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IRIT, Université de Toulouse, CNRS,
Toulouse INP, UT3, Toulouse, France.

name.surname@irit.fr

Patrice Abry

Univ Lyon, Ens de Lyon, Univ. Claude Bernard
CNRS, Laboratoire de Physique, Lyon, France

patrice.abry@ens-lyon.fr

ABSTRACT

Multifractal analysis provides a global description for the spa-
tial fluctuations of the strengths of the pointwise regularity
of image amplitudes. A global image characterization leads
to robust estimation, but is blind to and corrupted by small
regions in the image whose multifractality differs from that
of the rest of the image. Prior detection of such zones with
anomalous multifractality is thus crucial for relevant analy-
sis, and their delineation of central interest in applications,
yet has never been achieved so far. The goal of this work
is to devise and study such a multifractal anomaly detection
scheme. Our approach combines three original key ingredi-
ents: i) a recently proposed generic model for the statistics
of the multiresolution coefficients used in multifractal esti-
mation (wavelet leaders), ii) an original surrogate data gen-
eration procedure for simulating a hypothesized global mul-
tifractality and iii) a combination of multiple hypothesis tests
to achieve pixel-wise detection. Numerical simulations us-
ing synthetic multifractal images show that our procedure is
operational and leads to good multifractal anomaly detection
results for a range of target sizes and parameter values of prac-
tical relevance.

Index Terms— anomaly detection, multifractal analysis,
surrogate data, wavelet leaders, log-cumulants

1. INTRODUCTION

Context. Multifractal analysis is a powerful theoretical and
practical signal and image analysis that has found many suc-
cessful applications of various natures in the past, see, e.g., [1]
for examples. Its goal is to characterize the data under study
based on the dynamics of its pointwise regularity h, usually
defined as the Hölder exponent. The regularity fluctations are
quantified globally, for the whole time series or image, by
the so-called multifractal spectrum D(h), defined as the frac-
tal (Hausdorff) dimensions of the iso-Hölder sets of the data,
see, e.g., [1, 2] for details.

The practical estimation of D(h) relies on a so-called
multifractal formalism, which provides a link between D(h)
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and the multi-scale statistics of multiresolution coefficients,
such as wavelet or wavelet transform modulus maxima coeffi-
cients [3]. The state-of-the-art estimation procedure relies on
coefficients specifically defined for multifractal analysis, the
wavelet leaders [1, 2, 4–7]. Assuming that D(h) is the same
throughout an image, the use of (space-averaged) empirical
multiscale statistics leads to numerically robust estimation al-
gorithms. However, such a global characterization makes the
analysis blind to deviations of D(h) from its typical values in
small regions, and is moreover corrupted by such anomalies.

Related work. The prior detection of multifractality
anomalies is of great importance for the relevant interpre-
tation of multifractality estimates in applications. In addition,
their delineation is of great interest, e.g., in the context of
medical imaging or remote sensing applications. However,
this important problem has been addressed with limited suc-
cess only, essentially formulated as a segmentation problem,
see, e.g., [8–10]. One main difficulty is that it requires mod-
eling the statistical fluctuations of multifractality estimates,
which is a difficult task due to the involved statistical proper-
ties of multifractal images (non Gaussian images with strong
dependencies across many length scales [11]). Another major
difficulty stems from the paradox that characterizing point-
wise regularity fluctuations practically requires studying their
dynamics over several analysis scales, thus is inherently
non-local (i.e., tied to space averages [1, 2, 12]) and hence
antagonist to the goal of identifying and delineating (local)
anomalies.

Goals and contributions. The goal of this work is to over-
come the difficulties mentioned previously by designing, for
the first time, a practically operational procedure for detect-
ing pixels associated with abnormal multifractality in images.
The method builds on the wavelet leader multifractal formal-
ism, recalled in Sec. 2, yielding multifractality estiates for
small patches centered at the image pixels, and is motivated
by the statistical model for log-leaders of multifractal images
proposed in [6, 7, 12]. Our main assumption is that anoma-
lous regions are small in size and hence contribute little to the
average multifractality of the image. Our key contributions,
detailed in Sec. 3, are as follows. First, we propose an orig-
inal space-scale surrogate data procedure in the log-wavelet



leader domain that enables us to generate reference multi-
fractality estimates for images with globally homogeneous
multifractality, conditionally on the observed image. Second,
we formulate a pixel-wise anomalous multifractality detector
relying on a collection of surrogate estimates, false discov-
ery rate correction for the multiple (pixel-wise) simultaneous
detection problems, and majority vote over patches. Third,
we study the performance of the proposed detector through a
large set of numerical simulations with synthetic multifractal
images with various anomaly sizes and strengths (cf., Sec. 4).
Our results demonstrate the good performance of the detector
and its applicability to real-world images. Sec. 5 concludes
and points to future research directions.

2. MULTIFRACTAL ANALYSIS

Multifractal spectrum. Multifractal analysis quantifies
the fluctuations in space of the pointwise regularity of a func-
tion X(z) ∈ R, z ∈ R2 (image), where pointwise regularity
is usually measured by the Hölder exponent h(z) ≥ 0. The
closer h(z) to 0, the more irregular X around position z, see,
e.g., [2] for details. The regularity fluctuations of X are then
measured globally by the multifractal spectrum, defined as
the collection of Hausdorff dimensions dimH of the sets of
points z at which h(z) takes the value h [2],

D(h) , dimH

{
z : h(z) = h

}
.

Wavelet leaders. 2D wavelets can be defined as ten-
sorial products of the scaling function φ(x) and mother
wavelet ψ(x) of a 1D multiresolution analysis, ψ(0)(z) =
φ(z1)φ(z2), ψ(1)(z) = ψ(z1)φ(z2), ψ(2)(z) = φ(z1)ψ(z2),
ψ(3)(z) = ψ(z1)ψ(z2) [13, 14]. When ψ is suitably chosen,
the dilated and translated templates denoted as ψ(m)

j,k (z) =

2−j/2ψ(m)(2−jz − k) ψ(m), where a = 2j and z = 2jk,
k = (k1, k2), form a basis of L2(R2). The L1 normalized
discrete wavelet transform coefficients of an image X are
defined as d(m)

X (j, k) = 〈X, 2−j/2ψ
(m)
j,k 〉, m = 0, . . . , 3 [13].

Denote as λj,k the dyadic cube of side length 2j centred at
k2j and 3λj,k =

⋃
n1,n2={−1,0,1}λj,k1+n1,k2+n2

the union
with its eight neighbors. The wavelet leaders are defined as
the supremum of the wavelet coefficients within 3λj,k over
all finer scales [2, 5], i.e.,

L(j,k) , sup
m∈(1,2,3),λ′⊂3λj,k

|d(m)
X (λ′)|. (1)

Multifractal formalism. Let `(j,k) , lnL(j,k) denote
the log-leaders of X . It can be shown [5] that the multifractal
spectrum can be approximated as

D(h) ≈ 2 +
c2
2

(
h1 − c1
c2

)2

, (2)

Fig. 1. Illustration for a single image. Top row: single re-
alization of multifractal image (top left) and ground truth
mask (right; black: c2 = −0.0001, white: anomaly with
c2 = −0.05). Second row: Estimates ĉ2(z) obtained with
patch sizes P ∈ {24, 25, 26} (from left to right, respectively)
Bottom row: corresponding detection results.

and that the coefficients c1 and c2 are directly related with the
cumulants Cp of order p of `(j,k) via the equation

Cp(j) = c0p + cp ln 2j . (3)

Relation (3) shows that the so-called log-cumulants cp, and
hence an estimate of D(h) using (2), can be computed by
simple linear regressions across scale j. Below we only con-
sider c2, termed multifractality parameter, that quantifies the
strength of multifractality of X (i.e., width of D(h)).

3. MULTIFRACTAL ANOMALY DETECTION

3.1. Surrogate log-leaders

The properties of a multifractal imageX are notoriously unfa-
vorable for statistical processing since X is highly non Gaus-
sian, strongly dependent and potentially non stationary [11].
Yet, it was shown in recent studies that the log-leaders `(j,k)
of an image X with homogeneous (i.e., constant throughout
the image) multifractality can be well modeled by a multi-
variate Gaussian distribution, with a non-trivial and strong
space-scale covariance that encodes the multifractality, see,
e.g., [6, 7, 15]. Consequently, if the image contains a region
with different homogeneous multifractalities, the log-leaders



associated with this region are also multivariate Gaussian, but
with different parameters.
Time-scale surrogates. To detect a region of an image
with abnormal multifractality, the method of surrogate data
[16, 17], classically used to detect nonlinearities, is used to
stationarize the multifractality of the image (similar to the ap-
proach in [18]) and thus to construct reference images with
homogeneous multifractality throughout, i.e., without anoma-
lous regions. Specifically, the procedure for each scale j is

1. remove the mean from `(j, ·)

2. compute the Fourier transform (FFT), ˆ̀(j, ·) say

3. randomize the phase, yielding surrogates ˆ̀∗(j, ·),
where the same randomization is used for all scales
to preserve the across-scale covariance of ` [19]

4. compute surrogate log-leaders `∗(j, ·) by inverse FFT.

The so-obtained surrogate log-leaders `∗ are multivariate
Gaussian with covariance concurring with homogeneous
multifractality, regardless of whether X contains regions
with anomalous multifractality or not. The procedure is re-
peated L times, yielding L independent copies of surrogates
`∗(l), l = 1, . . . , L.

3.2. Anomalous multifractality detection

Test formulation. The problem of detecting whether the
multifractality c2(z) associated with a pixel X(z) of the im-
age is anomalous or not can be formalized as testing the null
hypothesis

H
(z)
0 : c2(z) = cref2 (z)

against the two-sided alternative H(z)
1 : c2(z) 6= cref2 (z),

where cref2 (z) is the multifractality that would be expected
for a homogeneous image. To perform the test, we first com-
pute multifractality estimates ĉ2(z) for each position z. To
this end we evaluate (3) for the collection of log-leaders cor-
responding with a small patch P(z) of size P ×P centered at
z, denoted {`λ}λ∈P(z). Similarly, we compute surrogate mul-
tifractality estimates ĉ∗(l)2 (z) for each set of surrogate leaders
{`∗(l)λ }λ∈P(z), l = 1, . . . , L, yielding a collection of surro-
gate multifractality estimates {ĉ∗(l)2 (z)}Ll=1 for each pixel. By
construction, the empirical distribution of ĉ∗2(z) yields an ap-
proximation for the distribution of ĉ2(z) under the null hy-
pothesis and can therefore be used to perform the test. Let
0 ≤ γ(z) ≤ 1 denote the quantile of the distribution of ĉ∗2(z)
that corresponds to the value of ĉ2(z), i.e.,

γ(z) ,
1

L

L∑
l=1

δ(ĉ
∗(l)
2 (z) ≤ ĉ2(z)),

where δ(·) is the Kronecker delta. For some preset signifi-
cance level α controlling Type I errors, the test then rejects

H
(z)
0 if γ(z) < α

2 and if γ(z) > 1 − α
2 , and the p-value for

H
(z)
0 is given by

p(z) = 2 ·max(γ(z), 1− γ(z)).

Multiple hypothesis correction. For an image with K
pixels, the detection problem comprises multiple simultane-
ous hypotheses (one for each pixel). In the case of multi-
ple simultaneous hypotheses, it is preferable to use correc-
tions that reduce the number of false positives, and we fol-
low the false discovery rate correction strategy of Benjamini-
Hochberg [20]. This leads to the following decision rule to
reject H(z)

0 ,

d(z) =

{
1 if p(z) < k(z) qK ,

0 otherwise.
(4)

where k(z) = 1 + card(z′ : p(z′) < p(z)) and q is the false
discovery rate, i.e., the rate of Type I errors. Finally, since
each pixel is covered by P×P patches, we perform a majority
vote among the P 2 decisions for these patches to yield the
final anomaly detection decision for pixel z defined as

d̄(z) = round
(
P−2

∑
z′∈P(z)

d(z)

)
.

4. PERFORMANCE ASSESSMENT

Numerical experiments. The proposed multifractal ano-
maly detection procedure was applied to 2D multifractal ran-
dom walks (MRWs) of size 512 × 512. MRWs are synthetic
multifractal processes whose multifractal properties resem-
ble those of Mandelbrot’s log-normal cascades, with D(h) =

2 + c2
2

(
h1−c1
c2

)2
(see, e.g., [21]). Assuming that the area of

the image is normalized to equal 1, we consider three sizes
of anomalies of area ∆ ∈ {0.01, 0.02, 0.05} times the image
size. A typical realization is plotted in Fig. 1 (top row) to-
gether with the ground truth for the position of a multifractal
anomaly in the image. To estimate c2(z), we use the standard
linear regression based estimator (using (3) as in [4,5,22]) for
patches of size P ∈ {24, 25, 26}, and we set q = 0.01 in the
correction for multiple hypotheses. The average performance
is quantified for 100 independent realizations using true pos-
itive rate (TPR, detection probability) and false positive rate
(FPR, probability of false alarm).
Illustration for a single image. The output of the multi-
fractal anomaly detector for a single image is plotted in Fig. 1
(bottom row) for patch size P ∈ {24, 25, 26}, respectively
(from left to right). It demonstrates that the proposed de-
tector is operational for application to a single image, and
yields satisfactory results: for all patch sizes, the anomalous
zone is detected and overall well localized. In this example,
the most satisfactory results are achieved with the two larger
patch sizes, which better match the size of the anomaly.
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Fig. 2. Average detection probability (c2 = −0.0001 vs. c2 =
−0.05). Top row: no anomaly. Rows 2 to 4: increasing target
size (area ∆= 0.01, 0.02 and 0.05 of image size). From left to
right: increasing patch size (16, 32 and 64 pixels).

Detection performance. Fig. 2 plots average detection re-
sults for 100 independent realizations when no anomaly is
present (top row), and when an anomaly of increasing size
∆ ∈ {0.01, 0.02, 0.05} is present (second to bottom row, re-
spectively), for patch sizes 16, 32 and 64 (left to right col-
umn, respectively). It can be observed that in the absence of
an anomaly in the image, the detector yields perfect results -
indeed, the combination of correction for multiple hypotheses
followed by majority vote makes a false positive unlikely. In
the presence of anomalies, we correctly detect 40−90% of the
affected pixels, with only 1−4% wrong detections. The high-
est detection rates for anomalous pixels are achieved with the
largest considered patch size, yet at the price of slightly more
false positives. These false positives are mostly located at
the border of the anomaly, whose edges are ”blurred”. These
observations for different patch sizes can be interpreted as a
natural consequence of the bias-variance trade-off that is in-
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Fig. 3. ROC curves. From left to right: decreasing target
size (area ∆= 0.05, 0.02, 0.01 of image size); c2 = −0.0001
vs. c2 = −0.05 (top row) and c2 = −0.01 vs. c2 = −0.05
(bottom row).

herent to patch-based estimation.
Fig. 3 presents a more quantitative analysis of the de-

tection performance and plots receiver operator characteris-
tic (ROC) curves for the three anomaly sizes and three patch
sizes, and for two different scenarios of multifractality. It can
be observed that the detection performance decreases when
the difference between the values of c2 inside and outside the
abnormal region decreases. The results further confirm that
the best overall detection performance is achieved with the
largest considered patch size (P = 26), in which case the
detection procedure is extremely accurate.

Overall, these results lead to conclude that the proposed
multifractal anomaly detector is operational and yields satis-
factory practical performance.

5. CONCLUSIONS

This work proposed a procedure that enables, for the first
time, the detection of regions of anomalous multifractal prop-
erties in images. It makes use of a recently developed model
for the multivariate statistics of log-leaders to simulate refer-
ence distributions for anomaly-free patch-wise multifractality
estimates via an original surrogate data procedure. The surro-
gate empirical distributions of image patch multifractality are
then used to estimate the probability that a patch in the im-
age has a normal multifractality. These patch probabilities are
finally combined into pixel-wise multifractal anomaly detec-
tions via Benjamini-Hochberg multiple decision corrections
followed by majority vote. Numerical results with synthetic
multifractal images demonstrate that the proposed procedure
has good detection performance and can readily be applied
for the analysis of real-world images. Future work will in-
clude applications to biomedical and remote sensing images,
extensions to multifractal change detection for time series and
to multivariate multifractal analysis.
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[8] T. Stojić, I. Reljin, and B. Reljin, “Adaptation of multi-
fractal analysis to segmentation of microcalcifications in
digital mammograms,” Physica A: Statistical Mechan-
ics and its Applications, vol. 367, pp. 494–508, 2006.

[9] A. Islam, K. M. Iftekharuddin, R. J. Ogg, F. H. Lan-
ingham, and B. Sivakumar, “Multifractal modeling,
segmentation, prediction, and statistical validation of
posterior fossa tumors,” in Medical Imaging 2008:
Computer-Aided Diagnosis. International Society for
Optics and Photonics, 2008, vol. 6915, p. 69153C.

[10] D. Chakraborty, G. K. Sen, and S. Hazra, “High-
resolution satellite image segmentation using hölder ex-
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