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Abstract: In the framework of tensor spaces, we consider orthogonalization kernels to generate
an orthogonal basis of a tensor subspace from a set of linearly independent tensors. In particular, we
experimentally study the loss of orthogonality of six orthogonalization methods, namely Classical
and Modified Gram-Schmidt with (CGS2, MGS2) and without (CGS, MGS) re-orthogonalization,
the Gram approach, and the Householder transformation. To overcome the curse of dimensionality,
we represent tensors with a low-rank approximation using the Tensor Train (TT) formalism. In
addition, we introduce recompression steps in the standard algorithm outline through the TT-
rounding method at a prescribed accuracy. After describing the structure and properties of the
algorithms, we illustrate their loss of orthogonality with numerical experiments. The theoretical
bounds from the classical matrix computation round-off analysis, obtained over several decades,
seem to be maintained, with the unit round-off replaced by the TT-rounding accuracy. The
computational analysis for each orthogonalization kernel in terms of the memory requirements
and the computational complexity measured as a function of the number of TT-rounding, which
happens to be the most computationally expensive operation, completes the study.
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À propos de schémas d’orthogonalisation dans le format
Tensor Train

Résumé : Dans le contexte de l’espace tensoriel, nous considérons les noyaux d’orthogonalisation
pour générer une base orthogonale d’un sous-espace tensoriel à partir d’un ensemble de tenseurs
linéairement indépendants. En particulier, nous étudions numériquement la perte d’orthogonalité
de six méthodes d’orthogonalisation, à savoir les méthodes de Gram-Schmidt classique et modi-
fiée avec (CGS2, MGS2) et sans (CGS, MGS) réorthogonalisation, l’approche de Gram et la
transformation de Householder. Pour lutter contre la malédiction de la dimensionnalité, nous
représentons les tenseurs avec le formalisme Train de tenseurs (TT), et nous introduisons des
étapes de recompression dans le schéma de l’algorithme standard par la méthode TT-rounding
à une précision prescrite. Après avoir décrit la structure et les propriétés de l’algorithme, nous
illustrons numériquement que les limites théoriques de la perte d’orthogonalité dans le calcul ma-
triciel classique sont maintenues, l’arrondi unitaire étant remplacé par la précision de l’arrondi
TT. L’analyse pour chaque noyau d’orthogonalisation de l’exigence de mémoire et de la complexi-
té de calcul en termes d’arrondi TT, qui se trouve être l’opération la plus coûteuse en termes de
calcul, complète l’étude.

Mots-clés : Gram-Schmidt classique, Gram-Schmidt modifiée, transformation de Householder,
perte d’orthogonalité, Tensor Train format
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4 Coulaud et al.

1 Introduction

The solution of linear problems is at the heart of many large-scale simulations in academic or
industrial applications. Many numerical linear algebra algorithms rely on an orthonormal basis
of the space in which the solution is sought; this is particularly the case in GMRES, one of the
most popular Krylov subspace methods for solving linear systems, or all variants of the Arnoldi
algorithms for computing eigenpairs [1, 2]. The orthonormal basis is built from a set of vectors
that are explicitly orthonormalized by an orthogonalization procedure. Various orthogonalization
algorithms have been proposed to perform this task over the years. Additionally, they allow
for the computation of the matrix QR factorization. If the input consists of m vectors of Rn
organized as the columns of a matrix A ∈ Rn×m, then the orthogonalization schemes can factorize
A into the product of an orthogonal matrix Q ∈ Rn×m and an upper triangular one R ∈ Rm×m.
Among the most widely used numerical algorithms, we consider the Classical Gram-Schmidt
(CGS) [3, 4], the Modified Gram-Schmidt (MGS) [3, 4], their variants with re-orthogonalization,
named CGS2 and MGS2 [5, 6, 7], the Gram approach [8] and the Householder transformations [9].
CGS and MGS are algorithms that implement the Gram-Schmidt method. The fundamental
idea is to sequentially remove the projection of an input vector along the previously computed
orthonormal vectors and eventually normalize it. The CGS2 and MGS2 procedures aim to
improve the quality of the CGS and MGS basis vectors by orthogonalizing them once more in
the same way as the basis computed with CGS and the MGS, respectively. The Gram method
calculates the orthogonal basis by utilizing the Cholesky factorization of the Gram matrix, which
is defined by the inner products of input vectors. The Householder transformation relies on
orthogonal reflections constructed from the input vectors and used to reflect the canonical basis.

A crucial aspect of finite precision calculation for orthogonalization algorithms is the loss
of orthogonality in the computed basis due to computational rounding errors. This issue has
been extensively studied over the years, resulting in numerous findings. The research articles
present many theoretical results that relate the loss of orthogonality to the linear dependency of
the input vectors. The authors of [10, 11] establish theoretical bounds for CGS and MGS loss
of orthogonality, showing that the basis produced by MGS is better in terms of orthogonality
than the CGS one. In [11] for CGS2 and MGS2, it is confirmed that this re-orthogonalization
effectively improves the orthogonality of the computed basis. Bounds for the loss of orthogonality
of the Householder transformation and the Gram method are proven in [12] and [8], respectively.
Collectively, these theoretical results are several decades old. From Wilkinson’s oldest paper in
1965 for the Householder transformation to the most recent method presented in 2006 by Barlow
et al. for the CGS2 scheme.

All of the cited algorithms translate naturally into the tensor world. Starting from a set of m
tensors of Rn1×···×nd , an orthogonal basis for the relative subspace of dimension m of Rn1×···×nd

is produced. These kernels are used in iterative methods to solve linear systems structured with
the tensor product or in generalization of the least-squares problem to the tensor space. These
orthogonalization schemes can work with dense tensors, but they are affected by the “curse of
dimensionality”, i.e., their storage and operation costs grow exponentially with the order of the
tensor. Therefore, it is necessary to represent the tensor in a compressed format. In this work,
we generalize the six orthogonalization kernels previously mentioned to tensors, using the Tensor
Train (TT) formalism [13, 14]. These kernels in TT-format can be used, for example, in TT-
algorithms such as TT-GMRES [15]. However, the operation sequences between tensors in TT-
formats reduce the benefit of this compressed representation. Therefore, we introduce additional
compression steps by the TT-round function [13] in the orthogonalization schemes, knowing
that they affect the orthogonality quality of the basis. The aim of this work is to describe the
orthogonalization kernels generalized to the tensor with the TT-format and to experimentally
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investigate the loss of orthogonality of the computed basis. These numerical results in TT-format
show a similarity with the theoretical results of classical numerical matrix computation.

The rest of the paper is organized as follows. In Section 2, we introduce the notation and
recall the most important properties of the TT-format. Section 3 begins with a description of
the six orthogonalization schemes extended to the tensor context by the TT-formalism. We
also address the complexity in terms of the number of TT-round applications, which is the
most computationally expensive operation. In Section 3.4 we recall briefly the known theoretical
bounds related to the loss of orthogonality of these schemes in classical matrix computation. The
theoretical results are linked to the numerical experiments, collected in Section 4, of the same
orthogonalization schemes extended with the TT-format. The similarities between the classical
orthogonalization kernels and their TT-versions are summarized in Section 5.

2 Notation and TT-format
To enhance readability, we utilize the following notations for the various mathematical objects
described. Small Latin letters represent scalars and vectors (e.g., a), with the context clarifying
the object’s nature. Capital Latin letters denote matrices (e.g., A), while bold small Latin letters
denote tensors (e.g., a). Calligraphic capital letters represent sets (e.g., A). We use the ‘Matlab
notation’ to indicate all the indices along a mode with a colon (‘:’). For example, if we are given
a matrix A ∈ Rm×n, then A(:, i) represents the i-th column of A. The tensor product is denoted
by ⊗, while the Euclidean inner product is denoted by 〈·, ·〉 for both vectors and tensors. We
use || · || to denote the Euclidean norm for vectors and the Frobenious norm for matrices and
tensors. The condition number of a matrix A ∈ Rn×n is denoted by κ(A) =

∥∥A∥∥‖A−1‖.
Let x be a d-order tensor in Rn1×···×nd and nk the dimension of mode k for every k ∈

{1, . . . , d}. Storing the full tensor x ∈ Rn1×···×nd has a memory cost ofO(nd) with n = maxi∈{1,...,d}{ni}.
Therefore, various compression techniques have been proposed over the years to reduce the mem-
ory consumption [16, 17, 18]. For the purpose of this work the most suitable tensor representation
is the Tensor Train (TT) format [18]. The main concept of TT is to represent a d-order tensor
as the contraction of d 3-order tensors. This contraction is a generalization of the matrix-vector
product to tensors.

The Tensor Train representation of x ∈ Rn1×···×nd is

x = x1x2 · · ·xd,

where xk ∈ Rrk−1×nk×rk is called k-th TT-core for k ∈ {1, . . . , d}, with r0 = rd = 1. Note
that x1 ∈ Rr0×n1×r1 and xd ∈ Rrd−1×nd×rd reduce essentially to matrices, but for consistency
in notation, we represent them as tensors. The k-th TT-core of a tensor is denoted by the same
bold letter underlined with a subscript k. The value rk is called k-th TT-rank.

Given an index ik, we denote the ik-th matrix slice of xk with respect to mode 2 by Xk(ik),
i.e., Xk(ik) = xk(:, ik, :). Each element of the TT-tensor x can be expressed as the product of d
matrices, i.e.,

x(i1, . . . , id) = X1(i1) · · ·Xd(id)

with Xk(ik) ∈ Rrk−1×rk for every ik ∈ {1, . . . , nk} and k ∈ {2, . . . , d− 1}, while X1(i1) ∈ R1×r1

and Xd(id) ∈ Rrd−1×1. It is important to note that X1(i1) and Xd(id) are actually vectors, but
for the sake of consistency, they are written as matrices with a single row or column.

Storing a tensor in TT-format requires O(dnr2) units of memory, where n = maxi∈{1,...,d}{ni}
and r = maxi∈{1,...,d}{ri}. The memory footprint grows linearly with the tensor order and
quadratically with the maximal TT-rank. Therefore, knowing the maximal TT-rank is usually
sufficient to estimate the TT-compression benefit. However, for greater accuracy, we introduce

RR n° 9491



6 Coulaud et al.

the compression ratio measure. If x ∈ Rn1×···×nd is a tensor in TT-format, then the compression
ratio is the ratio between the storage cost of x in TT-format and the storage cost in dense format,
i.e., ∑d

i=1 ri−1niri∏d
j=1 nj

(1)

where ri is the i-th TT-rank of x. As demonstrated by the compression ratio, to significantly
benefit from this formalism, the TT-ranks ri must remain bounded and small. However, some
operations among tensors in TT-format, such as algebraic addition, can increase the TT-ranks.
For instance, given two TT-tensors x and y with k-th TT-rank rk and sk respectively, then the
k-th TT-rank of x+y is equal to rk+sk, see [19]. To address the issue of the TT-rank growth, a
rounding algorithm to reduce it was proposed in [18]. The TT-round algorithm takes a TT-vector
x and a relative accuracy δ as inputs and returns a TT-tensor x̃, that is at a relative distance δ
from x, i.e., ||x − x̃|| ≤ δ||x||. The TT-round function is fully described in [13]. For large-scale
tensors, a randomized version of the TT-round function is described in [20, 21].

To evaluate the benefit of the TT-round, we introduce the compression gain, which is the
ratio of the compression ratios, written as∑d

i=1 ri−1niri∑d
j=1 sj−1njsj

(2)

where ri and si are the i-th TT-rank of x ∈ Rn1×···×nd and x̃ = TT-round(x, δ). The com-
putational cost of a TT-round over x in terms of floating point operations, is O(dnr3), where
r = maxi∈{1,...,d}{ri} and n = maxi∈{1,...,d}{ni}, as stated in [18].

3 Orthogonalization schemes

In the following sections, we describe the classical orthogonalization kernels and we propose their
extensions to the TT-format. The input of all the orthogonalization kernels in TT-format is A
a set of TT-vectors and an accuracy δ ∈ R+ for the TT-round function.

In addition, we discuss the theoretical results for the loss of orthogonality in the classical
matrix computation.

3.1 Classical and Modified Gram-Schmidt

The Gram-Schmidt process [3, 4] is a tool used in theoretical linear algebra to generate an
orthonormal basis from a given set of vectors. Let A = {a1, . . . , am} be a set of m linearly
independent vectors of Rn, then the key idea of the Gram-Schmidt process is to incrementally
construct an orthonormal basis of the space spanned by the elements of A. At the i-th step,
the i-th element ai is made orthogonal to the previously computed (i − 1) orthonormal vectors
{q1, . . . , qi−1}, by subtracting from ai its projection along qj . The projection is given by the
inner product of ai and qj for j ∈ {1, . . . , i − 1}. After normalization the new vector is qi, the
i-th vector of the final orthonormal basis. This mechanism is easily transported into the tensor
framework. Therefore, instead of presenting the theory of the Gram-Schmidt procedure in the
tensor notation, we illustrate the two different realizations of this theoretical tool only in the
TT-format. We carefully emphasize the differences to the classical matrix implementations.

Inria
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3.1.1 Classical schemes without re-orthogonalization

The Gram-Schmidt process can be directly implemented through Classical Gram-Schmidt (CGS),
with its TT-version outlined in Algorithm 1. TT-CGS initializes pi to ai for every i ∈ {1, . . . ,m},
see line 2. In the core loop, the algorithm subtracts from pi the projection of ai along the (i−1)
previously computed tensors qj of the new orthogonal basis, as described in lines 4 and 5. Finally,
pi is normalized and added to the new orthonormal basis Q = {q1, . . . ,qi}. The i-th column
of R is defined using the projections of ai along qj for j ∈ {1, . . . , i − 1}. By construction, R
is consequently upper triangular. The norm of pi computed in line 8 is the i-th diagonal entry
of R. These steps are present in both the tensor and matrix versions of the Classical Gram-
Schmidt algorithm. However when dealing with compressed format tensors, it is important to
ensure that the algorithm steps do not significantly reduce the compression quality. Therefore,
it is crucial that the TT-ranks stay small. For example, after (k− 1) repetitions of line 5, which
involves (k − 1) subtractions, the TT-rank of p will be bounded by kr, if r is the maximum
TT-rank of pk and qj for every j ∈ {1, . . . , k− 1}. To limit the growth of TT-rank, we compress
pi in line 7 using the TT-round algorithm with accuracy δ. This is the most computationally
expensive operation in orthogonalization algorithms. As a result, the complexity of TT-CGS
depends on the number of TT-round calls and its complexity. This last is known to be O(dnr3)
where d is the order of the TT-vector rounded, n and r are the maximum of the mode size and
of the TT-rank respectively. However, in TT-CGS and in the other studied orthogonalization
methods, the TT-rank is not always known. Linear combinations of TT-vectors obtained from
the TT-round algorithm with accuracy δ are rounded, resulting in a TT-rank that is not known
a priori. Therefore, we estimate the complexity of the orthogonalization algorithms here and
after in terms of the number of rounding operations. The complexity of TT-CGS is equal to m
TT-round operations.

Algorithm 1 Q , R = TT-CGS(A, δ)

input: A = {a1, . . . ,am} a set of TT-
vectors, δ ∈ R+ a relative rounding accu-
racy
output: Q = {q1, . . . ,qm} the set of or-
thogonal TT-vectors, R the upper triangu-
lar matrix

1: for i = 1, . . . ,m do
2: p = ai

3: for j = 1, . . . , i− 1 do
. compute the projection of ai along qj

4: R(i, j) = 〈ai, qj〉
. remove the projection of ai along qj

5: p = p−R(i, j)qj

6: end for
7: p = TT-round(p, δ)
8: R(i, i) = ||p||
9: qi = 1/R(i, i)p . normalize p

10: end for

Algorithm 2 Q , R = TT-MGS(A, δ)

input: A = {a1, . . . ,am} a set of TT-
vectors, δ ∈ R+ a relative rounding accu-
racy
output: Q = {q1, . . . ,qm} the set of or-
thogonal TT-vectors, R the upper triangu-
lar matrix

1: for i = 1, . . . ,m do
2: p = ai

3: for j = 1, . . . , i− 1 do
. compute the projection of p along qj

4: R(i, j) = 〈p, qj〉
. remove the projection of p along qj

5: p = p−R(i, j)qj

6: end for
7: p = TT-round(p, δ)
8: R(i, i) = ||p||
9: qi = 1/R(i, i)p . normalize p

10: end for

In the classical matrix framework, Classical Gram-Schmidt is known to suffer from a loss
of orthogonality in the computed basis, as discussed later on, cf. [10]. The Modified Gram-
Schmidt (MGS) algorithm introduces a small algorithmic change to Classical Gram-Schmidt,
which guarantees better numerical orthogonality. In TT-MGS, we remove the projection of pi,
rather than of ai, along qj for every j ∈ {1, . . . , i − 1}. This can be seen by comparing line 4

RR n° 9491



8 Coulaud et al.

of Algorithm 1 and 2 respectively. This modification reduces error propagation, improving the
algorithm’s general stability in both the classical matrix and tensor cases, as we discussed in
Section 3.4. The remaining steps of the two algorithms are identical.

Under the same assumptions stated previously to estimate the complexity, we conclude that
TT-MGS computational complexity in TT-format is equal to TT-CGS one, given bym TT-round
calls.

3.1.2 Classical schemes with re-orthogonalization

CGS and MGS are known to have stability issues, as described in detail in Section 3.4. The closer
the input vectors are to linear dependence, the more the algorithms propagate the rounding
errors, spoiling the final orthogonality of the new basis. As reported in [11], several articles,
such as [5, 6, 22], have addressed this issue by introducing re-orthogonalization steps. This
involves repeatedly orthogonalizing the basis using the same approach. In [11], the authors
showed theoretically that one re-orthogonalization step is sufficient to significantly improve the
orthogonality of the new basis generated by CGS and MGS. We briefly introduce the concepts of
CGS and MGS with re-orthogonalization, referred to as TT-CGS2 and TT-MGS2, respectively,
in the tensor case. We emphasize the steps that are unique to the TT-version.

Algorithm 3 Q , R = TT-CGS2(A, δ)

input: A = {a1, . . . ,am} a set of TT-
vectors, δ ∈ R+ a relative rounding accu-
racy
output: Q = {q1, . . . ,qm} the set of or-
thogonal TT-vectors, R the upper triangu-
lar matrix

1: for i = 1, . . . ,m do
2: p0 = ai

. repeat twice the orthogonalization loop
3: for k = 1, 2 do
4: pk = pk−1

5: for j = 1, . . . , i− 1 do
. compute the projection of pk−1 along qj

6: Rk(i, j) = 〈pk−1, qj〉
. subtract the projection of pk−1 along qj

7: pk = pk −Rk(i, j)qj

8: end for
9: pk = TT-round(pk, δ)

10: end for
11: R2(i, i) = ||p2||
12: qi = 1/R2(i, i)p2 . normalize p2

13: end for
. compute the R factor from the repeated or-
thogonalization loop

14: R = R1 +R2

Algorithm 4 Q , R = TT-MGS2(A, δ)

input: A = {a1, . . . ,am} a set of TT-
vectors, δ ∈ R+ a relative rounding accu-
racy
output: Q = {q1, . . . ,qm} the set of or-
thogonal TT-vectors, R the upper triangu-
lar matrix

1: for i = 1, . . . ,m do
2: p0 = ai

. repeat twice the orthogonalization loop
3: for k = 1, 2 do
4: pk = pk−1

5: for j = 1, . . . , i− 1 do
. compute the projection of pk along qj

6: Rk(i, j) = 〈pk, qj〉
. subtract the projection of pk along qj

7: pk = pk −Rk(i, j)qj

8: end for
9: pk = TT-round(pk, δ)

10: end for
11: R2(i, i) = ||p2||
12: qi = 1/R2(i, i)p2 . normalize p2

13: end for
. compute the R factor from the repeated or-
thogonalization loop

14: R = R1 +R2

In CGS2, described in Algorithm 3, the input TT-vector ai is orthogonalized with respect
to the previously computed orthogonal TT-vectors {q1, . . . ,qi−1}, by subtracting from ai its
projection along qj . The projection of ai along qj defines the (j, i) element of the first matrix
R1. These first (i− 1) iterations, given in line 5 of Algorithm 3, define the TT-vector p1. Then,
in line 9, p1 is rounded. Up to this point, TT-CGS2 functions identically to TT-CGS. However,
in TT-CGS2, the TT-vector p1 is orthogonalized again against {q1, . . . ,qi−1}, after rounding.
This results in p2. The projections along qj of p1 determine the (j, i) component of the second

Inria



On some orthogonalization schemes in TT-format 9

matrix R2. Once p2 is fully defined, it is rounded and normalized, defining the i-th orthogonal
TT-vector qi, as stated in lines 11 and 12 of Algorithm 3. The p2 norm at the i-th iteration
determines the (i, i)-th diagonal component of R2. The R factor from the QR decomposition
computed by CGS2 is obtained by adding R1 and R2. The distinction between MGS2 and CGS2
is evident in line 6 of Algorithm 4 and 3, respectively. In the first orthogonalization loop, that
is, when k = 1 in line 3 of both methods, the classical Gram-Schmidt version projects ai is
along qj defining p1, while the modified Gram-Schmidt version projects p1 along qj to update
it. In the second orthogonalization loop, i.e., when k = 2 in line 3 of both algorithms, TT-CGS2
removes the projection of p1 along qj to define p2. In the TT-MGS2 version, p2 is the TT-
vector projected along qj and updated. The remaining steps, including the TT-round and the
construction of R1, R2 and their sum R, are identical between TT-CGS2 and TT-MGS2. It is
important to note that the rounding steps are only performed in the TT-version of MGS2 and
CGS2.

The computational complexity of TT-CGS2 and TT-MGS2 is estimated as 2m TT-round
operations, based on the previously used hypothesis. During the m iterations, the two temporary
TT-vectors p1 and p2 are rounded.

3.2 Gram approach

In their article [8], the authors propose an algorithm for generating an orthogonal basis from
a set of m linearly independent vectors of Rn with m � n. We will refer to this algorithm as
Gram’s algorithm. This scheme is based on the Gram matrix, which under the hypothesis that
m is significantly small. The key idea is to decompose the small Gram matrix by its Cholesky
factorization and use it to generate the orthogonal basis. We briefly describe the main ideas
of this orthogonalization scheme in the classical matrix framework and we describe in detail
the implementation of the Gram algorithm in the TT-format. In fact, the tensor realization of
this procedure is extremely close to the matrix one, so a description of the tensor case and its
differences from the classical matrix one is sufficient to ensure a good understanding.

Given a set of vectors A = {a1, . . . , am} with ai ∈ Rn, the Gram matrix G ∈ Rm×m is defined
by the inner product G(i, j) = 〈ai, aj〉 for every i, j ∈ {1, . . . ,m}. Equivalently, let ai be the i-th
column of the matrix A ∈ Rn×m, then in the matrix computation the Gram matrix is written as

G = A>A. (3)

If the elements of A are linearly independent, then G is symmetric positive definite. As a
consequence, its Cholesky factorization exists and is written as G = LL>, where L ∈ Rm×m is a
lower triangular matrix. If we now denote the transpose of L by R, then the Gram matrix gets

G = R>R. (4)

Comparing Equations (3) and (4), we conclude that R is the R-factor from the QR decomposition
of A, i.e., it expresses the same information of A in a different basis. The matrix Q from the
QR decomposition of A is written as Q = AR−1 where R = L>. The columns of Q form an
orthogonal basis Q = {q1, . . . , qm}, whose j-th element is strictly speaking a linear combination
of the first j elements of A, i.e.,

qj =

j∑
k=1

R−1(k, j)ak.

Remark 3.1. Note that, by construction, the condition number of G is the square of that of
A. Consequently, if the condition number of A associated with the set of input vectors A is
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greater than the inverse of the square root of the working precision of the arithmetic considered ,
e.g., u64 ≈ 10−16 for 64-bit computation, the associated Gram matrix G is numerically singular
and its Cholesky decomposition is no longer defined. This is the main practical drawback of this
method.

This procedure generates an orthonormal basis starting from a set of linear independent
vectors, which is naturally extended to TT-vectors. As described in Algorithm 5, given a set of
TT-vectors A = {a1, . . . ,am} with ai ∈ Rn1×···×nd , we construct the Gram matrix G ∈ Rm×m by
the tensor inner product and we compute its Cholesky factorization to obtain the lower triangular
matrix L ∈ Rm×m. As in the matrix case, R ∈ Rm×m the transpose of L expresses the same
information as the TT-vectors of A, but with respect to a different basis. Following the matrix
approach, we retrieve this basis, i.e., the orthonormal set Q whose element qi ∈ Rn1×···×nd is
defined as

qi =

i∑
k=1

R−1(k, i)ak.

Remark 3.2. In the matrix framework, the orthogonal vector qj is obtained from the elements
of A by back-substitution using the matrix R. However, this approach does not easily translated
to the tensor framework, where the inverse of R must be explicitly computed.

As for the other orthogonalization techniques, we avoid memory problems by monitoring the
TT-ranks and eventually rounding. Indeed, assuming that all the TT-vectors of A have TT-ranks
bounded by r, then the i-th TT-vector constructed in line 11 has a maximum TT-rank bounded
by ir. Since this value grows linearly with m, in line 13 we introduce a rounding step with
prescribed accuracy δ. As in Sections 3.1 and 3.2, note that the complexity of the TT-Gram

Algorithm 5 Q , R = TT-Gram(A, δ)

input: A = {a1, . . . ,am} a set of TT-vectors, δ ∈ R+ a relative rounding accuracy
output: Q = {q1, . . . ,qm} the set of orthogonal TT-vectors, R the upper triangular matrix

1: for i = 1, . . . ,m do
2: for j = 1, . . . , i do
. construct the Gram matrix through the inner product of the input TT-vectors

3: G(i, j) = G(j, i) = 〈ai, aj〉
4: end for
5: end for
6: L = cholesky(G) . compute the Cholesky factorization
7: R = L> and R−1 = invert(R) . define the R factor of the QR-factorization
8: for i = 1, . . . ,m do
9: p = R−1(i, 1)a1

10: for j = 2, . . . , i do
. construct the i-th new basis TT-vector as a linear combination of the (i− 1) input TT-vector

11: p = p+R−1(i, j)aj

12: end for
13: qi = TT-round(p, δ) . round the TT-vector before adding it to the basis
14: end for

algorithm is given by m TT-round operations. However, in this particular case, we can even
estimate the cost of each single rounding step, and thus of the entire algorithm. Indeed, the
maximum TT-rank of the rounded TT-vector qi is bounded by i r, under the assumption that
the maximum TT-rank and the maximum mode size of ai are bounded by r ∈ N and n ∈ N
respectively. Consequently, the computational cost, i.e., the number of floating point operations,
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On some orthogonalization schemes in TT-format 11

of each rounding operation, the most expensive step in the entire algorithm, is known and is
equal to O(dni3r3); summing over i ∈ {1, . . . ,m}, we conclude that the cost of the TT-Gram
algorithm is O(dnm4r) floating point operations.

3.3 Householder reflections

In the classical matrix framework, Householder transformations are commonly used to generate
an orthogonal basis due to their stability properties, as explained in the following sections. We
will briefly present the theoretical construction of a Householder transformation and how it can
be used to generate an orthogonal basis. The following section provides a detailed description
of how the Householder transformation is extended to the tensor context, with specific attention
given to the implementation of the Householder orthogonalization scheme in TT-format.

The Householder reflector is used to move a vector x ∈ Rn along a chosen direction, which
is typically an element of the canonical basis or a linear combination of them. The construction
of the Householder reflector in the general case is illustrated. Let x ∈ Rn be the vector we want
to reflect along the normalized vector y ∈ Rn, the Householder reflection or transformation is a
linear operator H : Rn → Rn such that

H(x) = ‖x‖y with ‖y‖ = 1.

The Householder reflector is represented with respect to the canonical basis of Rn by the matrix
H ∈ Rn×n such that H = In − 2u⊗ u where u ∈ Rn is the Householder vector defined as

u =
x− z
‖x− z‖

with z = ‖x‖y. (5)

The Householder reflection matrix H is unitary and defined entirely by the Householder vector
u. Additionally, the action of a Householder reflector is computed by one inner product with
the Householder vector u and one algebraic vector summation. For a given vector w ∈ Rn and
a Householder reflector H = In − 2u⊗ u, the image of w through H is

Hw = w − 2〈w, u〉u. (6)

If u is defined as in Equation (5), then it can be verified that Hx = ‖x‖y. It is important to
note that

‖x− z‖2 = 〈x− ‖x‖y, x− ‖x‖y〉
= ‖x‖2 − 2‖x‖〈x, y〉+ ‖x‖2‖y‖2

= 2
(
‖x‖2 − ‖x‖〈x, y〉

)
since ‖y‖ = 1 by hypothesis. Using this result and Equation (6), we can obtain

Hx = x− 2〈x, u〉u

= x− 2

2
(
‖x‖2 − ‖x‖〈x, y〉

) 〈x, x− ‖x‖y〉(x− ‖x‖y)
= x− 1(

‖x‖2 − ‖x‖〈x, y〉
)(‖x‖2 − ‖x‖〈x, y〉)(x− ‖x‖y)

= x− (x− ‖x‖y)
= ‖x‖y
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12 Coulaud et al.

Householder transformations are commonly used to compute the QR factorization of a matrix,
but they can also be applied when a set of vectors needs to be converted into an orthogonal
basis. We will briefly examine the two possibilities. When given a matrix A ∈ Rn×m, we
construct m Householder reflections. The k-th reflection moves the k-th column of A along a
linear combination of the first k canonical basis vectors. In other words, the k-th Householder
transformation sets the last (n − k) entries of the k-th column of A to zero. As a result, after
m Householder reflections, the matrix A becomes upper triangular. We will now provide a
more detailed illustration of how the algorithm iteratively proceeds. To begin with, let a1 ∈ Rn
represent the first column of A. The first step is to reflect it along the first canonical basis vector
e1 by constructing the Householder reflector H1 such that H1a1 = ‖a1‖e1. The first Householder
vector u1 ∈ Rn is then

u1 = a1 ± ‖a1‖e1

and normalized. For stability reasons (cf. [23]), the sign of the norm of a1 is determined by the
sign of the first component of a1, which is positive if a1(1) > 0 and negative otherwise. The
first Householder reflector H1 is applied to all the columns of A, resulting in ãj = H1aj for
j ∈ {1, . . . ,m}. From now on, ãj denotes the j-th column of A updated by all the previously
defined (j − 1) Householder transformations for j ∈ {2, . . . ,m}. It is important to note that
the first Householder transformation moves the first column of A along a multiple of the first
canonical basis vector e1, i.e., setting the last (n − 1) entries of the first column of A to zero.
Next, we reflect the second column of A along a linear combination of the first two canonical
basis vectors e1 and e2. We define u2 ∈ Rn as the Householder vector that defines the second
Householder reflector H2. This second Householder reflector updates the j-th column of A for
j ∈ {2, . . . ,m} a second time. At this point, only the first two entries of ã2 are different from
zero. The k-th Householder reflection Hk moves ãk ∈ Rn the k-th column of A, updated by
the first (k − 1) Householder reflections along a linear combination of the first k elements of the

canonical basis of Rn, i.e., Hkãk =
∑k
`=1 α`e` with

√∑k
`=1 α

2
` = ||ãk||. Prior to normalization,

the k-th Householder vector, uk ∈ Rn, is defined as

uk = ãk −
k∑
`=1

β`e`, (7)

where

β` = ãk(`) and βk = ±

√√√√||ãk||2 − k−1∑
`=1

β2
` ,

for every ` ∈ {1, . . . , k − 1}. To ensure stability (cf. [23]), βk is positive if ãk(k) is positive, and
negative otherwise. The vector uk is then normalized.

Remark 3.3. By construction, the first (k − 1) entries of uk are zeros, the last (n− k) entries
are equal to the corresponding ones of ãk. The k-th component of uk is obtained by subtracting
the quantity βk from the k-th component of ak, that is uk(k) = ãk(k) − βk. In the context of
matrices, the Householder QR factorization has a simplified construction due to the property that
only the last (n − k + 1) entries of ãk have a determinant role. The k-th Householder vector,
ûk ∈ Rn−k+1, is defined from the norm of ãk, with the first (k − 1) entries being zeros. In other
words,

ûk = γke1 where γk =

√√√√ n∑
j=k

(
ãk(j)

)2
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On some orthogonalization schemes in TT-format 13

with e1 ∈ Rn−k+1 for every k ∈ {1, . . . ,m}. The k-th Householder transformation, Hk ∈
R(n−k+1)×(n−k+1), is defined based on ûk and is only applied on the last (n − k + 1) compo-
nents of ãj, where j ∈ {k, . . . ,m} and k ∈ {1, . . . ,m}. It is important to note that this reduced
approach cannot be replicated in the tensor framework, where objects are expressed in compressed
format. Therefore, we present it in the most general way, which is not the same as the approach
used for in matrix computation.

After applying the k-th Householder transformation to ãj for j ∈ {k, . . . ,m}, the vector ãk
will have its last (n− k) component equal to zero. The application of m Householder reflections
to A results in the upper triangular matrix R, which is the R factor of the QR decomposition.
To calculate the Q factor, we multiply the m Householder reflection matrices. For most applica-
tions, it is sufficient to form the Householder vectors and know the Householder transformations
implicitly, as given in Equation (6). However, if we want to produce an orthogonal basis from a
generic set of m vectors A = {a1, . . . , am} with ak ∈ Rn, we must take an additional step. When
computing the QR factorization, the k-th Householder transformation, Hk, is defined by the k-th
Householder vector, uk, as given in Equation (7) for every k ∈ {1, . . . ,m}. To generate the set
of orthonormal vectors Q = {q1, . . . , qm}, we apply the first k Householder transformations, Hk,
to the k-th canonical basis vector, ek, in reverse order. That is

qk = H1 · · ·Hkek.

We extend this approach to the tensor case with some modifications, as in the previous sec-
tions. Let A be a set of m TT-vectors ai ∈ Rn1×···×nd for every i ∈ {1, . . . ,m}. To construct
the Householder transformations, we first define a canonical basis for a tensor subspace of di-
mension m of Rn1×···×nd . In order to do so, we fix N i = {1, . . . , ni} for every i ∈ {1, . . . , d} and
n =

∏d
j=1 nj . We then define the function ψ : N 1 × · · · ×N d → {1, . . . , n} such that

ψ(i1, . . . , id) = i1 +

d∑
α=2

(iα − 1)mα with mα =

α−1∏
β=1

nβ .

Since ψ is invertible, we denote its inverse by φ : {1, . . . , n} → N 1 × · · · ×N d such that φ(i) =
(i1, . . . , id). As a consequence, ψ(φ(i)) = i and φ(ψ(i1, . . . , id)) = (i1, . . . , id) for i ∈ {1, . . . , n}
and ik ∈ {1, . . . , nk} with k ∈ {1, . . . , d}. The basis for the subspace of dimensionm of Rn1×···×nd

is fixed as E = {e1, . . . , em} with

ei = ei1 ⊗ · · · ⊗ eid with (i1, . . . , id) = φ(i), (8)

where eik is the ik-th canonical basis vector of Rnk for k ∈ {1, . . . , d}. The index i is used to
denote the i-th element of the canonical basis, that is i = ψ(i1, . . . , id).

As stated in Remark 3.3, the vector uk has zeros for its first (k − 1) components, the cor-
responding components of ãk for its last (n − k) entries, and the difference between the k-th
component of ãk and the quantity βk (defined in Equation (7)) for its k-th component. This
structure needs to be transported in the tensor case. However, if the elements of A are in TT-
format, it is not possible to directly access the tensor components. We need to recover them
either by multiplying the TT-cores with the correct index or by computing the inner product
with the element of E. The k-th Householder TT-vector is uk ∈ Rn1×···×nd defined as

uk = ãk −
k∑
j=1

R(j, k)ej
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where ãk is the result of (k − 1) Householder reflections applied to ak, R(j, k) = 〈ãk, ej〉 for

every j ∈ {1, . . . , k} and R(k, k) = ±
√
||ã(k)k||2 −

∑k−1
`=1 R(`, k)

2 as described in lines 7 and 9
of Algorithm 6, respectively. The k-th component of rk takes a positive sign if 〈ãk, ek〉 > 0;
otherwise, it takes negative sign. This extends the stability preserving idea given in [23] to
the tensor framework. The j-th component of rk corresponds to the (j, k) component of the R
factor. As previously mentioned, it is important to ensure that the TT-rank of uk remains small
for every k ∈ {1, . . . ,m}. Assuming that the maximum TT-rank of ãk is bounded by ra, then
after removing the first (k − 1) components of ãk (after line 7), the TT-rank of uk is bounded
by (ra + k − 1). At this step, we make the first TT-round call on the Householder TT-vector
uk, whose TT-rank decreases depending on the accuracy value δ. Then we subtract the k-th
component of rk, which results in further growth in the TT-rank of uk. As the uk TT-vector
plays a crucial role in the Householder transformation and its TT-rank has a significant impact
on the entire process, we perform an additional TT-round step over uk at accuracy δ.

Algorithm 6 u, r = TTH-vec(a,F, δ)
input: a ∈ Rn1×···×nd a TT-vector, F = {f1, . . . , fi} a subset of the canonical tensor space
basis in TT-format, δ ∈ R+ a relative rounding accuracy
output: u the Householder TT-vector, r a column of the R-factor

1: s = 0
2: w = a
3: for j = 1, . . . , i− 1 do
. compute the component of a along the j-th canonical basis TT-vector

4: r(j) = 〈a, fj〉
5: s = s+

(
r(j)

)2
. set to zero the component of a along the j-th canonical basis TT-vector fj

6: w = w − r(j)fj
7: end for
8: w = TT-round(w, δ)
. subtract from the norm of a the contribution of the components set to zero

9: r(i) = sign(〈a, fi〉)
√
||a||2 − s

10: w = w − r(i)fi
11: w = TT-round(w, δ)
12: u = (1/||z||)w

After describing the construction of a Householder TT-vector, which is summarized in Algo-
rithm 6, the focus shifts on generation of the orthonormal TT-vector set from a generic TT-vector
set A = {a1, . . . ,am}, as depicted in Algorithm 8. To reflect the k-th TT-vector of A along a
linear combination of the first k elements of E, we generate the k-th Householder TT-vector, uk,
using Algorithm 6. This TT-vector defines the Householder transformation, Hk, implicitly. The
first k components of rk are stored in the k-th column of the upper triangular matrix, R ∈ Rm×m.
We apply Hk implicitly using uk to form ãj for every j ∈ {k, . . . ,m}, as expressed in line 6 of
Algorithm 8. This follows the same approach as in the matrix case, where

Hk(ãj) = ãj − 2〈ãj , uk〉uk.

Algorithm 7 applies a given Householder reflection to a specific input vector. It is important to
note that (k−1) transformations are performed on ak, computing ãk, before generating the k-th
reflector. This can potentially lead to a much larger maximum TT-rank of ak that its initial
value. To keep the TT-rank of ãk reasonably small, a TT-round is performed before generating
the associated Householder TT-vector (see line 9).
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On some orthogonalization schemes in TT-format 15

Algorithm 7 b = apply-H-vec(a,u)

input: a ∈ Rn1×···×nd a TT-vector to project, u ∈ Rn1×···×nd the Householder TT-vector
output: b the TT-vector resulting from the Householder reflector defined by u applied to a

1: b = a− 2〈a, u〉u . apply the Householder reflection defined by u to a

The conclusive part of the TT-Householder transformation algorithm 8 generates a new set
Q of orthonormal TT-vectors. The i-th element of Q , qi, is obtained by applying the first i
Householder reflections in reverse order to ei from the canonical basis E (see line 15 of Algo-
rithm 8). To maintain the maximum TT-rank of qi limited and prevent memory overflow, each
qi is rounded to an accuracy δ, as shown in line 17 of Algorithm 8.

Algorithm 8 Q , R = TT-Householder(A, δ)

input: A = {a1, . . . ,am} a set of TT-vectors, δ ∈ R+ a relative rounding accuracy
output: Q = {q1, . . . ,qm} the set of orthogonal TT-vectors, R the upper triangular matrix

1: let E = {e1, . . . , em} be the canonical basis of a subspace of dimension m of Rn1×···×nd

2: w = a1

3: for i = 1, . . . ,m do
. construct the i-th Householder TT-vector

4: ui, R(: i, i) = TTH-vec(w,Fi, δ) with Fi = {e1, . . . , ei}
5: for j = i, . . . ,m do
6: aj = apply-H-vec(aj ,ui) . update the j-th element of A
7: end for
8: if i < m then
. round the TT-vector that will define the successive Householder reflection

9: w = TT-round(ai+1, δ)
10: end if
11: end for
12: for i = 1, . . . ,m do . compute the new orthogonal basis
13: qi = ei

14: for j = i, . . . , 1 do
15: qi = apply-H-vec(qi,uj) for . reflect the i-th element of E
16: end for
17: qi = TT-round(qi, δ)
18: end for

The TT-Householder algorithm requires 4m TT-round operations, including two for each
Householder TT-vector, one for each TT-vector ãk after the (k − 1)-th reflection, and one for
each qk orthogonal TT-vector. Therefore, the TT-Householder algorithm is computationally
more expensive than all the other orthogonalization methods. Specifically, it is 4 times more
expensive than CGS and MGS, and twice as expensive as CGS2 and MGS2.

3.4 Stability comparison
A central issue for the orthogonalization algorithms is the loss of orthogonality, i.e., how much
the rounding errors propagate and affect the orthogonality of the computed basis. The loss of
orthogonality of an orthogonalization scheme applied to the set Am = {a1, . . . , am} is defined by
the L2-norm of the difference between the identity matrix of size m and the Gram matrix defined
by the m vectors generated by the orthogonalization algorithm. We give the definition more
formally. Let Q m = {qm, . . . , qm} be a set of m vectors, obtained from an orthogonalization
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scheme applied to the m vectors of the input set Am. Let qi ∈ Q m be the i-th column of
the matrix Qm ∈ Rn×m for every i ∈ {1, . . . ,m}, then the Gram matrix associated with the
set Q m is Q>mQm. Note that the (i, j) element of Q>mQm is the inner product of qi and qj ,
i.e., Q>mQm(i, j) = 〈qi, qj〉 for every i, j ∈ {1, . . . ,m}. Then, the loss of orthogonality of the
considered algorithm for a basis of size m is equal to

||Im −Q>mQm||2. (9)

In the classical matrix framework, an orthogonalization scheme is said to be numerically stable
if the loss of orthogonality of the basis it computes is of the order of the unit round-off u of the
working arithmetic. The following theoretical results, which hold for the six orthogonalization
schemes in classical linear algebra, provide a base line for the comparison with the numerical
results obtained in the tensor framework, discussed in Section 4.

In [11, Theorem 1], the authors prove that the loss of orthogonality for a basis obtained by
CGS, given Am = {a1, . . . , am} a set of m vectors, is bounded by a positive constant times the
unit round-off u of the working arithmetic, times the squared condition number of the matrix
Am ∈ Rn×m whose j-th column is aj ∈ Rn for j ∈ {1, . . . ,m}, i.e.,

||Im −Q>mQm||2 ∼ O
(
uκ2(Am)

)
(10)

as long as κ2(Am)u � 1. In [10], an upper bound for the loss of orthogonality of MGS is
provided. The loss of orthogonality for a basis of m vectors produced by MGS from {a1, . . . , am}
is upper bounded by a constant times the unit round-off u times the condition number of Am as
previously defined from Am elements, i.e.,

||Im −Q>mQm||2 ∼ O
(
uκ(Am)

)
(11)

as long as κ(Am)u� 1. The authors of [8, Theorem 4.1], who proposed the Gram orthogonaliza-
tion scheme, also estimated an upper bound for the loss of orthogonality of their orthogonalization
technique. The loss of orthogonality of a basis of m vectors produced by the Gram scheme from
{a1, . . . , am} satisfies the same upper bound as CGS, given in (10). The Householder orthog-
onalization algorithm is known its stability. The loss of orthogonality of a basis of m vectors
produced by Householder transformations from {a1, . . . , am} is bounded by a constant times the
round-off unit, i.e.,

||Im −Q>mQm||2 ∼ O
(
u
)

(12)

as proven in [24]. When introducing a further orthogonalization step in the classical and modified
Gram-Schmidt, defining CGS2 and MGS2, their loss of orthogonality improves considerably,
reaching Householder quality. As proven in [11, 25], the loss of orthogonality of CGS2 and MGS2
satisfies the bound given in Equation (12), under the hypothesis κ2(Am)u� 1 for CGS2, while
it holds for MGS2 if κ(Am)u � 1. Table 1 presents a summary of all the loss of orthogonality
bounds.

4 Numerical tensor experiments
Sections 3.1 - 3.3 describe four orthogonalization methods that produce an orthonormal basis of
TT-vectors, given a set of TT-vectors and a rounding accuracy δ. This section analyzes two sets
of results obtained from the orthogonalization schemes, highlighting similarities and differences
with the known theoretical results in matrix computation. In all the experiments, the input set of
TT-vectors Am = {a1, . . . ,am} is generated using a Krylov process. Starting with a TT-vector
of ones, x1 ∈ Rn1×···×nd , we iteratively compute xj+1 = −∆daj where ∆d is the TT-matrix
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representing the discretization of the Laplacian operator of order d with Dirichlet boundary
conditions, see [26], and aj is the normalized output of the TT-round algorithm applied to xj .
As a result, aj , the j-th element of Am, has a TT-rank of 1 for every j ∈ {1, . . . ,m}. This
TT-rank constraint facilitates the analysis of the memory requirement. The elements of A are
generated as a sequence ofm normalized (and rounded) Krylov TT-vectors. Therefore, if the first
k of them are vectorized and arranged as columns of the matrix Ak, the condition number κ(Ak)
grows for k ∈ {1, . . . ,m}. The Ak denotes the subset of Am defined by its first k TT-vectors.
The two experiments differ in the problem dimension, with the first having a dimension of 3 and
the second having dimension 6, but they have the same mode size n = 15. Further details are
provided in the following sections.

4.1 Numerical loss of orthogonality
This section examines the numerical results of two sets of experiments from the perspective of
the loss of orthogonality. The purpose is to highlight the similarities with the classical matrix
orthogonalization methods. Specifically, we investigate the loss of orthogonality ‖Ik −Q>k Qk‖2,
where the (i, j) element of Q>k Qk is computed by the inner product of the i-th and j-th TT-vector
of the orthogonal basis, i.e.,

Q>k Qk(i, j) = 〈qi,qj〉

for qi,qj ∈ Q for i, j ∈ {1, . . . , k} for k ∈ {1, . . . ,m}, where Q denotes the set of TT-vectors
produced by the considered orthogonalization kernel.

4.2 Order-3 experiments
In the the first experiment, we set the order d = 3, the size mode ni = 15 for i ∈ {1, 2, 3}, and the
input number of TT-vectorsm = 20. Figure 1 reports the results of this first group of experiments
for the six different schemes and three different rounding accuracy values δ ∈ {10−3, 10−5, 10−8}.
The use of a low dimensional problem allows us to convert each TT-vector aj into a dense format
and vectorize it. These vectors are stored as the j-th column of Am ∈ Rn3×m. Consequently, we
can estimate the condition number of Ak ∈ Rn3×k, which is the submatrix of Am formed by its
first k columns. Figure 1 displays the loss of orthogonality with colored continuous curves, and
the constant rounding accuracy δ with a dashed black line in all plots. The condition number
κ(Ak) and its squared value scaled by u ≈ 10−16 are also shown with colored continuous lines, as
long as they are smaller than 1. For ease of comparison with the slope of the loss of orthogonality
of TT-MGS and TT-CGS, the condition number curves are scaled. All the curves are dependent
on the basis size k. As previously mentioned, the TT-vectors are generated as a sequence of
normalized Krylov TT-vectors. As the value of k increases, the elements of Ak become more
linearly dependent, resulting in an increase in associated condition number κ(Ak).

To aid interpretation, we present three plots in Figure 1a, 1b and 1c, which show the loss
of orthogonality of standard methods in tensor format: TT-Householder, TT-MGS, TT-CGS,
TT-Gram. Figures 1d, 1e and 1f show the loss of orthogonality of re-orthogonalization methods:
TT-MGS2 and TT-CGS2, compared to TT-Householder, TT-MGS and TT-CGS. All six plots
in Figure 1 exhibit similar behaviors. The loss of orthogonality of the TT-Householder method
in green stagnates around the rounding accuracy δ, as shown in Figure 1a. This is consistent
with the matrix theoretical expectation, stated in Equation (12), where the unit round-off u
is replaced by the TT-round accuracy δ. The loss of orthogonality of TT-MGS method in red
grows with the same slope as the condition number κ(Ak) in dashed green, matching the matrix
upper bound stated in (11). Finally, both the TT-CGS and and TT-Gram loss of orthogonality
curves cross the rounding accuracy dashed line faster than TT-MGS. This curve follows the the
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Figure 1: Loss of orthogonality and condition number for m = 20 TT-vectors of order d = 3
and mode size n = 15. The curves get dashed and partially transparent when they get greater
than 1.

squared condition number κ2(Ak), as long as κ2(Ak) < 102. The loss of orthogonality curves for
TT-CGS and TT-Gram stagnates below 102 for k > 10 approximately, while κ2(Ak) continues to
grow. Upon analyzing the second line plots, it is evident that Figure 1d, 1e and 1f demonstrate a
significant improvement in the the loss of orthogonality when a second re-orthogonalization loop
is introduced. It is noteworthy that the loss of orthogonality of TT-CGS2 is close to the machine
precision, approximately 10−14 for δ ∈ {10−3, 10−5}, increasing after for k ≥ 15. For δ = 10−8,
it remains around 10−14. Therefore, as long as the elements of Ak are not highly collinear,
TT-CGS2 outperforms TT-CGS, TT-MGS and TT-Householder, but not TT-MGS2. For the
rounding accuracy δ ∈ {10−5, 10−8}, the loss of orthogonality of TT-MGS2 remains around
10−14, while for δ = 10−3 the loss of orthogonality jumps from 10−14 to 10−11, where it appears
to remain constant, when k > 16. Overall ,TT-MGS2 is the best performing algorithm among
all the others. The results for TT-CGS2 and TT-MGS2 are consistent with the matrix theory
presented in Section 3.4. It is hypothesized that the jumps occur when the condition number
κ(Ak), or its square, multiplied by the rounding accuracy is no longer sufficiently smaller than
1.
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4.3 Order-6 experiments
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Figure 2: Loss of orthogonality for m = 35 TT-vectors of order d = 6 and mode size n = 15.
The curves get dashed and partially transparent when they get greater than 1.

To further validate our results and to study their applicability to large-scale problems, we
introduce a second experimental framework. We set the problem order to d = 6 with size
mode ni = 15 for i ∈ {1, . . . , 6}, and generate m = 35 TT-vectors, defining the set A =
{a1, . . . ,a35}. For the rounding accuracy values δ ∈ {10−3, 10−5, 10−8}, we compute the loss of
orthogonality for the four orthogonalization schemes, presented in Section 3.1 - 3.3. Figure 2
displays the loss of orthogonality of these experiments. Due to the problem order d = 6 and
size n = 15, the curve of the condition number of the matrix Ak ∈ Rn6×k is not included. To
compensate for the absence of the condition number curve, we display the square of the TT-
MGS loss of orthogonality values with a dashed line. This line should exhibit the same slope
as the CGS loss of orthogonality (and consequently of the squared condition number κ(Ak)), if
the matrix theory extends to the TT-framework. Similarly to the previous case, the first line
of plots displays standard orthogonalization algorithms in TT-format. The second line shows
results from methods with re-orthogonalization. Figures 2a, 2b and 2c demonstrate that the
TT-Householder orthogonalization algorithm produces a basis with a loss of orthogonality that
stagnates around the rounding accuracy δ for every value in {10−3, 10−5, 10−8} after the basis size

RR n° 9491



20 Coulaud et al.

exceeds approximately 10. This supports the intuition that the bound expressed in Equation (12)
still holds true in the tensor framework, with the unit round-off u replaced by the TT-round
accuracy δ. In Figures 2a and 2b, when the basis size is smaller than about 15, the TT-MGS loss
of orthogonality is smaller than the Householder one. However, when the basis includes more then
15 TT-vectors, the relation reverses. For more accurate computation, specifically for δ = 10−8,
the Householder loss of orthogonality outperforms the TT-MGS loss of orthogonality when the
basis size is around 5. Note that the TT-MGS loss of orthogonality increases linearly and then
stabilizes at different level for each rounding accuracy. It reaches 10−2 for δ = 10−3 and 1 for
δ ∈ {10−5, 10−8}. The TT-CGS and TT-Gram loss of orthogonality curves reaches stabilization
almost immediately when the basis size is greater than 10 for all the rounding accuracy values,
as shown in Figure 2. This is likely due to the poor condition number of the input, rendering
the assumptions of matrix theory invalid. Specifically, the condition number multiplied by the
rounding accuracy smaller than 1. Furthermore, Figures 2b and 2c demonstrate that the loss of
orthogonality of TT-CGS and TT-Gram follows the square of loss of orthogonality of the TT-
MGS. This supports the idea that even in the TT-format, the loss of orthogonality of TT-MGS
increases as the condition number, while the loss of orthogonality of TT-Gram and TT-CGS
increases as the squared condition number grows. Additionally, Figures 2d, 2e and 2f display
the loss of orthogonality of TT-MGS2 and TT-CGS2 compared to the previously analyzed results
of TT-Householder, TT-MGS and TT-CGS. TT-MGS2 outperforms all the other methods for
all considered rounding accuracies. Its loss of orthogonality stagnates around 10−5 for δ = 10−3,
around 10−10 for δ = 10−5 and around 10−13 for δ = 10−8. In Figures 2d- 2f, the TT-MGS2 curve
shows a larger jump for greater values of δ, for 15 ≤ k ≤ 20 with δ ∈ {10−3, 10−5} and for k ∼ 10
with δ = 10−8. TT-CGS2 outperforms the TT-Householder, TT-CGS and TT-MGS, similarly
to TT-MGS2, as long as the TT-vectors are not highly collinear (i.e., for k < 20 when δ = 10−3)
for δ ∈ {10−5, 10−8}. These results support the conclusion made for the d = 3 experiments, that
the bounds for the loss of orthogonality of TT-CGS2 and TT-MGS2 established in the classical
matrix framework still hold, possibly under revised assumptions.

4.4 Memory usage estimation

This section aims to analyze the effects of the orthogonalization process on the TT-rank and
memory requirement based on experimental results. The growth of the TT-ranks, of the com-
pression ratio (defined in Equation (1)), and the compression gain (cf. Equation (2)) curve of
the orthogonal basis are investigated in the second set of experiments with d = 6, ni = 15, and
m = 35. This setting can be considered a large-scale one, and we use as rounding accuracy values
δ ∈ {10−3, 10−5, 10−8}

4.4.1 Householder transformation

The Householder algorithm 8 applies the TT-round to three sets of TT-vectors: the Householder
TT-vector uk, the TT-vector ak (to which k Householder transformations are applied) and
the orthogonal TT-vector qk (obtained from the canonical basis TT-vectors with i successive
Householder transformations). It is important to study the evolution of the maximum TT-rank,
of the compression ratio, and gain for each of these three groups of TT-vector. Figure 3 displays
the maximum TT-rank, the compression ratio, and the compression gain of uk, ak (after the
k-th reflection), and qk for every k ∈ {1, . . . , 35} and all values of the rounding accuracy δ. The
maximum TT-rank and the compression ratio of uk, ak and qk increase with increasing basis
sizes, k, as expected, due to the growing number of terms in their computation. Notably, the
maximum TT-rank of qk exceeds that of uk for a basis size greater than 10. This property is

Inria



On some orthogonalization schemes in TT-format 21

0 5 10 15 20 25 30 35
basis size

100

101

102

103

m
ax

 o
f T

T-
ra

nk

Householder TT-vector uk

Basis TT-vector qk

Reflected TT-vector ak

(a) δ = 10−3

0 5 10 15 20 25 30 35
basis size

100

101

102

103

m
ax

 o
f T

T-
ra

nk

Householder TT-vector uk

Basis TT-vector qk

Reflected TT-vector ak

(b) δ = 10−5

0 5 10 15 20 25 30 35
basis size

100

101

102

103

m
ax

 o
f T

T-
ra

nk

Householder TT-vector uk

Basis TT-vector qk

Reflected TT-vector ak

(c) δ = 10−8

Maximal TT-rank for the TT-vectors in Householder algorithm

0 5 10 15 20 25 30 35
basis size

10 5

10 4

10 3

10 2

10 1

100

co
m

pr
es

sio
n 

ra
tio

Householder TT-vector uk

Basis TT-vector qk

Reflected TT-vector ak

(d) δ = 10−3

0 5 10 15 20 25 30 35
basis size

10 5

10 4

10 3

10 2

10 1

100

co
m

pr
es

sio
n 

ra
tio

Householder TT-vector uk

Basis TT-vector qk

Reflected TT-vector ak

(e) δ = 10−5

0 5 10 15 20 25 30 35
basis size

10 5

10 4

10 3

10 2

10 1

100

co
m

pr
es

sio
n 

ra
tio

Householder TT-vector uk

Basis TT-vector qk

Reflected TT-vector ak

(f) δ = 10−8

Compression ratio for the TT-vectors in Householder algorithm
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Figure 3: Householder memory requirement for m = 35 TT-vectors of order d = 6 and mode size
n = 15.
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important because in most practical vector computations, only the Householder TT-vectors uk
are stored, and the orthogonal basis TT-vector qk is usually not explicitly formed.
Figures 3a, 3b and 3c show that the maximum TT-rank of ak after the k-th Householder reflection
is extremely low, especially when compared to those of qk and uk. Furthermore, the maximum
TT-rank of ak increases every time the index k is a multiple of the mode size n = 15, as shown
in Figure 3a and 3b. This pattern is also observed in Figure 3c for δ = 10−8, although it is
less consistent. We attempted to explore this phenomenon theoretically, but we were unable to
provide a clear and convincing explanation.
The compression ratio closely follows the same trend as the maximum TT-rank, but it allows
us to monitor memory growth as a percentage. Figures 3d, 3e and 3f show a compression ratio
smaller than 1 for all rounding accuracy δ values, indicating that the TT-format is still effective
in reducing the memory usage in all these experiments. Additionally, the compression ratio of ak
remains around 10−5 for all three values of δ. Figures 3d and 3e indicate that the compression
ratio of qk plateaus at approximately 10−1, while that of uk plateaus at around 10−2. In
Figure 3f, it is unclear whether the compression ratio of qk and uk plateaus at 1 and 10−1

respectively. In Figures 3g, 3i and 3h, the gain curves of uk, qk and ak exhibit same behavior.
Specifically, we examine the gain of compressing the k-th Householder TT-vector uk and the
input TT-vector ak (after the k-th reflection). These curves are almost constant and low during
the iterations. The several compression steps of the associated TT-vectors during the previous
iterations are likely the cause. In contrast, the compression gain for qk is significantly larger. The
compression gain curve of qk increases during the first 10 iterations for all rounding accuracies,
decreases slightly after, and seems to raise again. It is worth noting that the compression gain
curve of the Householder basis reaches its highest value at around 110 when δ = 10−5. This
indicates that after the compression, slightly less than 1% of the memory used to store the same
tensor in TT-format before the compression is required.

4.4.2 Orthogonalization kernel comparison

After describing the TT-Householder algorithm’s memory requirements, we compare the four
orthogonalization schemes from a memory consumption perspective. To make a fair comparison,
we consider both memory consumption perspective and loss of orthogonality, which is studied
in Section 4.1. Figure 4 displays the maximum TT-rank, the compression ratio and the gain for
the orthogonal TT-vectors qk generated by the orthogonalization schemes plus the Householder
TT-vectors uk, for different accuracies δ. It is important to note that qk are not computed
in many applications. The curves in the corresponding figure become dashed and partially
transparent for every rounding accuracy δ when the corresponding loss of orthogonality exceeds
10−1. In all Figures 4a, 4b, and 4c show that the maximum TT-rank of the orthogonal TT-
vectors computed by TT-CGS and TT-Gram schemes stagnates around 10. However, there is
no clear theoretical justification for this phenomenon. The maximal TT-rank of qk from the
TT-Gram algorithm is theoretically bounded by k multiplied by the maximal TT-rank of aj
for j ∈ {1, . . . , k}. When generating aj , they are rounded with a maximal TT-rank equal to 1.
In our experimental framework, the maximal TT-rank of qk is bounded by k. Conversely, the
maximal TT-rank of qk from TT-CGS is bounded by 1 + k(k − 1)/2 knowing that the maximal
TT-rank of ai is bounded by 1 for i ∈ {1, . . . ,m} in our experiments. In terms of the maximal
TT-rank, TT-Gram outperforms TT-MGS and TT-Householder for basis sizes greater than 10.
However, TT-CGS sets a lower bound for the maximal TT-rank. It is important to note that
the loss of orthogonality of TT-CGS and TT-Gram becomes greater than 10−1 around k = 10.
On the other hand, the TT-MGS maximal TT-rank curve becomes dashed around k = 20, while
the Householder curve never does. This means that the loss of orthogonality arrives much later

Inria



On some orthogonalization schemes in TT-format 23

for TT-MGS or may not arrive at all for TT-Householder. In Figure 4a, the maximal TT-rank
of qk from TT-MGS exceeds the maximal TT-rank of the Householder TT-vector uk and the
Householder orthogonal TT-vector qk when the basis size k reaches 20 and 25, respectively.
Figure 4b shows a comparable relationship between the maximal TT-rank for Householder and
for MGS generated orthogonal TT-vectors. However, the turning point occurs at different basis
sizes: 25 for the Householder TT-vector uk and 30 for qk. For the last rounding accuracy value
δ = 10−8, the maximal TT-rank of the MGS orthogonal TT-vector reaches the Householder
qk when the basis size exceeds 15, surpassing the maximal TT-rank of the Householder uk at
approximately the same basis size. These results are displayed in Figure 4c.

In analyzing the memory requirements of the TT-Householder algorithm, we also examine
the compression ratio of the TT-vectors that form the orthogonal basis generated by the four
orthogonalization methods. The compression ratio curves in Figures 4d, 4e and 4f have the
same slopes as their corresponding maximal TT-rank curves, but they clearly demonstrate the
memory needs. The orthogonal TT-vectors obtained from the TT-CGS and TT-Gram schemes
require only about 1% of the memory needed to store the full format tensors, as shown in
Figure 4d, 4e, and 4f. However, when the basis size exceeds 10 and the TT-vectors become more
collinear, the resulting basis from these schemes become very poor in terms of orthogonality. Both
Figures 4d and 4e indicate that storing the basis TT-vectors generated by the TT-Householder
scheme requires approximately 20% of the memory needed to store those tensors in full format.
Similarly only 10% of the entire memory required for full format storage is necessary to store the
Householder TT-vectors uk. Finally, for δ = 10−8, the cost of storing the Householder basis TT-
vectors qk is the same as storing them in full format, as shown in Figure 4f. However, based on
the same figure, it is evident that storing the Householder TT-vectors, even for δ = 10−8, requires
only about 30% of the memory needed to store the same tensors in full format. This feature
makes the TT-Householder algorithm highly appealing, as it is usually adequate to store only the
Householder TT-vectors. The TT-Householder algorithm becomes even more advantageous when
compared to the compression ratio curves of the TT-MGS, TT-MGS2 and TT-CGS2 algorithms.
For all rounding accuracy values, the compression ratio curve of the TT-MGS and TT-MGS2
always reaches 1, as shown in Figures 4d, 4e, and 4f. This implies that the memory required by
the TT-vectors from these schemes is the same as the memory needed to store the orthogonal
basis tensors in full format. This consideration also applies for the compression ratio of the
orthogonal basis generated by the TT-CGS2 for δ ∈ {10−5, 10−8}. However, for δ = 10−3, the
TT-vectors from TT-CGS2 only require 20% of the memory needed to store the same tensors in
dense format. Figures 4g, 4h, and 4i show the compression gain curves for the different rounding
accuracy values δ with a similar behavior. The compression gain of TT-Gram has a peak at
the beginning and then stabilizes around 10 starting from k = 10. This means that during
compression, the j-th basis TT-vector reduces the memory requirement by 10 times for j ≥ k.
The gain curves of TT-MGS, TT-MGS2 and TT-CGS2 have a similar shape. They increase up
to k = 15, then drop for the next 5 iterations before rising again around k = 22. The gain curve
of TT-Householder basis follows a similar pattern, growing to a peak before decreasing and then
rising again during the last iterations. As previously observed, the Householder TT-vector gain
curve slightly rises at the beginning, then it drops down and stagnates at a very low value from
k > 10. Finally, the TT-CGS gain curve increases as the dimension k of the basis increases.
When the last basis TT-vector is rounded, only 0.001 of the memory used to store the TT-vector
before rounding is required. However, as indicated by the dash style, both the TT-CGS and
TT-Gram bases have almost completely lost the orthogonality already at k = 10.
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Figure 4: Comparison of the orthogonal basis memory requirement for m = 35 TT-vectors of
order d = 6 and mode size n = 15. The curves get dashed and partially transparent when their
corresponding loss of orthogonality gets greater then the prescribed rounding accuracy δ.
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4.5 Summary

Table 1 summarizes the computational costs for the tensor and matrix cases. In terms of memory

Matrix TT-vectors

Algorithm Computational
cost in fp operations ‖Ik −Q>k Qk‖

Computational
cost in TT-round ‖Ik −Q>k Qk‖

Gram O(2nm2) O(uκ2(Ak)) m O(δκ2(Ak))
CGS O(2nm2) O(uκ2(Ak)) m O(δκ2(Ak))
MGS O(2nm2) O(uκ(Ak)) m O(δκ2(Ak))
CGS2 O(4nm2) O(u) 2m O(δ)
MGS2 O(4nm2) O(u) 2m O(δ)
Householder O(2nm2 − 2m3/3) O(u) 4m O(δ)

Table 1: Computational costs in floating point operations and in TT-round operations, and
bounds for the loss of orthogonality, theoretical with respect to the unit round-off u and conjec-
tured ones with respect to the rounding accuracy δ, for an input set of m vectors and TT-vectors
respectively.

footprint, the TT-Householder orthogonalization scheme, along with TT-CGS2 and TT-MGS2,
is often the best option due to its stability property and the option to store only the TT-
vectors ui. Figures 4d, 4e, and 4f demonstrate that when the input TT-vectors are not highly
collinear (k < 15), TT-MGS2 and TT-CGS2 achieve a compression ratio similar to that of TT-
Householder. For a basis size between 15 and 25 (or 20 for δ = 10−8), TT-Householder is more
memory-expensive than TT-MGS, TT-MGS2 and TT-CGS2. Finally, as the input TT-vectors
become more linearly dependent, the memory requirements of the TT-MGS2 and TT-CGS2 bases
become greater or equal to those of both the TT-Householder basis and Householder TT-vector.
However, in terms of orthogonality preservation, TT-MGS2 outperforms TT-Householder for
every rounding accuracy, while TT-CGS2 outperforms TT-Householder for δ ∈ {10−5, 10−8}. In
terms of computationa cost, both TT-CGS2 and TT-MGS2 are cheaper than TT-Householder,
requiring only 2m TT-round instead of 4m.

5 Concluding remarks

In the framework where the data representation accuracy is decoupled from computational ac-
curacy, as previously proposed in [27, 28, 29], we investigate the loss of orthogonality of six
orthogonalization kernels in the tensor format. The Tensor Train [14] is the compressed format
used to represent tensors. The orthogonalization methods considered are Classical and Modified
Gram-Schmidt (CGS, MGS), their versions with re-orthogonalization (CGS2, MGS2), the Gram
approach and the Householder transformation. Section 3 describes the generalization of these
kernels to the tensor space in TT-format, relying on the compression function called TT-round.
Section 4 presents the numerical experiments related to the loss of orthogonality and memory
requirement of these kernels in TT-format.

As in the matrix case, the choice of the orthogonalization scheme among TT-Householder,
TT-CGS2 and TT-MGS2 depends strongly on the purpose and on the available computing re-
sources. TT-Householder requires less memory, but it is computationally more expensive and its
orthogonality stagnates around the rounding accuracy. On the other hand, TT-MGS2 produces
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a basis of better orthogonality quality, as long as the input TT-vectors are not too collinear,
and it is computationally cheaper than TT-Householder. The same considerations hold also for
TT-CGS2, under the same hypothesis. The theoretical validation of the experimental results
remains an open question and will be the focus of future research.
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