q) = O(∥q∥−α−∣γ∣) (∥q∥ → ∞, γ ∈ Nd
0, ∣γ∣ ≤ 2) (1.6)

(if needed, Vi,j will then also be called an α-potential),

● short range if (1.6) is valid for some α > 1,

● finite range if the Vi,j have bounded support.

The potential V (q) = ∑Vi,j(qi − qj) is called long range, etc., if all its pair
potentials Vi,j have the corresponding property.

1.2 Caveats
According to this established terminology, the following implications hold:

finite range Ô⇒ short range Ô⇒ long range.

We apologize for the counterintuitive nature of the terminology. It is standard
in scattering literature. Also note that a finite range potential V typically does
not have bounded support within Rdn. Rather, its support is contained in a
neighborhood of the fat diagonal ∆. ◇

1.3 Example (Celestial mechanics and electrostatics)

In celestial mechanics and electrostatics we have Vi,j(Q) = Ii,j
∥Q∥

with respectively

Ii,j = −mimj and Ii,j = ZiZj for the charges Zi ∈ R∖{0}. These potentials are
long range, lying on the boundary of the space of short range potentials. ◇
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1.4 Remark (Strong forces near collisions)
By definition, so-called strong force potentials satisfy

∂γVi,j(q) = O(∥q∥−α−∣γ∣) (∥q∥ → 0, γ ∈ Nd
0, ∣γ∣ ≤ 2), (1.7)

for some α ≥ 2 (cf. (1.6) as q →∞). Variationally speaking, this condition is most
important in the opposite ”ultraviolet” regime of short distances, ∥qi − qj∥ ≪ 1,
rather than our current “infrared regime” of long distances. Imposing the strong
force condition on attractive forces guarantees that any collision solution has
infinite action and so is a simple way to exclude collision solutions as candidate
minimizers when using the direct method of the calculus of variations to achieve
various types of solutions (e.g. periodic ones) [Poi]. ◇

1.3 Asymptotic freedom

Our first goal is to define the free region of phase space, leading to motions along
which mutual distance eventually increase linearly with time, as in the free flow,
where bodies do not interact.

This definition relies on the prior concept of asymptotic velocity.

1.5 Definition The (forward, resp. backward) asymptotic shape or velocity of
a state x ∈ P is the limit in Rdn, if it exists, is

v±(x) ∶= lim
t→±∞

q(t)
t
,

where x(t) = (q(t), p(t)) is the integral curve through x at t = 0.

We are interested in motions for which v+ ∉ ∆.

1.6 Definition
The state x is forward free if v+(x) exists and v+(x) ∈ Rdn /∆. We call

F + ∶= {x ∈ P ∣ v+(x) ∈ Rdn /∆}
the subset of P of forward free states. Correspondingly, the subset F − is the set
of states x which are backward free, i.e. v−(x) ∈ Rdn /∆.

We will sometimes refer to trajectories passing through F + as escape orbits.

1.7 Remark (Clusters)
Those motions x(t) for which v+(x) exists but for which v+(x) ∈ ∆ break up
into k < n clusters, each cluster composed of those particles whose indices i
share a common asymptotic velocity: v+i = v+j . The dynamics within a cluster of
size c can be as complicated as that of the general c-body problem. The clusters
interact with each other like a free k-body system. (See Marchal-Saari [MS],
however not in the sense of asymptotic completeness, see [DG, section 5.10].)◇
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1.8 Example (Celestial mechanics)
Chazy [Cha] showed that collision-free solutions for n = 3 gravitating bodies
fall into one of seven possibilities, regarding their final behavior in the future.

� Bounded, parabolic, parabolic-elliptic and oscillating motions have zero
asymptotic velocity.

� Hyperbolic-elliptic and hyperbolic-parabolic motions have asymptotic ve-
locity belonging to ∆/{0}.

� Hyperbolic motions are free. So their asymptotic velocity is in R3d /∆.

So, here hyperbolicity equates to freedom. For more bodies, new types of final
motions occur, notably the “non-collision singularities”, see Gerver [Ge] and
Xia [Xia]. But it remains true that every collision-free solution has asymptotic
velocities v± in both time directions provided we allow velocities to take values in
the one point compactification of Rdn [MS, Theorem 1]. (For example, for initial

conditions x leading to non-collision singularities we have limt→T±(x)
∥q(t)∥
t = ∞,

where T +(x) ∈ (0,∞] and T −(x) ∈ [−∞,0) are the escape times beyond which
the solution fails to exist.) ◇

The precise structure of F + is not obvious. Yet, by flowing F + along integral
curves, we will reach an open subset of P , which we can characterize explicitly.
Let

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

vi ∶=m−1
i pi

qi,j ∶= ∥qi − qj∥ , qmin ∶= mini<j qi,j , qmax ∶= maxi<j qi,j ,

vi,j ∶= ∥vi − vj∥ , vmin ∶= mini<j vi,j , vmax ∶= maxi<j vi,j

and let α, δ and C be three positive parameters.

1.9 Definition The finally free region (with parameters α, δ and C) is

F +
loc ∶= {x = (p, q) ∈ P ∣ v2

min > C
qmax

qα+1
min

, (1.8)

⟨vi − vj, qi − qj⟩ > (1 − δ)vi,jqi,j ,
(1 + 2δ) qk,lvk,l

> qi,j
vi,j
, (i ≠ j, k ≠ l)}.

Notations F + and F +
loc are meant to mimick the classical notations W + and W +

loc

for the unstable manifold and the local unstable manifold of a hyperbolic set.
Notice that F +

loc, like F +, is invariant w.r.t. the symplectic lift of the diagonal
action of the Euclidean group on configuration space Rdn.

The following theorem justifies that our definition of F + matches our initial
goal, and also justifies the notation F +

loc.
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1.10 Theorem For any long range potential V , there exist appropriate param-
eters α, δ and C such that F +

loc is forward invariant and such that a state x ∈ P
is in F + if and only if its forward orbit eventually enters F +

loc.

The theorem follows from Theorem 2.2 below. The proof will actually show
that the boundary ∂F +

loc is a (C0) surface of section of the flow restricted to F +.
Notice that F + = ⋃t≥0 Φ−t (F +

loc), where F +
loc is open and Φ−t is smooth, whence

the following.

1.11 Corollary F + is a non-empty open subset of P .

The asymptotic velocity map 1.5 enjoys regularity on F +.

1.12 Theorem (Asymptotic velocity map on F +)
Assume that V is a long-range potential whose pair potentials are Ck, k ≥ 2.
The map v+ ∶ F + → Rdn /∆ is a Ck−1 complete set of commuting first integrals.
Moreover, for fixed v∗ ∈ Rdn /∆ the space of all forward orbits x(t) for which
v+(x(t)) = v∗ has the structure of an affine space modelled on the (nd − 1)-
dimensional vector space v⊥∗ .

The regularity of the v+ follows from item 1 of Theorem 3.3. That compo-
nents of v+ Poisson commute is clear. That v+ is a surjective submersion, and
the assertion on the structure of its fibers follows from item 4 of Theorem 5.3
below.

1.13 Earlier results (Smoothness of scattering data)
Smoothness of the scattering data and in particular of the asymptotic velocity
map x↦ v+(x) has been achieved under various assumptions:

● In [Gu], Gutkin proved continuity of scattering data for a class of n-particle
systems on the line with repulsive interactions.

● Later, Fusco and Oliva proved in [FO] a result that implies smoothness of
asymptotic momentum and even integrability for repulsive Coulombic poten-
tials.

● More recently, Duignan et al. [DMMY] prove that the map x → v+(x) is
analytic on F +

loc for the Newtonian potential. ◇

1.4 Comparison with free flows

In order to study the asymptotic behavior of the dynamics on F +, one strategy
would be to compactify the phase space, as in [DMMY] for the N -body problem.
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Such a compactification is hard to define in full generality. Another strategy,
chosen here, is to compare the dynamics to a model, integrable, free dynamics.

Write
Φ ∶ Rt × P ⇢ P

for the flow defined by our n-body system. We have used the broken arrow
notation for the map Φ to indicate that the domain of the map need not be all
of Rt × P , thus allowing for the incomplete flows like the flows that occur for
potentials such as Newton’s or Coulomb’s which have singularities. The curve
t↦ Φt(x), where defined, is a solution to our Hamilton’s equations having initial
condition x ∈ P .

The free flow Φ(0), on the other hand, is the flow whose projected curves are
the lines t↦ at + c :

Φ(0) ∶ Rt × P → P , Φ
(0)
t (p, q) = (p, q + tM−1p) (1.9)

and is generated by the free Hamiltonian H0 =K. Let

F0 = F +
0 ∶= {(p, q) ∈ P ∣ v =M−1p ∉ ∆}. (1.10)

1.14 Theorem
Let V be a short-range (α, k)-potential with α > 1 and k ≥ 2 (see definition 2.1).
Then the dynamics Φ on F + is conjugate to the free dynamics Φ(0): there exists
a Ck−1 symplectomorphism Ω ∶ F0 → F + such that

Ω ○Φ
(0)
t = Φt ○Ω (∀t ≥ 0).

This is the qualitative contents of Theorem 4.2 below.

An analogous theorem to 1.12 holds for long-range potentials. Instead of
comparing the given flow with the free flow, we must compare it with an inte-
grable, time dependent “Dollard Hamiltonian” HD(p, t) =K(p)+V ((

√
1 + t2)p)

(which does not depend on q!). See Theorem 5.3 for precise statements.

1.15 Earlier results
In 1927 Chazy ([Cha, Chapter 5]) used the term “hyperbolic” in the classifi-
cation the long-time behaviour of solutions in the long range case of celestial
mechanics. He established an analytic asymptotic expansion near infinity for his
hyperbolic solutions with initial terms

q(t) = at + b log(t) + c +O( log(t)/t); b = +∇V (a) as t→∞ (1.11)

Later, Saari [Sa, section 8], and Marchal and Saari [MS, section 10] ex-
tended and clarified Chazy’s results, focussing on how cluster energies and angu-
lar momenta approach their limits. Here “cluster” refers to the situation where
v+ ∈ ∆. The “clusters” are the subsets of mass indices i, for which v+i = v+j .
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The log(t) term in Chazy’s expansion equation (1.11) is an essential con-
sequence of the 1/r-nature of the Newtonian (or Coulomb) potential. On the
other hand, hyperbolic solutions for short range potentials satisfy

q(t) = at + c + o(1), as t→ +∞. (1.12)

Simon [Sim] proved the validity of this expansion for the two-body problem
using the Møller transform (as used in section 4), or, as he called it, the wave
transformation.

Recently Maderna and Venturelli [MV] investigated forward hyper-
bolic motions for n-body problem using variational and weak KAM methods.
And Duignan et al. set up [DMMY] an approach to hyperbolic motions and
scattering for the n-body problem which relies on a McGehee-style compactifi-
cation of phase space which adds fixed points at infinity whose stable manifold
correspond to forward hyperbolic solutions. ◇

1.5 Summary: Main notations

v±(x) asymptotic velocity of state x (definition 1.5)
P phase space (equation (1.4))

P̂ phase space when collision singularities present (equation (1.4) )
F ± forward and backward free regions (definition 1.6)

F̂ ± as above, but when collision singularities present (definition (3.10))
F +

loc forward finally free region (definition 1.9)
F0 free region of the free flow (equation (1.10))

Φ
(0)
t free flow (equation (1.9))

Φt n-body flow (subsection 1.4)

Φ̂t n-body flow when collisions present

2 Do we know when we are free?

For simplicity, we first consider long-range potentials V which are non-singular at
the origin i.e. C2 on Rdn. Many properties which hold for these potentials also
hold for singular long range potentials (e.g. the gravitational n-body potential).
This will be proved in section 5.

We equip the real vector space of long range α-potentials V ∈ C2(Rdn,R)
(as introduced in definition 1.1, with α > 0) with the seminorm

∥V ∥(α) ∶= ∥M−1∥ maxi<j∈N sup
q∈Rd/{0}

∥q∥α+1∥∇Vi,j(q)∥. (2.1)
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Typically, pair potentials are C2, smoother, often even analytic. In order to
describe a section of the flow in restriction to F +, we will need a C2 seminorm
estimate of the potential and later, scattering estimates will be improved using
Ck-seminorms, with k ∈ N, k ≥ 2. We now introduce such seminorms.

2.1 Definition
An (α, k)–potential V is a potential whose pair potentials Vi,j ∈ Ck(Rd,R) fulfill

∂γVi,j(q) = O(∥q∥−α−∣γ∣) (γ ∈ Nd
0, ∣γ∣ ≤ k). (2.2)

On the space of (α, k)-potentials we define

∥V ∥(α,k) ∶= ∥M−1∥ ∑
i<j∈N

∑
γ∈Nd0,∣γ∣=k

sup
q∈Rd/{0}

∥q∥α+k∣∂γVi,j(q)∣ (2.3)

(so that ∥V ∥(α) = ∥V ∥(α,1)).

The inessential factor ∥M−1∥ = m−1
min for mmin ∶= min(m1, . . . ,mn) simplifies

formulae.
Recall the definition of the free region

F + = {x ∈ P ∣ v+(x) ∈ Rdn /∆}. (2.4)

It depends on the details of the (generally non-integrable) flow, and hence im-
plicitly on the precise form of the potential V . So general properties of the free
region are hard to grasp. Surprisingly, there is an explicit surface of section of
the flow restricted to F +. It bounds a positive-invariant subset F +

loc ⊂ F + having
the property that every orbit in F + must eventually enter F +

loc.
We still assume that V is a non-singular α-potential. Let δ and C with

0 < δ ≤ δ0 ∶= min(α/(4 + α),1/5), C ∶= 16dn ∥V ∥(α,2)/δ.

Define F +
loc by (1.8), with our chosen values of α, δ and C. The three inequalities

assert

– the dominance of the interparticle kinetic energy over potential energy

– the near-parallelism of interparticle distances and velocities

– that interparticle distances are nearly proportional to interparticle velocities.

This tells us what the motion of free particles eventually looks like. For example,
landing in F +

loc yields the simple propagation estimates (2.5).

2.2 Theorem (Final free region)
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1. F +
loc is forward invariant : Φt(F +

loc) ⊆ F +
loc for t ≥ 0.

2. F +
loc is a subset of F +.

3. For any x0 ∈ F + there is a time t such that Φ(t, x0) ∈ F +
loc.

4. For x0 ∈ F +
loc the distance between the particles i < j ∈ N increases approxi-

mately linearly:

1
2vi,j(0) t ≤ qi,j(t, x0) − qi,j(0, x0) ≤ 3

2vi,j(0) t (t ∈ [0,∞)). (2.5)

As already mentioned, the boundary of F +
loc is thus a C0 surface of section

of the flow restricted to the free region.

2.3 Example (Two bodies) We already remarked that F +
loc is invariant under

Euclidean transformations. So in particular F +
loc = T ∗Rd × F̃ +

loc, the Cartesian
product referring to the separation of center of mass and internal motion.

In the case n = 2, in the coordinates q1, x = q2 − q1, v1 and w = v2 − v1 the
equations of F +

loc reduce to

⎧⎪⎪⎨⎪⎪⎩

w2 > C
∥x∥α

⟨w,x⟩ > (1 − δ) ∥w∥ ∥x∥.

So, we see that F̃ +
loc (coordinates (x,w)) is fibered over Rd∖{0} (coordinate x),

with fiber diffeomorphic to the cylinder [1,∞)× Sd−1 (coordinate w); see figure
2.1. ◇

2.4 Remark (Topology of the final free region)
Although ∆ is contractible, already the set Rdn /∆ to which partial F +

loc projects,
is topologically rich:

1. For d = 1, there is a homeomorphism Rn/∆ ≅ Rn × Sym(n).

2. For d = 2, the cohomology ring of R2n /∆ is the one of the product over k of
bouquets of 1 ≤ k ≤ n − 1 circles, see Arnold [Ar]. ◇

In order to prove Theorem 2.2, we will use the following lemma, whose proof is
routine, and where we denote by ⟨ ⋅ ⟩ a smoothened version of the absolute value:

⟨q⟩ =
√
q2 + 1.
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Figure 2.1: Fiber over q1 − q2 of F̃ +
loc in the n = 2 case

2.5 Lemma

1. For α > 0 and q ≥ 0,

1
α ⟨q⟩−α ≤ ∫

∞

q
⟨q̃⟩−α−1

dq̃ ≤ ( 1
α + 1) ⟨q⟩−α . (2.6)

2. If V is an α-potential (see (1.6)),

∥V ∥(α) ≤ ∥V ∥(α,1)

and, if V is an (α, k + 1)–potential (see (2.2)) with k ≥ 1,

∥V ∥(α,k) ≤ d ∥V ∥(α,k+1).

Proof of Theorem 2.2:
We will repeatedly use the symbol Xi,j for the relative accelerations

Xi,j ∶ Rdn → Rd , Xi,j(q) ∶= ∑
k∈N∖{i}

∇Vi,k(qi − qk)
mi

− ∑
k∈N∖{j}

∇Vj,k(qj − qk)
mj

11



between the i-th and j-th particle, and the estimate

∥Xi,j(q)∥ ≤ 2(n − 1)∥V ∥(α)
qα+1

min

(i < j ∈ N). (2.7)

Throughout the proof we also use that, by Lemma 2.5.2,

C ≥ 8n∥V ∥(α)/δ. (2.8)

1. F +
loc is open, since it is defined by strict inequalities among continuous func-

tions on phase space. To prove that F +
loc is forward invariant, it is sufficient

to show that the Hamiltonian vector field points inwards along its boundary
∂F +

loc. Thus we will show that the difference of the sides of each inequality
has positive time derivative at instants at which that inequality becomes an
equality.

Note that on F +
loc the phase space functions qi,j and vi,j have positive values

and are thus smooth. For qmin, qmax, vmin and vmax, which are only Lipschitz
continuous, we consider the distributional derivative.

(a) On F +
loc the time derivative relating to the first inequality in (1.8) is

positive, since
d

dt
v2

min ≥ −2vmin maxi<j∈N∥v̇i − v̇j∥,

see e.g. Lieb and Loss [LL, Cor. 6.18] for the weak gradient of the
minimum of functions. Thus

d

dt
(v2

min−C
qmax

qα+1
min

) ≥

≥ C(α + 1)qmax

qα+2
min

(1 − δ)vmin − 2vmin maxi<j∈N∥Xi,j(q)∥ −C
vmax

qα+1
min

≥ C((α + 1)(1 − δ)vmin

qmin

− δ/4 vmin

qmax

− vmax

qmax

)qmax

qα+1
min

≥ C((α + 1)(1 − δ) − δ/4 − (1 + 2δ))vmin qmax

qα+2
min

= C(α(1 − δ) − 13

4
δ)vmin qmax

qα+2
min

> 0.

The factor 1 − δ in the first inequality follows from the second line of
(1.8). The second inequality follows from (2.7) and (2.8). The factor
1 + 2δ in the second to last line follows from the third line of (1.8).
In the final inequality we used that δ ∈ (0,min(α/(4 + α),1/5)]:

● For α ∈ (0,1] we obtain α(1 − δ) − 13
4 δ ≥ 3α

4(4+α) > 0.
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● For α ∈ (1,∞] we get α(1 − δ) − 13
4 δ ≥ 4

5α − 13
20 ≥ 3

20 .

(b) The time derivative of the left hand side of the second inequality

⟨vi − vj, qi − qj⟩ − (1 − δ)vi,jqi,j > 0

in (1.8) is positive, too. This is trivial if ∥V ∥(α) = 0, that is, V = 0.
Otherwise

d

dt
(⟨vi − vj, qi − qj⟩ − (1 − δ)vi,jqi,j) ≥

≥ v2
i,j − ⟨Xi,j(q), qi − qj⟩ − (1 − δ)(v2

i,j + ∥Xi,j(q)∥qi,j)

≥ δC qmax

qα+1
min

− 2(n − 1)∥V ∥(α)qmax

qα+1
min

(2 − δ)

≥ (8n − 2(n − 1)(2 − δ))∥V ∥(α)qmax

qα+1
min

> 4n
∥V ∥(α)qmax

qα+1
min

> 0.

For the third line we used the first inequality of (1.8) and (2.7), and (2.8)
for the last line.

(c) Concerning the third inequality in (1.8), as
dqk,l
dt ∈ [(1− δ)vk,l, vk,l] (using

the second inequality in (1.8)), at value zero of (1+ 2δ) qk,lvk,l
− qi,j
vi,j

its time

derivative is estimated as follows:

d

dt
((1 + 2δ) qk,l

vk,l
− qi,j
vi,j

) ≥

≥ (1 + 2δ)(1 − δ) − 1 − ((1 + 2δ)qk,l∥Xk,l(q)∥ + qi,j∥Xi,j(q)∥)/v2
min

≥ δ − 2δ2 − 2(n − 1)(1 + δ)∥V ∥(α)qmax

v2
min q

α+1
min

> δ(1 − 2δ) − 4n(1 + δ) ∥V ∥(α)

C ≥ δ(1 − 2δ) − 1
2(1 + δ)) ≥ δ(3

5− 6
10) = 0.

4. We now prove item 4, before items 2 and 3. Throughout the proof of item
4 we will use that we already proved positive invariance of F +

loc (item 1). We

adopt the notation f̃(t) ∶= f ○ Φ(t, x0) for a phase space function f , with
x0 ∈ F +

loc.

For F ∶= 1
2 q̃

2
i,j and t ≥ 0 we get from (1.8) that

F ′(t) ≥ (1 − δ)q̃i,j(t)ṽi,j(t) (2.9)

and

F ′′(t) ≥ (1− δ) [ṽ 2
i,j(t) − q̃i,j(t)∥X̃i,j(t)∥] ≥ (1− δ)(1− δ/4)ṽ 2

i,j(t) ≥ 19
25 ṽ

2
i,j(t).
(2.10)
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The second inequality in (2.10) is valid, since by (2.7), (2.8) and (1.8)

q̃i,j(t)∥X̃i,j(t)∥ ≤ q̃i,j(t)2(n − 1) ∥V ∥(α)
q̃α+1

min(t)
≤ 1

4C
q̃i,j(t)
q̃α+1

min(t)
δ ≤ δ

4
ṽ2

min(t).
(2.11)

The third inequality in (2.10) follows from 0 ≤ δ ≤ 1/5.

There exists a maximal T ∈ (0,+∞] so that

∥(ṽi(t) − ṽj(t)) − (ṽi(0) − ṽj(0))∥
2 ≤ 1

6 ṽ
2
i,j(0) (t ∈ [0, T )). (2.12)

Thus (1 −
√

1/6)2
ṽ 2
i,j(0) ≤ ṽ 2

i,j(t) ≤ (1 +
√

1/6)2
ṽ 2
i,j(0) within this time

interval, and by (2.9), (2.10) this implies

F (t) = F (0) + ∫
t

0 (F ′(0) + ∫
s

0 F
′′(τ)dτ)ds (2.13)

≥ F (0) + (1 − δ)q̃i,j(0)ṽi,j(0)t + 19
25 ∫

t

0 ∫
s

0 ṽ
2
i,j(τ)dτ ds

≥ 1
2 q̃

2
i,j(0) + 4

5 q̃i,j(0)ṽi,j(0)t + 19
50
(1 −

√
1/6)2

ṽi,j(0)2t2.

Conversely by the first line in (2.13) and (2.11) with δ ≤ 1/5,

F (t) ≤ F (0) + q̃i,j(0)ṽi,j(0)t + 21
20 ∫

t

0 ∫
s

0 ṽ
2
i,j(τ)dτ ds

≤ F (0) + q̃i,j(0)ṽi,j(0)t + 21
40
(1 +

√
1/6)2

ṽ 2
i,j(0)t2.

These two estimates prove both inequalities in (2.5) for time t ∈ [0, T ).

2. Next we start by showing that T = +∞ in (2.12). With the rescaled time
parameter

s(t) ∶= ṽi,j(0)

2q̃i,j(0)
t , q̃i,j(t) ≥ q̃i,j(0) ⟨s(t)⟩ .

Note that by definition (1.8) of F +
loc the scaling factors

ṽi,j(0)

2q̃i,j(0)
are, up to a

factor 1+δ, independent of the index pair (i, j). So by applying (2.12), (2.7),
and (1.8) with (2.8) in succession,

∥(ṽi(t) − ṽj(t)) − (ṽi(0) − ṽj(0))∥
2 =

= −2∫
t

0
⟨ṽi(τ) − ṽj(τ) − (ṽi(0) − ṽj(0)), X̃i,j(τ)⟩ dτ

≤ 2√
6
ṽi,j(0) ∫

∞

0 ∥X̃i,j(τ)∥dτ
≤ 4√

6
(n − 1) ṽi,j(0)∥V ∥(α) ∫

∞

0 q̃min(τ)−α−1 dτ

≤ 8√
6
(n − 1) ṽi,j(0)∥V ∥(α) (1+δ)q̃max(0)

q̃α+1min (0)ṽi,j(0) ∫
∞

0 ⟨s⟩−α−1
ds

≤
√

6
5 ṽ 2

i,j(0) δ ∫
∞

0 ⟨s⟩−α−1
ds

≤
√

6
5 ṽ

2
i,j(0)min(1/5, α

4+α
)

√
πΓ(α/2)

2Γ((1+α)/2)

≤
√

6π
50 ṽ

2
i,j(0) < ṽi,j(0)2/6 ,
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since min(1/5, α
4+α

)
√
πΓ(α/2)

2Γ((1+α)/2) attains its maximal value π/10 for α = 1. This

shows that in (2.12) T = +∞. Thus by (2.12) the velocity differences stay
bounded away from zero (ṽi,j(t) ≥ 1

2 ṽi,j(0) > 0 for all t ≥ 0) so that the initial
condition x0 ∈ F +

loc is in F +.

3. Let x0 ∈ F +. By definition, v+(x0) exists and v+(x0) ∉ ∆. It follows that for
any δ ∈ (0, δ0] there exists a time t0 such that

∥ṽk(t) − v+k (x0)∥ ≤ 1
8 δ v

+
min(x0) (k ∈ N, t ≥ t0). (2.14)

In particular

ṽmin(t) ≥ (1 − 1
4δ) v

+
min(x0) > 0 (t ≥ t0).

As ∥(q̃i(t) − q̃j(t)) − ∫
t

t0
(ṽi(s) − ṽj(s))ds∥ = q̃i,j(t0),

∥(q̃i(t) − q̃j(t)) − (t − t0)(vi(x0) − vj(x0))∥ ≤ δ/4 (t − t0)v+min(x0) + q̃i,j(t0).
(2.15)

So vmin(x)2 > C qmax(x)
qmin(x)α+1

for x ∶= Φ(t, x0), t ≥ t0 large. This is the first

condition in the definition (1.8) of F +
loc.

Concerning the second condition, similarly by (2.15), for t large

⟨ṽi(t) − ṽj(t), q̃i(t) − q̃j(t)⟩ ≥ (1 − δ)ṽi,j(t)q̃i,j(t)

and, for the third condition,

(1 + 2δ) q̃k,l(t)
ṽk,l(t)

> q̃i,j(t)
ṽi,j(t)

( i < j, k < l ∈ N).

This shows that Φt(x0) ∈ F +
loc for all t sufficiently large. ◻

3 Regularity of the asymptotic velocity

We move on to the regularity of the asymptotic velocity map v+ ∶ x↦ v+(x).

3.1 Theorem ([DG, Theorem 5.4.1]) Let the potential V ∈ C2(Rdn,R) be
long range. Then the asymptotic velocity v+(x) exists for all x ∈ P .

The map v+ ∶ P → Rdn is Borel-measurable, but may be discontinuous.

3.2 Example (Discontinuity of the asymptotic velocity)
Take d = 1 and n = 2 and a non-negative pair potential V1,2 ∈ C2

c (R,R) which
has compact support, and a non-degenerate unique maximum V (0) > 0. Then
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the origin is the unique fixed point and is hyperbolic. All trajectories except the
hyperbolic fixed point and the four associated separatrix solutions have ∣q∣ → ∞
as ∣t∣ → ∞ and their velocity q̇ is locally consant as ∣t∣ tends to ∞. So one sees
that v+ is defined on the whole phase space R2 and that its discontinuity locus
is the stable manifold of the hyperbolic fixed point. ◇

We will see that in restriction to the free region F + the map v+ is continuous
and even differentiable. We will use the notation

p+(x0) =Mv+(x0) = lim
t→∞

p(t).

3.3 Theorem
Let V be an (α, k)–potential.

1. The map v+ ∶ F + → Rdn is of class Ck−1.

2. Quantitatively, if x0 = (p0, q0) ∈ F +
loc, for multi-indices δ ∶= (β, γ) ∈ Ndn

0 ×Ndn
0

with ∣δ∣ ≡ ∣β∣ + ∣γ∣ ≤ k − 1 and partial derivatives: ∂δx0 ∶= ∂
β
p0∂

γ
q0 we get

∂δx0(p+(x0) − p0) = O (∥V ∥(α,k)vmin(x0)−1−∣β∣ ⟨qmin(x0)⟩−α−∣γ∣) . (3.1)

3.4 Remark (Variants)
The constant in the order estimate (3.1) is independent of V . Using the first
condition in the definition (1.8) of F +

loc, we obtain the weaker estimate

∂δx0(p+(x0) − p0) = O (vmin(x0)+1−∣β∣ ⟨qmin(x0)⟩−∣γ∣) .

Similarly, instead of (4.4), we would have the weaker estimate

∂δX0
(Q0 − q0) = O (vmin(X0)−∣β∣ ⟨qmin(X0)⟩1−∣γ∣)

(where X0 = Ω(x0) = (Q0, P0) stands for the image of x0 by the Møller trans-
formation, as defined in section 4).

These estimates depend on the norm ∥V ∥(α,k) of the potential only indirectly,
via the phase space region F +

loc where they apply. ◇

Proof of Theorem 3.3:
We use the shorthands qmin ∶= qmin(x0), vmin ∶= vmin(x0) and continue to use
the notation f̃(t) ∶= f ○Φ(t, x0) for a phase space function f .
● To prepare for the proof of Claim 1, we first estimate the initial value problem
for long-range potentials. As V is an (α, k)–potential, the flow

Φ ∈ Ck−1(R × P,P ).
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For derivatives ∂δx0 w.r.t. initial conditions x0 with 1 ≤ ∣δ∣ ≤ k − 1, like in [Kn,
section 6] we use the integral representation of the trajectory

q(t, x0) = q0 +M−1 (tp0 − ∫
t

0∫
s

0 ∇V (q(τ, x0))dτ ds) (t ∈ [0,∞)).

By a standard dominated convergence argument (see, e.g., Elstrodt [El, Thm.
IV.5.7]) its deviation from free motion is controlled by

∂δx0(q(t, x0) − (q0 + tM−1p0)) = −∫
t

0
∫

s

0
M−1∂δx0∇V (q(τ, x0))dτ ds = (3.2)

−
∣δ∣

∑
N=1

M−1∑
δ(1)+...+δ(N)=δ

∣δ(i)∣>0

∫
t

0
∫

s

0
DN∇V (q(τ, x0)) (∂δ

(1)

x0 q(τ, x0), . . . , ∂δ
(N)

x0 q(τ, x0))dτ ds.

Due to the N = 1 term this is only an implicit equation for ∂δx0q(t, x0). To
transform it into an explicit equation, we thus consider for λ > 0 the real Banach
space (Ĉ, ∥ ⋅ ∥λ),

Ĉ ∶= {w ∈ C ([0,∞),Rdn) ∣ ∥w∥λ ∶= sup
t≥0

∥w(t)∥/⟨λt⟩ < ∞} , (3.3)

noting that Ĉ is independent of the choice of λ. Define the linear operator
Q ≡ Qx0 by

Q(w)(t) ∶= M−1∫
t

0
∫

s

0
D∇V (q(τ, x0))w(τ)dτ ds (t ≥ 0), (3.4)

Using (2.5) and (2.3), the operator norm is estimated by

∥Q∥λ ∶= sup
w∶ ∥w∥λ=1

∥Q(w)∥λ ≤ ∥V ∥(α,2) sup
t≥0

∫
t

0∫
s

0 (qmin + 1
2vminτ)−2−α⟨λτ⟩dτ ds

⟨λt⟩

≤ ∥V ∥(α,2)
λ2q2+α

min

sup
t≥0

∫
t

0∫
s

0 ⟨τ⟩−1−α dτ ds

⟨t⟩ .

Using Lemma 2.5 in the last inequality and setting

λ ∶= 1
2vmin/qmin

yields

∥Q∥λ ≤ 4(1 + 1/α) ∥V ∥(α,2)

v2minq
α
min
.
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which shows that Q maps Ĉ into itself. We want to prove that for all x0 ∈ F +
loc the

operator norm of Qx0 is strictly smaller than one for a suitable λ. By Definition
(1.8) of F +

loc the operator is a contraction:

∥Q∥λ ≤
4(1 + 1/α)

16πdnmax(1,1/α) ≤ 1

2πdn
< 1.

Thus (3.2) can be transformed into

(1l +Q)(∂δx0q)(t) = ∂δx0(q0 + tM−1p0) − M−1× (3.5)
∣δ∣

∑
N=2

∑
δ(1)+...+δ(N)=δ

∣δ(i)∣>0

∫
t

0
∫

s

0
DN∇V (q(τ, x0)) (∂δ

(1)

x0 q(τ, x0), . . . , ∂δ
(N)

x0 q(τ, x0))dτ ds

with the invertible operator 1l + Q on Ĉ. As on the r.h.s. of (3.5) only partial
derivatives of order ∣δ(i)∣ < ∣δ∣ appear, we can perform an induction in ∣δ∣.

Assume that for all δ′ = (β′, γ′) ∈ Ndn
0 ×Ndn

0 with 1 ≤ ∣δ′∣ ≤ ∣δ∣ − 1

∥∂δ′x0q(⋅, x0)∥λ = O (vmin(x0)−∣β
′∣ qmin(x0)1−∣γ′∣) . (3.6)

This assumption is satisfied for ∣δ′∣ = 1, since then the sum on the r.h.s. of (3.5)
equals zero. Then by (2.5) and (3.6) the terms on the r.h.s. of (3.5) fulfill

∥M−1∫
t

0
∫

s

0
DN∇V (q(τ, x0)) (∂δ

(1)

x0 q(τ, x0), . . . , ∂δ
(N)

x0 q(τ, x0))dτ ds∥ ≤

(3.7)

≤ ∥V ∥(α,N+1)∫
t

0
∫

s

0
q(τ, x0)−α−N−1

N

∏
i=1

∥∂δ(i)x0 q(τ, x0)∥ dτ ds

≤ ∥V ∥(α,N+1) ×

∫
t

0
∫

s

0
(qmin(x0) + 1

2vmin(x0)t)
−α−N−1

N

∏
i=1

(∥∂δ(i)x0 q(⋅, x0)∥λ ⟨λτ⟩) dτ ds

≤ C0∥V ∥(α,N+1) vmin(x0)−∣β∣ q−α−∣γ∣−1
min ∫

t

0
∫

∞

0
⟨λτ⟩−α−1

dτ ds

≤ C1∥V ∥(α,N+1) v
−2−∣β∣
min q

1−α−∣γ∣
min ⟨λt⟩ .

For x0 ∈ F +
loc that term is bounded above by (see (1.8)) Cδ v

−∣β∣
minq

1−∣γ∣
min ⟨λt⟩,1

proving the induction step for (3.6).

1δ of Cδ does not refer to the multi-index δ ∈ N2dn
0 , but to the constant in Theorem 2.2.

It is chosen as δ ∶=min(δ0, α − 1) in the short range case (α > 1) and δ ∶= δ0 if 0 < α ≤ 1.
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● We prove the momentum estimate in (3.1) for no partial derivative w.r.t. initial
conditions (δ = 0), which holds for all long range potentials. By the propagation
estimate (2.5) uniformly in t ≥ 0

∥M−1(p̃(t) − p̃(0))∥

≤ ∫
t

0
∥M−1∇V (q̃(s))∥ds ≤ ∥V ∥(α,1)∫

t

0
(qmin + 1

2vmin s)
−α−1

ds

≤ ∥V ∥(α,1)
1
2vmin

∫
∞

0
(qmin + s)

−α−1
ds ≤ 2 ∥V ∥(α,1)

αvmin qαmin

. (3.8)

Lemma 2.5 was applied in the last step. By the same estimate, which is locally
uniform in x0,

v+(x0) =M−1p+(x0) =M−1 lim
t→∞

p̃(t)

exists and is continuous in x0 ∈ F +.
● For multi-index δ ∈ N2dn

0 of norm 1 ≤ ∣δ∣ ≤ k − 1 the momentum estimate

∥M−1∂δx0(p̃(t) − p̃(0))∥ ≤ C2∥V ∥(α,k)v−1−∣β∣
min q

−α−∣γ∣
min ≤ Cδ v+1−∣β∣

min q
−∣γ∣
min (3.9)

is derived like the position estimate in and after (3.7). We infer that at x0 ∈ F +
loc

asymptotic velocity v+ is k − 1 times continuously differentiable. This proves
item 2.
As the flow Φ ∈ Ck−1(R × P,P ) and by Property 3. of Thm. 2.2, the same
statement is true for x0 ∈ F +. This proves item 1. ◻
In [He, Lemma II.2], Herbst noted for n = 2 that for long range potentials the
limit limt→∞ (q2(t, x)− q1(t, x)) exists, if the asymptotic velocities coincide. His
– perhaps astonishing – result immediately generalizes to the n–body case. To
see this, we modify (1.6), setting

F̂ ± ∶= {x ∈ P̂ ∣ v±(x) exists, and v±(x) ∉ ∆}. (3.10)

3.5 Lemma
For a long range potential V , consider initial conditions x

(i)
0 ≡ (p(i)0 , q

(i)
0 ) ∈ F̂ ±

(i = 1,2), whose asymptotic momenta p±(x(i)
0 ) coincide. Then

a± ∶= lim
t→±∞

(q(t, x(2)
0 ) − q(t, x(1)

0 )) (3.11)

exists. More precisely, although the estimate p(t, x0) − p±(x0) = O(∣t∣−α) is in
general optimal in the t→ ±∞ limit,

p(t, x(2)
0 ) − p(t, x(1)

0 ) = O(∣t∣−1−α) and q(t, x(2)
0 ) − q(t, x(1)

0 ) = a± +O(∣t∣−α).
(3.12)

Finally, if a± = 0, then x
(1)
0 = x(2)

0 .
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Proof:
● To begin with, the estimate p(t, x0)−p±(x0) = O(∣t∣−α) follows from (3.8) and
the propagation estimate (2.5), and its optimality from

1
2
⟨p±(x0),M−1p±(x0)⟩ = 1

2
⟨p(t, x0),M−1p(t, x0)⟩ + V (q(t, x0)).

● The second estimate in (3.12) and (3.11) follow by integration from the first
estimate in (3.12).
● To derive it and the last statement, we argue like in [He, Lemma II.2]. ◻
We can also apply Theorem 3.3, which is formulated for non-singular potentials,
to the unregularized Hamiltonian flow with an (α, k)–potential V ∶ M̂ → R.

The point is, some x’s end in collision, so have no well-defined asymptotic
velocity. As in definition 1.6, the phase space regions F̂ ± ⊆ P̂ are open. The
escape time T ±(x0) for initial conditions x0 lying in F̂ ± are ±∞ whereas T − (T +)
are still upper (respectively lower) semicontinuous.

3.6 Corollary (Asymptotic velocities for singular potentials)

1. For α > 0 and (α, k)–potentials V ∈ Ck(M̂,R), see (2.3), the restricted
asymptotic velocity maps v± are Ck−1 over F̂ ±.

2. So for (−α)–homogeneous potentials, that is

V (q) ∶= ∑1≤i<j≤n
Ii,j

∥qi−qj∥α
. (3.13)

the asymptotic velocities v± are smooth on F̂ ±.

Proof:

1. The flow is Ck−1 on its domain and if x0 ∈ F + then there is a time t ≥ 0 so
that Φt(x0) ∈ F +

loc. (The norm ∥V ∥(α,2) appearing in Thm. 2.2 needs to be
appropriately re-defined to account for blow-up along ∆). Then by Theorem
3.3.1 the restriction of the asymptotic velocity v+ to F + is a Ck−1 with values
in Rdn.

2. V in (3.13) has finite ∥V ∥(α,k) norm for any k ∈ N. ◻

4 The Møller conjugacy (short range)

We will now show that for a short range potential the flow and the free flow are
conjugate, using the so-called Møller transformation.
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If the potential is short range (α > 1 in (1.6)), then we can establish the
asymptotics

q(t) = at + b +O(t1−α) as t→ +∞
for forward free solutions, see equation (4.4) below. The vector a is v+(x0) if
x0 ∶= (Mq̇(0), q(0)) is the initial condition for q(t). The vector b is something
like the “impact parameter” found in standard treatments of classical scattering.
We would like to think of a, b ∈ Rdn as initial conditions at t = +∞.

One way to formalize this idea is via the Møller transformation, which com-
pares the given flow to that of a free particle.

4.1 Definition The (forward) Møller transformation, where the (pointwise) limit
exists, is the map Ω = Ω+ ∶= limt→+∞ Φ−t ○Φ0

t ∶ P ⇢ P . Similarly the backward
Møller transformation is Ω− ∶= limt→−∞ Φ−t ○Φ0

t , where the limit exists.

See figure 4.1 for a depiction of the forward and backward Møller transforma-
tions. We have continued to use the broken arrow notation in the definition of the
Møller transformation to allow ourselves vagueness about its domain. We repair
this vagueness now. Moreover, these transformations provide us with conjugacy
in the short range case.

4.2 Theorem (Møller transformation)
If the (α, k)–potential V is short range (α > 1 in definition 2.1), then

1. For F +
0 and F + defined in (1.10) respectively in (2.4), the Møller transforma-

tion
Ω = lim

t→+∞
Φ−t ○Φ0

t ∶ F +
0 → F + (4.1)

exists and is a Ck−1 symplectomorphism intertwining Φt with Φ
(0)
t :

Ω ○Φ
(0)
t = Φt ○Ω (t ∈ R). (4.2)

2. If ∣δ∣ ≤ k − 1, x0 = (p0, q0) ∈ F +
loc and Ω(x0) = X0 = (P0,Q0) then the inverse

Møller transformation Ω−1 satisfies the regularity estimates:

∂δX0
(P0 − p0) = O (∥V ∥(α,k)vmin(X0)−1−∣β∣ ⟨qmin(X0)⟩−α−∣γ∣) , (4.3)

∂δX0
(Q0 − q0) = O (∥V ∥(α,k)vmin(X0)−2−∣β∣ ⟨qmin(X0)⟩1−α−∣γ∣) . (4.4)

We will deal with long range (α, k)–potentials with α ∈ (1/2,1] later; we
will show existence of modified ’Dollard’ Møller transformations in Theorem 5.3,
indicating how to generalize this to α ∈ (0,1].
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Figure 4.1: Above: Potential V . Below: Level lines of the Hamiltonian H and
of the kinetic energy T (dashed); and the corresponding Møller transformations.

Let us pause to see how Theorems 2.2 and 4.2 are related. Suppose that
Ω(A,B) = x0 ∈ F +. We claim that A = Mv+(x0) where v+(x0) ∉ ∆ is x0’s
asymptotic velocity of definition 1.5 and described in Theorem 1.10. Invert-
ing, we have Ω−1(x0) = (A,B) and Ω−1 = limt→∞ Φ0

−t ○ Φt. Write Φt(x0) =
(p(t, x0), q(t, x0)) and set p(∞) = Mv+(x0) = A. Theorem 1.10 tells us that
for t large we have p(t, x0) = A+ o(1). Now the momentum p is constant under
the free flow so that for large t we have Φ0

−t ○ Φt(x0) = (A + o(1),Q(x0; t)).
Letting t→∞ kills the o(1) term and yields the claim: Ω−1(x0) = (A,∗).

Proof of Theorem 4.2:
● We now prove for (α, k)–potentials V of short range (α > 1) pointwise exis-
tence and smoothness properties of the Møller transformation.
Thus let X0 = (P0,Q0) ∈ F0 and write Q̃(t) ∶= Q0+M−1P0t for the corresponding
free solution. (See (1.9).) Define the map FX0,T ≡

F ∶ D̂ → C([T,∞),Rdn) , (Fr)(t) = −M−1∫
∞

t
∫

∞

s
∇V ((Q̃ + r)(τ))dτ ds

(4.5)
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on the complete metric space

D̂ ≡ D̂X0,T ∶= {r ∈ C([T,∞),Rdn) ∣ ∥r∥ ∶= sup
t≥T

∥r(t)∥ ≤ 1
2qmin(X0)}. (4.6)

By the short range assumption on V the map F is well-defined, and any function
u = F(r) in its image satisfies limt→∞ u(t) = 0.
We search for solutions r of the fixed point problem r = FX0(r). Out of such a
fixed point r we will build Ω(X0). First, observe that if r is such a fixed point
then

q ∶= Q̃ + r (4.7)

satisfies Newton’s equations q̈(t) = −M−1∇V (q(t)) and is asymptotic to Q̃.
When X0 ∈ F +

loc ⊆ F0, then by (2.5) and (4.6) the interparticle distances q̃i,j(τ) ≥
1
2(qi,j + vi,jτ). Thus, using (2.3)

∥M−1∇V ((Q̃ + r)(τ))∥ ≤ ∥V ∥(α) ⟨1
2(qmin + vminτ)⟩

−1−α (τ ≥ 0).

So by Lemma 2.5 ∥M−1 ∫
∞

s ∇V ((Q̃ + r)(τ))dτ∥ ≤ 2∥V ∥(α)

vmin
⟨1

2(qmin + vmins)⟩
−α

and ∥(Fr)(t)∥ ≤ 2 ∥V ∥(α)

(α−1)v2min
⟨1

2qmin⟩
1−α ≤ 8d∥V ∥(α,1)

(α−1)v2min
(1

2qmin)1−α ≤ 1
2qmin,

as X0 ∈ F +
loc and δ ≤ α − 1. So F maps D̂ into itself.

Next we show that F is a contraction on D̂. So let r(0) ≠ r(1) ∈ D̂. Then

∥F(r(0)) − F(r(1))∥
∥r(0) − r(1)∥ ≤ ∫

∞

0
∫

∞

s
∫

1

0
∥M−1D∇V ((Q̃ + r(ρ))(τ))∥dρ dτ ds

with r(ρ) ∶= (1 − ρ) r(0) + ρ r(1). The right hand side is majorized by

∥V ∥(α,2)∫
∞

t
∫

∞

s
⟨1

2(qmin + vi,js)⟩
−2−α

dτ ds ≤ 2∥V ∥(α,2)
α(1 + α)v2

i,jq
α
min

≤ δ

16dn
< 1.

By Banach’s theorem FX0 has a unique fixed point r. Evaluating the correspond-
ing solution Q̃(t) + r(t) to Newton’s equations appropriately at t = 0 yields the
value of the Møller transformation on X0. Indeed we claim that

Ω(X0) = (P0 +Mṙ(0), Q0 + r(0)).

To see this, we approach the problem of approximating r(t) “from the other end
of time” as follows. Write

Φ−T ○Φ
(0)
T (X0) = (P0 +M(ṙ(T ))(0), Q0 + r(T )(0)).

23



Then the solution r(T ) ∶ [0, T ] → Rdn to Newton’s equations with initial position
r(T )(0) and initial velocity ṙ(T )(0) is the unique fixed point of the map

F (T ) ∶ D̂(T ) → D̂(T ) , (F (T )r(T ))(t) = −M−1∫
T

t
∫

T

s
∇V ((Q̃ + r)(τ (T )))dτ ds

on

D̂(T ) ∶= {r ∈ C([0, T ],Rdn) ∣ maxt∈[0,T ]∥r(t)∥ ≤ 1
2qmin(X0), r(T ) = ṙ(T ) = 0},

and by uniqueness of the original fixed point r we must have that

r(t) = lim
T→+∞

r(T )(t) , ṙ(t) = lim
T→+∞

ṙ(T )(t) (t ≥ 0).

To see that Møller transformation is defined on all of F0, observe that for any
X0 ∈ F + we have, eventually, for large enough times h that Φ

(0)
h (X0) ∈ Floc,

at which point we have just seen that Ω(Φ
(0)
h (X0)) exists. Then observe by

inspecting the definition of the limits that Ω(X0) = Φ−h ○Ω ○Φ
(0)
h (X0).

As a locally uniform limit the Møller transformation is continuous on F +. The
intertwining relation (4.2) follows, since the flows are R–actions, or alternatively

by re-arranging the just-proved relationship, Ω = Φ−h ○ Ω ○ Φ
(0)
h valid for all

sufficiently large h in a neighborhood of any X0.

● To investigate the degree of smoothness of Ω+, instead of the operator (3.4)
related to the initial value problem, we now use the operator P ≡ PX0 , with

P(w)(t) ∶= −M−1∫
∞

t
∫

∞

s
D∇V (Q̃(τ))w(τ)dτ ds (t ≥ 0), (4.8)

on the Banach space Cb([0,∞),Rdn) of bounded curves. Its operator norm is
majorized by

∥PX0∥ ≤ ∥V ∥(α,2)∫
∞

0
∫

∞

s
⟨Q̃(τ)⟩−2−α

dτ ds

≤ ∥V ∥(α,2)∫
∞

0
∫

∞

s
⟨1

2(qmin + vmins)⟩
−2−α

dτ ds

≤ 22+α

α
∥V ∥(α,2)q−αminv

−2
min ≤

22+α

α

δ

16dn
< 1

if α ≤ 3 (for larger α one uses the forward flow into F +
loc, where the estimates

become better). So we can invert Id − PX0 in order to solve for ∣δ∣ ≤ k − 1

∂δX0
r(t,X0) = −∫

∞

t
∫

∞

s
M−1∂δX0

∇V (q(τ,X0))dτ ds = −
∣δ∣

∑
N=1

M−1 × (4.9)

× ∑
δ(1)+...+δ(N)=δ

∣δ(i)∣>0

∫
∞

t
∫

∞

s
DN∇V (q(τ,X0)) (∂δ

(1)

X0
q(τ,X0), . . . , ∂δ

(N)

X0
q(τ,X0))dτ ds
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with the shorthand q = Q̃ + r in a way similar to (3.5). This shows (4.4) and
finishes the proof of Claim 2.
As C1–limit of the symplectomorphisms Φ−t ○Φ

(0)
t the Møller transformation Ω+

is a symplectomorphism onto its image. But this image coincides with F +, by
its mere definition (2.4) and by reversing the roles of the two flows.
So Claim 1 is also true. ◻

4.3 Remark (Møller transform)
The standard reference for the Møller transform is section 5 of [DG] by Dere-
ziński and Gérard. In the case of finite-range interactions Hunziker, in
[Hu1, Hu2] proved that the Møller transform exists and used it to establish
asymptotic completeness of finite range interactions. This asymptotic complete-
ness includes the decomposition of solutions into independent clusters where
‘cluster’ has the meaning alluded to above.

Hunziker viewed the Møller transform as the classical version of the quantum
Møller transform, or wave map, defined as the limit of exp(−itH) exp(itH0) as
t→∞. Here H =H0 +V is the quantum version of our Hamiltonian so that H0

corresponds to a multiple of the Laplacian on Rdn.
Soon afterwards, Simon [Sim] used the method to establish asymptotic com-
pleteness for the classical two-body problem with short range interactions pro-
vided the second derivative of the potential decays appropriately. In an appendix
Simon exhibited the necessity of his second derivative decay conditions by con-
structing a potential for which his decay conditions failed and which admits
two distinct hyperbolic solutions asymptotic to the same free solution. Thus
Ω−1(x0) = Ω−1(y0) for x0, y0 not lying on the same orbit, so that whatever Ω is,
it is at least “two-valued” and not a well-defined map.
Dereziński and Gérard, among many other results, established the existence
and invertibility of the Møller transformation for potentials of superexponential
decrease in [DG, sect. 5.10]. ◇

5 The Dollard-Møller conjugacy (long range)

The gravitational and Coulomb potentials are long range but not short range so
the Møller transformation fails to exist for them. Dollard [Do] discovered that
by modifying the comparison free dynamics in a time-dependent way he could
define a modified Møller transformation which existed for long range potentials.
We will call his modified transformation the Dollard-Møller transformation. It
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will yield the asymptotics

p(t) =Mv + o(1)
q(t) = vt +W (t,Mv) + b + o(1)

with v = v+(x(0)) and W (t,Mv) = o(t) as t→ +∞

valid for all escape solutions x(t) = (p(t), q(t)) and all long-range potentials
(0 < α ≤ 1 in (1.6)), whether they have singularites or not. See equation (5.3)
for the relation between W and the potential V . This assertion on asymptotics
follows from the existence of the inverse Dollard-Møller transformation Ω−1, part
1 of 5.3. See remark 5.5 for a sketch of a proof of a derivation of (5.1) from
part 1. The asymptotic velocity v occurring in the asymptotics (5.1) is given by
Ω−1(x(0)) = (v, β) for some β. The “impact parameter” b, projected onto v⊥

represents the affine orbital parameter described in part 3 of 5.3 below.

5.1 Definition
The Dollard dynamics ΦD

t,s (see (5.9)) associated with a potential V on Rdn is
the non-autonomous flow defined by the time dependent Dollard Hamiltonian

HD ∶=K + H̃D ∶ Rt × F0 Ð→ R

given by

HD(t, p, q) = 1
2⟨p,M−1p⟩ + V (⟨t⟩M−1p) where ⟨t⟩ =

√
1 + t2 (5.1)

The first term K of HD is the usual kinetic energy. Its second term H̃D
t (p, q)

is the potential turned into a function of momentum. HD is independent of q
so the momentum p is constant along the non-autonomous Dollard flow ΦD

t,s.

5.2 Example (Newtonian case)
Take the case of the Newtonian n-body problem, where the potential is ho-
mogeneous of degree −1. Using ⟨t⟩ = t(1 + 1

2
1
t2 + . . .) for t ≫ 1 we see that

HD = 1
2⟨p,M−1p⟩ +V (⟨t⟩M−1p) = 1

2⟨p,M−1p⟩ + 1
tV (M−1p) +O(1/t3) for large

t, where the O(1/t3) term depends only on p. Then the ODEs to solve to find
the Dollard flow are

⎧⎪⎪⎨⎪⎪⎩

q̇ =M−1p + 1
t∇V (M−1p) + O(1/t3)

ṗ = 0

which integrate to yield precisely Chazy’s asymptotics (1.11) above. Compare
with Chazy [Cha, page 46], 1922. One could argue that the proper Dollard
Hamiltonian (B.1) has Chazy’s work as a precursor. ◇
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Returning to a general V , we compute the time-dependent flow of HD, for
initial time s ∈ R and final time t ∈ R, to have the form:

ΦD
t,s(p, q) = (p , q + (tv +W (t;p)) − (sv +W (s;p))) ((p, q) ∈ F0). (5.2)

where

W ∶ Rt × F0 → Rdn , W (t;p) = ∫
t

0
∇pV (⟨s⟩M−1p)ds . (5.3)

If V is an (α, k) potential then W ∈ Ck−1(Rt × F0,Rdn), and

t↦W (t;p) = {
O(∣t∣1−α) , α ∈ (1/2,1)
O(log(∣t∣)) , α = 1,

(∣t∣ → ∞).

Although the correction term W (t, p) to linear motion can go to infinity with t,
we have that W (t, p) = o(t), which is to say, that ∣t∣ >> ∣W (t;p)∣ as t → ∞. It
will be crucial below that for fixed p and t0,

W (t + t0, p) −W (t, p) → 0 as t→∞ , (5.4)

as the reader can easily verify.
The asymptotic velocity of any Dollard solution curve ΦD

t,s(x0) with x0 =
(p, q) is v = M−1p. All Dollard solutions (5.2) which share a fixed initial mo-
mentum p are translates of one another:

ΦD
t,s(p, q(2)) −ΦD

t,s(p, q(1)) = (0, q(2) − q(1)) (s, t ∈ R, q(i) ∈ Rdn).

For explicit computations of Dollard flows and comparison of the induced
transformations with Møller transformations see the appendices.

We will use the Dollard flow ΦD
0,t in place of the free flow Φ

(0)
t in order to

define a version of the Møller transformation. However, collisions in backward
time prevent us from defining a direct Dollard-Møller transform on F̂ +. The
backward n-body flow Φ̂−t, t > 0, applied to some points of F̂ + may not exist
due to multi-body collisions in backwards time. To circumvent this problem we
instead define the inverse Dollard-Møller transformation, whose definition only
uses the forward flow, so that its domain can be taken to be F̂ +.

(The reader may wish to refer to subsection 1.5 for notations.)

5.3 Theorem (Dollard-Møller transformations)
For long range (α, k)–potentials V (see (2.3)) with α ∈ (1/2,1] and collision
singularities allowed, the following hold.

1. The backward and forward inverse Dollard-Møller transformations

Ω−1,± ∶= lim
T→±∞

ΦD
0,T ○ Φ̂T , Ω−1,± ∶ F̂ ± → F0 (5.5)

exist in the sense of locally uniform convergence.
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2. a) These transformations conjugate the n-body flow on F̂ ± with the free flow

Ω−1,± ○ Φ̂t = Φ
(0)
t ○Ω−1,± . (5.6)

b) For k ≥ 3 the Ω−1,± are Ck−2–smooth symplectomorphisms onto their
images.

3. The analog of (5.7) holds for Ω−1,± − Id:

If ∣δ∣ ≤ k − 1, x0 = (p0, q0) ∈ F ±
loc and Ω−1,±(x0) = X0 = (P0,Q0) then the

following regularity estimates hold:

∂δX0
(P0 − p0) = O (∥V ∥(α,k)vmin(X0)−1−∣β∣ ⟨qmin(X0)⟩−α−∣γ∣) , (5.7)

∂δX0
(Q0 − q0) = O (∥V ∥(α,k)vmin(X0)−2−∣β∣ ⟨qmin(X0)⟩1−α−∣γ∣) . (5.8)

4. For any v ∈ Rdn /∆, the space of orbits having asymptotic velocity v form
an affine space with underlying vector space the tangent space of the sphere
Sdn−1 at v/∥v∥M.

Proof:
We will make use of the open subset F +

loc of P̂ defined by precisely the same

conditions as F +
loc in (1.8) with all points lying in P̂ - the phase space points

with no collisions. Note that for α-homogeneous potentials, the conditions within
(1.8) respect the homogeneity of kinetic and potential energy.
● As both flows Φ̂ and ΦD

●,● are Ck−1–smooth on their maximal domains (D̂ for

Φ̂ and Rt × Rs × F0 for ΦD
●,●), by Theorem 2.2.3 and its Corollary 3.6 we can

assume without loss of generality that x0 = (p0, q0) ∈ F̂ +
loc.

We consider the Dollard solution (5.2), t↦ ΦD
t,0(X) with initial value X ∈ F0

and denote by XT (x0) the initial value with the property

ΦD
T,0(XT (x0)) = Φ̂T (x0) (x0 ∈ F̂ +

loc, T ≥ 0).

Since ΦD
●,● is the solution of a time dependent initial value problem, we have

ΦD
t,t = IdF0 and ΦD

t2,t1 ○ΦD
t1,t0 = ΦD

t2,t0 (t, ti ∈ R), (5.9)

so that (ΦD
t1,t0

)−1 = ΦD
t0,t1

.

Proof of part 1 of the theorem.
In (5.5) we claim pointwise existence and local uniformity of the limit T →∞ of

Ω−1
T ∶= (ΦD

T,0)−1 ○ Φ̂T = ΦD
0,T ○ Φ̂T . (5.10)
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We compute, with v ∶= M−1p denoting velocity, that

Ω−1
T (x0) = (p(T,x0), q(T,x0) − v(T,x0)T − ∫

T

0 ∇pV (⟨s⟩M−1p(T,x0))ds)
= (p(T,x0), q0 + r(T,x0)), (5.11)

where

r(T,x0) ∶= ∫
T

0 [v(s, x0)−v(T,x0)−∇pV (⟨s⟩M−1p(T,x0))]ds) (5.12)

=M−1∫
T

0 [ ∫
T

s ∇V (q(τ, x0))dτ −⟨s⟩∇V (⟨s⟩M−1p(T,x0))]ds,

see (5.2) and (5.3).
● We begin the proof of (5.5) by showing that

r+(x0) ∶= lim
T→+∞

r(T,x0) = r(0, x0) + lim
T→+∞

∫
T

0 ṙ(t, x0)dt

exists. Therefore, we first estimate its T–derivative.

ṙ(T,x0) = − T v̇(T,x0) − ⟨T ⟩∇V (⟨T ⟩M−1p(T,x0)) (5.13)

+M−1 ∫
T

0 ⟨s⟩2D∇V (⟨s⟩M−1p(T,x0))dsM−1∇V (q(T,x0)) .

The propagation estimate (2.5) and (3.8) imply that ∥p(T,x0) − p+(x0)∥ =
O(⟨T ⟩−α) and thus locally uniformly in x0 ∈ F̂ +

loc

∥q(T,x0) − (q0 + v+(x0)T )∥ = {
O(⟨T ⟩1−α) , α < 1

O( log(T )) , α = 1
.

1. For α ∈ (1/2,1) the first line on the right hand side of (5.13) equals

M−1[T ∇V (q(T,x0)) − ⟨T ⟩∇V (⟨T ⟩M−1p(T,x0))]
=TM−1[∇V (q(T,x0)) − ∇V (⟨T ⟩ v(T,x0))] + O(⟨T ⟩−2−α)
=TM−1[∇V (⟨T ⟩ v(T,x0)+O(T 1−α)) − ∇V (⟨T ⟩ v(T,x0))] + O(⟨T ⟩−2−α)
=O(⟨T ⟩−2α) + O(⟨T ⟩−2−α) = O(⟨T ⟩−2α) ,

since ⟨T ⟩ − T = O(⟨T ⟩−1).

2. As D∇V (⟨s⟩M−1p(T,x0)) = O(⟨s⟩−2−α), for α ∈ (1/2,1) the second line of

(5.13) has the order O(⟨T ⟩1−α⟨T ⟩−1−α) = O(⟨T ⟩−2α), too.

3. For α = 1 the orders of both lines in (5.13) are O(⟨T ⟩−2 log(⟨T ⟩)).
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We conclude that (5.13) is of order O(T −2α) for α ∈ (1/2,1), respectively

O(T −2 log(T )) for α = 1. By our assumption 2α > 1 we finally obtain existence
of r+(x0), and thus of inverse Dollard-Møller transformation Ω−1 = limT↗+∞ Ω−1

T .
● As r+(x0) = limT→+∞ r(T,x0) exists, by the analogs of (5.12) and (5.13)

ri(T,x0) = r+i (x0) − ∫
∞

T
ṙi(τ, x0)dτ = r+i (x0) +

1

mi
∑

j∈N∖{i}

(5.14)

[∫
∞

T
(τ∇Vi,j(qi(τ, x0) − qj(τ, x0)) − ⟨τ⟩∇Vi,j(⟨τ⟩(vi(τ, x0) − vj(τ, x0))))dτ

−∫
∞

T
∫

∞

τ
⟨s⟩2D∇Vi,j(⟨s⟩(vi(τ, x0) − vj(τ, x0)))(v̇i(τ, x0) − v̇j(τ, x0))dsdτ].

When one substitutes the argument qi(τ, x0) − qj(τ, x0) in the second line of
(5.14), using q(τ, x0) = v(τ, x0)τ +W (τ ; Φτ(x0)) − r(τ, x0), then one obtains
an integral equation for r.

When we assume that r belongs to the complete metric space D̂X0,T defined in
(4.6), then the integrand is of order O(τ−2α) for α ∈ (1/2,1) and O(τ−2 log(τ))
for α = 1. So from (5.14) we infer that r(T,x0) − r+(x0) is of order O(T 1−2α),

resp. O(T −1 log(T )). As a function of r, the right hand side of (5.14) is a

contraction for T large, justifying the assumption r ∈ D̂X0,T .
● As convergence is locally uniform on F̂ +, by the parametrized fixed point
theorem the dependence of r on x0 is continuous. So the map r+ ∶ F̂ + → Rdn is
continuous, too.

Estimates of the derivatives w.r.t. this initial condition proceed like in the
proof for the short range case, that is, Theorem 3.3.3.

As stated in Corollary 3.6, for (α, k)–potentials asymptotic velocity v+ ∈
Ck−1(F̂ +,Rdn). So by (5.11), Ω+,∗ is continuous, and as smooth as r+.

Note, however, that in (5.14) the second derivative of the long range potential
V appears. This is different from the case (4.5) of short range potentials, where
only the first derivative is needed. Therefore, in comparison with Part 1 of
Theorem 3.3, we lose one derivative in Part 2 of Theorem 5.3.
● By Lemma 3.5, Ω−1,± is one to one. So we can invert Ω−1,± on its image,
yielding the Møller transformation Ω±. We still have to prove that for any x0 =
(p0, q0) ∈ F̂ +

loc and its image X ≡ X(x0) ∶= Ω+,∗(x0) the Møller transformation
is of the form

Ω+(X) = lim
T→+∞

ΩT (X) for ΩT ∶= Φ̂−T ○ΦD
T,0. (5.15)

But this means to control r as a function of X instead of x0. So the analysis is
similar, and we omit it.
This completes the proof of item (1) of the proposition, i.e of (5.5).
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Proof of part 2 of the theorem.
The intertwining property (5.6) follows by first noting that for Ω−1

T from (5.10)

Ω−1
T ○ Φ̂t = (ΦD

0,T ○ΦD
T+t,0) ○Ω−1

T+t

follows by applying the groupoid property (5.9), and by (5.2),

ΦD
0,T ○ΦD

T+t,0(p, q) = (p, q + tv +W (T + t;p, q) −W (T ;p, q)).

Then limT→+∞ ΦD
0,T ○ΦD

T+t,0 = Φ
(0)
t , since using (5.3)

lim
T→+∞

(W (T + t;p, q) −W (T ;p, q)) = lim
T→+∞

∫
T+t

T
∇pV (⟨s⟩M−1p)ds = 0.

● As a locally uniform limit of symplectomorphisms ΩT in C1 norm, for k ≥ 3 the
Dollard-Møller transformation Ω+ is a symplectomorphism onto its image. This
is shown by suitably modifying the proof of Theorem 3.3.3.
This completes the proof of item 2 of the proposition.

Proof of part 3 of the theorem.
The analog of (5.7) follows from (3.1), as the Dollard dynamics (5.2) conserves
momentum. This completes the proof of item 3.

Proof of part 4 of the theorem.
The proof relies on Lemma 5.8 below, the conjugacy relation (5.6) which forms
part 3 just proved, and the relation (5.17) proved below.

Let us write Pv for the space of all trajectories x(t) having v+(x(t)) = v
where v ∉ ∆ is fixed. Let π⊥ ∶ Rdn → v⊥ be the orthogonal projection so that
π⊥(w) = w − (v⟨w, v⟩/∣v∣2). Define a map

Pv × Pv → v⊥

(x,x(0)) ↦ lim
t→∞

π⊥((q(t) − q(0)(t)) =∶ b(x,x(0)) ∈ v⊥∗ (5.16)

where we’ve written by x(t) = (p(t), q(t)), x(0)(t) = (p(0)(t), q(0)(t)) for two
trajectories, i.e. points in Pv. By Lemma 5.8 this limit exists and is independent
of where we start on the orbits: shifting x(t) to x(t+t1) and x0(t) to x(0)(t+t0)
yields limt→∞(q(t + t1) − q(0)(t + t0)) = limt→∞(q(1)(t) − q(0)(t)) + (t1 − t0)v so
leaves the map (5.16) unchanged.

Think of one of the orbits, x(0), as the “origin” of Pv. Then we must show
that the map (5.16), viewed as a function of x alone, is onto, and that its image
uniquely determines x up to a time translation.
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It will be important to understand that x ∈ Pv iff Ω−1(x(0)) = (Mv, β) for
some β. This is an immediate consequence of

v+(x(t)) = v∗ ⇐⇒ Ω−1(x(0)) = (Mv∗, β), some β (5.17)

valid for all escape orbits x(t). To establish the validity of (5.17) recall that
the free flow (or the Dollard flow) does not change the momentum component.
Write Ω−1(x(0)) = (Mv, β), for some v, β. Let pr1 denotes the projection onto
the momentum factor. Then we have

Mv = pr1Ω−1(x(0)) = pr1Ω−1(x(t)) = lim
t→∞

pr1Ω−1(x(t))

according to the conjugacy relation. By (5.1) the momentum component of x(t)
limits to Mv+(x(0)) as t → ∞. On the other hand, by part 3 of the theorem
we are proving - the asymptotic near identity part, see (5.7), the map Ω−1 tends
to the identity along escape orbits such as x(t):

Ω−1(x(t)) = x(t) + o(1), as t→∞.

Indeed, the term qαmin appearing in estimate (5.7) tends to zero like t−α as t→∞.
It follows that limt→∞ pr1Ω−1(x(t)) =Mv+(x(0)), which establishes (5.17).

If Ω−1 is mapped onto F0, then the surjectivity of our map (5.16) would be
immediate. Ω−1 would map Pv onto the space of lines parallel to v according to
(5.17) and the conjugacy relation. And Ω, being the inverse of Ω−1, would be
well-defined with domain all of F0 and would map straight lines onto asymptot-
ically free trajectories lying in F +. We could take x(0)(t) to be Ω(`0(t)) where
`0(t)) = (Mv, vt) corresponds to b = 0. Any x(t) ∈ Pv can be written, up to
translation, uniquely as Ω(Mv, vt + b) for some b ∈ v⊥. Moreover, both Ω and
Ω−1 tend to the identity along escape orbits so that the limit in (5.16) is the
same as the limit achieved using the free flow, and so would yield b = b(x,x(0)),
and completing the proof.

Ω−1 is onto F0 for non-singular potentials V . To see this fact, observe that
we can, in the case of a non-singular potential, form Φ−t(x0) for any t and any
x0. Incompleteness of the backward flow due to collisions was the only thing
which prevented the direct Dollard-Møller map Ω, defined as the limit Φ−T ○ΦT

T,0

as T → ∞, from existing and having domain all of F0. The analysis we used
in part 1 of the current theorem to insure the existence of Ω−1, defined as the
limit of ΦD

0,T ○ Φ̂T as T → ∞, carries through essentially verbatim to yield the
existence of Ω ∶ F0 → F + and that it is the inverse of our Ω−1.

We deal with the case of singular potentials by observing that Ω−1 does not
actually have to be onto, but only onto modulo the flow, in order for the argument
two paragraphs above to work. For any v∗ ∉ ∆ and b ∈ v⊥∗ form (v∗, b) and denote
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its forward Dollard orbit by ΦD
t,0(v∗, b) ∶= yD(t; b), t∗ ≤ t < ∞. Eventually, for t

large enough, we will show that these Dollard orbits lie in the image of Ω−1, and
that moreover Ω−1 is invertible there. Then the entire Dollard ray yD([t∗,∞); b)
will lie in the image of Ω−1 and this will be enough. To this end, fix any relatively
compact neighborhood K of the origin in the full phase space Rdn ×Rdn. Then
there is a t large enough so that Kt ∶= yD(t)+K ⊂ F +

loc ⊂ F +. To see this, observe
that as t increases without bound the estimates of 1.9 must eventually hold since
the qi occurring in the estimate are equal to tv∗, i to leading order while the vi
are v∗,i. It thus follows from Theorem 1.14 that Kt ⊂ F + for all sufficiently large
t. Now, as we saw a few paragraphs above, part 3 (just proved; see also (5.7))
tells us that the map Ω−1 on Kt is of the form Id + ht with ht = o(1) as t→∞.
As soon as t is large enough so that the Ck−1-norm of ht on Kt is less than 1 we
have that Ω−1 is invertible and that yD(t) ∈ Ω−1(Kt)∩Kt. We can let t increase
since the estimates only get better and in this way conclude that the entire future
Dollard ray yD([t∗,∞); b) lies in the image of Ω−1, for some t∗ = t∗(v∗, b). Also
Ω, the inverse of Ω−1 exists along the Dollard ray. This analysis applies to any
b, including b = 0. Now take v = v∗ Take for the ‘origin’ of our trajectory space
Pv the solution x(0)(t) = Ω(yD(t; 0). Then

b(x,x(0)) = lim
t→∞

q(t) − q0(t) = lim
t→∞

pr2(yD(t; b) − yD(t; 0)) = b,

where pr2(p, q) = q is the projection onto configuration space. We have proved
that the map (5.16) is onto.

Finally, to see that the map x↦ b(x,x(0)) of (5.16) determines the trajectory
x up to time translation use that fact that the same map determines the trajectory
up to time translation over on the free side, and that the free and Newtonian
limits are equal since Ω−1 tends to the identity along escaping orbits. ◻

5.4 Remark See also the remark in Dereziński and Gérard [DG, p. 24]
regarding the affine structure of the tangent space and part 4.

5.5 Remark (Derivation of asymptotics (5.1)) Set ΦD
t = ΦD

t,0 so that Ω−1 =
limt→∞(ΦD

t )−1 ○Φt. It follows that for t large we have ΦD
t ○Ω−1 = Φt+o(1). But

Ω−1 tends to the identity along escaping orbits x(t). This yields
ΦD
t (x(T )) = Φt(x(T )) + o(1) for T sufficiently large, t→∞ which is (5.1). ◇

5.6 Remark (Homogeneous potentials)
If V is a (−α)–homogeneous potential, then for every k ∈ N, V is an (α, k)–
potential. So in particular the Dollard-Møller transformation is C∞–smooth. ◇

5.7 Earlier results
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1. As we have indicated above, the assumption α ∈ (1/2,1] in Theorem 5.3 can
be relaxed, by generalizing the two-body technique from Herbst [He]. The
price to be payed is a Dollard dynamics that is more involved than (5.2).

2. Theorem 1 of Saari [Sa] states for the gravitational n–body system that
under a non-oscillation assumption the centers of mass of clusters asymptot-
ically either move like t↦ vt+D log(t)+ o(log(t)), or their mutual distances
are of order O(t2/3). As this allows for non-trivial clusters, Saari’s result is
not contained in the statement of Theorem 5.3. On the other hand, Theorem
5.3 concerns general long range potentials and controls the asymptotics of
the flow, not just of individual orbits.

3. As Lemma 5.8 below shows, orbits with equal asymptotic momentum p+

synchronize their relative positions, although their momenta p̃ approach p+

only slowly ( p̃(t)−p+ = O(t−α) ). See also Herbst [He, Lemma II.2] for the
case of potential scattering. ◇

5.8 Lemma (Orbits with equal asymptotic velocity)

For a long range potential V , consider initial conditions x
(i)
0 ≡ (p(i)0 , q

(i)
0 ) ∈ F̂ ±

(i = 1,2), whose asymptotic momenta p+(x(i)
0 ) respectively p−(x(i)

0 ) coincide.
Then

Ω−1,±(x(2)
0 ) −Ω−1,±(x(1)

0 ) = (0 , lim
t→±∞

(q(t, x(2)
0 ) − q(t, x(1)

0 ))). (5.18)

In particular, the limit on the right in (5.18) is finite when the x
(i)
0 yield solutions

having the same asymptotic velocities (or momenta).

5.9 Remark (Difference between long range and short range case)

Note that the limits limt→±∞ (Φt(x(i)
0 )−ΦD

t,0 ○Ω∗,±(x(i)
0 )) do not exist for (−α)–

homogeneous potentials and α ∈ (0,1), see Appendix C. ◇

Proof of Lemma 5.8: With a± from (3.11) and Ωt from (5.15) we have

(0, a±) (1)= lim
t→±∞

(p(t, x(2)
0 ) − p(t, x(1)

0 ) , q(t, x(2)
0 ) − q(t, x(1)

0 ))
(2)= lim

t→±∞
(ΦD

t,0 ○Ω−1
t (x(2)

0 ) −ΦD
t,0 ○Ω−1

t (x(1)
0 ))

(3)= lim
t→±∞

(Ω−1
t (x(2)

0 ) −Ω−1
t (x(1)

0 )) def.= Ω−1,±(x(2)
0 ) −Ω−1,±(x(1)

0 ) ,

since
● By assumption p±(x(i)

0 ) = limt→±∞ p(t, x(i)
0 ) coincide, and by Lemma 3.5

a± = limt→±∞ (q(t, x(2)
0 ) − q(t, x(1)

0 )) exists, proving (1).
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● Identity (2) follows from ΦD
t,0 ○Ω−1

t = ΦD
t,0 ○ΦD

0,t ○ Φ̂t = Φ̂t, see (5.9).
● The Dollard dynamics ΦD, see (5.2), does not change momentum, which im-
plies equality of the first components in (3). Concerning the second components,

Q( − t, p(t, x(i)
0 )) = q(t, x(i)

0 ) −M−1p(t, x(i)
0 )t − ∫

t

0
∇pV (⟨s⟩M−1p(t, x(i)

0 ))ds

and ∥p(t, x(2)
0 ) − p(t, x(1)

0 )∥ = O(∣t∣−1−α), see (3.12). So

Q(− t, p(t, x(2)
0 )) − q(t, x(2)

0 ) = Q(− t, p(t, x(1)
0 )) − q(t, x(1)

0 ) + O(∣t∣−α),

proving (3). ◻

Finally we prove a property special to (−1)–homogeneous potentials: the
existence of the Dollard-Møller transformation and of asymptotes. This property
does not extend to (1, k)–potentials or to (−α)–homogeneous potentials, 0 <
α < 1, as counterexamples on the half-line show.

5.10 Proposition (Asymptotes for (−1)–homogeneous potentials)
Let V be a (−1)–homogeneous potential and ΦD

●,● its Dollard flow (5.2).

Then for all initial conditions x0 ∈ F̂ ± there exist unique X±
0 ∈ F0 with

lim
t→±∞

(ΦD
t,0(X±

0 ) − Φ̂t(x0)) = 0.

In fact, X±
0 = Ω∗,±(x0).

Proof:
The proof crucially relies on Appendix B. We show the result for the limit t→ +∞
and omit the superscript ± of X±

0 . To make clear that α = 1 is the unique power
with the described property, we first allow for α–homogeneous potentials with
α ∈ (1/2,1].
We set x(t) ≡ (p(t), q(t)) ∶= Φ̂t(x0) and X(t) ≡ (P (t),Q(t)) ∶= ΦD

t,0(X0) for
the Dollard flow with initial conditions X0 ∶= Ω∗,+(x0) and show that the limit
limt→+∞ (X(t) − x(t)) exists iff α = 1.
For all t ∈ R we have P (t) = p+(x0) = limt→+∞ p(t). So we must consider

F (t) ∶= Q(t) − q(t) = Q0 + v+(x0)t + ∫
t

0
∇p+V (⟨s⟩M−1p+(x0))ds − q(t)

= Q0 + v+(x0)t + fα(t)M−1∇V (v+(x0)) − q(t) ,
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(See Appendix B.) Its time derivative equals for t > 0

Ḟ (t) = v+(x0) + ⟨t⟩−αM−1∇V (v+(x0)) − q̇(t)

=M−1[∫
∞

t
∇V (q(s))ds + ⟨t⟩−α∇V (v+(x0))]

=M−1[∫
∞

t
∇V (v+(x0)s +O(s1−α log(s)))ds + ⟨t⟩−α∇V (v+(x0))]

=M−1[∫
∞

t
∇V (v+(x0)s)ds + ⟨t⟩−α∇V (v+(x0))] + O(t−2α log(t))

= [⟨t⟩−α − α−1t−α]M−1∇V (v+(x0)) + O(t−2α log(t)).

We used (−α)–homogeneity of V in the second to last equation. To avoid a dis-
tinction of cases, we kept an O(log(t)) term, that is unnecessary if α ∈ (1/2,1).

So if α = 1, then the first term is of order O(t−3), and only in this case

limt→+∞ (Q(t) − q(t)) exists. Subtracting this limit from Q0, if non-zero, gives
the unique initial conditions of the Dollard flow that yield an asymptote.

However, for α = 1 we have limt→+∞ (Q(t) − q(t)) = 0: We just proved that
the difference of the momentum p(t) (which equals the momentum component of
Ω∗,+
t (x0)) and of P (t) is of order O(t−2 log(t)). So the difference of the positions

of the time t Dollard flow with initial conditions (P0,Q0) ∶= X0 = Ω∗,+(x0) and
(Pt,Qt) ∶=Xt ∶= Ω∗,+

t (x0) is

Q(t) − (Qt + tM−1p(t) + f1(t)∇p(t)V (M−1p(t)) (5.19)

= [Q0 −Qt] + [v+(x0) −M−1p(t)]t

+ sinh−1(t)[∇p+(x0)V (M−1p+(x0)) − ∇p(t)V (M−1p(t))].

By definition of the Dollard-Møller transformation limt→∞[Q0−Qt] = 0, whereas
[v+(x0) −M−1p(t)]t = O(t−1 log(t)), and

sinh−1(t)[∇p+(x0)V (M−1p+(x0)) − ∇p(t)V (M−1p(t))]= O( log(t) ⋅ t−2 log(t)).

So the difference (5.19) has limit zero. ◻

6 On the scattering relation and map

When we replace limits t→∞ by t→ −∞ we arrive at the analogous objects for
backward time, such as

v−(x0) = lim
t→−∞

q(t;x0)/t,
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in definition 1.6. In this way we arrive at the backward time analogue of being
“free”, which is to be in the set

F − ∶= {x ∈ P ∶ the solution through x is backward free},

and the backward Möller transform

Ω− ∶= lim
t→−∞

Φ−t ○Φ0
t ∶ P ⇢ P.

If x0 ∈ F − ∩ F + then both v+(x0) and v−(x0) are defined, which leads us to
the scattering relation ∼s on Rdn /∆ under which v− ∼s v+ if and only if there
exists an x0 ∈ F − ∩ F + such that v−(x0) = v− and v+(x0) = v+. Borrowing from
quantum mechanics, the “S-matrix” or scattering map is defined by

S ∶= Ω−1
+ ○Ω−.

S takes an “initial condition” (p−,C−) at time t = −∞ to an x0 ∈ F − ∩ F + and
then takes this x0 to the (p+,C+) at t = +∞ to which its solution corresponds.
Observe that p± =Mv±(x0) so that the projection of the graph of the scattering
map onto its momentum components p−, p+ yields the scattering relation (times
the mass matrix M). We will leave this work to future researchers or future
times.

6.1 Remark (Manifold at infinity)
For an alternate construction of the scattering map which is valid for long range
potentials and in particular for the Newtonian potential, see [DMMY]. In this
version S is defined by adding a manifold at infinity and identifying the asymptotic
velocities v−, v+ with equilibrium points at infinity. ◇

Appendices
In these appendices we go over some aspects of Dollard flows and the induced

transformations in a more leisurely fashion. Hamiltonians for homogeneous po-
tential are computed in Appendix B. There we get two interesting surprises: first,
that a solution to the Dollard dynamics admits an asymptote if and only if the
initial velocity a = M−1p is a central configuration in the sense of celestial me-
chanics. The second surprise is the appearance of hypergeometric functions. In
Appendix C we show that for 0 < α < 1 one can actually define two Dollard
dynamics. One admits asymptotes but no Møller transformation. The other,
essentially the one we use, admits no asymptotes but does yield a Møller trans-
formation. For α = 1 these two are equal, and this happy coincidence gives the
method more power here. See Proposition 5.10.
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A Precursors to Dollard-Møller

We explore two alternatives to the Møller transformation, by way of examples.

A.1 Example (Kepler-Møller transformation for the n–center problem)
After regularization, the motion of a single particle in the n–center potential
V (q) ∶= −∑n

k=1
Zk

∥q−sk∥
with Zk ∈ R and sk ∈ R3 leads to a complete, smooth flow

Φ. By comparing the n-center flow with the regularized flow Φ(K) of the Kepler
Hamiltonian H(K)(p, q) ∶= 1

2∥p∥2− Z∞
∥q∥ with Z∞ ∶= ∑n

k=1Zk, we can define a mod-

ified Møller transformation which exist for all initial values x with H(K)(x) > 0,
and which is smooth. See [Kn, section 6]. ◇

In the case of the gravitational n–body problem we do not know of any time-
independent comparison Hamiltonian dynamics which yields an explicit integrable
flow and also yields a well-defined Møller transformation.

A.2 Example (Asymptotes and Galilean boosts)
A positive asymptote for a solution curve t ↦ q(t, x) to Newton’s equations
is, by definition, an affine line L+ ⊆ Rdn in configuration space whose distance
minq̃∈L+ ∥q(t)− q̃∥ to the solution curve vanishes as t→ +∞. In a similar manner
we define a negative asymptote L− by insisting its distance to the solution goes
to zero as t→ −∞. Assuming that the asymptotic velocities v±(x) of a solution
exist and are not zero, then limt→±∞ ∥q(t, x)∥ = ∞, and if an asymptote L exists,
it is necessarily unique. It is often the case that the asymptotes exist:

● Solutions corresponding to short range potentials V in the free region F +

(definition 1.6) always have asymptotes. This follows from the existence of
inverse Møller transformation, proven in Theorem 3.3.3.

● Although the Kepler potential (or Newtonian 2-body problem) is not short
range, in the center of mass coordinates every Kepler hyperbola has asymptotes
in both directions.

● Similarly, a particle moving along a bi-hyperbolic orbit under the influence
of the gravitational or electrostatic potential due to n centers admits both
positive and negative asymptotes, see [Kn, section 6].

The space of oriented affine lines in Euclidean Rk is naturally diffeomorphic to
the cotangent bundle of the sphere Sk−1, and in particular can be equipped with
a symplectic form. For an n-body problem in d-dimensions, we have k = nd
and may try to construct a substitute for the Møller transformation by sending
L−(x0) ↦ L+(x0) ∈ T ∗Sk−1, where L±(x0) are the positive and negative asymp-
totes of the initial condition x0. With some luck, L±(x0) might exist for all
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x0 ∈ F + ∩ F − and we would then have our scattering map as a map between
open subsets T ∗Sk−1, a symplectomorphism even if the asymptotics of solutions
depended sufficiently smoothly on the initial condition x0. See for example [Kn,
section 16].

Galilean boosts destroy the existence of asymptotes, so that we cannot ex-
pect asymptotes to exist for general long range potentials. To see this destruction
phenomenon, take for simplicity n = 2, d = 1 and m1 = m2 = 1. The Newtonian
two-body equations read q̈1 = (q2 − q1)/r3, q̈2 = (q2 − q1)/r3 with r = ∣q1 − q2∣.
The reduced mass is µ = 1/2 so that the corresponding Kepler problem becomes
ẍ = −2x/∣x∣3, x = q1 − q2. A hyperbolic solution q(t) = (q1(t), q2(t)) with asymp-
totic energy 1 in the center of mass frame q1 + q2 = 0 will have asymptotics
q1(t) = t + 2 log(t) + c + o(1), q2(t) = −t − 2 log(t) − c + o(1).
Apply the Galilean boost (qi, t) ↦ (qi + tv, t) to this solution to obtain a new
two-body solution q̃ = (q̃1, q̃2) whose asymptotic expansion is

q̃1(t) = t + vt + 2 log(t) + c + o(1),
q̃2(t) = −t + vt − 2 log(t) − c + o(1).

Now, the signed distance between a point Q = (x, y) and a line L ⊆ R2 is given
by the affine expression d(Q,L) = u ⋅ Q + e = ax + by + e where u = (a, b) is
the unit vector perpendicular to the direction of L and where e is the distance
between L and (0,0). Consequently the signed distance between our putative L
and our moving solution (q̃1(t), q̃2(t)) must have the form

a(t + vt + 2 log(t)) + b(−t + vt − 2 log(t)) + e + o(1).

Expanding out we find that this signed distance has asymptotic expansion
(a − b + 2v)t + 2(a − b) log(t) + e + o(1). For this distance to tend to zero with
t we must have that a − b + 2v = 0 as well as a − b = 0 which is impossible if
v ≠ 0. ◇

The latter example shows that we cannot use asymptotic affine lines to model
scattering for long range potentials. We do not know how to use a time indepen-
dent model flow as a replacement to free flow, or the Kepler flow of the previous
example either.

B Dollard and central configurations for homo-
geneous potentials

Take V to be one of the power law potentials of homogeneity −α, α ∈ (1/2,1],
as defined by (3.13). These potentials are strictly long range, that is, they are
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long range and not short range.2 The main interest is of course in the case α = 1,
including gravitational or electrostatic interactions.

We first note that, although the potential V is unbounded in our case, the
statements of Theorem 3.3 concerning long-range pair interactions apply, since
for any k ∈ N the norms (2.3) are still finite for these homogeneous potentials.

The proper Dollard Hamiltonian V (⟨t⟩M−1p) equals

H̃D
t (p, q) = ⟨t⟩−α ∑

1≤i<j≤n

Ii,j
∥vi − vj∥α

(t ∈ R), (B.1)

and for W , defined in (5.3), we explicitly get

∫
t

0
∇pV (⟨s⟩M−1p)ds = ∫

t

0
⟨s⟩−α ds ∇pV (M−1p) = fα(t) ∇pV (M−1p),

with fα ∈ C∞(R,R), fα(t) ∶= t 2F1 (1
2 ,

α
2 ; 3

2 ;−t2) being odd, and 2F1 denoting

the hypergeometric function. For α = 1 this simplifies to f1(t) = sinh−1(t).
Moreover,

∇pV (M−1p) = ( ∑
k∈N∖{1}

−αIk,1(vk−v1)

m1∥vk−v1∥α+2
, . . . , ∑

k∈N∖{n}

−αIk,n(vk−vn)

mn∥vk−vn∥α+2
).

Recall the following definition, which actually does not demand that the
potential be homogeneous.

B.1 Definition A vector x ∈ Rdn /∆ is called a central configuration if it is
linearly dependent with respect to M−1∇V (x).

We see from the definition (5.3) of W and the last formulae above that for these
(−α)–homogeneous potentials the Dollard dynamics has an asymptote in the
sense of Example A.2 if and only if v is a central configuration.3

C Dollard dynamics

The point of this appendix is to show that a Dollard dynamics cannot both lead to
asymptotics for the scattering solution and existence of Møller transformations.
Our work here follows the ideas of Herbst [He].

For α = 1 the Hamiltonian (B.1) is a classical analogue of the quantum ansatz
introduced by Dollard in [Do]. For the potential scattering of two particles,

2The (−α)–homogeneous potentials with α > 1 are of short range. So the time-independent
kinetic Hamiltonian K can be used for defining the Møller transformations.

3This has been noted independently by Alain Albouy (private communication with A.K.)
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Herbst translated Dollard’s ideas to the classical case and generalized them to
long range potentials in his interesting article [He]. See also [DG, section 1.12].

Herbst actually describes two different natural definitions of a Dollard Hamil-
tonian for (−α)–homogeneous potentials, when α ∈ (0,1). We proceed to de-
scribe and analyze these in the one-dimensional case (d = 1).

So consider the Hamiltonian flow of H ∶ T ∗R+ → R, H(p, q) ∶= 1
2p

2 + V (q)
with V (q) ∶= I/qα. For initial conditions x0 = (p0, q0) with velocity p0 > 0
and h ∶= H(p0, q0) > 0 the asymptotic velocity p+ equals

√
2h. By assuming

α ∈ (1/2,1), we avoid the necessity of multiple iterations of integral equations,
which would only blur the basic phenomenon.

As q̈ = αIq−1−α, in the large time asymptotics the solution has the form

q(t;p0, q0) = p+t −
I ((q0 + p+t)1−α − q1−α

0 )
(1 − α)(p+)2

+ q0 + δqα(p+, q0) + O(t1−2α), (C.1)

for α ∈ (1/2,1), respectively

q(t;p0, q0) = p+t −
I

(p+)2
log(1 + p+t/q0) + q0 + δq1(p+, q0) + O(t−1 log(t))

for α = 1, with limq0→∞ δqα(p+, q0) = 0.

● We apply Herbst’s second method, leading to a Dollard type Møller transfor-
mation (Theorem III.1 of [He]). Thus we obtain a sequence of time dependent

Hamiltonians H
(k)
t (p) ∶= 1

2p
2 +U (k)(p, t) for

U (0)(p, t) ∶= 0 , U (k+1)(p, t) ∶= V (pt + ∫
t

0 D1U (k)(p, s)ds) ,

independent of q but dependent on the asymptotic velocity p. So

U (1)(p, t) = I

(pt)α , U (2)(p, t) = I (pt(1 − αI(pt)
−α

(1 − α)p2
))

−α

.

For α ∈ (1/2,1) the solutions of the Hamiltonian equations for H(k) are

q(0)(t;p+, q0) = p+t + q0 , q(1)(t;p+, q0) = p+t −
α

1 − α
I

(p+)1+α
t1−α + q0 ;

(C.2)
q(k) for k ≥ 2 give corrections to q(1) with negative asymptotic order in t.

Now if one compares q(1) in (C.2) with the asymptotics (C.1) of the true
solution, then one notices in the term asymptotic to a multiple of t1−α an
additional factor α.
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Without much calculation, one sees that the inverse Møller transform (Ω+)−1

exists for initial condition x0 ∶= (p0, q0) with q0 ∶= 0+: Then by (C.1) the
solution of the initial value problem with Hamiltonian H equals

p(t;x0) = p+ −
I

(p+)1+α
t−α +O(t−2α) ,

q(t;x0) = p+t −
I

(1 − α)(p+)1+α
t1−α + δq +O(t1−2α) .

Note that by our assumption α ∈ (1/2,1) the function t↦ t−2α is in L1([1,∞)).
For x1 ∶= (p1, q1) we have by (C.2)

q(1)(−t;x1) = −p1t +
αI

(1 − α)p1+α
1

t1−α + q1. (C.3)

Setting x1 ∶= (p(t;x0), q(t;x0)), we get convergence of (C.3) as t→ +∞.

● We now apply Herbst’s first method, leading to a solution whose difference
to q(t;p0, q0) converges as t → ∞ (Theorem II.1 of [He]). So we iteratively
define functions z(k) of time t and asymptotic momentum p by setting

z(k)(0, p) ∶= 0 , ż(0)(t, p) ∶= p and ż(k+1)(t, p) ∶= p − ∫
∞

t
F (z(k)(s, p))ds,

with force F (q) ∶= −∇V (q) = αIq−1−α. We obtain z(0)(t, p+) = p+t and

z(1)(t, p+) = p+t − 1

1 − α
I

(p+)1+α
t1−α. (C.4)

If we compare z(1) from (C.4) with (C.1), we see that the factors of the
terms diverging as t → +∞ agree. So here the solution (C.1) has a limit
limt→∞ (q(t;p0, q0) − z(1)(t, p+)); the same is true for the time derivatives.
However, for (C.2) the corresponding limit does not exist if α < 1.

Due to the appearance of the regularization ⟨t⟩ of ∣t∣, the Hamiltonian dynamics
generated by our Dollard Hamiltonian (B.1) does not coincide with the ones of
Herbst’s first or second method. ◇

So we have seen that for general long range potentials a Dollard dynamics
cannot both lead to asymptotics for the scattering solution and Møller transfor-
mations.

A comparison of the α–dependence of q(1) in (C.2) and of z(1) in (C.4) as
α↗1 suggests that both properties could coincide for α = 1, the Kepler potential.
This is indeed the case, as we see in the body of the paper, in Proposition 5.10.

Acknowledgments. The authors thank the two referees for their suggestions
to improve the manuscript.

42



References

[Ar] V. Arnold: The cohomology ring of the colored braid group. Mathematical
Notes of the Academy of Sciences of the USSR 138, 138–140 (1969)

[Cha] J. Chazy: Sur l’allure du mouvement dans le problème des trois corps
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[DG] J. Dereziński, C. Gérard: Scattering Theory of Classical and Quantum N–
Particle Systems. Texts and Monographs in Physics. Berlin: Springer 1997

[Do] J. Dollard: Asymptotic convergence and the Coulomb interaction. J. Math.
Phys. 5, 729 (1964)

[El] J. Elstrodt: Maß- und Integrationstheorie. Berlin: Springer 2009

[FO] G. Fusco, W. M. Oliva: Integrability of a System of N Electrons Subjected
to Coulombian Interactions. Journal of Differential Equations 135, 16–40
(1997)

[Ge] J. Gerver: Noncollision singularities: do four bodies suffice? Experimental
Mathematics 12 187–198 (2003)

[Gu] E. Gutkin: Continuity of scattering data for particles on the line with di-
rected repulsive interactions. Journal of Mathematical Physics 28, 351–359
(1987)

[He] I. Herbst: Classical Scattering with Long Range Forces. Commun. Math.
Phys. 35, 193–214 (1974)

[Hu1] W. Hunziker: The S-Matrix in Classical Mechanics. Commun. Math. Phys.
8, 282–299 (1968)

[Hu2] W. Hunziker: Scattering in Classical Mechanics. In: Scattering Theory
in Mathematical Physics. Editors: J. A. Lavita, J.-P. Marchand. NATO
Advanced Science Institutes (ASI) Series C. Vol. 9, 79–96, 1974

[Kn] A. Knauf: The n–centre problem of celestial mechanics for large energies.
Journal of the European Mathematical Society 4, 1–114 (2002)

43



[LL] E. Lieb, M. Loss: Analysis. Graduate Texts in Mathematics 14. Providence,
American Mathematical Society, 2001

[MS] Ch. Marchal, D. Saari: On the Final Evolution of the n–Body Problem.
Journal of Differential Equations 20, 150–186 (1976)

[MV] E. Maderna, A. Venturelli: Viscosity solutions and hyperbolic motions: a
new PDE method for the N -body problem. Annals of Mathematics 192,
499–550 (2020)
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