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Light-induced translation symmetry breaking via nonlinear phononics
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CPHT, CNRS, Ecole Polytechnique, IP Paris, F-91128 Palaiseau, France
(Dated: August 11, 2022)

Light has a wavelength that is usually longer than the size of the unit cell of crystals. Hence,
even intense light pulses are not expected to break the translation symmetry of materials. However,
certain materials, including KTaO3, exhibit peaks in their Raman spectra corresponding to their
Brillouin zone boundary phonons due to second-order Raman processes, which provide a mechanism
to drive these phonons using intense midinfrared lasers. We investigated the possibility of breaking
the translation symmetry of KTaO3 by driving its highest-frequency transverse optic mode QHX at
the X (0, 1

2
, 0) point. Our first principles calculations show that the energy curve of the transverse

acoustic mode QLZ at X softens and develops a double-well shape as the value of the QHX coordinate
is increased, while that of the other transverse acoustic component QLX hardens when the value of
the QHX coordinate is similarly varied. We performed similar total energy calculations as a function
of the QHX coordinate and electric field to extract the nonlinear coupling between them. These
were then used to construct the coupled equations of motion for the three phonon coordinates in
the presence of an external pump term on the QHX mode, which we numerically solved for a range
of pump frequencies and amplitudes. We find that 465 MV/cm is the smallest pump amplitude
that leads to an oscillation of the QLZ mode at a displaced position, hence, breaking the translation
symmetry of the material. Such highly intense light pulses cannot be generate by currently available
laser sources, and they have the possibility to damage the material. Nevertheless, our work shows
that light can in principle be used to break the translation symmetry of a material via nonlinear
phononics.

I. INTRODUCTION

Ultrafast structural control of materials by coherently
exciting their phonons using intense laser pulses is an ac-
tive area of research [1–3]. This field of nonlinear phonon-
ics started when Först et al. realized that a QSQ

2
IR non-

linear coupling between fully-symmetric Raman QS and
infrared QIR phonon modes can cause a displacement of
the lattice along the QS coordinate when the QIR mode
is externally pumped [4]. A limitation of this type of
coupling is the inability to break any crystal symmetry
of a material. Nevertheless, an investigation of this non-
linearity in perovskite ferroelectrics using first principles
calculations has found that this mechanism can be used
to switch their electrical polarization [5], and this theo-
retical prediction has been partially confirmed in subse-
quent experiments [6, 7].

Historically, only cubic nonlinearities between Raman
and infrared phonons were investigated in the context
of ionic Raman scattering [8, 9]. However, first princi-
ples calculations in Ref. [10] showed that a symmetry-
breaking Raman phonon mode QR can have substantial
quartic-order Q2

RQ
2
IR coupling with an infrared phonon

mode. Such a large quartic-order coupling between two
infrared modes has also been calculated in oxide para-
electrics, which has been used to predict light-induced
ferroelectricity [11]. Radaelli has shown that driving
degenerate infrared modes along orthogonal directions
can cause displacement of the lattice along a symmetry-
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breaking Raman mode due to a cubic-order nonlinear-
ity [12], while a separate study has shown that the
symmetry-breaking Raman mode oscillates about the
equilibrium position with the difference frequency when
nondegenerate infrared phonons are driven along or-
thogonal directions [13]. Additional theoretical and ex-
perimental studies have demonstrated that nonlinear
phononics is a useful technique to control the crystal
structure and, hence, the physical properties of materi-
als [14–32]. However, these studies have only focused on
light-induced structural modifications that do not change
the size of the unit cell thus far.

In this paper, we investigate the possibility of break-
ing the translation symmetry of KTaO3 using light by
driving its Brillouin zone boundary phonon modes. This
was motivated by the observation of large two-phonon
peaks due to zone boundary modes in the Raman spec-
trum of this material [33], indicating that these modes
couple significantly to light. We obtained the nonlinear
couplings between the highest-frequency transverse op-
tic (TO) mode QHX and doubly-degenerate components
of the transverse acoustic (TA) mode QLZ and QLX at
the X (0, 12 , 0) point using first principles total-energy
calculations, which show that the TA QLZ mode soft-
ens when the orthogonal TO coordinate QHX has a finite
value. The coupling between the QHX mode and electric
field was obtained from similar total energy calculations.
These were then used to construct coupled equations of
motion for the phonon coordinates. Their numerical so-
lutions showed that the TA QLZ mode can rectify and
break the translation symmetry of the lattice when the
QHX mode is pumped. However, 465 MV/cm is the low-
est pump amplitude that causes the rectification. Beyond
the possibility of sample damage by such an intense pulse,
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the required intensity is also at least an order of magni-
tude larger than that can be produced by currently avail-
able midinfrared laser sources. Nevertheless, our study
demonstrates that light can in principle be used to break
the translation symmetry of crystals through nonlinear
phononics and motivates search for materials that ex-
hibit large two-phonon Raman peaks due zone-boundary
modes.

II. THEORETICAL APPROACH

We used the theoretical approach outlined in Ref. [10]
to study the dynamics of the doubly-degenerate TA
modes of KTaO3 at the X point when its highest-
frequency TO mode at X is externally pumped through
second-order Raman process. This density functional
theory based first-principles approach requires the calcu-
lation of the phonon eigenvectors, which are then used to
calculate the total energy surface V (QHX, QLX, QLZ) as a
function of the high-frequency optical and low-frequency
acoustic modes. The total energy surface is fit with a
polynomial to extract the phonon anharmonicities and
phonon-phonon nonlinear couplings (the full expression
can be found in Appendix A), and these are used to con-
struct the coupled equations of motion for the phonon
coordinates. The coupling between the pumped mode
and light is extracted by calculating the total energy as a
function of the QHX mode and electric field, an approach
previously used by Cartella et al. [34]. The coupled equa-
tions of motion are solved numerically in the presence of
a pump term for the QHX mode to obtain the structural
evolution of the material as a function of time.

We used quantum espresso [35] (QE) for the compu-
tations of the phonon frequencies and eigenvectors and
the total energy surfaces as a function of the phonon
coordinates and electric field. These were performed us-
ing ultrasoft pseudopotentials with the valence orbitals
3s23p64s1 (K), 5s25p65d36s1 (Ta) and 2s22p4 (O) from
the GBRV library [36]. For the exchange and correlation
functional, we chose the PBEsol generalized gradient ap-
proximation [37]. The plane-wave cutoffs for the basis set
and charge density expansions were set to 60 and 600 Ry,
respectively. As we are dealing with an insulator with a
gap, the electronic occupation was set to fixed.

The first step in our calculations was the relaxation of
the unit cell, where we allowed the variation of both the
lattice parameter and the atomic positions. We let the
relaxation process run until the difference in the total en-
ergy between two steps of the self-consistent field (SCF)
cycles was less than 10−10 Ry, the estimated error of the
electronic density (which in our case is calculated as the
electrostatic self energy of the difference between the elec-
tronic densities at the beginning and the end of each step
of the calculation) was below 10−11 Ry, and the compo-
nents of the forces exerted on each atom were smaller
than 10−6 Ry/Bohr. We used a 12× 12× 12 Monkhorst-
Pack k-point grid for the relaxation process. The lattice

parameter obtained was a = 3.98784 Å, in good agree-
ment with the experimental value aexp = 3.988Å [38].

Once we had the relaxed unit cell, we used it for the
computation of the phonon frequencies and eigenvectors
at the Brillouin zone boundary point X (0, 12 , 0), which
was performed using density functional perturbation the-
ory [39] as implemented in QE. The computation of the
dynamical matrix requires a previous SCF calculation
which was performed using an 8× 8× 8 Monkhorst-Pack
k-point grid. Then for the dynamical matrix calculation
we set a threshold for the self-consistent calculation of
10−18 Ry. The diagonalization of the dynamical matrix
was realized using the dynmat utility in QE, thus ob-
taining the eigenvectors and frequencies of the different
phonons.

For the computation of the phonon anharmonicities
and phonon-phonon nonlinear couplings, we used the cal-
culated phonon eigenvectors to create modulated struc-
tures as a function of the QHX, QLX, and QLZ coordi-
nates in 1 × 2 × 1 supercells that are required to sim-
ulate the phonons at the X point, and then calculated
the total energies of these structures. We sampled val-
ues of the phonon coordinates ranging from −3.0 to 3.0
Å
√

u. Steps of 0.025 and 0.1 Å
√

u were used for sam-
pling the total-energy surfaces as a function of two and
three coordinates, respectively. A convergence threshold
of 10−10 Ry for the electronic density in the SCF itera-
tions and an 8× 4× 8 Monkhorst-Pack k-point grid was
used in these calculations. To extract the anharmonic-
ities and nonlinear coupling constants, we fit the calcu-
lated total-energy surfaces with polynomials having only
the symmetry-allowed nonlinear terms using the glm [40]
package as implemented in julia. The extracted coeffi-
cients of the polynomials are given in Appendix A.

We used the modern theory of polarization [41] as im-
plemented in QE to calculate the total energy of this
material as a function of the QHX coordinate and elec-
tric field E and fit the resulting energy surface to the
following expression:

H(QHX, E) =
1

2
Ω2

HXQ
2
HX + c4Q

4
HX + c6Q

6
HX + c8Q

8
HX

+ rE + sE2 + tE4 + αQ2
HXE

2.

(1)

Here the frequency ΩHX and anharmonic coefficients ci
of the QHX mode are those extracted from the previ-
ous total-energy calculations, and s = −1.4829 eÅ2/V,
t = −0.162 eÅ4/V3 and α are the coefficients for the
terms allowed by symmetry for the electric field. The
linear term for E in H(QHX, E) with corresponding cou-
pling coefficient r = −99.696 eÅ occurs due to the use
of periodic boundary condition. We sampled the elec-
tric field from −36 to 36 MV/cm with a step of 0.36
MV/cm and QHX from −3.0 to 3.0 Å

√
u with a step of

0.3 Å
√

u. For these calculations, we used an 8 × 8 × 8
Monkhorst-Pack k-grid. Like in the previous case, the
glm package was used to perform the fit. The polyno-
mial given in Eq. 1 fits the calculated total-energy surface
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well, which is consistent with the fact that the form of
the coupling between the electric field and phonon at the
X point is αQ2

HXE
2 at the lowest order [42]. The fit

gives a value for the coupling constant α = 0.074 e/(V
u). In order to check this method of computing the light-
phonon coupling, we also calculated the coupling of the
electric field to the highest frequency phonons of KTaO3

at the Γ point, obtaining Born effective mode charge of
Z∗calc = 1.03 e/

√
u, which is in good agreement with

the value of Z∗pert = 1.07 e/
√

u calculated using den-
sity functional perturbation theory [11]. We note that
the largest electric field used in the total-energy calcula-
tions are more than an order of magnitude smaller than
the values that cause rectification of the QLZ mode in
the numerical solution of the equations of motion dis-
cussed later. Larger values of the electric field in total-
energy calculations caused oscillations in the SCF iter-
ations. This is a limitation of the currently available
computational method.

The integration of the differential equations required
for the solution of the equations of motion was carried
out using the Strong Stability Preserving method of Ru-
uth, an explicit Runge-Kutta order 3 propagator with
6 stages as implemented in the DifferentialEqua-
tions [43] package from the julia language. The time
range for the propagation was from 0 to 8 ps, with a time
step of 8×10−6 ps. The peak amplitude of the laser pulse
was set to reach at 4 ps. For the initial conditions, we
chose QHX = QLX = QLZ = 0.1 Å

√
u, while their first

derivatives with respect to time were set to 0. In order
to simulate the thermal fluctuations of the phonons, we
added a stochastic term in the form of white noise to the
equations of motion from the start of the propagation
until the pulse reaches its peak. Due to the presence of
this term, the solution obtained will depend on the par-
ticular string of random values generated for each prop-
agation. The criterion that we followed to determine the
outcome of the propagation (in our case, whether or not
there is a rectification of the QLZ mode) was to solve the
equations multiple times under the same pump ampli-
tude and frequency conditions, but with a different seed
for the random number generator for each run. Then we
pick the most probable solution among those obtained,
i. e., the one that occurs the most number of times in at
the end of our propagations. The Fourier transform of
the solutions was obtained using the fftw [44] package
as implemented in julia.

III. RESULTS AND DISCUSSION

The TA and TO modes of KTaO3 at X are doubly de-
generate. The TA mode is the lowest-frequency phonon
at X, whereas there are four TO phonon branches in this
material. Figs. 1(top) and (bottom) show the atomic dis-
placements corresponding to the QLZ and QHX compo-
nents of the TA and highest-frequency TO modes, respec-
tively. The calculated frequencies of these modes are ΩLZ

K

O Ta

Z

Y

K

O Ta

Y

X

FIG. 1. Schematic representations of the phonon modes of
KTaO3 at the X (0, 1/2, 0) point considered in the present
work. (Top) The TA mode component QLZ that has atomic
movements polarized along the z direction. The other de-
generate component of this mode QLX has the same atomic
movements but are directed along the x axis. The TA mode
is the lowest-frequency mode at X in KTaO3. (Bottom) The
highest-frequency TO mode QHX that has atomic movements
polarized along the x direction.

= 61 cm−1 and ΩHX = 509 cm−1, respectively. These are
in good accord with the values inferred from the Raman
experiments of Nilsen and Skinner, where these modes
manifest as peaks at 123 and 1095 cm−1 corresponding
to the doubling of the respective phonon frequencies due
to second-order Raman processes [33]. Both these modes
belong to the irreducible representation X+

5 of the cubic
structure with the space group Pm3m. The QLZ mode
involves displacement of the Ta ions against the O octa-
hedra along the z direction. The QHX mode causes one
set of planar O ions to move against the Ta ions in the
x direction, while another set of planar O ions remain
stationary. This mode also displaces the apical O ions
along the x direction against the movement of the planar
O ions. Since these modes have the wavevector (0, 12 , 0),
the atomic displacements within the adjacent unit cells
are out-of-phase along the y direction, thus breaking the
translation symmetry. The distorted structure has the
orthorhombic space group Pmma.

We calculated the total energy as a function of theQHX
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FIG. 2. Total energy as a function of the QLZ phonon
coordinate for different values of the QHX phonon coordinate.
For visual clarity, the zero energy point has been chosen so
that the curves coincide at QLZ = 0.

and QLZ coordinates, and Fig. 2 shows five energy curves
from this energy surface V (QHX, QLX = 0, QLZ). We can
see that the total energy as a function of the QLZ coordi-
nate for a fixed value of the QHX coordinate is symmetric
upon the transformation QLZ → −QLZ. The QHX and
−QHX energy curves also overlap with each other. This
implies that the energy surface is an even function of
both QLZ and QHX, and these coordinates occur only
with even powers in the polynomial fit of the energy sur-
face. This is consistent with the symmetry requirement
that the coupling terms occur with even powers of the
coordinates when they are orthogonal to each other.

The energy curve of the QLZ coordinate softens when
the QHX coordinate has a finite value, and it develops a
double-well shape at large values of the QHX coordinate.
This is reflected in the negative sign of the coefficients
in the nonlinear coupling terms g1Q

2
HXQ

2
LZ, g2Q

4
HXQ

2
LZ,

and g3Q
2
HXQ

4
LZ in the fit of V (QHX, QLX = 0, QLZ) (see

Appendix A). The total force experienced along the QLZ

coordinate is given by −∂V/∂QLZ , and the effect of
the nonlinear terms is to renormalize its frequency as
Ω2

LZ → Ω2
LZ(1 + 2g1Q

2
HX + 2g2Q

4
HX + 4g3Q

2
HXQ

2
LZ + · · · ).

Since the phonon coordinates QHX and QLZ appear with
even powers in this expression, their contribution to the
renormalization will not be averaged out over time. As
a result, the low-frequency mode QLZ softens when the
high-frequency mode QHX is oscillating with a finite am-
plitude.

We also investigated the dynamics along the QLX com-
ponent of the TA mode that has atomic displacements
parallel to that of the high-frequency QHX mode. The
energy curves of the QLX coordinate for several values of
the QHX coordinate extracted from the calculated total-
energy surface V (QHX, QLX, QLZ = 0) is shown in Fig. 3.
In this case we can see that the minimum of the QLX

coordinate shifts when the QHX coordinate has a finite
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FIG. 3. Total energy as a function of the QLX phonon
coordinate for different values of the QHX phonon coordinate.
For visual clarity, the zero energy point has been chosen so
that the curves coincide at QLX = 0.

value, and the direction of this displacement depends
on the sign of QHX. The curves with the same mag-
nitude of QHX but opposite sign are mirror images of
each other, with the mirror plane located at QLX = 0. In
addition, the energy curves of the QLX mode noticeably
harden as the magnitude of the QHX coordinate is in-
creased, which contrasts with the softening exhibited by
QLZ mode. This implies that the energy surface includes
terms of the form QiHXQ

j
LX with both even and odd pow-

ers, subject to the condition i + j = 2n, where n is an
integer. Once again, this is in accord with the symme-
try requirements for two modes with the same irreducible
representation and parallel polarization.

We constructed the coupled equations of motion for
the QHX, QLX, and QLZ coordinates using the calcu-
lated total-energy surfaces as the potential energy. These
equations read

Q̈HX + γHXQ̇HX + Ω2
HXQHX = −∂V

nh(QHX, QLX, QLZ)

∂QHX

+ F (t),

Q̈LX + γLXQ̇LX + Ω2
LXQLX = −∂V

nh(QHX, QLX, QLX)

∂QLX
,

Q̈LZ + γLZQ̇LZ + Ω2
LZQLZ = −∂V

nh(QHX, QLX, QLZ)

∂QLZ
.

(2)

Here V nh(QHX, QLX, QLZ) is the nonharmonic part of the
polynomial fit to the calculated total-energy surfaces as a
function of the three coordinates and γi’s are the damp-
ing coefficients of the corresponding normal modes, which
we set to 10% of the value of their corresponding natural
frequency. The full polynomial expression of V nh with
terms up to the eight order that was used for fitting the
calculated total-energy surfaces is given in Appendix A.
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F (t) is the external force experienced by the QHX coordi-
nate due to the pump pulse. This was taken into account
by considering the force on QHX due to an electric field,
which is given by

F = −∂H(QHX, E)

∂QHX

= −2αQHXE
2.

(3)

We studied the dynamics using Gaussian-enveloped
single-frequency pulses

Esf(t) = E0 sin(ωt)e−t
2/2(σ/2

√
2 log 2)2 . (4)

Here, E0 is the amplitude of the pulse and ω its frequency.
The pulse has a Gaussian envelope with full-width at half
maximum of σ.

The coupled equations of motion for the QHX, QLX,
and QLZ coordinates given in Eq. 2 were solved for dif-
ferent values of pump amplitude E0 and frequency ω. For
small values of the pump amplitude E0, the energy trans-
ferred to QHX by the external pulse is small. This mode
then oscillates at its natural frequency ΩHX without get-
ting amplified regardless of the frequency of the pump
pulse and decays at a rate determined by γHX. As a re-
sult, the force imparted on the QLZ and QLX coordinates
due to the oscillation of QHX is also small, and QLZ and
QLX also exhibit decaying oscillations about their natu-
ral frequency ΩLX = ΩLZ. For very large values of pump
amplitude E0, all three modes diverge, which describes
the breakdown of the material at very high electric field
of the pump. In between these two limiting behaviors, we
searched for a range of pump frequency and amplitude
that causes the QLZ mode to oscillate at a displaced po-
sition.

We find that ω = 1.8ΩHX is the lowest pump frequency
that leads to a rectification of the QLZ coordinate, which
occurs for a pump amplitude of 465 MV/cm. The solu-
tions of the equations of motion for the QHX, QLX and
QLZ coordinates for these values of pump frequency and
amplitude are shown in Fig. 4. As one can see, the low-
frequency QLZ coordinate oscillates at a displaced posi-
tion while the externally-pumped QHX coordinate is os-
cillating with a large amplitude. This implies that the
translation symmetry of the lattice is broken because the
QLZ coordinate has a non-zero average value within this
duration. When the QHX mode decays after the diminu-
tion of the pump pulse, the QLZ coordinate goes back
to oscillating about the equilibrium position with a de-
caying amplitude. In the Fourier transform of QLZ(t),
the displaced motion appears as a large intensity around
zero frequency, while the amplified oscillations after the
pump appear as a peak near the original frequency ΩLZ.

Fig. 4 also shows that the externally-pumped phonon
mode QHX is highly amplified and oscillates with an
amplitude of ∼3 Å

√
u. Its Fourier transform shows a

resonance peak at the frequency of the pump pulse in
this regime, but frequency components between ΩHX to

∼2.5ΩHX also show significant contribution. This re-
flects the parametrically-driven nature of the equation
of motion of the QHX mode because the external force
F (t) = −2αQHXE(t)2 due to the pump pulse is linear
in QHX. As a result, the frequency of the driven QHX

mode varies with time and acquires components that are
not resonant with respect to the harmonic frequency of
the mode or the pump frequency. The other TA coordi-
nate QLX with atomic motions parallel to the QHX mode,
whose dynamics is also shown in the figure, is moderately
amplified while the QHX mode is making large-amplitude
oscillations. Fourier transform of the time evolution of
this mode shows a large peak at the pump frequency.
This high-frequency oscillation of the TA QLX mode re-
flects the large Q2

HXQ
2
LX nonlinearity.

At a pump frequency of ω = 1.8ΩHX, the QLZ coordi-
nate makes only a single cycle of oscillation at a displaced
position during the pump pulse. This indicates that the
effective double-well potential experienced by this mode
is shallow. Indeed, we find that the range of pump am-
plitude that causes the rectification of the QLZ mode is
relatively narrow for this value of pump frequency. The
QLZ coordinate again oscillates about the equilibrium
position as the pump amplitude is increased above 525
MV/cm. However, the amplitude of oscillations remain
larger than 3 Å

√
u, indicating that QLZ mode oscillates

across the minima of the double-well potential at these
higher values of pump amplitude.

Fig. 5 shows the ranges of pump amplitudes that rec-
tify the QLZ coordinate when the QHX coordinate is
pumped at frequencies between 1.7ΩHX and 2.5ΩHX and
amplitudes between 400 and 700 MV/cm. We actually
solved the equations of motion of the phonon coordinates
for pump frequencies up to 3.0ΩHX and amplitudes up
to 1500 MV/cm. As already mentioned, the equations of
motion include a white noise term to simulate the ther-
mal fluctuations of the phonons. Up to a pump amplitude
of 700 MV/cm, the presence (or absence) of rectification
of the QLZ mode is independent of the noise term with
the exception of the values of pump amplitude and fre-
quency near the border between rectification and no rec-
tification, where both outcomes appear in the solutions
of the equations of motion. Larger pump values cause
the appearance of divergences in the solution that per-
vade the entirety of the range of frequencies studied, and
we enter a new regime of the dynamics of the system that
we will analyze below. For this reason Fig. 5 is limited to
the values of pump amplitude and frequency that induce
rectification without possible breakdown of the material.

We can see that the value of the smallest pump ampli-
tude that rectifies the QLZ coordinate increases with the
pump frequency. It is 465 MV/cm for ω = 1.8ΩHX and
increases to 675 MV/cm for ω = 2.5ΩHX. This increasing
dependence derives from the fact that a larger pump am-
plitude is required to resonantly excite the QHX coordi-
nate at higher pump frequencies. The largest pump am-
plitude that rectifies the QLZ coordinate increases steeply
as a function of the pump frequency. It is 520 MV/cm
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FIG. 4. (Left) Dynamics of the (top) TO QHX, (middle) TA QLX, and (bottom) TA QLZ phonon coordinates at the X point
for a single-frequency pump pulse with amplitude E0 = 465 MV/cm and frequency ω = 1.8ΩHX. (Right) Fourier transform of
the time evolution of the respective coordinates. The solid vertical lines mark the natural frequencies of each mode, while the
dashed one indicates the frequency of the pump pulse.
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FIG. 5. Values for the amplitude and frequency of the single-
frequency pulse used to pump the QHX phonon coordinate
that induce rectification of the QLZ coordinate.

for ω = 1.8ΩHX and increases to a value of more than
700 MV/cm for ω = 1.9ΩHX, where the solutions be-
come dependent on noise as discussed in the previous

paragraph. In fact the rectified solutions for the QLZ

coordinate appear at pump amplitudes up to 840, 1410,
and 1490 MV/cm for ω = 1.9ΩHX, 2.1ΩHX, and 2.5ΩHX,
respectively. At higher pump frequencies, the largest
pump amplitude that gives a rectified solution flatlines
at 1490 MV/cm up till the largest pump frequency of
3.0ΩHX that we tested. On the other hand, the lowest
pump amplitude that rectifies QLZ keeps slowly increas-
ing to a value of 840 MV/cm for ω = 3.0ΩHX. There-
fore, the window of pump amplitude that rectifies the
QLZ mode is narrow when rectification starts occurring at
ω = 1.8ΩHX, broadens up to ω = 2.5ΩHX, and starts nar-
rowing again as the pump frequency is further increased.

We now illustrate the light-induced dynamics for the
case of a pump frequency that exhibits a large window
of rectification of the QLZ coordinate as a function of the
pump amplitude. The three columns of Fig. 6 show the
solutions of the coupled equations of motion of the three
phonon coordinates at a pump frequency of 2.3ΩHX for
pump amplitudes of 615, 800, and 1100 MV/cm. At 615
MV/cm, which is the lower threshold of the rectification
window for this pump frequency, the QLZ mode exhibits
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FIG. 6. Dynamics of the QHX, QLX and QLZ phonon coordinates for pump pulses with frequency ω = 2.3ΩHX and amplitudes
of 615, 800 and 1100 MV/cm.

six cycles of oscillations while it is rectified [bottom panel
in Fig. 6(left)]. This indicates that the larger value of
the pump amplitude required for rectification at a higher
pump frequency makes the effective double-well poten-
tial deeper, which increases the frequency of the QLZ

mode when it is rectified. Furthermore, the oscillations
of the QLZ mode occur about ∼4 Å

√
u, indicating that

the minima of the effective double-well potential gets fur-
ther away from the equilibrium value of zero for a larger
value of the pump amplitude.

Fig. 6 (middle) shows the dynamics at an increased
pump amplitude of 800 MV/cm while keeping the pump
frequency fixed at 2.3ΩHX. The QLZ mode now makes
eight cycles while displaced from the equilibrium posi-
tion. This happens not due to an increase in the fre-
quency of the oscillations in the rectified regime but be-
cause the mode gets rectified for a longer duration. There
is only a marginal change in the position about which
this mode oscillates while it is rectified. Furthermore,
the maximum amplitude of the oscillations of the QLZ

mode gets reduced. Interestingly, the amplitude of the
oscillation of the pumped QHX mode also does not in-
crease as the pump amplitude is increased from 615 to
800 MV/cm. Instead, its amplitude as a function of time

exhibits a small dip before increasing again by a simi-
lar amount. The amplification of the QHX also occurs
for a longer duration. Therefore, the additional pump
energy causes rectification and amplification for a longer
duration rather than displacing the QLZ mode to a larger
distance or increasing the amplification of the QHX mode.
The additional pump energy also flows to the QLX mode,
whose amplified oscillations last for a longer duration as
well.

Fig. 6 (right) shows the dynamics when the pump am-
plitude is further increased to 1100 MV/cm while keep-
ing the pump frequency at 2.3ΩHX. The amplified os-
cillations of the pumped QHX mode now splits into two
different packets that are separated by a region where the
mode is unamplified. The QLZ mode gets rectified, but
only during the amplified oscillations of the QHX mode
in the packet of the later time delay. As a result, the QLZ

mode makes only four cycles of oscillations at a displaced
position. Neither the amount of displacement from the
equilibrium position nor the amplitude of oscillations of
the QLZ mode increase in the rectified regime at this in-
creased value of the pump amplitude. The amplitude of
the QHX mode also does not increase, while this mode
in fact now makes amplified oscillations for a shorter
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duration. However, the QLX mode now oscillates with
a much larger amplitude during the initial part of the
pump pulse, and this accounts for the additional energy
pumped into the system.

At higher pump frequencies, we find the same trend
shown in Fig. 6 as the pump amplitude is increased. In-
terestingly, the amplitude of the oscillations of the QHX

mode and the displacement of the QLZ mode do increase
as the pump frequency is increased, but they vary lit-
tle as the pump amplitude is increased while keeping the
pump frequency fixed.

The very high values of the pump amplitude that
we find necessary to break the translation symmetry of
KTaO3 are not achievable using currently available laser
sources in the midinfrared regime. Thus, our work pro-
vides motivation for the development of intense midin-
frared lasers. Large electric fields using available mid-
infrared sources can also be achieved if the sample can
be grown inside metallic cavities, and this study should
further stimulate the ongoing work to perfect advanced
thin-film growth techniques. Furthermore, the high value
of the electric field may damage the sample even though
the excitation is done for a relatively short duration at
frequencies much lower than the band gap of the ma-
terial. Nevertheless, our study does show that transla-
tion symmetry breaking by externally pumping a zone-
boundary phonon mode of a material is possible in prin-
ciple via the mechanism of nonlinear phononics. The
physical parameter that limits the efficiency of this phe-
nomenon is the smallness of the coupling between light
and two-phonon excitation of the zone-boundary mode.
This work motivates the search for a material that ex-
hibits stronger second-order Raman scattering of the
zone-boundary phonon than that found in KTaO3.

IV. SUMMARY AND CONCLUSIONS

In summary, we have investigated the possibility of
light-induced translation symmetry breaking via nonlin-
ear phononics in KTaO3 by pumping its zone-boundary
TO phonon mode. This work was motivated by the pre-
viously reported experimental observation of Brillouin
zone boundary phonon modes in the Raman spectra of
this material due to second-order Raman processes. We
calculated the total energy of this material as a func-
tion of the highest-frequency TO mode QHX and degen-
erate components of the TA mode QLX and QLZ from
first principles to obtain phonon anharmonicities and
phonon-phonon nonlinear couplings. We find that the
energy curve of the QLZ mode softens and develops a
double-well shape as the value of the QHX coordinate is
increased, indicating that QLZ mode becomes unstable
when the QHX mode is pumped with sufficiently intense
laser pulses. The coupling between the QHX mode and
light was similarly obtained from first principles by cal-
culating the total energy of this material as a function
of the QHX coordinate and electric field. These were

then used to construct coupled equations of motion of
the phonon coordinates in the presence of a Gaussian-
enveloped single-frequency pump pulse term on the QHX

mode.
We solved the coupled equations of motion for a range

of pump frequency and amplitude. We find that 1.8ΩHX

is the smallest pump frequency for which the QLZ oscil-
lates at a displaced position, and this occurs for a pump
amplitude range of 465–520 MV/cm. Since the QLZ co-
ordinate has a nonzero time-average when it is rectified,
this implies that the translation symmetry of this mate-
rial is broken for this duration. As the pump frequency
is increased, the magnitude of the smallest pump ampli-
tude that rectifies the QLZ mode also increases. These
values of pump intensity are at least an order of magni-
tude larger than that can be produced by currently avail-
able midinfrared laser sources. Moreover, the high value
of electric field may cause dielectric breakdown of the
sample even for a pump pulse of short duration at a fre-
quency much smaller than the band gap of the material.
Nonetheless this study shows that light can in principle
be used to break the translation symmetry of a material
by pumping a phonon mode at the Brillouin zone bound-
ary, opening the door to a new form of materials control
via nonlinear phononics.
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Appendix A: Expression for the Total Energy
Surface

The calculated total-energy surface V (QHX, QLX, QLZ)
was fit with the expression

V =
1

2
Ω2

LXQ
2
LX +

1

2
Ω2

LZQ
2
LZ +

1

2
Ω2

HXQ
2
HX

+ V nh,
(A1)

where the nonharmonic part V nh(QHX, QLX, QLZ) is
given by

V nh = a4Q
4
LX + a6Q

6
LX + a8Q

8
LX

+ b4Q
4
LZ + b6Q

6
LZ + b8Q

8
LZ

+ c4Q
4
HX + c6Q

6
HX + c8Q

8
HX

+ e1Q
2
LXQ

2
LZ + e2Q

4
LXQ

2
LZ + e3Q

2
LXQ

4
LZ

+ e4Q
6
LXQ

2
LZ + e5Q

4
LXQ

4
LZ + e6Q

2
LXQ

6
LZ

+ f0QHXQLX + f1Q
3
HXQLX + f2Q

2
HXQ

2
LX

+ f3QHXQ
3
LX + f4Q

5
HXQLX + f5Q

4
HXQ

2
LX

+ f6Q
3
HXQ

3
LX + f7Q

2
HXQ

4
LX + f8QHXQ

5
LX

+ f9Q
7
HXQLX + f10Q

6
HXQ

2
LX + f11Q

5
HXQ

3
LX

+ f12Q
4
HXQ

4
LX + f13Q

3
HXQ

5
LX + f14Q

2
HXQ

6
LX

+ f15QHXQ
7
LX

+ g1Q
2
HXQ

2
LZ + g2Q

4
HXQ

2
LZ + g3Q

2
HXQ

4
LZ

+ g4Q
6
HXQ

2
LZ + g5Q

4
HXQ

4
LZ + g6Q

2
HXQ

6
LZ

+ j1QHXQLXQ
2
LZ + j2Q

3
HXQLXQ

2
LZ

+ j3Q
2
HXQ

2
LXQ

2
LZ + j4QHXQ

3
LXQ

2
LZ

+ j5QHXQLXQ
4
LZ + j6Q

5
HXQLXQ

2
LZ

+ j7Q
4
HXQ

2
LXQ

2
LZ + j8Q

3
HXQ

3
LXQ

2
LZ

+ j9Q
2
HXQ

4
LXQ

2
LZ + j10QHXQ

5
LXQ

2
LZ

+ j11Q
3
HXQLXQ

4
LZ + j12Q

2
HXQ

2
LXQ

4
LZ

+ j13QHXQ
3
LXQ

4
LZ + j14QHXQLXQ

6
LZ.

(A2)

The terms appearing in this expression are those al-
lowed by the symmetry. We found that terms up to the
eighth order, with the coefficients smaller than 10−7 ne-
glected, suffice to describe calculated total-energy sur-
face. The values of the coefficients appear in Table I.
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TABLE I. The coefficients of the harmonic, anharmonic, and nonlinear coupling terms of the polynomial used to fit the
calculated total-energy surface V (QHX, QLX, QLZ) of KTaO3 as a function of the three X-point phonon coordinates considered

in this study. The units are eV
(

Å√
u

)i+j+k

, where i, j and k are the exponents of the phonon coordinates.

Coefficient Order Value Coefficient Order Value
Ω2

LX Q2
LX 0.013636 f9 Q7

HXQLX 2.92 × 10−5

Ω2
LZ Q2

LZ 0.013636 f10 Q6
HXQ

2
LX 3.84 × 10−5

Ω2
HX Q2

HX 0.955643 f11 Q5
HXQ

3
LX 2.65 × 10−5

a4 Q4
LX 7.95 × 10−4 f12 Q4

HXQ
4
LX 1.4 × 10−5

a6 Q6
LX −7.75 × 10−6 f13 Q3

HXQ
5
LX 3.59 × 10−6

a8 Q8
LX 1.31 × 10−7 f14 Q2

HXQ
6
LX 6.7 × 10−7

b4 Q4
LZ 7.95 × 10−4 g1 Q2

HXQ
2
LZ −4.789 × 10−4

b6 Q6
LZ −7.75 × 10−6 g2 Q4

HXQ
2
LZ −2.458 × 10−4

b8 Q8
LZ 1.31 × 10−7 g3 Q2

HXQ
4
LZ −3.07 × 10−5

c4 Q4
HX 0.044353 g4 Q6

HXQ
2
LZ −2.01 × 10−6

c6 Q6
HX 2.649 × 10−4 g5 Q4

HXQ
4
LZ 1.82 × 10−6

c8 Q8
HX 1.58 × 10−5 g6 Q2

HXQ
6
LZ 3.18 × 10−7

e1 Q2
LXQ

2
LZ 2.796 × 10−4 j1 QHXQLXQ

2
LZ 0.001085

e2 Q4
LXQ

2
LZ −1.14 × 10−5 j2 Q3

HXQLXQ
2
LZ −2.49 × 10−4

e3 Q2
LXQ

4
LZ −1.14 × 10−5 j3 Q2

HXQ
2
LXQ

2
LZ −1.233 × 10−4

e4 Q6
LXQ

2
LZ 1.96 × 10−7 j4 QHXQ

3
LXQ

2
LZ −3.4 × 10−5

e5 Q4
LXQ

4
LZ 2.35 × 10−7 j5 QHXQLXQ

4
LZ −8.7 × 10−5

e6 Q2
LXQ

6
LZ 1.96 × 10−7 j6 Q5

HXQLXQ
2
LZ −5.92 × 10−6

f0 QHXQLX 0.0018 j7 Q4
HXQ

2
LXQ

2
LZ 5.2 × 10−7

f1 Q3
HXQLX 0.05605 j8 Q3

HXQ
3
LXQ

2
LZ −2.0 × 10−7

f2 Q2
HXQ

2
LX 0.02934 j9 Q2

HXQ
4
LXQ

2
LZ −6.8 × 10−7

f3 QHXQ
3
LX 0.0068 j10 QHXQ

5
LXQ

2
LZ 1.0 × 10−7

f4 Q5
HXQLX 6.03 × 10−4 j11 Q3

HXQLXQ
4
LZ −2.18 × 10−6

f5 Q4
HXQ

2
LX 1.54 × 10−4 j12 Q2

HXQ
2
LXQ

4
LZ −2.94 × 10−6

f6 Q3
HXQ

3
LX −6.83 × 10−5 j13 QHXQ

3
LXQ

4
LZ −6.3 × 10−7

f7 Q2
HXQ

4
LX −8.83 × 10−5 j14 QHXQLXQ

6
LZ 7.4 × 10−6

f8 QHXQ
5
LX −1.62 × 10−5
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