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Stability analysis of a Korteweg-de Vries
equation with saturated boundary feedback

Hugo Parada ∗

∗ Université Grenoble Alpes, CNRS, Laboratoire Jean Kuntzmann,
F-38000, Grenoble, France (e-mail:
hugo.parada@univ-grenoble-alpes.fr).

Abstract: The stability analysis of the linear and nonlinear Korteweg-de Vries equations in
presence of a saturated feedback actuator is studied. The well-posedness is derived by using
nonlinear semigroup results, Schauder’s and Banach fixed point theorems. The exponential
stability is shown thanks to an observability inequality, which is obtained via contradiction and
compactness arguments. Finally, an alternative proof of the asymptotic stability of the linear
Korteweg-de Vries equation is presented.

Keywords: Partial differential equations; saturation control; boundary control; stability of
nonlinear systems

1. INTRODUCTION

The Korteweg-de Vries (KdV) equation ut + ux + uxxx +
uux = 0 was introduced by Korteweg and de Vries (1895)
to model the propagation of long water waves in a channel.
The KdV equation has been widely studied in the last
years, in particular its controllability and stabilization
properties, see Cerpa (2014); Rosier and Zhang (2009) for
a complete introduction of these problems.

From the point of view of stabilization, we can refer
to the work of Zhang (1994) in which the boundary
exponential stabilization problem in the bounded spatial
domain x ∈ (0, 1) was studied. It is well known that the
length L of the spatial domain plays an important role in
the stabilization and controllability properties of the KdV
equation. For example, when L = 2π it is possible to find a
solution of the linearization around 0 of the KdV equation
(u(t, x) = 1 − cos(x)) that has a constant energy. More
generally, if L ∈ N , where N is the set of critical lengths
defined by

N =
{
2π
√

(k2 + kl + l2)/3 ; k, l ∈ N∗
}
,

we can find suitable initial data, such that the solution
of the linear KdV equation has a constant energy. In the
case of internal stabilization, it is proved in Perla Menzala
et al. (2002); Pazoto (2005) that for any critical length we
achieve local exponential stability for the nonlinear KdV.
In most real-life settings, we have to take into account the
saturation in the input control due to some physical or
economical constraints. With respect to saturated control
in infinite dimensional systems, we can refer to Prieur
et al. (2016) where a wave equation with distributed and
boundary saturated feedback law was studied, Marx et al.
(2017) where the saturated internal stabilization of a single
KdV equation was studied and recently Mironchenko
et al. (2021) where a saturated feedback control law was
derived for a linear reaction-diffusion equation. In our best
knowledge, there are no work dealing with the stability of

a KdV equation with saturated feedback on the boundary,
thus this work gives a sake of completeness on this topic.
The plan is to follow the ideas presented in Marx et al.
(2017) and Parada et al. (2022) to prove the stability of
the KdV equation with saturated actuator. To be more
specific, let us define the following saturation map:

sat(s) =

{
s, if |s| ≤M,
Msgn(s), if |s| ≥M,

(1)

where M > 0 is the saturation level and sgn is the
sign function. In this work, we are going to consider the
following equations

yt + yx + yxxx + yyx = 0, t > 0, x ∈ (0, L),
y(t, 0) = y(t, L) = 0, t > 0,
yx(t, L) = sat(αyx(t, 0)), t > 0,
y(0, x) = y0(x), x ∈ (0, L).

(KdVs)

and
yt + yx + yxxx = 0, t > 0, x ∈ (0, L),
y(t, 0) = y(t, L) = 0, t > 0,
yx(t, L) = sat(αyx(t, 0)), t > 0,
y(0, x) = y0(x), x ∈ (0, L).

(KdVLs)

Note that both (KdVs) and (KdVLs) are nonlinear equa-
tions due to the action of the saturation. Keep in mind
that (KdVLs) is just (KdVs) but without the nonlinear
internal term yyx.

The next theorem is the main result of this work,

Theorem 1. Let L /∈ N and |α| < 1, then there exist C > 0
and µ > 0 such that:

• For all y0 ∈ L2(0, L), the unique mild solution y ∈
C([0,∞), L2(0, L))∩L2((0,∞), H1(0, L)) of (KdVLs)
satisfies ∥y(t)∥L2(0,L) ≤ Ce−µt∥y0∥L2(0,L).

• For all y0 ∈ L2(0, L), satisfying ∥y0∥L2(0,L) ≤ ϵ
for some ϵ > 0, the unique mild solution y ∈
C([0,∞), L2(0, L)) ∩ L2((0,∞), H1(0, L)) of (KdVs)
satisfies ∥y(t)∥L2(0,L) ≤ Ce−µt∥y0∥L2(0,L).



The article is organized as follows. Section 2 is devoted
to prove the well-posedness results associated to (KdVLs)
and (KdVs). In Section 3 we study the stability analysis of
(KdVLs) and (KdVs) using an observability inequality. In
Section 4 we show the asymptotic stability of (KdVLs) by
using LaSalle’s invariance principle. Finally, we give some
conclusions and open problems. From now on, C > 0 will
be a generic positive constant.

2. WELL-POSEDNESS RESULTS

The goal of this section is to prove the appropriate well-
posedness results for (KdVLs) and (KdVs). The proof for
(KdVLs) is based on semigroup theory. For (KdVs) we use
the result for (KdVLs), then we will add an internal source
term in order to take in account the nonlinear term yyx,
and derive some multiplier estimates to obtain the needed
regularity.

Consider the operator A : D(A) → L2(0, L) defined by

Aw := −w′ − w′′′ (2)

where

D(A) = {w ∈ H3(0, L)∩H1
0 (0, L) : w

′(L) = sat(αw′(0))}.
Well-posedness asks to handle the fact that the operator
A is nonlinear. We follow the approach presented in Marx
et al. (2015); Prieur et al. (2016), i.e., we show that A is
a closed, dissipative operator and that for some λ > 0,
D(A) ⊂ R(I − λA), where R denotes the range of the
operator.

2.1 Well-posedness of (KdVLs)

In this part, we focus on the study of (KdVLs), in
particular we prove the following result.

Proposition 2. Let y0 ∈ L2(0, L) and |α| < 1, then there
exists a unique mild solution y ∈ C([0,∞), L2(0, L)) of
(KdVLs). Moreover, if y0 ∈ D(A), this solution is classical
and y ∈ C([0,∞), D(A)) ∩ C1((0,∞), L2(0, L)).

Proof. By Rosier (1997) the operator A0 : D(A0) →
L2(0, L), D(A0) = {w ∈ H3(0, L) ∩H1

0 (0, L) : w
′(L) = 0}

such that A0w = Aw is closed and by (Khalil and Grizzle,
2002, Page 91) the operator sat satisfies

∀(s, s̃) ∈ R2, |sat(s)− sat(s̃)| ≤ |s− s̃| , (3)

Thus, sat is a Lipschitz continuous function and hence
the operator A is closed. Now, let us prove that A is
dissipative, let u, v ∈ D(A), then we get

⟨Au−Av, u− v⟩L2(0,L)

=

∫ L

0

(−u′ − u′′′ + v′ + v′′′)(u− v)dx

= −
∫ L

0

(u− v)′(u− v)dx−
∫ L

0

(u− v)′′′(u− v)dx.

Now, note that for f ∈ H3(0, L)∫ L

0

f ′fdx =
1

2

∫ L

0

(f2)′dx =
1

2
[f2]L0 , (4)

and

∫ L

0

f ′′′fdx = −
∫ L

0

f ′′f ′dx+ [f ′′f ]L0 ,

= −1

2

∫ L

0

(f ′2)′dx+ [f ′′f ]L0 ,

= −1

2
[f ′2]L0 + [f ′′f ]L0 .

(5)

Thus, using (4), (5) and that u, v ∈ D(A) we get

⟨Au−Av, u− v⟩L2(0,L) = −1

2
[(u− v)′2]L0

=
1

2
(sat(αu′(0))− sat(αv′(0)))2 − 1

2
(u′(0)− v′(0))2.

Therefore, denoting

Cα =
1− |α|2

2
> 0 (6)

which is positive by |α| < 1, and using (3)

⟨Au−Av, u− v⟩L2(0,L) ≤ −Cα |u′(0)− v′(0)|2 ≤ 0.

Thus, we get A dissipative. Now, we are going to prove
that, for λ > 0 small enough D(A) ⊂ R(I − λA). In other
words, for each u ∈ D(A), there exists v ∈ D(A) such that

(I − λA)v = u. Let u ∈ D(A) and λ̃ = 1
λ we are looking

for solutions of

λ̃v + v′ + v′′′ = λ̃u,
v(0) = v(L) = 0, v′(L) = sat(αv′(0)).

(7)

Consider the map T : H2(0, L) → L2(0, L) defined by
T (y) = z, where z is the solution of

λ̃z + z′ + z′′′ = λ̃u,
z(0) = z(L) = 0, z′(L) = sat(αy′(0)).

(8)

Note that the operator T is well-defined, that is, for all
y ∈ H2(0, L) there exists a unique solution to (8). Indeed,

let ψ(x) = sat(αy′(0))L
2π sin

(
2πx
L

)
. Then φ = z−ψ satisfies

λ̃φ+ φ′ + φ′′′ = f = λ̃u− λ̃ψ − ψ′ − ψ′′′,
φ(0) = φ(L) = φ′(L) = 0.

that can be written as (A0−λ̃I)φ = −f . But as λ̃ > 0 then

λ̃ /∈ σ(A0) (see for instance Rosier (1997)). Thus (A0− λ̃I)
is invertible, and we conclude that φ is well-defined and
hence z. Now, we show that T has a fixed point. Let C > 0
to be defined after and consider the set

KC = {u ∈ H1
0 (0, L) : ∥u∥H1

0 (0,L) ≤ C}. (9)

Note that by the Rellich-Kondrachov theorem (Brezis,
2010, Thm 9.19, Page 285) we know that the inclusion
H1

0 (0, L) ↪→ L2(0, L) is compact and thenKC is a bounded
set in H1

0 (0, L) and relatively compact in L2(0, L), more-
over as KC is closed in L2(0, L) we conclude that KC is
compact in L2(0, L). Then in order to apply Schauder fixed
point theorem (Coron, 2009, Thm B.19), we need to find
C > 0 such that T (H2(0, L)) ⊂ KC .

Lemma 3. There exists C > 0 such that T (H2(0, L)) ⊂
KC .

Proof of Lemma 3. Multiplying the first line of (8) by
z and integrating on (0, L) we get,

λ̃

∫ L

0

z2dx+

∫ L

0

z′zdx+

∫ L

0

z′′′zdx = λ̃

∫ L

0

uzdx. (10)

Using (4) and (5) for z and noticing that z(0) = z(L) = 0,
we obtain:



∫ L

0

z′zdx =
1

2

∫ L

0

(z2)′dx = 0,

and using z′(L) = sat(αy′(0))∫ L

0

z′′′zdx = −1

2

∫ L

0

(z′2)′dx =
1

2
z′(0)2 − 1

2
sat(αy′(0))2,

which with (10) yields

λ̃

∫ L

0

z2dx+
1

2
z′(0)2 =

1

2
sat(αy′(0))2 + λ̃

∫ L

0

uzdx.

Then, using Cauchy-Schwarz inequality and the definition
of the saturation (1), we get

λ̃

2
∥z∥2L2(0,L) ≤

M2

2
+
λ̃

2
∥u∥2L2(0,L). (11)

Similarly, multiplying the first line of (8) by xz and
integrating on (0, L) we get

λ̃

∫ L

0

xz2dx+

∫ L

0

xz′zdx+

∫ L

0

xz′′′zdx = λ̃

∫ L

0

xuzdx.

(12)
Performing integration by parts and by the second line of
(8) we obtain,∫ L

0

xz′zdx =
1

2

∫ L

0

x(z2)′dx = −1

2

∫ L

0

z2dx,

and ∫ L

0

xz′′′zdx = −
∫ L

0

z′′zdx−
∫ L

0

xz′′z′dx

=

∫ L

0

(z′)2dx− 1

2

∫ L

0

x(z′2)′dx

=
3

2

∫ L

0

(z′)2dx− L

2
sat(αy′(0))2.

Thus, from (12) we obtain

λ̃

∫ L

0

xz2dx+
3

2

∫ L

0

(z′)2dx =
1

2

∫ L

0

z2dx

+
L

2
sat(αy′(0))2 + λ̃

∫ L

0

xuzdx,

which yields

3

2
∥z′∥2L2(0,L) ≤

(
Lλ̃

2
+

1

2

)
∥z∥2L2(0,L) +

LM2

2

+
Lλ̃

2
∥u∥2L2(0,L),

(13)

and hence using (11) we deduce, ∥z′∥2L2(0,L) ≤ C̃, where

C̃ > 0 only depends on the level of saturationM , L, λ̃ and
u which finishes the proof of Lemma 3. □

Then, applying Schauder fixed point theorem to T , we find
the solution v ∈ H2(0, L) of (7). Moreover, as u ∈ D(A),
then v ∈ H3(0, L) and hence by the boundary conditions
v ∈ D(A). We conclude that for all λ > 0, D(A) ⊂ R(A−
λI). Using (Miyadera, 1992, Thm 4.2, Page 77) A is the
generator of a semigroup of contractions S(t), t > 0 and
by (Miyadera, 1992, Thm 4.2, Page 81) (or (Barbu, 1976,
Thm 1.2, Page 102)) for all T > 0, y0 ∈ D(A), y =
S(t)y0 ∈ C([0, T ];D(A))∩C1((0, T );L2(0, L)) is a classical
solution to (KdVLs). Moreover, by (Miyadera, 1992, Thm
4.10, Page 87) this solution is unique. Also, we can deduce
that for all T > 0, for all y0 ∈ L2(0, L), there exists a

unique mild solution of (KdVLs) y ∈ C([0, T ];L2(0, L))
and then, the proof of Proposition 2 is finished. □

2.2 Well-posedness of equation (KdVLs) with a source
term

Now, we deal with the well-posedness of the system
(KdVLs) with an extra source term f

yt + yx + yxxx = f, t > 0, x ∈ (0, L),
y(t, 0) = y(t, L) = 0, t > 0,
yx(t, L) = sat(αyx(t, 0)), t > 0,
y(0, x) = y0(x), x ∈ (0, L).

(14)

Formally, this system can be written as yt = Ay + f . The
following result can be obtained using (Pavel, 1987, Thm
10.1, Page 129) and (Pavel, 1987, Thm 10.1, Page 132)

Proposition 4. Let y0 ∈ L2(0, L), |α| < 1, f ∈
L1((0,∞), L2(0, L)), then there exists a unique mild so-
lution y ∈ C([0,∞), L2(0, L)) of (14). Moreover, if y0 ∈
D(A) and f ∈ W 1,1((0,∞), L2(0, L)) this solution is clas-
sical and y ∈ C([0,∞), L2(0, L)), y(t) ∈ D(A), for all t ≥ 0
and y ∈ C1((0,∞), L2(0, L)).

Our idea now is to show that, indeed, the solution of
(14) has an extra-regularity that will help us to deal the
nonlinear term yyx. More specifically, let T > 0 and define

BT = C([0, T ], L2(0, L)) ∩ L2((0, T ), H1(0, L)) (15)

endowed with the norm

∥y∥2BT
= ∥y∥2C([0,T ],L2(0,L)) + ∥y∥2L2((0,T ),H1(0,L)).

Proposition 5. Let y0 ∈ L2(0, L), |α| < 1, f ∈
L1((0, T ), L2(0, L)) and T > 0, consider y ∈
C([0, T ], L2(0, L)), the restriction of the solution of (14)
on [0, T ], then y ∈ BT . Moreover, the following estimate
holds,

∥y∥BT
≤ C(1 +

√
T )
(
∥y0∥L2(0,L) + ∥f∥L1((0,T ),L2(0,L))

)
.

(16)

Proof. Suppose y is a classical solution of (14), let T > 0
and 0 ≤ s ≤ T . Several computations are quite similar
to those performed in the proof of Lemma 3 and for that
reason are omitted here. Multiplying the first line of (14)
by y and integrating on (0, L)× (0, s), we get∫ s

0

∫ L

0

ytydxdt+

∫ s

0

∫ L

0

yxydxdt+

∫ s

0

∫ L

0

yxxxydxdt

=

∫ s

0

∫ L

0

fydxdt.

(17)
Note that,∫ s

0

ytydt =
1

2

∫ s

0

d

dt
y2dt =

1

2
y2(s, ·)− 1

2
y20 . (18)

Hence, using (4) and (5), (17) becomes

1

2

∫ L

0

y(s, x)2dx+
1

2

∫ s

0

(
yx(t, 0)

2 − sat(αyx(t, 0))
2
)
dt

=
1

2

∫ L

0

y20dx+

∫ s

0

∫ L

0

fydxdt.

(19)
First, note that for all s ∈ [0, T ]



∫ s

0

∫ L

0

fydxdt ≤
∫ T

0

∥y(t, ·)∥L2(0,L)∥f(t, ·)∥L2(0,L)dt

≤ ∥y∥C([0,T ],L2(0,L))∥f∥L1((0,T ),L2(0,L)).
(20)

Now, using (1), (19) and (20) we get for all s ∈ [0, T ],

1

2

∫ L

0

y(s, x)2dx+ Cα

∫ s

0

yx(t, 0)
2dt ≤ 1

2

∫ L

0

y20dx

+∥y∥C([0,T ],L2(0,L))∥f∥L1((0,T ),L2(0,L)).

(21)

Taking the supremum for s ∈ [0, T ], and with Young’s
inequality, we get

∥y∥2C([0,T ],L2(0,L)) ≤ C
(
∥y0∥2L2(0,L) + ∥f∥2L1((0,T ),L2(0,L))

)
.

(22)
Moreover, from (21) taking s = T , and using (22) we can
derive the following hidden regularity∫ T

0

yx(t, 0)
2dt ≤ C

(
∥y0∥2L2(0,L) + ∥f∥2L1((0,T ),L2(0,L))

)
.

(23)
Now, we multiply the first line of (14) by xy and integrate
on (0, L)× (0, T ) and we get∫ T

0

∫ L

0

xytydxdt+

∫ T

0

∫ L

0

xyxydxdt

+

∫ T

0

∫ L

0

xyxxxydxdt =

∫ T

0

∫ L

0

xfydxdt.

(24)

By (18)∫ L

0

∫ T

0

xytydt =
1

2

∫ L

0

xy2(T, x)dx− 1

2

∫ L

0

xy20dx.

Moreover, using the second and third line of (14) we have,∫ T

0

∫ L

0

xyxydxdt =
1

2

∫ T

0

∫ L

0

x
d

dx
y2dxdt

= −1

2

∫ T

0

∫ L

0

y2dxdt,

and ∫ T

0

∫ L

0

xyxxxydxdt

= −
∫ T

0

∫ L

0

yxxydxdt−
∫ T

0

∫ L

0

xyxxyxdxdt

=

∫ T

0

∫ L

0

y2xdxdt−
1

2

∫ T

0

∫ L

0

x
d

dx
y2xdxdt

=
3

2

∫ T

0

∫ L

0

y2xdxdt−
L

2

∫ T

0

sat(αyx(t, 0)
2dt.

Thus, from (24) we obtain

1

2

∫ L

0

xy(T, x)2dx+
3

2

∫ T

0

∫ L

0

y2xdxdt =
1

2

∫ L

0

xy20dx

+
1

2

∫ T

0

∫ L

0

y2dxdt+
L

2

∫ T

0

sat(αyx(t, 0))
2dt

+

∫ T

0

∫ L

0

xfydxdt.

(25)
Note that∫ T

0

∫ L

0

y2dxdt ≤
∫ T

0

(
sup

t∈[0,T ]

∫ L

0

y2(t, ·)dx

)
dt

= T∥y∥2C([0,T ],L2(0,L))

(26)

Moreover, by (1) and (23)∫ T

0

sat(αyx(t, 0))
2dt

≤ C
(
∥y0∥2L2(0,L) + ∥f∥2L1((0,T ),L2(0,L))

)
,

and by (20) and (22)∫ T

0

∫ L

0

xfydxdt ≤ C
(
∥y0∥2L2(0,L) + ∥f∥2L1((0,T ),L2(0,L))

)
.

Therefore, joining these estimates, we deduce from (25)

∥yx∥2L2((0,T ),L2(0,L))

≤ C(1 + T )
(
∥y0∥2L2(0,L) + ∥f∥2L1((0,T ),L2(0,L))

)
,

(27)

and thus y ∈ L2((0, T ), H1(0, L)). Mixing (22) and (27)
we deduce (16). The result can be extended by density to
mild solutions. □

2.3 Well-posedness of the nonlinear system

Now, we are ready to give the proof of the well-posedness
result for (KdVs). For that the next proposition will be
crucial, its proof can be founded in Perla Menzala et al.
(2002).

Proposition 6. Let y ∈ BT . Then yyx ∈ L1((0, T ), L2(0, L))
and the map y ∈ BT 7→ yyx ∈ L1((0, T ), L2(0, L)) is
continuous. Moreover, there exists C > 0 such that, for
any y, z ∈ BT

∥yyx − zzx∥L1((0,T ),L2(0,L))

≤ CT 1/4(∥y∥BT
+ ∥z∥BT

)∥y − z∥BT
.

The main result of this subsection is the following one.

Proposition 7. Let y0 ∈ L2(0, L) and |α| < 1, then there
exists a unique mild solution y ∈ C([0,∞), L2(0, L)) ∩
L2((0,∞), H1(0, L)) of (KdVs).

Proof. Let y0 ∈ D(A) and R, θ > 0 to be chosen later.
Consider the closed ball BBθ

(0, R) := {z ∈ Bθ, ∥z∥Bθ
≤

R}, where Bθ is defined by (15). Then, BBθ
(0, R) is a

complete metric space. Let the map Φ : Bθ → Bθ defined
for z ∈ Bθ by Φ(z) = y, where y is the solution of

yt + yx + yxxx = −zzx, t > 0, x ∈ (0, L),
y(t, 0) = y(t, L) = 0, t > 0,
yx(t, L) = sat(αyx(t, 0)), t > 0,
y(0, x) = y0(x), x ∈ (0, L).

Note first that y is well-defined, since by Proposition 6,
zzx ∈ L1((0, θ), L2(0, L)). Clearly, y ∈ Bθ is solution of
(KdVs) if y is a fixed point of Φ. From Proposition 5 and
Proposition 6, we get for all z ∈ Bθ

∥Φ(z)∥Bθ
= ∥y∥Bθ

≤ C(1 + θ1/2)
(
∥y0∥L2(0,L)

+∥zzx∥L1((0,T ),L2(0,L))

)
≤ C1(1 + θ1/2)∥y0∥L2(0,L) + C2(1 + θ1/2)θ1/4∥z∥2Bθ

,

for some C1, C2 > 0. Then taking R = 3C1∥y0∥L2(0,L) and

θ > 0 small enough such that C2(1 + θ1/2)θ1/4R < 1
3 and

(1+ θ1/2) < 2, we have that ∥Φ(z)∥Bθ
≤ R. Thus, Φ maps

the ball BBθ
(0, R) into itself. Now, take z1, z2 ∈ BBθ

(0, R),
y1 = Φ(z1), y2 = Φ(z2), then w = Φ(z1)− Φ(z2) satisfies




wt + wx + wxxx = f, t > 0, x ∈ (0, L),
w(t, 0) = w(t, L) = 0, t > 0,
wx(t, L) = h(t), t > 0,
w(0, x) = 0, x ∈ (0, L).

(28)

where f = −z1z1,x + z2z2,x and h = sat(αy1,x(t, 0)) −
sat(αy2,x(t, 0)). First, note that by (23), h ∈ L2(0, θ) and
hence (28) is well-posed (Cerpa, 2014, Prop 3). Moreover,

∥w∥Bθ
≤ C

(
∥h∥L2(0,θ) + ∥f∥L1((0,θ),L2(0,L))

)
. (29)

We can not use directly the estimates obtained in Sec-
tion 2.2, because h ̸= sat(αwx(t, 0)), but similar estimates
can be obtained. If we multiply the first line of (28) by w
and integrate on (0, L)× (0, θ), we get∫ θ

0

∫ L

0

wtwdxdt+

∫ θ

0

∫ L

0

wxwdxdt+

∫ θ

0

∫ L

0

wxxxwdxdt

=

∫ θ

0

∫ L

0

fwdxdt.

(30)
Similar computations as in (19) show that∫ θ

0

∫ L

0

wtwdxdt =
1

2

[∫ L

0

w2(t, x)dx

]t=θ

t=0

,

∫ θ

0

∫ L

0

wxwdxdt = 0,

and∫ θ

0

∫ L

0

wxxxwdxdt =
1

2

∫ θ

0

w2
x(t, 0)dt−

1

2

∫ θ

0

h(t)2dt.

Thus, from (30) we derive

1

2

∫ L

0

w(θ, x)2dx+
1

2

∫ θ

0

wx(t, 0)
2dt− 1

2

∫ θ

0

h(t)2dt

=

∫ θ

0

∫ L

0

fwdxdt.

(31)
Since h = sat(αy1,x(t, 0)) − sat(αy2,x(t, 0)), using (3) we
derive,

∥h∥L2(0,θ) = ∥sat(αy1,x(t, 0))− sat(αy2,x(t, 0))∥L2(0,θ)

≤ ∥αy1,x(·, 0)− αy2,x(·, 0)∥L2(0,θ) = |α|∥wx(·, 0)∥L2(0,θ).
(32)

Thus, plugging (32) in (31), we obtain

1

2

∫ L

0

w(θ, x)2dx+ Cα

∫ θ

0

wx(t, 0)
2dt ≤

∫ θ

0

∫ L

0

fwdxdt,

(33)
which implies using Young’s inequality

∥w∥C([0,θ],L2(0,L)) ≤ C∥f∥L1((0,θ),L2(0,L)). (34)

Using (34) in (33), we get∫ θ

0

wx(t, 0)
2dt ≤ C∥f∥2L1((0,θ),L2(0,L)),

and then (32) brings

∥h∥L2(0,θ) ≤ C∥f∥L1((0,θ),L2(0,L)),

which transforms (29) into

∥w∥Bθ
≤ C∥f∥L1((0,θ),L2(0,L)). (35)

Finally, by (35) and Proposition 6 we conclude:

∥Φ(z1)− Φ(z2)∥Bθ
= ∥w∥Bθ

≤ C3θ
1/4R∥z1 − z2∥Bθ

,

for some C3 > 0. Then taking θ > 0, small enough such
that C3θ

1/4R < 1, we get that Φ is a contraction, and

we conclude by using the Banach Fixed Point theorem
(Brezis, 2010, Thm 5.7) and density argument to extend
the result for all y0 ∈ L2(0, L). Thus, we have proved the
following local in-time well-posedness result:

Proposition 8. Let y0 ∈ L2(0, L), |α| < 1 and T > 0.
Then there exists 0 < T ∗ ≤ T and a unique mild solution
y ∈ BT∗ of (KdVs) on the time interval [0, T ∗]. Moreover,
there exists C > 0 such that ∥y∥BT∗ ≤ C∥y0∥L2(0,L).

To conclude the proof of the global well-posedness result
stated on Proposition 7, we need some a priori estimates,
based on a multiplier approach, similar to those presented
in Section 2.2. Let T > 0 and y a classical solution
of (KdVs). Multiplying the first line of (KdVs) by y,
integrating on (0, L)× (0, s) we get∫ s

0

∫ L

0

ytydxdt+

∫ s

0

∫ L

0

yxydxdt+

∫ s

0

∫ L

0

yxxxydxdt

+

∫ s

0

∫ L

0

yxy
2dxdt = 0.

(36)

We focus on the term
∫ s

0

∫ L

0
yxy

2dxdt, the other terms are
computing as in (20).∫ s

0

∫ L

0

yxy
2dxdt =

1

3

∫ s

0

∫ L

0

d

dx
y3dxdt

=
1

3

[∫ s

0

y3(t, x)dt

]x=L

x=0

= 0.

Therefore, we derive from (36)

1

2

∫ L

0

y(s, x)2dx+
1

2

∫ s

0

(
yx(t, 0)

2 − sat(αyx(t, 0))
2
)

=
1

2

∫ L

0

y20dx.

(37)
Using the definition of the saturation (1) we derive

1

2

∫ L

0

y(s, x)2dx+ Cα

∫ s

0

yx(t, 0)
2dt ≤ 1

2

∫ L

0

y20dx. (38)

Then, taking the supremum for s ∈ [0, T ] in (38),

∥y∥2C([0,T ],L2(0,L)) ≤ ∥y0∥2L2(0,L). (39)

On the other hand, taking s = T in (38),∫ T

0

yx(t, 0)
2dt ≤ 1

2
C−1

α ∥y0∥2L2(0,L). (40)

Now, we multiply the first line of (KdVs) by xy and
integrate on (0, L)× (0, T ), obtaining∫ T

0

∫ L

0

xytydxdt+

∫ T

0

∫ L

0

xyxydxdt

+

∫ T

0

∫ L

0

xyxxxydxdt+

∫ T

0

∫ L

0

xy2yxdxdt = 0.

(41)

We focus on the term
∫ T

0

∫ L

0
xy2yxdxdt, the other terms

are computing as in (25),∫ T

0

∫ L

0

xy2yxdxdt =
1

3

∫ T

0

∫ L

0

x
d

dx
y3dxdt

= −1

3

∫ T

0

y3dxdt+
1

3

[∫ T

0

xy3(t, x)dt

]x=L

x=0

= −1

3

∫ T

0

y3dxdt.



Hence, we infer from (41)

1

2

∫ L

0

xy(T, x)2dx+
3

2

∫ T

0

∫ L

0

y2xdxdt =
1

2

∫ L

0

xy20dx

+
1

2

∫ T

0

∫ L

0

y2dxdt+
L

2

∫ T

0

sat(αyx(t, 0))
2dt

+
1

3

∫ T

0

∫ L

0

y3dxdt.

(42)

For the term involving
∫ L

0
y3(t, x)dx, by the injection

of H1
0 (0, L) into L∞(0, L) we know that ∥y∥L∞(0,L) ≤

C∥yx∥L2(0,L), for some C > 0 then∫ T

0

∫ L

0

y3(t, x)dxdt ≤
∫ T

0

∥y∥L∞(0,L)∥y∥2L2(0,L)dt

≤ C

∫ T

0

∥yx∥L2(0,L)∥y∥2L2(0,L)dt,

which implies using (39)∫ T

0

∫ L

0

y3(t, x)dxdt ≤ C
√
T∥y0∥2L2(0,L)∥yx∥L2((0,T ),L2(0,L)).

(43)
Thus, from (42) using (26), (39), (40) and (43) we derive

∥yx∥2L2((0,T ),L2(0,L)) ≤ C(1 + T )∥y0∥2L2(0,L)

+C
√
T∥y0∥2L2(0,L)∥yx∥L2((0,T ),L2(0,L)).

Using Young’s inequality

∥yx∥2L2((0,T ),L2(0,L)) ≤ C(1+T )∥y0∥2L2(0,L)+CT∥y0∥
4
L2(0,L).

(44)
Finally, with (39) and (44) and arguing by density, the
proof of Proposition 7 is finished. □

3. EXPONENTIAL STABILITY

In this section, we are going to prove the main result of
this work, namely Theorem 1. For all t > 0, we define the
energy of (KdVs) (or (KdVLs)) by

E(t) =
1

2

∫ L

0

y(t, x)2dx. (45)

Then, for a classical solution of (KdVs) (or (KdVLs))
performing integration by parts, we get using |α| < 1

Ė(t) =
1

2
(sat(αyx(t, 0)))

2 − 1

2
(yx(t, 0))

2 ≤ 0. (46)

Thus, formally, the energy is a non-increasing function of
time. Now, we will prove that indeed, the energy decays
exponentially to 0 when L /∈ N . Our approach will
be based on an observability inequality for the system
(KdVLs).

Proposition 9. Let L /∈ N , |α| < 1 and y0 ∈ L2(0, L). For
any solution y of (KdVLs), the following inequality holds:∫ L

0

y20dx ≤ Cobs

∫ T

0

y2x(t, 0)dt, (47)

for some Cobs > 0, that does not depend on y0.

Proof. In order to prove the observability inequality, we
follow Rosier (1997) and use a contradiction argument. Let
us suppose that (47) is false, then there exists (yn0 )n∈N ⊂
L2(0, L) such that

∫ L

0

(yn0 )
2dx = 1, and

∫ T

0

(ynx (t, 0))
2dt→ 0

when n → ∞ and where yn = S(t)yn0 . Now, using
(27) with f = 0 we get that (yn)n∈N is bounded in
L2((0, T ), H1(0, L)). Then as ynt = −ynx − ynxxx, we can
see that (ynt )n∈N is bounded in L2((0, T ), H−2(0, L)), thus
by Aubin-Lions lemma (yn)n∈N is relatively compact in
L2((0, T ), L2(0, L)), therefore we can assume that yn → y
in L2((0, T ), L2(0, L)). Now, multiplying the first line of
(KdVLs) by (T − t)y, integrating on (0, L) × (0, T ), we
get∫ T

0

∫ L

0

(T − t)ytydxdt+

∫ T

0

∫ L

0

(T − t)yxxxydxdt

+

∫ T

0

∫ L

0

(T − t)yxydxdt+

∫ T

0

∫ L

0

(T − t)y2yxdxdt = 0.

(48)
Using ∫ L

0

yxydx = 0,

∫ L

0

y2yxdx = 0,∫ L

0

yxxxydx =
y2x(t, 0)

2
− sat(αyx(t, 0))

2

2
,

and∫ T

0

∫ L

0

(T − t)ytydxdt =
1

2

∫ T

0

∫ L

0

(T − t)
d

dt
y2dxdt

=
1

2

∫ T

0

∫ L

0

y2dxdt+
1

2

[∫ L

0

(T − t)y2(t, x)dx

]t=T

t=0

=
1

2

∫ T

0

∫ L

0

y2dxdt− 1

2

∫ L

0

Ty20dx,

we get from (48)

T

2

∫ L

0

y20dx+
1

2

∫ T

0

(T − t)sat(αyx(t, 0))
2dt

=
1

2

∫ T

0

∫ L

0

y2dxdt+
1

2

∫ T

0

(T − t)yx(t, 0)
2dt.

Therefore,∫ L

0

y20dx ≤ 1

T
∥y∥2L2(0,T,L2(0,L)) +

∫ T

0

yx(t, 0)
2dt. (49)

Hence, using (49) we derive that (yn0 )n∈N is a Cauchy
sequence in L2(0, L) . Let y0 = limn→∞ yn0 , then∫ L

0

y20dx = 1, and

∫ T

0

yx(t, 0)
2dt = 0

Thus, as sat(0) = 0, we conclude that y solves the
following linear equation:{

yt + yx + yxxx = 0, t > 0, x ∈ (0, L),
y(t, 0) = y(t, L) = 0, t > 0,
yx(t, 0) = yx(t, L) = 0, t > 0,

(50)

But by (Rosier, 1997, Lemma 3.4) if L /∈ N , there is
no function satisfying this system and ∥y0∥L2(0,L) = 1,
which gives us the contradiction and finishes the proof of
Proposition 9. □

Now, we prove our main result.

Proof of Theorem 1. Let y0 ∈ D(A), using (46) and (3)
we get for a classical solution of (KdVLs)

Ė(t) ≤ −Cα(yx(t, 0))
2,



thus, integrating the last expression between 0 and T , we
derive

E(T )− E(0) ≤ −Cα

∫ T

0

(yx(t, 0))
2dt.

Using the last expression, (46) and (47) we get

E(T ) ≤ E(0) ≤ Cobs

∫ T

0

(yx(t, 0))
2dt

≤ Cobs

Cα
(E(0)− E(T )),

which implies that

E(T ) ≤ γE(0), with γ =
Cobs

Cα + Cobs
< 1. (51)

Now as the system is invariant by translation in time,
we can repeat this argument on [(m − 1)T,mT ] for m =
1, 2, · · · to obtain,

E(mT ) ≤ γE((m− 1)T ) ≤ · · · ≤ γmE(0).

Hence, we have E(mT ) ≤ e−µmTE(0) where µ =
1
T ln( 1γ ) > 0. Let t > 0 then there exists m ∈ N∗ such

that (m − 1)T < t ≤ mT , and then using again the non-
increasing property of the energy we get

E(t) ≤ E((m− 1)T ) ≤ e−µ(m−1)TE(0) ≤ 1

γ
e−µtE(0).

Finally, we conclude the exponential stability of (KdVLs)
by a density argument and hence the first point of Theo-
rem 1.

Since (KdVs) is also invariant by translation in time, to
prove the second point of Theorem 1, the goal is to prove
(51) for a solution of (KdVs). This idea was used in several
works, for instance Perla Menzala et al. (2002); Parada
et al. (2022). More specifically, we are going to show that
∥y(T )∥L2(0,L) ≤ γ̃∥y0∥L2(0,L), for some γ̃ ∈ (0, 1). Let
∥y0∥L2(0,L) ≤ ϵ for ϵ > 0 to fix later. Take y the solution
of (KdVs), then we can split y as y = y + ỹ, where

yt + yx + yxxx = 0, t > 0, x ∈ (0, L),
y(t, 0) = y(t, L) = 0, t > 0,
yx(t, L) = sat(αyx(t, 0)), t > 0,
y(0, x) = y0(x), x ∈ (0, L),

and 
ỹt + ỹx + ỹxxx = −yyx, t > 0, x ∈ (0, L),
ỹ(t, 0) = ỹ(t, L) = 0, t > 0,
ỹx(t, L) = h(t), t > 0,
ỹ(0, x) = 0, x ∈ (0, L),

where h(t) = sat(αyx(t, 0))− sat(αyx(t, 0)).

Now clearly,

∥y(T, ·)∥L2(0,L) ≤ ∥y(T, ·)∥L2(0,L) + ∥ỹ(T, ·)∥L2(0,L). (52)

Moreover, as y satisfies (KdVLs), we get using (51) and
y(0, x) = y0(x) that there exists γ < 1 such that

∥y(T )∥L2(0,L) ≤ γ∥y0∥L2(0,L). (53)

Besides,

∥ỹ(T, ·)∥L2(0,L) ≤ ∥ỹ∥C([0,T ],L2(0,L)).

To estimate ∥ỹ∥C([0,T ],L2(0,L)) using (34) we get

∥ỹ∥C([0,T ],L2(0,L)) ≤ C∥yyx∥L1((0,T ),L2(0,L)),

by Proposition 6,

∥yyx∥L1((0,T ),L2(0,L)) ≤ C∥y∥2BT
,

using (39)-(44), we derive

∥y∥2BT
≤ C

(
∥y0∥2L2(0,L) + ∥y0∥4L2(0,L)

)
.

Thus, we get for ỹ

∥ỹ∥C([0,T ],L2(0,L)) ≤ C
(
∥y0∥2L2(0,L) + ∥y0∥4L2(0,L)

)
,

and hence
∥ỹ(T, ·)∥L2(0,L) ≤

(
C∥y0∥L2(0,L)

+C∥y0∥3L2(0,L)

)
∥y0∥L2(0,L),

(54)

Finally, as ∥y0∥L2(0,L) ≤ ϵ using (53) and (54), we deduce
from (52)

∥y(T, ·)∥L2(0,L) ≤ ∥y(T, ·)∥L2(0,L) + ∥ỹ(T, ·)∥L2(0,L)

≤ γ∥y0∥L2(0,L) + (Cϵ+ Cϵ3)∥y0∥L2(0,L)

= (γ + Cϵ+ Cϵ3)∥y0∥L2(0,L),

we conclude by choosing ϵ > 0 small enough such that
γ̃ = γ + Cϵ+ Cϵ3 < 1. □

4. ASYMPTOTIC STABILITY VIA LASALLE’S
INVARIANCE PRINCIPLE

Another approach to prove the stability of (KdVLs) is to
use Lyapunov techniques and LaSalle’s invariance prin-
ciple. This idea was developed in the case of internal
saturation in Marx et al. (2015). The Lyapunov function
to take in account is the energy defined by (45).

Proposition 10. Let L /∈ N and |α| < 1, then for all
y0 ∈ L2(0, L), the mild solution y of (KdVLs) satisfies:

∥y(t, ·)∥L2(0,L) → 0, as t→ ∞.

Proof. First, note that by (46), Ė(t) ≤ 0 that tells us that
for regular initial data the solution of (KdVLs) is stable

and moreover Ė(t) = 0 if and only if yx(t, 0) = 0. In fact,
we consider now two cases:

• |sat(αyx(t, 0))| = M . This happens when
|αyx(t, 0)| ≥ M which implies |yx(t, 0)| ≥ M

|α| .

By (46), Ė(t) = 0 if and only if M = |yx(t, 0)|. Then
M ≥ M

|α| , which is a contradiction because |α| < 1.

• sat(αyx(t, 0)) = αyx(t, 0). Then Ė(t) = 0 if and only
if α2|yx(t, 0)|2 = |yx(t, 0)|2, which is only possible if
yx(t, 0) = 0.

To apply LaSalle’s invariance principle, we need that the
trajectories are compact, in this context, it is possible to
show the following result.

Lemma 11. The canonical embedding from D(A),
equipped with the graph norm, into L2(0, L) is compact.

Now as A generates a semigroup of contractions, then from
(Brezis, 1973, Thm 3.1 Page 54), we get that for all t ≥ 0
and y(0, ·) ∈ D(A),

∥y(t, ·)∥L2(0,L) ≤ ∥y(0, ·)∥L2(0,L),

∥Ay(t, ·)∥L2(0,L) ≤ ∥Ay(0, ·)∥L2(0,L).

Thus, by Lemma 11, we have that the trajectory {v(t) =
S(t)v0, t ≥ 0} is pre-compact in L2(0, L), then by (Slem-
rod, 1989, Thm, 3,1) the ω−limit set, ω[y(0, ·)] ⊂ D(A), is
not empty and invariant to the semigroup S(t). Take now

a regular solution such that Ė(t) = 0, that is yx(t, 0) = 0
t ≥ 0. Then y solves (50) and by (Rosier, 1997, Lemma
3.4) if L /∈ N y(t, x) = 0 a.e x ∈ (0, L). Consequently,



∥y(t, ·)∥L2(0,L) → 0, as t→ ∞
for the regular solution of (KdVLs). It is possible to extend
this result to mild solutions by density. □

CONCLUSION

The exponential stability of the nonlinear KdV equation
with a saturated feedback on the boundary was addressed.
The well-posedness is obtained using nonlinear semigroup
theory and fixed point results. The exponential stability
was shown via the classical observability approach, and
the asymptotic stability of the linear KdV was addressed
using LaSalle’s invariance principle. An important open
question arising in this context is to design a saturated
boundary feedback term which gives stability when L ∈ N .
What it is known about the linear KdV equation with
boundary conditions on y(t, 0), y(t, L) and yx(t, L) is
that it is never exactly controllable from the right side
when L ∈ N (see Rosier (1997) and Glass and Guerrero
(2010)). In particular, concerning the system (KdVs) the
feedback term αyx(t, 0), and the strategies employed here
are not capable of dealing with critical lengths. A possible
solution to this problem could be to take another boundary
feedback term acting on the left Dirichlet condition as in
Cerpa and Coron (2013), where a backstepping controller
was designed. To saturate this control, an idea is to follow
Kang and Fridman (2017) and Kang and Fridman (2018).
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