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Abstract—In the modern world, systems are routinely mon-
itored by multiple sensors, generating “Big Data” in the form
of a large collection of time series. In this paper, we put
forward a statistical methodology for detecting multimodality in
the distribution of Hurst exponents in high-dimensional fractal
systems. The methodology relies on the analysis of the distri-
bution of the log-eigenvalues of large wavelet random matrices.
Depending on the presence of a single or many Hurst exponents,
we show that the wavelet empirical log-spectral distribution
displays one or many modes, respectively, in the threefold limit
as dimension, sample size and scale go to infinity. This allows
for the construction of a unimodality test for the Hurst exponent
distribution. Monte Carlo simulations show that the proposed
methodology attains satisfactory power for realistic sample sizes.

Index Terms—self-similarity, operator fractional Brownian
motion, wavelets, random matrices, high dimensions

I. INTRODUCTION

Context: scale invariance. Scale invariance has been ob-
served in signals coming from a wide range and variety of con-
texts in physics and engineering, see, e.g., [1], [2]. A signal X
is called scale invariant, or fractal, when its temporal dynamics
lack a characteristic scale. The focus of the analysis is thus
on identifying the scaling exponents that relate the continuum
of scales [3]. A cornerstone model of scale invariance is self-
similarity: X is called self-similar when its finite-dimensional
distributions (f.d.d.) are invariant under suitable time scaling,
i.e., {X(t)}t∈R

f.d.d.
= {aHX(t/a)}t∈R, a > 0, where the scaling

exponent 0 < H < 1 is called the Hurst parameter. The most
prominent example is fractional Brownian motion (fBm), the
only Gaussian, self-similar process with stationary increments
[4]. Estimation of the Hurst parameter H plays a key role
in signal processing tasks such as characterization, diagnosis,
classification and detection. The so-named wavelet transform
provides the analytical basis for well-established estimation
methodologies for H [5].
Challenge: high-dimensional time series. The modeling of
self-similarity in applications has remained so far based on
the univariate fBm model. Yet, in the modern world of “Big
Data,” a plethora of sensors monitor natural and artificial
systems, generating large data sets in the form of several joint
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time series. This can be seen in many fields of application.
In neuroscience, for example, the number of macroscopic
brain activity time series ranges from hundreds (MEG data) to
several tens of thousands (fMRI data) [6]. Likewise, in climate
studies, dealing with large numbers of measured components
has become standard [7]. For such high-dimensional data, a
multitude of scaling laws – i.e., Hurst multimodality – implies
different large scale behavior of the system along possibly
non-canonical coordinate axes. Ignoring Hurst multimodality
in data may lead to arbitrarily large estimation biases due to
the so-named dominance and amplitude effects (see [8], [9]).
Related work: self-similarity in high dimensions. A recently
proposed multivariate extension of fBm, operator fractional
Brownian motion (ofBm), [10]–[12] frames the modeling of
scale invariance in a high-dimensional time series setting [8].
The so-named wavelet eigenanalysis methodology [8], [9] was
shown to lead to efficient and robust estimation of Hurst
exponents in both multivariate (fixed dimensions) and high-
dimensional (the dimension p(n) of the measurements grows
as a function of the time series size n) settings [9], [13], [14].
Use of this model in applications immediately leads to a first
critical question: how many different scaling laws exist in the
possibly very large number of time series? In the statistical
signal processing literature, the problem of identifying the
number and properties of sources in multivariate or high-
dimensional noisy signals has been studied for decades [15]–
[18]. Examples of the proposed techniques include principal
component analysis, factor analysis and sparse graphical Gaus-
sian models [19]. Nevertheless, there has been a paucity of
estimation methodologies for both high-dimensional and scale
invariant signals; see a contrario [20] or [21], proposing a
bootstrap-based method for counting the number of distinct
Hurst exponents based on wavelet eigenanalysis, yet in a
multivariate context with modest dimension. A key related
difficulty is the study of random matrices under dependence,
as they emerge in wavelet eigenanalysis, which is still a very
active area of research [22], [23]. This is even more so in
regards to the presence of fractional memory [24].
Goal, contributions and outline. The goal of the present
work is to study, in the context of high-dimensional asymptotic
limits (as the sample size, the number of components and
the scale go to infinity at a fixed rate), the properties of the
statistical distribution of the multivariate eigenwavelet-based



estimation of the vector of Hurst exponents, both theoretically
and practically. Notably, aiming to test the equality of all Hurst
exponents, the uni- vs. multi-modality of these distributions is
carefully addressed. To that end, the definitions and properties
of ofBm and the high-dimensional model are summarized
in Sections II-A and II-B, while multivariate eigenwavelet
estimation procedures are briefly sketched in Section II-C.
Section III describes the core contribution of this work. It
explains, first, how large random matrix theory leads to the
modification of the high-dimensional limit formulation by
incorporating the analysis of scales and establishes, second,
the high-dimensional asymptotic behavior of the distribution of
the estimator of the vector of Hurst exponents, thus permitting
the discussion of uni- vs. multimodality. Furthermore, these
theoretical asymptotic limits are tested in practice from ex-
tensive Monte Carlo simulations using synthetic ofBm sample
paths, see Section IV. First, the uni- or multimodality of the
distributions of estimators are shown to be practically observed
with data of moderate and realistic sizes (see Section IV-B).
Second, elaborating on the Hartigans’ dip test statistic [25], we
devise a procedure used to test unimodality in the distributions
of the estimated Hurst exponents, and assess its practical
power and relevance (see Section IV-B). Reported results
indicate that the proposed test has satisfactory performance
and can be readily applied to real-world high-dimensional data,
including for sample sizes typical in neuroscience (cf. [26]).

II. SELF-SIMILARITY ANALYSIS AND MODELING

A. Operator fractional Brownian motion

Operator fractional Brownian motion (ofBm) is a canonical
model for multidimensional scale invariant structures in real-
world data. We briefly recall its definition and some properties
(see [11] for the general definition and properties of ofBm).

Let BH,Σ(t) =
(
BH1

(t), . . . , BHp
(t)

)
t∈R denote a col-

lection of p possibly correlated fBm components defined by
their individual self-similarity exponents H = (H1, . . . ,Hp),
0 < H1 ≤ . . . ≤ Hp < 1. Let Σ be a pointwise
covariance matrix with entries (Σ)ℓ,ℓ′ = σℓσℓ′ρℓ,ℓ′ , where σ2

ℓ

are the variances of the components and ρℓ,ℓ′ their (pairwise)
correlation coefficients. We define ofBm as the stochastic
process BP,H,Σ(t) := PBH,Σ(t), where P is a real-valued,
p×p invertible matrix that mixes the components (changes the
scaling coordinates) of BH,Σ(t). OfBm consists of a multivari-
ate Gaussian self-similar process with stationary increments.
Moreover, it satisfies the (operator) self-similarity relation

{BP,H,Σ(t)}t∈R
f.d.d.
= {aHBP,H,Σ(t/a))}t∈R, (1)

∀a > 0. In (1), the matrix (Hurst) exponent is given by H =

Pdiag(H)P−1, and aH :=
∑+∞
k=0 log

k(a)Hk/k!, where f.d.d.
=

stands for the equality of finite-dimensional distributions.
B. High-dimensional model

Let π(dH) be a discrete distribution of Hurst exponents
with (ordered) support {H1, . . . ,Hm}, m ∈ N. Given a vector
H ∈ (0, 1)p of i.i.d. samples from π(dH), the process

Y (t) := BP,H,Σ (2)

as defined in Section II-A is, conditionally on H , a p-
variate ofBm with Hurst matrix H . Given a time series
{Y (t)}t=1,...,n, we further assume

p = p(n) → ∞ as n→ ∞,

under which (2) is a high-dimensional model and has p =
p(n) → ∞ Hurst exponents (on models of the general form
(2) under weak dependence, see, for instance, [27]).

C. Scaling in the wavelet domain

Multivariate wavelet transform. Let ψ be a mother wavelet,
i.e., a real-valued function such that

∫
R ψ

2(t)dt = 1. For
all k, j ∈ Z, the multivariate DWT of {Y (t)}t∈R is de-
fined as DY (2

j , k) := (DY1(2
j , k), . . . , DYp(2

j , k)), where
DYℓ

(2j , k) := ⟨2−j/2ψ(2−jt − k)|Yℓ(t)⟩ ∈ R for ℓ ∈
{1, . . . , p}. For a detailed introduction to wavelet transforms,
see [28]. It can be shown that the wavelet coefficients
{DY (2

j , k)}k∈Z of p-variate ofBm Y = BP,H,Σ satisfy, for
every fixed octave j, the operator self-similarity relation [8],
[9]

{DY (2
j , k)}k∈Z

f.d.d.
= {2j(H+ 1

2 I)DY (1, k)}k∈Z. (3)

Wavelet random matrices and high-dimensional eigenanal-
ysis. Given any p-variate process {Y (t)}t∈R (in particular,
model (2)), the sample wavelet spectrum (variance) at octave
j = j1, . . . , j2 is given by the p× p wavelet random matrices

SY (2
j) =

1

nj

nj∑
k=1

DY (2
j , k)DY (2

j , k)∗ (4)

where n is the time series (sample) size and nj ≃ n/2j is the
number of wavelet coefficients available at scale 2j . It has been
shown and discussed [8], [9] that, in general, estimation based
on the entrywise multiscale behavior of SY (2j) is arbitrarily
biased and effectively meaningless. Instead, it was proposed in
[8], [9] that the estimation of the multivariate Hurst exponents
should be based on the eigenvalues

λ1(2
j), . . . , λp(2

j)

of the random matrix SY (2j) as in (4). Notably, it was shown
that the Hurst exponents Hℓ can be efficiently estimated by
means of the weighted wavelet log-eigenvalues

Ĥℓ =
( j2∑
j=j1

wj log2 λℓ(2
j)
)/

2− 1

2
, ℓ = 1, . . . , p, (5)

where
∑
j wj = 0 and

∑
j jwj = 1. In fact, (5) has good

statistical performance in both Gaussian and non-Gaussian
frameworks [8], [9], [13], [14].

III. HIGH-DIMENSIONAL LIMITS

A. High dimensions: Wavelet log-eigenvalue distribution in
the three-way limit

As indicated in the Introduction, the present work addresses
high-dimensional limits. In contradistinction to the classical
setting where the sample size goes to infinity for fixed number
of components, i.e., n → +∞, p = p0, here we consider



high-dimensional settings, where both the sample size and the
number of components go jointly to infinity, i.e., n, p→ +∞.
In the context of sample covariance matrices, this is more
sharply characterized by the two-way limit limn→∞ p/n =
c ∈ [0,∞) [29].

In the context of multivariate Hurst exponent estimation
using wavelet-based linear regressions, as in (5), when both
n, p → +∞, thorough analysis of scale invariant systems
further implies that the range of scales where linear regressions
are performed should also grow towards infinity: (j1, j2) →
+∞. Technically, in such settings, the high-dimensional be-
havior analyzed by means of large random matrices actually
leads us to consider the three-way limit [9], [30]

n, p, j → +∞,
p

n/2j
→ c ∈ [0,∞), (6)

a non-trivial contribution of the present work, both theoreti-
cally and numerically.

B. High dimensions: Multimodality of Hurst exponents

Mathematical results in [9], [30] imply that, in the three-
way limit (6) and under (2), the eigenvalues of the sample
wavelet spectrum behave as

log2 λℓ(2
j) = Cℓ + j · (2Hℓ + 1) + oP(1), (7)

ℓ = 1, . . . , p, for some constant Cℓ, where oP(1) vanishes in
probability. In fact, eigenvalue scaling relations of the type
(7) are shown to hold for high-dimensional signal-plus-noise
instances, broader than the noise-free model (2) [9], [30].

Further, assume measurements given by the high-
dimensional model (2). In light of (7), we obtain the key result
of this paper.
Fundamental property of weighted log-eigenvalues of
wavelet random matrices: the distribution of the p = p(n) es-
timates Ĥℓ resulting from weighted log-eigenvalues of wavelet
random matrices as defined in (5) satisfies, for small ε > 0
and any q = 1, . . . ,m, as n→ +∞,

#
{
ℓ = 1, ..., p(n) : Ĥℓ ∈ (Hq − ε,Hq + ε)

}
p(n)

P→ π(Hq). (8)

Also, and importantly, we note that the convergence (8) of
the wavelet empirical (log)spectral distribution to π(dH) takes
place on the condition that nj = n/2j is large enough w.r.t.
p = p(n) so as to prevent significant bias stemming from
eigenvalue repulsion (see [31]–[33]), or for the random matri-
ces (4) to have deficient rank (which yields some negatively
infinite log-eigenvalues).

This key theoretical result is further inspected practically in
Section IV-B and is illustrated in Fig. 1.

IV. PRACTICAL PERFORMANCE ASSESSMENT

A. Monte Carlo simulation setting

To assess the practical relevance of the theoretical results
stated in Section III, we make use of Monte Carlo simula-
tions based on 1000 of independent realizations of p-variate
measurements BP,H,I = PBI,H,I , where P is a randomly
chosen orthogonal matrix and {BI,H,I(t)}t∈R made up of

Fig. 1. Distribution of weighted wavelet log-eigenvalues Ĥq in the three-
way limit limn→∞ p 2j/n. (Left) p−variate ofBm with Hurst matrix
H = Pdiag(0.5, . . . , 0.5)P−1 ∈ Rp2 . (Right) p−variate ofBm with Hurst

matrix H = Pdiag(H1, . . . , Hp)P−1 ∈ Rp2 , where H1, . . . , Hp are sam-
pled from π(dH) supported on {0.2, 0.4, 0.6, 0.8}. Red curves are numerical
best fits. A unimodal (left) or a four-modal (right) distribution emerges in the
wavelet log-eigenspectrum, as opposed to the traditional Marc̆enko-Pastur-
based laws in the eigenspectrum of sample covariance matrices.

Fig. 2. Quantile-quantile plots for d̂H0 . The plots compare the quantiles
of the distributions of d̂H0

, for different pairs of H0: (Left) H0 = 0.8 vs.
H0 = 0.2 ; (Right) H0 = 0.8 vs. H0 = 0.5 ; and show that the (non-
Gaussian) distribution of d̂H0

is independent of H0.

independent univariate fBms with n = 214 (such sample
sizes are realistic, for example, in the context of the analysis
of infraslow brain activity [26]). The univariate fBms are
generated using the R package somebm (see [34]). The p-
dimensional vector H is obtained by drawing p i.i.d. samples
from Unif(H1, . . . ,Hm), for each realization independently.
Here, we limit ourselves to the consideration of m = 1, 2, 4,
and 6. The wavelet transformation is generated by means of
Mallat’s algorithm based on a Daubechies filter with Nψ = 2.
In our simulations, we set the dimension to p = 26. The range
of regression scales is chosen to be j1 = 2 to j2 = 5. Hence,
p/nj < 1 for j = j1, . . . , j2, implying that all the wavelet
random matrices used in the regression procedure have full
rank.

B. Multimodality in practice

To illustrate the practical relevance of the high-dimensional
asymptotic limits in (7) and (8), Fig. 1 provides an exam-
ple of the high-dimensional behavior of the wavelet log-
eigenvalue distribution. In the plots, a unimodal (left) or a four-
modal (right) distribution strikingly emerges in the wavelet



eigenspectrum depending on the presence of one or four
modes, respectively, in the support of π(dH). To put this
remarkable result in context, consider the traditional random
matrix theoretic framework of sample covariance matrices.
In this case, as p/n → c ∈ [0,∞) and under unimodality,
we observe a combination (a free convolution; see [35])
between a Marc̆enko-Pastur law and the spectral density of the
univariate stochastic process whose independent copies form
the sample covariance matrix. In particular, the Hurst exponent
only appears implicitly in the limit eigenspectrum distribution,
which is not available in closed form [24].

C. Unimodality testing

To go beyond visual evidence, we are now interested in
practically testing multimodality vs. unimodality in the distri-
bution of Hurst exponents. More precisely, this means testing
the null hypothesis

H0 : the distribution π(dH) of Hurst exponents is unimodal,

i.e., that the support of π(dH) contains a single, unspecified
value in (0, 1). We put forward a test based on the wavelet
empirical (log)spectral distribution, i.e., the distribution of
the estimates Ĥℓ. Indeed, in light of (8), this distribution is
expected to be unimodal under H0, and multimodal otherwise.
Unimodality test. With this in mind, we propose a unimodal-
ity testing methodology that builds upon the original idea
behind Hartigan’s dip test for multimodality (see [25]). Let

F̂ (x) =
1

p

p∑
ℓ=1

1{Ĥℓ≤x}, x ∈ R,

be the empirical distribution function of the weighted wavelet
log-eigenvalues

Ĥℓ, ℓ = 1, . . . , p, (9)

as in (5). As in [25], let U be the class of all unimodal
distribution functions, and define the statistic

d̂ = inf
G∈U

sup
x∈R

|F̂ (x)−G(x)|, (10)

that is, d̂ is computed based on picking the unimodal distri-
bution that provides the best fit to the empirical distribution
function (see also [25], Section 4, on the details of how to
compute (10) in practice). The proposed test procedure is
defined as

reject H0 when d̂ > dα, (11)

where the size of the test α ∈ [0, 1] is defined as [36]

α = sup
H0∈(0,1)

P
(
d̂ > dα

∣∣supp π(dH) = H0

)
. (12)

The statistic d̂ as in (10) was computed using the R package
diptest (see [37]); test significance was set to α = 0.05.
Test statistics practical threshold. In regard to the computa-
tion of the rejection threshold dα, note that the observations
are assumed independent in the original dip test [25], a
condition that does not hold for the weighted wavelet log-
eigenvalues (9). For this reason, we simulate a large number

Fig. 3. Test powers. Proportions of rejections over 1000 Monte Carlo runs
for several alternative hypothesis: (Black) supp π(dH) = {H1, H2} (Red)
supp π(dH) = {H1, H2, H3, H4} (Blue) supp π(dH) = {H1, ..., H6}.

of independent p-variate ofBms with Hurst matrix exponent
H = diag(H0, . . . ,H0), H0 ∈ (0, 1), calculate the corre-
sponding test statistics (10) and use (12) to compute the
rejection threshold dα for fixed α.

When computing the test statistic d̂ ≡ d̂H0
under the null

hypothesis H0, the sampling distribution of d̂H0
is found to

be independent of H0 (see Figure 2). This result is non-trivial,
but it is in line with and corroborates previous studies of the
properties of wavelet-based estimators for scale-free systems
(e.g., [5]).
Test performance. Results reported in Fig. 3 (leftmost point)
show that, for different settings, the proposed unimodality
test (11) has the prescribed size α = 0.05 under H0. To
study the power of the test, we first considered instances of
the alternative hypothesis where π(dH) is supported on the
set {H1, H2} of two distinct Hurst exponents. Namely, we
compute the proportion of rejections for the pairs of values
H1 = 0.6−∆, H2 = 0.6 +∆, with ∆ ∈ [0.0, 0.10]. Figure 3
shows that the test attains power greater than 0.80 provided
that H2 −H1 ≥ 0.125.

Next, we repeated the analysis for instances of the alterna-
tive hypothesis where π(dH) is supported on a set of 4 or
6 distinct Hurst parameters, respectively, reported in Figure 3
(Red) and (Blue). In both cases, the parameters H1, ...,Hm

are initialized at 0.6. From there, the difference between
adjacent Hurst parameters is increased so as to keep the
parameters equidistant and centered around 0.6. As expected,
the power of the test was shown to increase as a function of the
distance between the Hurst exponents in both cases. Moreover,
comparative inspection of the distinct lines in Fig. 3 reveals
that, starting at the same value 0.6 under the null hypothesis,
the speed of convergence of the power of the test to 1 is greater
when the number of distinct Hurst parameters is larger.

Overall, these results confirm that the proposed test pro-
cedure is operational, has satisfactory performance and can
be readily applied in the study of self-similarity in high-
dimensions.



V. CONCLUSIONS AND PERSPECTIVES

A statistical methodology for detecting multimodality in
the distribution of Hurst exponents in high-dimensional fractal
systems has been devised. It relies on the analysis of the distri-
bution of the log-eigenvalues of large wavelet random matrices
in the threefold limit as dimension, sample size and scale go
to infinity. Depending on the presence of a single or several
modes in the distribution of Hurst exponents, the wavelet
empirical (log)spectral distribution also displays one or several
modes. A practical unimodality test is further proposed for
the Hurst exponent distribution. Future work includes the
construction of methodology for the identification of the distri-
bution π(dH) once unimodality has been rejected (cf. [21] in
the multivariate context). Studying high-dimensional limits is
not a purely mathematical issue; instead, it is absolutely crucial
for practical use in applications. Indeed, multiscale analysis
implies by its own nature that the effective sample size is
not large compared to the number of components at coarse
scales. Real data modeling also calls for the investigation of
the more general case where the components of X(t) in (2)
are correlated. This requires specific mathematical efforts to
be made in the future.
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