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The onset of dissipation in a flowing superfluid has been the subject of numerous investigations.
Motivated by recent experiments, we theoretically analyze the analogous phenomenon for a one-
dimensional ”quantum fluid of light” which is resonantly driven, and exhibits bistability. The flow
is found to abruptly change multiple times when the fluid velocity or the potential strength are
increased. In contrast to the classical Landau transition to a time-dependent flow, the transitions
take place between stationary states and involve the fluid bistability in an essential way.

It is well-known since the classical analysis of Landau
that superfluids exhibit a critical velocity at which dis-
sipation sets in. The discovery of Bose-Einstein conden-
sation in cold atomic vapors has allowed detailed studies
of superfluidity [1]. The Landau transition and defect
emission in the flow past an obstacle have been exper-
imentally observed with the creation of vortices [2], or
gray solitons in a one-dimensional setting [3]. It is well-
described theoretically in the framework of the Gross-
Pitaevskii equation [4–8]. Beyond cold atomic vapors,
exciton-polariton fluids are attracting significant atten-
tion [9], as solid-state devices with a higher condensa-
tion temperature allowed by the exciton-polariton very
low mass. Bose-Einstein condensation has been achieved
in these “quantum fluids of light” [9–11] and superfluid-
ity has been studied numerically [12] and experimentally
[13, 14], including the nucleation of vortices at a critical
flow velocity in the wake of an obstacle [14]. Polaritons
are composite bosons that result from the strong cou-
pling between the excitonic resonance of a semiconductor
quantum well and a microcavity electromagnetic field [9].
In early experiments, the driving field needed to create
polaritons was used either transiently [13] or in a spatially
localized way [14] to avoid interfering with the superfluid
behavior. The short polariton lifetime then restricts the
experiment duration or limits the observations to a lo-
cal region around the pumping spot. In order to bypass
these limitations, it is useful to introduce a support field
away from the strong pumping spot used to create the
polaritons [15]. This new coherently driven regime has
started to be investigated theoretically [11, 15–18] and
experimentally [19–22]. The quasi-resonant drive tends
to lock the phase of the condensate but when the support
field is not too strong, it nonetheless allows the formation

of vortices [20] and dark solitons [21, 22]. However, the
dynamical properties of this driven-dissipative conden-
sate and their dependence on the fluid bistable character
[23] remain to be better understood [15, 20–22].

Here, we analyze the flow past an obstacle of a reso-
nantly forced condensate in the bistable regime [11, 15,
17, 20–22]. We focus on the one-dimensional case which
is the easiest to theoretically analyze. We find, as for
conventional superfluids, that a sudden flow change can
occur in the wake of the obstacle when the fluid velocity
is increased or, when the obstacle strength is increased at
fixed velocity. However, the characteristics of this tran-
sition and of the resulting flow are found to be quite
different from the Landau transition of a superfluid and
depend in an the essential way on the fluid bistability.

We consider the fluid described by the following gen-
eralized Gross-Pitaevskii equation (GGPE)

i~∂tψ =
−~2

2m
∂2xψ+

[
V (x)− ~∆− i~γ

2
+ g|ψ|2

]
ψ+Feikpx.

(1)
In the context of exciton-polariton microcavity physics,
Eq. (1) provides an effective description of a driven lower
polariton field [9, 11], with the polariton-polariton repul-
sive interaction accounted by the constant g > 0. Ad-
ditional terms as compared to the usual GPE arise from
the coherent drive and dissipation [9, 11]. Quasi-resonant
pumping is characterized by its amplitude F , its momen-
tum kp, produced by a slight tilt of the driving laser beam
with respect to the cavity plan and by the detuning ∆
between the frequency of the driving field and the bottom
of the lower polariton band. Dissipation is described by
the rate γ > 0 arising from the polariton finite lifetime.
The potential V (x) models a localized obstacle. It is our
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main aim to characterize its effect on the fluid flow de-
scribed by Eq. (1). It is worth noting that our results are
also relevant for nonlinear optics where Eq. (1) is known
as the Lugiato-Lefever equation [24] and describes wave
evolution in a cavity filled with a nonlinear medium (see
e.g. [25] and ref. therein).

The explicit x-dependence in Eq. (1) can be eliminated
by defining

ψ =
√

~γ/2g φ(x) exp(ikpx) (2)

The function φ then obeys the equation

i∂τφ = −1

2
∂yyφ− ik0∂yφ−

[
δ(y) + i− |φ|2

]
φ+ f (3)

where we have introduced the dimensionless variables
y = x

√
mγ/2~, τ = tγ/2, and constants, k0 =

kp
√

2~/mγ, f = F
√
g(2/~γ)3/2 , and defined the func-

tion

δ(y) = δ0 −
2

~γ
V (y), with δ0 =

2

~γ

[
~∆− (~kp)2

2m

]
(4)

Before considering the effect of a localized obstacle,
we briefly recall some properties of the fluid described
by Eq. (3). When V (y) = 0 and δ(y) = δ0, Eq. (3) has
constant solutions in space and time with a homogeneous
density ρ = |φ|2 which can readily be seen to simply obey,

B(ρ) := [(ρ− δ0)2 + 1]ρ = f2 (5)

Two cases can be distinguished. When δ0 < 0, the
function B(ρ), defined in Eq. (5), is obviously monoton-
ically increasing from 0 to ∞ with the density. As a
consequence, the density ρ is an increasing function of
the forcing amplitude f . When δ0 > 0, B(ρ) can be
non-monotonic with multiple homogeneous solutions for
a given forcing. A simple analysis of Eq. (5) shows that
this actually happens when δ0 >

√
3. An example of

this S-like dependency of the density with the driving
field is plotted in Fig. 1a-insert and leads to bistability
in a window of intermediate forcing strengths i.e. for

B(ρ+) < f2 < B(ρ−) with ρ± = 1
3

(
2δ0 ±

√
δ20 − 3

)
.

This bistability for sufficiently strong blue detuning is
well-known in nonlinear optics [9] and has been demon-
strated for polaritons in microcavities [23]. While in
the low-density (LD) regime self-interactions are unim-
portant, the high-density (HD) regime with strong self-
interaction allows the observation of superfluidity [26] in
a polariton fluid.

Having recalled the basic features of the homogeneous
state, we proceed and describe our simulations of Eq. (3)
with a localized repulsive (V (y) > 0) gaussian potential

V (y) =
~γ
2
um exp[−(y/σ)2] (6)

We focus on the bistable parameter regime with δ0 >
√

3
and the forcing f in the appropriate intermediate interval

(see Fig. 1a). The fluid density is set on the HD state up-
stream of the obstacle. In an experimental setting, this
would result from a strong driving field in a far upstream
local region, as proposed in [15] and experimentally real-
ized in e.g. [21]. For a low potential amplitude, the flow
is steady, with the density decreasing as expected in the
region of the repulsive potential, and returning smoothly
to the HD state in the wake of the obstacle, as shown
in Fig. 1a. An increase in the potential amplitude um
produces a transition in the flow, as shown in Fig. 1b,
reminiscent of the usual onset of dissipation in a flow-
ing superfluid. However, the character of the transition
appears to be very different from the classical Landau
transition. Instead of the repeated emission of gray soli-
tons in one dimension [3, 5], the flow restabilizes after a
transient. It results again in a stationary flow but with
the fluid density in the LD state downstream of the ob-
stacle, as shown Fig. 1b. In other words, for the driven-
dissipative GGPE, the critical velocity signals a meta-
morphosis of the steady flow instead of the appearance
of a time-dependent flow. That the flow density down-
stream of the obstacle lies in the LD state provides a first
hint that fluid bistability is playing a significant role in
the observed transition. This is further suggested by the
fact that, as in previous works [15, 21], a transition is not
observed when the driving amplitude f is strong enough
for the fluid to be in the monostable HD regime i.e. when
f > f+ in Fig. 1a. Simulations performed for potential
amplitudes very close to the transition (Fig.1c,d) allow
one to better see how the metamorphosis of the steady
flow pattern is taking place. When the amplitude of the
potential is close to, but below, the critical potential am-
plitude, the obstacle is followed by a fluid region close
to the intermediate density (ID) unstable state (Fig.1c).
This region terminates by a front that joins the ID state
to the more downtream HD state. As the critical po-
tential amplitude is varied and the critical amplitude is
approached, this front stands farther and farther down-
stream from the obstacle, with an increasing region of
the fluid downstream of the obstacle in the unstable ID
state. For potential with an amplitude slightly greater
than the critical one, the complementary process is ob-
served, as shown in Fig.1d. As for subcritical potentials,
the obstacle is followed by a fluid region in the unsta-
ble ID state but which terminates by a front joining it
to the stable LD state. With increasing potential ampli-
tude, this front stands closer to the obstacle. It reaches
the obstacle and disappears, as soon as the potential am-
plitude departs by a small amount from the critical one.
An important conclusion from these observations is that
the critical solution is such that the fluid downward wake
exactly stands at the unstable ID state.

In order to more fully understand this transition and
the role of bistability in the stationary flow metamorpho-
sis, we consider the parameter regime suitable for theo-
retical analysis, provided by an obstacle that varies on a
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FIG. 1: Numerical simulations of Eq. (3). (a) Insert : fluid
density ρ vs. forcing f as described by Eq. (5). In the
parameter regime considered, there are three homogeneous
steady states, stable HD (solid blue circle) and LD states
(solid green square) as well as an unstable ID one (solid red
diamond). (a)& (b) The fluid is injected in the HD state.
The curves represent the fluid density at different times and
have been shifted with time to highlight the stationarity of
the flow. (a) for a small potential amplitude um = 2, the
flow is steady and is in the HD state in the wake of the
obstacle at y � 0. (b) For a larger um = 6, the flow is
still stationary, but is in the LD in the wake of the obstacle.
(c)&(d)Detail of the transition. (c) um = 5.50 (d) um = 5.501
(see the main text for a discussion). Other parameters are
δ0 = 6.2, f = 3.2, k0 = 2.75 which corresponds to the typical
experimental values ~∆ = 0.5MeV, ~γ = 0.1MeV, ~2/m =

1MeV µm2, kp = 0, 616µm−1,
√
gF = 0.036(MeV )3/2. The

potential range is σ = 1 corresponding to 4.5µm, the chosen
unit length.

long length scale, σ � 1 (Eq. (6)). For a slowly varying
obstacle, when the flow is accordingly slowly varying, the
derivative terms in Eq. (3) can be treated perturbatively.
At the lowest order, they can be entirely neglected and
the “adiabatic” solution, φa(y) =

√
ρa(y) exp[iθa(y)],

readily obtained. The fluid density ρa, is linked to the
potential amplitude by Eq. (5) with δ0 simply replaced by
δ(y) (Eq. (4)), which takes into account the influence of
the potential on the detuning. In this adiabatic approx-
imation, solving the quadratic Eq. (5) for δ(y) provides
the implicit relation between the fluid density and the
potential,

δ(y) = ρa(y)±

√
f2

ρa(y)
− 1, 0 ≤ ρa ≤ f2. (7)

As for homogeneous solutions, the solution phase is sim-

ply given as a function of the density

θa(y) = arctan

(
1

ρa(y)− δ(y)

)
(8)

The relation (7) between the density and δ at fixed forc-
ing amplitude f , is plotted in Fig. 2a. It is equivalent
but more convenient for our purpose than the insert of
Fig. 1a, which gives the density as a function of f for fixed
“detuning” δ. A simple calculation shows that Eq. (7) de-
termines the density as a unique function of δ(y) when
f < fc = (4/3)3/4 ' 1.2408 while for f > fc, there is
a range of δ values with multiple possible densities. In
other words, bistability occurs for a range of δ values
when f > fc, as illustrated in Fig. 2a.

Let us now consider, a fluid injection in the HD state,
when the forcing is sufficiently strong for bistability to
occur (i.e. f > fc). As the potential varies with the
position y, δ(y) follows it according to Eq. (4). The den-
sity, as given by Eq. (7), moves along the HD branch
in Fig. 2a. The adabatic solution is already a close ap-
proximation of the flow obtained by numerically solving
Eq. (3), for the gaussian potential of Eq. (6) even with a
rather large amplitude (um = 6) when σ = 4 (Fig. 2b).

We first briefly describe the case of an attractive po-
tential (um < 0). Eq. (7) predicts that the fluid density
goes up the high density branch as V (y) becomes more
negative. The flow should undergo a transition if um is
large enough for the top of the high density branch to
be reached, since the branch cannot be followed beyond
its top. This transition is indeed confirmed in numerical
simulations of Eq. (3) (Fig. S1). As for repulsive poten-
tials, when |um| is larger than the critical one, the flow
is stationary and, above the transition the fluid density
in the wake of the obstacle is in the LD state.

How a transition can happen for a repulsive potential
(um > 0) is less obvious. The density of the adiabatic
solution (Eq. (7)) follows the high density branch toward
low density before increasing again in the wake of the ob-
stacle, as shown in Fig. 2a. This appears a smooth pro-
cess for all potential strengths um. It is not clear why this
would result in a transition of the flow profile at a criti-
cal amplitude um and what this critical amplitude would
be. In particular, no hint is provided by computing linear
(i.e. Bogoliubov) excitations [18, 19] around the local ho-
mogeneous fluid density. However, one can note that in
the adiabatic approximation, all derivatives are absent
and, as a consequence, the fluid velocity plays no role.
This suggests to go beyond the adiabatic approximation
and treat perturbatively the derivatives terms. Writing
ρ(y) = ρa(y) + ρ1(y) + · · · , θ(y) = θa(y) + θ1(y) + · · · ,
the first corrections to the adiabatic solution of Eq. (7),
(8) are obtained after a short calculation as,

ρ1(y) = − 2k0
B′(ρa)

dρa
dy

, θ1(y) =
k0

B′(ρa)

d[δ(y)− 2θa]

dy
(9)
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where the function B(ρ) is defined in Eq. (5). These
corrections are shown in Fig. 2b and, as expected, they
result in a closer agreement between the analytic approx-
imations and the numerical profiles. More interestingly,
the corrected density profile in the (ρ, b) diagram pro-
vides a clue to the origin of the instability (Fig. 2a). One
observes that the correction (9) produces a departure of
the profile from the high density branch towards the mid-
dle unstable branch when the potential returns to 0, in
the close downward wake of the obstacle. Eq. (9) shows
that this non-adiabatic effect grows with k0 and, it also
grows with the localized potential amplitude um. One
can therefore guess, that, for sufficiently large um or k0,
this leads the flow profile loop in Fig. 2a, to reach the un-
stable density branch in the (ρ, b) diagram and lead to an
instability. While suggestive, this argument is obviously
not rigorous since the perturbative correction (9) cannot
be trusted when it provides a significant correction to the
lowest order result.

In order to obtain a full reduced nonlinear description,
a further asymptotic limit is needed, beyond that of a
slowly varying potential (i.e. σ → ∞). A simple math-
ematical one is obtained by increasing the flow velocity
k0 at the same time as the length scale of the potential
is varied, i.e. taking the limit, σ → ∞, k0 → ∞ with a
fixed ratio κ = k0/σ. Determining the steady solution of
Eq. (3) reduces in this limit to solving the simple system,

κ∂zρ = −2ρ− 2f
√
ρ sin(θ) (10)

κ∂zθ = [δ(z)− ρ]− f cos(θ)/
√
ρ (11)

where z = y/σ. Eq. (10), (11) simply give back for
κ = 0 the adiabatic solution (7),(8) and, perturbatively
for small κ, the correction (9). But, in the asymptotic
limit considered, κ can now take any value. The reduced
system (10),(11) has only first-order derivatives in z. Its
phase-plane can be easily determined (Fig. S2). Eq. (10),
(11) have only one spatially-divergent modes from the
unstable ID at z = +∞. A simple shooting method de-
termines the amplitude of the potential for which this
divergence vanishes and the solution tends at z = +∞
toward the ID branch, as illustrated in Fig. 3a. It brings
however a surprise : for given driving parameters, multi-
ple transitions are found by increasing the localized po-
tential amplitude. The fluid density in the wake of the
obstacle is in the HD state for low potential amplitudes.
At a first critical amplitude, it jumps to the LD state, as
described above. When the potential amplitude is fur-
ther increased, a second transition is found, at which the
fluid density jumps back to the HD state. Further tran-
sitions are found for still higher values of um. The loci
of these transitions are plotted in the (k0, um) parameter
plane in Fig. 3b.

These multiple solutions and the asymptotics of the
u∗m(k0) branches can be understood by considering
Eq. (10), (11) for large κ. In this limit, the evolution

of ρ and θ with z is slow, except for the potential term
δ(z) that evolves on a z-scale of order 1. The density of a
solution of Eq. (10), (11), that starts in the HD state at
z = −∞, does not significantly change when it encoun-
ters the localized potential while its phase rotates by an
angle ∆θ,

∆θ = − 2

~γκ

∫ +∞

∞
dz V (z) = −

√
π um/κ (12)

where the second equality holds for the Gaussian poten-
tial (6). For the solution to end up at z = +∞ in the ID
state, the phase turn ∆θ has to bring it precisely, on one
of the two entering separatrices of the ID unstable state,
as shown in Fig. S2. Namely, ∆θ should be equal to
∆θ1,2−2nπ, n = 0, 1, · · · with θ1 ' −1.844, θ2 ' −4.464
for the parameter values of Fig. 3c. The angle values with
n ≥ 1 correspond to the solution phase making full ro-
tations before reaching one of the two separatrices. The
double series of critical potential amplitudes follows from
Eq. (12),

um = −κ (θ1,2 − 2nπ)/
√
π, n = 0, 1, 2, · · · (13)

Eq. (13) shows that asymptotically um depends linearly
on κ = k0/σ. The slopes given by Eq. (13) for the three
lowest branches are displayed in Fig. 3b together with
the numerically obtained solutions. The two lowest tran-
sition branches merge at κ ' 1.30. The 4th and higher
branches cross and recombine at intermediate κ values,
producing the bifurcation diagram shown in Fig. 3b .

The bifurcation diagram of Fig. 3b holds for the
reduced asymptotic problem (Eq. (10,11)). We have
checked that away from this asymptotic limit, similar di-
agrams are obtained for the GGPE with our reference pa-
rameters (Fig. S3). For potential range σ = 1 or 2, three
transitions are observed upon increase of the local poten-
tial strength um for large enough k0 (e.g. k0 = 6.2 for
σ = 2) and no transitions are observed for small enough
k0 [28] .

In conclusion, we have found that the drive provided
by a constant support field deeply changes the Landau
transition. The stationary flow profile undergoes a meta-
morphosis instead of becoming time-dependent. More-
over, for given flow and pumping parameters, successive
transitions exist at a discrete number of potential am-
plitudes. We have shown that these phenomena can be
described and understood analytically in suitable asymp-
totic regimes. These results certainly suggest a careful
reexamination of the Landau transition in higher dimen-
sions. We also hope that they will motivate experimental
studies of the phenomenon. Finally, we cannot help but
wonder, whether the extended switches of the fluid den-
sity wake induced by a localized obstacle could provide
useful applications in all-optical technology and devices
[27].
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FIG. S1: Transition in the GGPE for an attractive potential. Simulations for two localized potential amplitudes (a) um = �5
(b) um = �6. The density is shown at di↵erent times is (solid black line). The curves have been shifted upward with time to
show the stationarity of the flow. Note that the fluid beyond the obstacle is in the HD state in (a) and in the LD state in (b).
The attractive localized potential is also shown (orange solid line). The other parameters are f = 3.2, �0 = 6.2, k0 = 2.75, � = 1.
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FIG. S2: Phase plane analysis of the reduced asymptotic problem. (a) Phase plane of the homogeneous problem (Eq. (10,11))
(i.e.without the localized potential) showing the three fixed points, HD (blue solid disk), ID (red solid disk), LD (green solid
disk) together with the two entering separatrices (red solid lines) of the ID fixed point and the outgoing ones, ending on the
HD point (blue solid line) or the LD point (green solid line). Several trajectories are also shown ending either on the HD point
(dashed blue line) of the LD state (dashed green line). (b) Same diagram as (a) but showing two critical trajectories of the
reduced problem for  = 6.0 with the localized gaussian potential of amplitude u⇤

m,1 ' 7.328 (dashed red line) and u⇤
m,2 ' 21.34

(dashed-dotted red line), corresponding to the first two transitions when um is increased from 0. The critical trajectories start
in the HD fixed point and they end on the ID fixed point. For each of these transition points, two other trajectories are shown
which end either at the HD point, with um = 6.5 < u⇤

m,1 (dashed blue line) and um = 21.8 > u⇤
m,2 (dashed-dotted blue line), or

at the LD point, with um = 8.0 > u⇤
m,1 (dashed green line) and um = 21.0 < u⇤

m,2 (dashed-dotted green line). It is also shown
a circle of radius equal to the modulus of the HD point (solid black line) centered at the origin (solid black circle) as well as
its intersections (red diamond) with the entering separatrices of the ID point. The phase di↵erence ✓1 and ✓2 between these
intersection points and the HD point are indicated. They provide the asymptotic slopes of the di↵erent transition branches
(see Eq.(13) and the main text). The other parameters are f = 3.2, �0 = 6.2.
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FIG. S3: Results of simulations of the GGPE (Eq. (3)) for f = 3.2, �0 = 6.2 for di↵erent values of the localized potential
amplitude um and momentum  = k0/�. The fluid is injected in the HD state at y ⌧ 0. (a)&(b) The potential range is � = 1
in (a) and � = 2 in (b). The color code indicates the relative density in the wake of the obstacle relative to the density in the
HD state. Flow in the HD state downstream of the obstacle (yellow) correspond to states marked H in Fig. 3b of the main
text for the reduced model. Flow in the LD state downstream of the obstacle (dark blue) corresponds to states marked L in
Fig.3b. Intermediate colors are due to the limited resolution of the numerical procedure used to scan this two-parameter plot.
The figures correspond rather closely to Fig. 3b although � is not large. A di↵erence is that the band H1 terminates and does
not exist at low  values, presumably due to the recombination of the 2nd (H0!L1) and 3rd transition (H1!L1). For higher
values of , the transition lines are close to that of the reduced model. (b)&(c) Close-up on 3 transitions with increasing um

with higher resolution, at k0 = 6.2 and � = 2. Solution densities ((b), solid lines) and phases ((c), dashed lines) are shown for
two values of the potential just below and just above the transition. The fluid in the obstacle wake is either in the HD state
(blue) of the LD state (green). (b1) & (c1) 1st transition with um = 4.85 (HD state) and um = 4.86 (LD state) (b2) &(c2) 2nd
transition with um = 14.16 (LD state) and um = 14.17 (HD state). Note that the 2nd transition is inverted as compared to the
1st, namely the fluid density jumps back to the HD state when um is increased. While the density at y � 1 in the HD states
are the same in (b1) and (b2), the phase is lower by 2⇡ in (c2) as compared to (c1) in agreement with the asymptotic analysis.
The phases of the LD state at z � 1 also di↵er by 2⇡ between (c2) and (c1) while for larger k0 they would the same as in
the asymptotic analysis. This additional phase jump comes from the crossing of a (nodal) line of LD solutions, for which the
density vanishes at a point, when increasing um in the LD region. (b3) &(c3) 3rd transition with um = 14.84 (HD state) and
um = 14.85 (LD state). The transition is analogous to the first one, but with the phases shifted by 2⇡ in the far downstream
wake of the obstacle.


